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Abstract

Graph Convolutional Networks (GCNs) are promising deep learning approaches in
learning representations for graph-structured data. Despite the proliferation of such
methods, it is well known that they are vulnerable to carefully crafted adversarial
attacks on the graph structure. In this paper, we first conduct an adversarial
vulnerability analysis based on matrix perturbation theory. We prove that the low-
frequency components of the symmetric normalized Laplacian, which is usually
used as the convolutional filter in GCNs, could be more robust against structural
perturbations when their eigenvalues fall into a certain robust interval. Our results
indicate that not all low-frequency components are robust to adversarial attacks and
provide a deeper understanding of the relationship between graph spectrum and
robustness of GCNs. Motivated by the theory, we present GCN-LFR3, a general
robust co-training paradigm for GCN-based models, that encourages transferring
the robustness of low-frequency components with an auxiliary neural network. To
this end, GCN-LFR could enhance the robustness of various kinds of GCN-based
models against poisoning structural attacks in a plug-and-play manner. Extensive
experiments across five benchmark datasets and five GCN-based models also
confirm that GCN-LFR is resistant to the adversarial attacks without compromising
on performance in the benign situation.

1 Introduction

Graph Convolutional Networks (GCNs) elaborate the expressive power of deep learning from
grid-like data to graph-structured data and have achieved remarkable success in a wide variety
of domains [7, 6, 13, 27, 22, 30, 1, 8, 42, 18, 31, 12, 41, 19]. Just like CNNs, modern GCNs
could promisingly learn both the local and global structural patterns of graphs through designed
convolutions. However, the vulnerability of GCNs against adversarial attacks has been revealed
recently [70, 11, 9]. The lack of robustness arouses concerns on applying GCNs in a variety of
fields pertaining to security and privacy. Adversarial attacks on graphs aim to degrade the ability
of representation learning of GCNs, and fool them to make wrong decisions by perturbing either
node features or graph structures. Given the complexity of the underlying structural information and
the ease of operation in practice [50], the majority of literature focuses on the adversarial attacks on
structures by inserting/removing/rewiring adversarial edges, i.e., structural attacks. In other words,
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structural attacks on graphs during the training stage of GCNs with node features unchanged becomes
a commonly considered setting by attackers [24]. Therefore, it is of emerging importance to enhance
the robustness of GCNs against structural attacks, which is also the aim of this work.

For a better understanding of the structural attacks, it naturally leads to the question: Do the
adversarial edges post equal influences on the graph spectrum? Here, graph spectrum plays a
significant role in Graph Signal Processing (GSP) [45, 39] and graph learning. Empirical observations
from recent papers suggest the answer could be “no”. We can observe that the perturbations resulting
from structural attacks express an implicit trend on the graph spectrum [14]. As the toy example
shown in Figure 1, low-frequency components (far left) tend to be more robust in comparison with
high-frequency ones (far right). Similarly, [29] observes that the low-pass filters seem to be more
stable than high-pass filters when we randomly add/remove edges. These observations point to a
promising direction for developing principled defense approaches based on the theoretical analysis of
graph spectrum.

Clean Graph 𝐆

Perturbed Graph 𝐆’

Spectral Difference
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Figure 1: Observation. After adversarial attacks
on the structure of graphs, the perturbations on the
low-frequency components (far left) are smaller
than that in the high-frequency ones (far right).

Contributions. To mitigate the vulnerability
of GCNs against adversarial attacks, in this pa-
per, we aim to bridge the gap between the spec-
tral analysis and the robustness of GCNs under
structural perturbations. Specifically, for the
symmetric normalized Laplacian, which is com-
monly chosen as the graph filter in GCNs, we
prove that the low-frequency components could
be more robust against both one-edge and multi-
edge perturbations when their eigenvalues fall
into a robust interval. Interestingly, this result
reveals that not all low-frequency components
are robust to adversarial attacks.

Considering the benefit from robust interval in
low frequencies, we further propose GCN-LFR
(Low-Frequency based Regularization), a general robust co-training paradigm that can transfer the
robustness from the eligible low-frequency components. GCN-LFR is a general defender that can
work with any GCN-based model against various training-time attacks. In particular, GCN-LFR
regularizes the training process of any given GCN with the robust information from an auxiliary
regularization netMLFR , which injects a set of learnable parameters to imitate the robust interval
for low-frequency components. Moreover, instead of jointly training two branches, we design an
alternative training scheme to accelerate the training process. We observe that the alternative training
scheme also benefits the final performance in practice.

In experiments, to demonstrate the flexibility of GCN-LFR, we integrate GCN-LFR with five popular
GCN-based models and compare GCN-LFR with four state-of-the-art defenders across five benchmark
datasets under a variety of settings, including one-edge targeted, multi-edge targeted, and non-
targeted attacks. Extensive results demonstrate that GCN-LFR consistently outperforms the defending
baselines under all settings. Remarkably, we also show that GCN-LFR successfully enhances the
robustness of GCNs without deduction of performance on benign graphs. It further reveals the broad
applicability and relevance of GCN-LFR in the area of deep graph learning.

2 Related Work

Adversarial attacks on graphs. Adversarial attacks on graph neural networks have drawn unprece-
dented attention from researchers recently [47, 24, 49]. Based on the stage where the attack happens,
adversarial attacks on graph-structured data can be divided into 1) poisoning attacks (e.g., Net-
tack [70]) that perturb the graph in the training stage and 2) evasion attacks (e.g., RL-S2V [11]) that
perturb the graph at testing. A series of studies integrates various of techniques to construct persuasive
adversarial samples, such as gradient based methods [55, 60], meta-learning [71], matrix perturbation
theory [3], graph generation [32], graph signal processing [9] and reinforcement learning [11, 48].

Defenses on graphs. Other than the adversarial attacks on graphs, researchers are also concerned
about the robustness of graph models. Generally, we can category the existing methods into two
families: spatial-based and spectral-based defense. 1) Spatial-based defense. GCN-Jaccard [55] pro-
poses to examine fake edges in the step of preprocessing by utilizing similarity metrics. RGCN [67],
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Pro-GNN [25], and VPN [23] focus on proposing new variants of GCNs that can effectively defend
against attacks on VanillaGCN. GNNGUARD [63] detects the adverse effects existing in the relation-
ship between the graph structure and node features by neighbor importance estimation. Low-Pass [53]
considers low-pass message passing from neighborhoods, which is similar to the attention mechanism
in GNNGUARD to defense structural attacks. 2) Spectral-based defense. GCN-SVD [14] empirically
verifies that only the high-rank singular components of the graph are affected by Nettack, and prepro-
cesses the poisoned graph via SVD with pure structural information for defense. In this paper, we first
explore the theoretical connection between robustness and graph spectrum, and propose GCN-LFR to
bring the robustness information from eligible low-frequency components in the spectral domain.
The proposed framework GCN-LFR is a general defender and can protect various GCN-based models
from adversarial attacks.

3 Preliminaries

We consider an undirected attributed graph G = (V, E ,X), where |V| = N is the set of N nodes,
E ⊆ V × V is the set of E edges, and X = {x1, ...,xN} is the associated feature matrix, in
which xu ∈ RM is the M -dimensional node feature for node u ∈ V . We utilize Nu to denote the
neighbors of node u. We denote the adjacency matrix as A ∈ RN×N , where Auv ∈ {0, 1} indicates
whether an edge euv ∈ E exists. The node degree matrix is defined as D = diag(d1, · · · , dn), where
du =

∑
vAuv represents the degree of node u. An adversarial attacker deliberately perturbs edges

in G and results in the poisoned version of G, which we denote as G′ = (V ′, E ′,X), and A′ is
the perturbed version of A. Let L = D−1/2(D −A)D−1/2 be the symmetric normalized graph
Laplacian. L has eigenvalues ranging from 0 to 2. Â = D−

1
2AD−

1
2 = In −L is the symmetric

normalized adjacency matrix, whose eigenvalues range from −1 to 1. Specifically, the low-frequency
components refer to the ones of L with eigenvalues in [0, 1) (of Â with eigenvalues in (0, 1]), and the
high-frequency ones refer to that of L with eigenvalues in (1, 2] (of Â with eigenvalues in [−1, 0)).

3.1 Graph Convolutional Networks

VanillaGCN can be viewed as the spectral convolution based on the Fourier transform on graphs with
first-order Chebyshev polynomial filter g(L). The layer-wise update rule is given as:

feature transformation : H ′(l) = H(l)Θ, graph convolution :H(l+1) = σ(g(L)H ′(l)), (1)

where H(l+1) ∈ RN×q(l+1)

is the output from hidden layer l with input as H(l) ∈ RN×q(l)

. q(l)

refers to the dimension of output at layer l. For the input layer, we have H(0) = X . σ(·) refers to the
activation function, such as ReLU. Θl ∈ Rq(l)×q(l+1)

refers to the weight matrix. In Eq.(1), different
filter g(L) leads to different GCNs. For example, VanillaGCN along with its variants [61, 54, 16, 10]
usually use the symmetric normalized adjacency matrix Â = In −L as g(L). Therefore, we mainly
focus on the analysis of filter Â, and try to find out the connection between the robustness of GCNs
and the perturbation on Â. To ease the notation, we denote U and Λ = diag(λ1, · · · , λN ) as the
eigen-pairs of Â in the following sections unless otherwise indicated.

3.2 Poisoning Structural Attacks

Poisoning structural attacks towards graph-structured data focus on corrupting the topology during
training stage [24]. Specifically, the attacker is able to delete or insert a small number of edges
on the benign graph to generate a perturbed graph G′ with adjacency matrix A′. Through this
manipulation, the attacker intends to fool the prediction of GCNs and damage the performance of
the downstream learning tasks. Formally, given a fixed budget of perturbation ∆ on edges, i.e.,
||A′ −A||0 ≤ 2∆, the adversarial attack on a GCN-based modelM can be formulated as a bi-level
optimization problem [3, 9]:

argmin
A′∈PG∆

Lattack(M(A′,X;Θ∗),y) s.t. Θ∗ = argmin
Θ
LGCN(M(A′,X;Θ),y),

where PG∆ denotes the possible perturbations within budget ∆. y is the ground-truth label. Lattack and
LGCN denote the loss of adversarial attack and modelM, respectively.M(A′,X; Θ∗) refers to the
prediction of modelM on the poisoned graph G′, where the weights Θ∗ keep trained to optimal.
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We denote T as the set of target nodes aimed by the attacker. We consider the following two types
of attacks: 1) Targeted attacks. The attacker aims to destroy prediction for a specific node u by
manipulating the adjacent edges of u [70, 55, 9], and T = {u} in this situation. 2) Non-targeted
attacks. The attacker aims to degrade the overall classification performance but does not care about
which node is being targeted [71, 60]. Under this setting, T = Vtest, where Vtest is the full test set.

4 Methodology

4.1 Problem Formulation

In a poisoning attack, the training data from G is perturbed before fed into a GCN modelM, so that
the performance ofM can be degraded. Therefore, we formulate the defense problem as:

Problem 1. Given a perturbed graph G′ generated by a poisoning attacker, the aim of defense on
target set T is to produce a more robust modelMr to optimize:

min
Θr∗

∑
u∈T
‖Mr

u(A′,X;Θr∗)−Mu(A,X;Θ∗)‖, (2)

where Mr
u(A′,X;Θr∗) = ŷru refers to the prediction of node u, when Mr is trained on the

poisoned graph G′ with optimal Θr∗. Mu(A,X;Θ∗) = ŷu is a hypothetical prediction thatM
would make if the clean graph G is accessible.

In Eq. (2), we aim to force ŷru to approximate ŷu, then the prediction ŷu in the benign situation can
be recovered. However, the clean graph G is almost impossible to be accessed under the setting of
adversarial attacks, which implies that we can not obtainM′ by directly optimizing Eq.(2). To tackle
this problem, we begin with investigating the potential impacts of structural attacks by examining the
variability between A and A′.

4.2 Spectral View of Structural Attacks

Following [14, 15], we observe the eigenvalues of Â after structural attacks as shown in Figure 1.

Observation 1. Under structural attacks, the high-valued eigenvalues (low-frequency components)
of Â are likely to be more robust than the low-valued eigenvalues (high-frequency components).

With this empirical inspiration, GCN-SVD [14] directly preprocesses the poisoned graph and retains
the top low-frequency components for defense. However, we argue that this justification is inaccurate.
The relationship between robustness and graph spectrum is more complex than empirical observation.
In the following, we provide an in-depth analysis of structural perturbations from the spectral domain.

4.2.1 One-edge Perturbation

We first consider the targeted attacks with one-edge perturbation, where T = {u} and ∆ = 1. Note
that under one-edge perturbation, i.e., we conduct a single edge flip euv on A, ∆A is a matrix with
only 2 non-zero elements, namely ∆Auv = ∆Avu = 1− 2Auv. Following [38], we assume that
the eigenvector matrix U satisfies the following assumption:

Assumption 1. U has an orthonormal basis (uy)y∈[N ] that consists of non-negative vectors, where
N is the number of nodes in the graph.

Then, we introduce the Lemma 1 to describe the differences of eigenvalues after structural attacks.

Lemma 1. Given a graph G = (V, E ,X) and one edge euv to be perturbed, the change of y-th
eigenvalue after perturbation is formulated as

∆λy =

{
2uyu · uyv − λy(u

2
yu + u2

yv) if E ∪ {euv}
−2uyu · uyv + λy(u

2
yu + u2

yv) if E \ {euv},
where uyu refers to the u-th element of eigenvector uy .

The proof is available in the Appendix. With the help of Lemma 1, we can establish the relationship
between robustness of GCNs and the change on each eigenvalue |∆λy| resulting from perturbations.
Intuitively, smaller changes on eigenvalues indicate stronger robustness of GCNs against attacks.
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Theorem 1 (Low-frequency). Assume that u2
au + u2

av 6= 0, u2
bu + u2

bv 6= 0, and

(uau + uav)
2 > (ubu − ubv)

2. (3)

Then, there exists a pair of high-frequency λa ∈ [−1, 0) and low-frequency λb ∈ (0, 1], so that
|∆λa| > |∆λb| always holds if λa and λb satisfy

max
(
0,
db − da + caλa

cb

)
< λb < 1; −1 < λa < min

(da − cb + db
ca

, 0
)
, (4)

where ca = u2
au + u2

av , da = 2uau · uav , cb = u2
bu + u2

bv , and db = 2ubu · ubv .

The proof of Theorem 1 is available in the Appendix. From Theorem 1, we summarize two remarks.
Remark 1. The top low-frequency components (i.e., components are selected from the values closer
to 1) could be more robust than the top high-frequency ones (i.e., components are selected from the
values closer to -1) against one-edge perturbation under the condition from Inequality 3, which is
consistent with Observation 1. However, it is still vulnerable to such attacks that perturb the edges
satisfying (uau + uav)

2 ≤ (ubu − ubv)
2. This is contrary to the justification from GCN-SVD [14]

and implies that not all low-frequency components are robust.
Remark 2. We do not consider two special situations that u2

au = u2
av = 0 or u2

bu = u2
bv = 0,

because they conclude that ∆λa = 0 or ∆λb = 0, respectively. This implies no perturbation happens
on λa or λb, which is rare in practice and out of discussion.

4.2.2 Robust Interval of Low-Frequency

As Remark 1 from Theorem 1, Inequality 3 still makes the low-frequency components of Â suffer
from certain attacks. To further get rid of this condition, we derive a new bound for low-frequency λb
by removing the dependency on λa in Inequality 4 here, which reveals the robust interval:
Theorem 2 (Robust interval). Assume that u2

au + u2
av 6= 0 and u2

bu + u2
bv 6= 0. There exists

low-frequency λb, so that |∆λa| > |∆λb| always holds for any −1 < λa < 0 if λb satisfies

max
(
0,
db − da + caλa

cb

)
< λb < min

(db + da − caλa
cb

, 1
)
.

The proof is available in the Appendix. Theorem 2 indicates the interval of λb that is able for defense,
which we denote as the robust interval of λb. In other words, when the low-frequencies fall into the
robust interval, they are always more robust than the high-frequencies under one-edge perturbation.

4.2.3 Non-Targeted Perturbation

In this part, we consider a more complex and practical setting, the multi-edge non-targeted pertur-
bation, where T = Vtest and ∆ > 1. The perturbation P on each node u ∈ T can be treated as
multi-edge targeted attack. Note that the multi-edge targeted perturbation is a special case when
T = {u}. Specifically, we discuss the type of attacks that either consecutively inserting or deleting
edges on the clean graph, since every state after perturbations can be decomposed into consecutively
inserting then removing edges. In this situation, the attacker directly manipulates the adjacent edges
of u. Based on Theorem 1, we obtain the following results:
Corollary 1 (Low-frequency). We decompose non-targeted attacks as two steps: 1) selecting target
u from T , and 2) conducting perturbations on u as multi-edge targeted attack. Assume p adversarial
edges are either consecutively inserted or deleted on node u as set Pu, i.e., E ∪ Pu or E \ Pu. With
the same assumptions as in Theorem 1, there exists a pair of high-frequency λa and low-frequency λb
so that |

∑
u∈T

∑
v∈Pu

∆λauv| > |
∑
u∈T

∑
v∈Pu

∆λbuv| always holds if λa and λb satisfy

max
v∈Pu,u∈T

(
0,
dbuv − dauv + cauvλa

cbuv

)
< λb < 1; −1 < λa < min

v∈Pu,u∈T

(dauv − cbuv + dbuv
cauv

, 0
)
,

where cauv = u2
au + u2

av , dauv = 2uau · uav , cbuv = u2
bu + u2

bv , and dbuv = 2ubu · ubv .

Then we can have the robust interval under non-targeted perturbations with the help of Corollary 1 as:
Corollary 2 (Robust interval). With same assumptions as in Theorem 2, |

∑
u∈T

∑
v∈Pu

∆λauv| >
|
∑
u∈T

∑
v∈Pu

∆λbuv| always holds for any −1 < λa < 0 if λb satisfies

max
v∈Pu,u∈T

(
0,
dbuv − dauv + cauvλa

cbuv

)
< λb < min

v∈Pu,u∈T

(dbuv + dauv − cauvλa
cbuv

, 1
)
.
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The proofs for Corollary 1 and Corollary 2 can be found in the Appendix.
Remark 3. Under non-targeted perturbation, one could come to the same remarks as Theorem 1
when consecutively inserting or deleting edges from the clean graph. The mixed situation will be
left as a future work. Due to space constraints, please refer to Corollary 3 and Corollary 4 in the
Appendix for details upon multi-edge targeted attack.

To summarize, we provide the theoretical justifications about the robustness of low-frequency
components under the structural attacks in this section. These results imply that we can enhance the
robustness of GCNs by utilizing the robust interval of low frequencies in Â′ of the poisoned graph.

4.3 GCN-LFR: General Robust Training Paradigm

Inspired by the theoretical findings in Section 4.2, it is natural to migrate the information from
low-frequency components within robust interval to enhance the robustness of modelM. In this vein,
we present GCN-LFR (Low-Frequency based Regularization), which introduces an auxiliary network
MLFR to extract the low-frequency information within robust interval to regularize Θ during the
training procedure via parameter sharing [17]. Figure 2 depicts the whole framework of GCN-LFR.

4.3.1 Auxiliary Regularization NetMLFR

Alternative Training

𝓛!"#$%

Input Graph

𝓛&'(

𝓜!"#	: GCN-based Model

GCN 
Layer

GCN 
Layer

GCN 
Layer

Low-Frequency
Components

𝓛)*+

𝓜$%&	: Auxiliary Regularization Net

LFR 
Layer

LFR 
Layer

LFR 
Layer

Parameter Sharing

Prediction

Figure 2: Overview of GCN-LFR. For any given GCN-based
modelM, we enhance its robustness by co-training an auxil-
iary netMLFR that utilizes only the low-frequency compo-
nents as regularization.

The effectiveness of the parameter
sharing based regularization is demon-
strated by co-training an auxiliary neu-
ral network on various of Deep Neu-
ral Networks [2, 52]. In GCN-LFR,
we propose our auxiliary regulariza-
tion netMLFR(A′,X;Θ) by explic-
itly designing the graph convolutional
filter from Eq.(1) with the robust low-
frequency components. However, ex-
plicitly computing the robustness in-
terval is infeasible before the struc-
tural attack. To alleviate this chicken
or the egg style causality dilemma, we
employ a set of learnable parameters
F as filters to learn the robust inter-
val for the low-frequency components
during training.

Overall, the layer-wise update rule forMLFR(A′,X;Θ,F ) is:

feature transformation :H
′(l) = H(l)Θ, graph convolution :H(l+1) = σ(U ′lowFU

′>
lowH

′(l)),

where U ′low are the top-k low-frequency eigenvectors from poisoned graph G′, and the parameters Θ
will be co-trained and shared to the original GCN modelMGCN(A′,X;Θ). F = diag(f1, · · · , fk)
is a diagonal matrix with k parameters as the graph filter, which can be learned in an end-to-end
manner. Aside from the flexibility of learned F falling into the robust interval, F can also enlarge the
capacity ofMLFR by making the learned embeddings H generalize into the subspace span by U ′low.

4.3.2 Co-Training Framework

Consider a learning task on graph G, and a given GCN-based modelMGCN(A′,X;Θ) parametrized
by Θ and poisoned by A′ is utilized to deal with this task. We denote the loss function ofMGCN as
LGCN = L(MGCN(A′,X;Θ),y). Instead of minimizing LGCN alone, we propose to co-train it with
the same supervised loss on an auxiliary regularization net LLFR = L(MLFR(A′,X;Θ,F ),y). In
this way, we are able to compel the original model to learn a more reliable representation from the
robust low-frequency components:

Ltotal = (1− α)LGCN + αLLFR, (5)
where α ∈ [0, 1] is the weight coefficient for balancing the contribution of two losses. The transfor-
mation of the robust information from low-frequency components is achieved by regularizing the
training of LGCN with the shared parameters Θ.
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Instead of jointed optimizing LGCN and LLFR, we exploit the idea of alternative training [52] to
optimize the two losses. Specifically, at each epoch, we randomly choose one of the two losses
in GCN-LFR to optimize with a probability determined by α. To put it another way, we sample a
random value z ∈ U(0, 1), and α acts as a threshold that decides which loss would be optimized at
each epoch. The thorough description of algorithm is depicted in the Appendix.

As compared to joint training, this alternative training scheme can reduce the computational cost and
accelerate the training process. Furthermore, in practice, we observe that the generalization ability of
model is also improved according to the alternative training strategy.

For the inference procedure, we only transfer the robustness of low-frequency components by
cotraining MLFR and sharing its parameters during training procedure. Then we only use the
prediction of the given model MGCN for inference. In other words, the extra complexity of our
proposed method only from the training procedure, while the inference procedure stays the same,
which further reflects the scalability of our proposed approach.

4.3.3 Complexity Analysis

We discuss the complexity of GCN-LFR here by the light example of VanillaGCN as backbone. For
an input graph with N nodes, E edges, and M as feature dimension on each node, the complexity
of a solo VanillaGCN is O(EM +NM2) [57]. Then, with the help of Lanczos algorithm [28], the
time complexity of calculating the top-k eigen-pairs is O(ckN), where c is the average number
of non-zero entries in a row of Â. Thus the overall complexity of GCN-LFR on VanillaGCN is
O(EM +N(M2 + ck)). In our experiments, we choose to tune the hyperparameter k = d%N as the
proportion of low-frequency from grid search, in order to make GCN-LFR more adaptive to different
graphs. In this case, the overall complexity would be O(EM +NM2 + cN2)). In a nutshell, the
extra complexity introduced by GCN-LFR during co-training is not a burden, especially when the
graph is sparse, as it is in most real-world applications.

5 Experiments

5.1 Experimental Setup

Datasets. We mainly focus on five node classification benchmark datasets under the semi-supervised
setting: 1) three citation networks, Cora [37], Citeseer and Pubmed [43], 2) a coauthor network
Coauthor CS [44], and 3) a co-purchase network Amazon Photo [36]. More details, including dataset
description and statistical information, are deferred to the Appendix.

Adversarial samples generation. We evaluate our model under three kinds of adversarial attack
settings from the existing studies: targeted attack with one-edge perturbation (Nettack-One [70]),
targeted attack with multi-edge perturbation (Nettack-Multi [70]), and non-targeted attack (Met-
tack [71]). Details upon the three adversarial attack settings can be found in the Appendix.

Target GCN-based models. We apply GCN-LFR to five GCN-basd models to extensively evaluate its
defense performance under three attack settings. The five models are: VanillaGCN [27], JK-Net [61],
SGC [54], Graph-U-Net [16], and GCNII [10].

Defense baselines. We compare GCN-LFR with four SOTA general graph defenders with their
available public implementations. GCN-Jaccard [55] and GCN-SVD [14] are two preprocessing
based defending methods. GNNGUARD [63] and Pro-GNN [25] are two spatial-based approaches.
Details upon hyperparameters and architectures can be referred to in the Appendix.

5.2 Defense Results Against Targeted and Non-Targeted Attacks

Targeted attack with one-edge perturbation. We first examine the robustness of GCN-LFR against
targeted one-edge perturbation under Nettack-One and report the results in Table 1. The column
“Attacked” shows the performance without any defense. From this column, we can find that Nettack-
One can successfully damage the performance of various models even with only a single edge flip.
However, GCN-LFR can dramatically defend given GCNs against Nettack-One and consistently
outperforms state-of-the-art baselines. Remarkably, we observe that the low-rank preprocessing
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Table 1: Defense performance (multi-class classification accuracy) against one-edge targeted attacks
under Nettack-One. Note: the accuracy is 1 on clean graph since only the correctly classified nodes
are targeted.

Model Dataset Attacked GCN-Jaccard GCN-SVD GNNGUARD GCN-LFR
Cora 0.350 0.675 0.700 0.775 0.800

Citeseer 0.425 0.625 0.825 0.725 0.775
Pubmed 0.450 0.550 0.600 0.775 0.825

Coauthor CS 0.650 0.675 0.725 0.825 0.875
VanillaGCN [27]

Amazon Photo 0.500 0.525 0.625 0.650 0.750
Cora 0.350 0.575 0.675 0.775 0.825

Citeseer 0.450 0.650 0.550 0.750 0.800
Pubmed 0.350 0.375 0.625 0.800 0.850

Coauthor CS 0.600 0.625 0.675 0.725 0.775
JK-Net [61]

Amazon Photo 0.550 0.575 0.675 0.675 0.800
Cora 0.425 0.675 0.550 0.750 0.825

Citeseer 0.475 0.600 0.650 0.725 0.750
Pubmed 0.300 0.475 0.650 0.750 0.800

Coauthor CS 0.600 0.650 0.725 0.750 0.775
SGC [54]

Amazon Photo 0.550 0.575 0.600 0.675 0.725
Cora 0.375 0.525 0.650 0.725 0.800

Citeseer 0.275 0.350 0.575 0.750 0.775
Pubmed 0.475 0.550 0.675 0.700 0.750

Coauthor CS 0.625 0.600 0.700 0.775 0.850
Graph-U-Net [16]

Amazon Photo 0.500 0.525 0.650 0.725 0.825
Cora 0.475 0.650 0.575 0.825 0.875

Citeseer 0.550 0.600 0.625 0.725 0.750
Pubmed 0.400 0.475 0.675 0.750 0.775

Coauthor CS 0.625 0.650 0.700 0.800 0.825
GCNII [10]

Amazon Photo 0.650 0.425 0.600 0.675 0.775

approach GCN-SVD is not very effective, which implies that not all low-frequency components are
robust, and our strategy by transferring robust knowledge with learnable F is beneficial.

Table 2: Defense performance (multi-class classification accuracy) against multi-edge targeted attacks
under Nettack-Multi. Note: the accuracy is 1 on clean graph since only the correctly classified nodes
are targeted.

Model Dataset Attacked GCN-Jaccard GCN-SVD GNNGUARD GCN-LFR

GCNII [10]

Cora 0.160 0.540 0.585 0.695 0.700
Citeseer 0.170 0.370 0.590 0.710 0.655
Pubmed 0.080 0.275 0.430 0.605 0.650

Coauthor CS 0.060 0.350 0.525 0.730 0.775
Amazon Photo 0.120 0.440 0.620 0.715 0.720

Table 3: Defense performance (multi-class classification accuracy) against non-targeted attacks under
Mettack.

Model Dataset Attacked GCN-Jaccard GCN-SVD GNNGUARD Pro-GNN GCN-LFR
Cora 0.701 0.760 0.717 0.764 0.773 0.777

Citeseer 0.657 0.680 0.664 0.687 0.693 0.690
Pubmed 0.807 0.845 0.823 0.848 0.852 0.855

Coauthor CS 0.836 0.865 0.852 0.868 - 0.875
VanillaGCN [27]

Amazon Photo 0.854 0.877 0.862 0.882 - 0.887

Targeted attack with multi-edge perturbation. Next, we evaluate the defending performance
of targeted attacks with multi-edge perturbation. We report the defending performance on the
newest variant, GCNII, in Table 2. It is not surprising that GCNII suffers more serious performance
degradation under Nettack-Multi than that of Nettack-One. However, GCN-LFR remains the best
defender among all baselines even when the amount of perturbed edges increases. We also observe
that GCN-LFR achieves better defense under one-edge perturbation than multi-edge. We suppose this
is due to the wider robust interval in Theorem 2, since the bounds are tighter when iterating over all
candidate edges in Corollary 4.

Non-targeted attack. To validate the defending performance of GCN-LFR against non-targeted
attacks, we utilize Mettack to conduct adversarial edges globally. We also include the comparison
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with an additional baseline Pro-GNN under this setting on small datasets since Pro-GNN is extremely
time-consuming on large datasets. Table 3 demonstrates the results on VanillaGCN for all datasets.
In Table 3, we can observe that the defending performance of GCN-LFR is also comparable with all
baselines.

Table 4: Classification accuracy on benign (i.e., non-attacked) datasets with and without GCN-LFR.
Bengin dataset Cora Citeseer Pubmed Coauthor CS Amazon Photo
w or w/o LFR w/o w w/o w w/o w w/o w w/o w

VanillaGCN 0.815 0.818 0.721 0.701 0.863 0.858 0.907 0.911 0.921 0.925
JK-Net 0.820 0.827 0.705 0.693 0.854 0.836 0.927 0.891 0.929 0.896
SGC 0.825 0.819 0.719 0.701 0.859 0.861 0.928 0.897 0.929 0.927

Graph-U-Net 0.825 0.838 0.697 0.688 0.835 0.842 0.926 0.907 0.925 0.918
GCNII 0.812 0.813 0.695 0.698 0.864 0.838 0.931 0.904 0.934 0.927

5.3 Ablation Studies

Performance of GCN-LFR on clean datasets. Aside from the defense against adversarial attacks,
a successful defender needs not to affect the performance on clean datasets. Table 4 shows the
performance comparison of five GCN models with and without regularization netMLFR on five
benign (i.e., non-attacked) datasets. As shown in Table 4, GCN-LFR achieves a quite competitive
classification accuracy and even better in some cases. This indicates that GCN-LFR does not harm the
performance of GCNs when no attack happens while successfully dealing with the poisoned graphs.
We also conduct T-test on the classification accuracy over all benign datasets w or w/o LFR. which
can be found in the Appendix.

In-depth analysis on MLFR net. To justify the necessity of each component of GCN-LFR, we
implement several variants of GCN-LFR with VanillaGCN and evaluate the performance on the
benign Cora dataset. Figure 3 shows the comparison among GCN-LFR and other variants on the
training and validation accuracy. GCN and LFR represent training with only VanillaGCN andMLFR
net, respectively. GCN-LFRFix is a variant of GCN-LFR that replaces the learnable filter F with the
truncated eigenvalues Λ′low. We have the following observations: 1) LFR net achieves lower training
accuracy and suffers from severe underfitting issue. It indicates that training with only low-frequency
components would lose information despite their robustness. 2) GCN-LFR achieves competitive
performance against GCN. It re-confirms the results in Section 5.3 that GCN-LFR does not harm
performance in the absence of attack. 3) GCN-LFR achieves substantially better validation accuracy
than that of GCN-LFRFix. It implies that the trainable graph filter F is more flexible and can aid the
generalization of learned embeddings in the subspace spanned by U ′low.

Aside from Figure 3, we further provide the comparison among VanillaGCN, GCN-LFRFix and GCN-
LFR under both benign and non-targeted attack settings here for better and sufficient demonstration
in Table 5. It shows that GCN-LFR has both better performance and robustness over VanillaGCN and
GCN-LFRFix. Interestingly, the better generalization ability of GCN-LFR over GCN-LFRFix could be
observed implicitly either in this way.

Table 5: Classification accuracy comparison among VanillaGCN, GCN-LFRFix and GCN-LFR on
both benign and non-targeted attacked datasets.

Dataset Cora Citeseer Pubmed Coauthor CS Amazon Photo
Methods Benign Attacked Benign Attacked Benign Attacked Benign Attacked Benign Attacked

VanillaGCN 0.830 0.771 0.720 0.654 0.860 0.794 0.902 0.816 0.929 0.824
GCN-LFRFix 0.779 0.726 0.683 0.634 0.832 0.786 0.883 0.808 0.876 0.793
GCN-LFR 0.824 0.791 0.706 0.670 0.856 0.802 0.912 0.837 0.928 0.943

Joint optimization vs. alternate optimization on GCN-LFR. We investigate the benefits of alternate
optimization of GCN-LFR (i.e., GCN-LFRAlter). We denote the joint optimization of GCN-LFR as
GCN-LFRJoint. Figure 4 provides the results of comparison. The left-side of Figure 4 demonstrates
the training and validation accuracy on Pubmed dataset. VanillaGCN is used as backbone here. We
can observe that GCN-LFRAlter achieves better training and validation performance compared with
GCN-LFRJoint. Furthermore, the right-side of Figure 4 shows the acceleration ratio of GCN-LFRAlter
over GCN-LFRJoint in terms of training time on five datasets. Acceleration ratio denotes the quotient
obtained by dividing the time-consumed of GCN-LFRJoint by that of GCN-LFRAlter. We can find
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Figure 3: The training and validation accuracy
comparison among GCN-LFR, two components
of GCN-LFR, i.e., VanillaGCN and LFR, and a
variant of GCN-LFR, namely GCN-LFRFix.
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Figure 4: Left: the training and validation loss
comparison between GCN-LFRAlter on Pubmed
with backbone VanillaGCN. Right: the acceler-
ation ratio of GCN-LFRAlter over GCN-LFRJoint.

that GCN-LFRAlter is more efficient by achieving an average of ×1.74 times acceleration, since
GCN-LFRAlter only needs to optimize one model while GCN-LFRJoint needs to handle two models at
each epoch. It verifies that GCN-LFRAlter enjoys both effectiveness and efficiency.

Aside from Figure 4, we also provide the train/validation/test accuracy comparison between GCN-
LFRJoint and GCN-LFRAlter over all datasets in Table 6 for clearer demonstration. The consistent
conclusion as above can be drawn from Table 6.

Table 6: Train/validation/test accuracy comparison between GCN-LFRJoint and GCN-LFRAlter.
Dataset Cora Citeseer Pubmed Coauthor CS Amazon Photo

Joint-Train 0.999 ± 0.001 0.991 ± 0.004 0.929 ± 0.002 0.986 ± 0.004 0.975 ± 0.007
Alter-Train 0.999 ± 0.001 0.995 ± 0.002 0.932 ± 0.013 0.977 ± 0.006 0.986 ± 0.005
Joint-Val 0.827 ± 0.018 0.702 ± 0.027 0.832 ± 0.006 0.903 ± 0.008 0.939 ± 0.004
Alter-Val 0.837 ± 0.025 0.717 ± 0.008 0.843 ± 0.008 0.907 ± 0.007 0.942 ± 0.009
Joint-Test 0.817 ± 0.011 0.698 ± 0.007 0.846 ± 0.005 0.908 ± 0.003 0.917 ± 0.001
Alter-Test 0.833 ± 0.009 0.701 ± 0.011 0.853 ± 0.010 0.912 ± 0.008 0.931 ± 0.015
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val for all datasets.

Eigenvalues vs. learned F in the robust interval. To evaluate whether
the proposed theoretical analysis is reliable, we check how many λb and
the trained F fall into the robust interval on all datasets here. We report
the results of top 25% smallest of eigenvalues as λb on the same 40 target
nodes after one-edge perturbation in Figure 5. We can find that, though
by choosing a considerably larger proportion as low-frequency, we still
have an average of around 40% of λb falling into the robust interval.
Further, the learnable F has more values falling into the robust interval
after training, which is consistent with our observation in Figure 3. It also
verifies that F could potentially learn the frequencies within the robust
interval for low-frequency components and lead to a more robust model.

6 Conclusion and Limitations

In pursuit of developing defending methods for the adversarial attacks on GCNs, we present the
first vulnerability study between the graph spectrum and the robustness behaviour of GCNs, which
indicates that the low-frequency components in graphs could be more robust than the high-frequency
ones under certain conditions. Moreover, we further verify a robust interval of the low-frequency
components, which implies that not all low-frequency components are robust unless they fall within
the robust interval. Guided by this theory, we propose a general robust training paradigm, dubbed
GCN-LFR, that suggests training an auxiliary network jointly with the original model through
parameter sharing to transfer the robustness of low-frequency components. Extensive experimental
verifications demonstrate the resistance of GCN-LFR when being exposed to adversarial attacks.

Currently, we only consider the purification in the context of structural perturbations. Given that
adversarial perturbations will occur at the level of features and nodes, we would like to expand the
proposed architecture in the future to protect against various forms of adversarial attacks. Meanwhile,
we make every effort to include a thorough experimental study. Further results on possible datasets
and baselines will be added as a future work, including the extension to large scale datasets such as
OGB [21]. Societal impacts are discussed in the Appendix.
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