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Abstract

We have developed an individual identification system based
on magnetocardiography (MCG) signals captured using op-
tically pumped magnetometers (OPMs). Our system utilizes
pattern recognition to analyze the signals obtained at different
positions on the body, by scanning the matrices composed of
MCG signals with a 2 × 2 window. In order to make use of
the spatial information of MCG signals, we transform the sig-
nals from adjacent small areas into four channels of a dataset.
We further transform the data into time-frequency matrices
using wavelet transforms and employ a convolutional neu-
ral network (CNN) for classification. As a result, our system
achieves an accuracy rate of 97.04% in identifying individ-
uals. This finding indicates that the MCG signal holds po-
tential for use in individual identification systems, offering a
valuable tool for personalized healthcare management.

Introduction
In contemporary society, identification (ID) systems have
become critical components in maintaining social order
and ensuring security. The effectiveness of such systems is
largely dependent on their ability to accurately and reliably
identify individuals based on a secure and stable physiologi-
cal feature. While several features, including facial features,
fingerprints, iris patterns, and electrocardiogram (ECG) sig-
nals, have been employed for identification purposes (Ba-
tool and Tariq 2011; Su et al. 2019), each of these meth-
ods presents its own set of limitations and potential secu-
rity concerns. For instance, facial features and fingerprints
can be altered or obscured through various means, such as
plastic surgery or wearing gloves. Similarly, iris patterns, al-
though unique to each individual, can be challenging to cap-
ture accurately and reliably in certain situations, such as in
low light or with individuals who have visual impairments.
Moreover, ECG signals can be impacted by factors such as
physical activity, medication, or stress, leading to variability
and potential inaccuracies in identification. The identifica-
tion of secure and stable physiological features for use in ID
systems remains an active area of research, as the limitations
of current methods continue to pose challenges for ensuring
the accuracy and reliability of these systems.

Recent studies have demonstrated that the electric and
magnetic signals generated by cardiac activity exhibit
unique characteristics that hold promise for individual iden-

tification (Kim, Kim, and Pan 2020). Among these signals,
the electrocardiogram (ECG) has been extensively investi-
gated for its high security and potential use in identification
systems (Biel et al. 2001; Israel et al. 2005). Typically, an
ECG-based identification system involves two main compo-
nents: pre-processing and deep learning (ElRahman 2019).
However, one of the major challenges in using ECG signals
for identification is the presence of noise, including indus-
trial frequency noise, baseline wander, and Gaussian noise.
Consequently, effective filtering techniques are essential to
remove noise from ECG signals.

In some studies, ECG signals are transformed into time-
frequency matrices using the wavelet transform or short-
time Fourier transform to facilitate their analysis and clas-
sification (Byeon, Pan, and Kwak 2020). Neural networks,
particularly convolutional neural networks (CNNs), are then
trained on the 2-D time-frequency maps to identify individu-
als based on their unique ECG signals. Despite these promis-
ing developments, the practical application of ECG-based
identification systems remains limited by the difficulty in
collecting reliable ECG signals. This challenge is due in part
to the fact that ECG signals are sensitive to various factors,
such as physical activity, medication, and emotional states,
which can impact the accuracy and consistency of the sig-
nals. Therefore, continued research and development efforts
are needed to address these limitations and further enhance
the feasibility and effectiveness of ECG-based identification
systems

Magnetocardiography (MCG) is a noninvasive technique
measuring the magnetic flux densities produced by electri-
cal currents generated by the cardiomyocytes in the heart
and the possible induced medium. MCG has been applied
in medical diagnosis (Kwon et al. 2010), and further re-
search is required to use MCG signals for identification pur-
poses. MCG signals, which can be measured without con-
tact or even through clothing (Tolstrup et al. 2006), present
a potential physiological feature for an ID system. MCG
has several advantages, including higher fraud resistance,
weaker environmental dependence, and contactless mea-
surement (Fenici and Melillo 1993), making it a promis-
ing candidate for individual identification. We collect MCG
signals with our self-manufactured OPMs. Our OPMs are
based on an original Bell-Bloom configuration (Sun et al.
2021), which enables them to work in a normal room tem-



perature environment and in the presence of the Earth’s mag-
netic field. This sets our MCG system apart from traditional
MCG systems, which often require a cryogenic environment
with liquid helium or a near-zero magnetic field environment
with magnetic shielding. These improvements are necessary
to make the practical MCG-based ID system.

However, since the MCG signals are much weaker than
the environmental magnetic flux density, IFN and other
high-frequency noises are significantly stronger than the
MCG signals. There are three steps in denoising. Since the
MCG signals of adjacent sampling points have physical rela-
tionships, the MCG signals of different sampling points are
combined into three-dimensional matrices according to their
positions as the data set for machine learning.

We use CNNs to classify individual MCG signals, making
it a potential physiological feature for an ID system. The ac-
curacy of individual identification is up to 97.04% by train-
ing the MCG data of five subjects under different environ-
mental magnetic flux densities.

Ethical Clearance
The collection and use of biological data in this pa-
per was subject to ethical review under approval number
IRB00001052-20120.

Method and Algorithm
MCG System
Our system (shown in Appendices Figure ??) has two Bell-
Bloom OPMs as a gradiometer to sense the cardiac magnetic
field. It works at room temperature and in natural magnetic
environments. The magnetometers are self-constructed and
mounted in a 3D-printed structure with non-magnetic com-
ponents such as mirrors, polarizers, wave plates, prisms, etc.
A cesium vapor cell is coated with paraffin to increase the
relaxation time of the coherent state of the cesium atoms,
with a 7 Hz magnetic-resonance linewidth. A circularly-
polarized pump laser is modulated on and off at the Lar-
mor frequency with a duty cycle of 20%, and a continuous
linearly-polarized probe laser is used to detect the atomic
magnetic moment. The frequencies of both the pump and
probe lasers are actively stabilized.

Data Collection
We record the magnetic flux density perpendicular to the
body plane (z-axis) of human subjects under environmen-
tal magnetic flux densities of 8,000 nT, 20,000 nT, 40,000
nT, 47,000 nT, 60,000 nT, and 80,000 nT. This simulates
the influence of the angle between the sensitive direction of
the OPMs and the direction of the geomagnetic field on the
magnetic field data.

To capture the differences in MCG signals at different po-
sitions, we measure the MCG signals at 49 different loca-
tions above the thorax, as shown in Figure 1. The projections
of the magnetic field vectors on the z-axis are significantly
different at different positions (Maslennikov et al. 2012).

To optimize the quality of magnetocardiography (MCG)
signals, we collected both electrocardiogram (ECG) and fin-
ger pulse signals simultaneously with the MCG signals. By

Figure 1: The coordinates of all the points for the measure-
ment. From Y1 to Y7 is aligned along the spine with adja-
cent rows 5 cm apart and row Y1 aligned with the clavicle.
From X1 to X7 is arranged perpendicular to the spine with
a distance of 5 cm between adjacent columns. The midpoint
of the interval between X3 and X4 is aligned with the in-
tersection of the two clavicles. MCG signals at 49 positions
are obtained based on the 7 × 7 measurement matrix. The
denoised MCG diagrams are placed on the corresponding
coordinates to show the cardiac magnetic field in front of
the chest cavity. The box represents the position relationship
between different data channels when MCG signals are con-
verted into deep learning data sets.

comparing our MCG signal with other traditional cardiac
signals, we confirmed that our MCG signal accurately re-
flects the true signal of the subject’s heart.

Our approach of collecting multiple cardiac signals dur-
ing MCG recordings is particularly effective in addressing
the challenges associated with noise that can impact MCG
signal quality. By comparing the MCG signal with the ECG
and finger pulse signals, we were able to confirm the ac-
curacy and reliability of our MCG signal, thus providing a
strong foundation for future research and clinical applica-
tions.

To minimize the influence of factors such as gender, age,
body type, disease, and others, we measure four healthy
male subjects with similar body sizes, aged 23, 21, 20, and
17, as well as a 60-year-old healthy male subject. The data
collected from these subjects are added to our dataset.

Data Processing
Denoising The raw data collected from the MCG mea-
surement has an amplitude of 3,000 pT. The main source
of noise is the 50 Hz industrial frequency and its related fre-
quencies, which we try to remove. To minimize the impact
on the MCG signal, we apply a 75 Hz low-pass filter and
reduce the residual noise to about 40 pT. To further reduce
the impact of the industrial frequency noise, we add a sine
wave with adjustable parameters to the filtered data. The pa-
rameters of the sine wave are optimized every 5 seconds to
account for the unstable amplitude and frequency of the in-
dustrial frequency noise.

Appendices Figure 3 shows an MCG waveform measured



at the point (X4, Y4) in an environmental magnetic field of
47,000 nT as an example. The frequency is displayed in Hz,
and the power spectral density is displayed in pT per square
Hz.The MCG waveform, not only contains the intrinsic body
activity signal generated by the electrical activity of the heart
and other organs, but also the related noise and the influences
of the environmental magnetic field. The denoised data is
displayed in Figure 3 (a). The magnetic induction intensity
is displayed in pT and the time elapsed since the start of the
measurement is displayed in seconds. A positive value indi-
cates the magnetic induction intensity is pointing upwards
relative to the thoracic plane, and a negative value indicates
it’s pointing downwards. The peak of the R-wave is about 20
pT, and the valley of the S-wave is about -5 pT. The power
spectral density of the denoised data is presented in Figure
3 (b). Although some high-frequency noise still exists due
to the industrial frequency noise being larger than the in-
trinsic body activity signal, the intrinsic body activity signal
becomes the dominant component.

Time-frequency matrix We apply the wavelet trans-
form to convert the MCG signal waveform into time-
frequency matrices, with the wavelet basis function Sym-
let6 (Daamouche et al. 2012). This method is appropriate
for extracting frequency domain information without losing
the time domain information.

In the machine learning process, it is common to clas-
sify biological information by training 2D images of the
time-frequency signals with a network structure designed
for image recognition (Kim, Kim, and Pan 2020). Never-
theless, this method may not be able to extract information
about the correlation between the vertical components of the
MCG signal. To overcome this issue, we arrange the time-
frequency matrices generated by wavelet transform accord-
ing to their relative positions, and treat each set of four ad-
jacent time-frequency matrices as one channel of data, as
shown in Figure 1. This approach makes it possible in prac-
tice to use a 2 × 2 sensor array placed anywhere in front of
the chest cavity for individual identification.

We randomly select 2601 out of 3276 sets of experimental
data as the training dataset, and the remaining 675 sets as the
testing dataset. The CNN structure we applied in this paper
is shown in Table 1.

Result and Discussion
Testing accuracy
The important criteria to measure the quality of classifica-
tion models are accuracy, precision, recall, and F1-score.

Firstly, we train that network structure with a double-
classification job. The testing result is shown in TABLE 2.

The F1-score is 99.31%. By adjusting the classifica-
tion threshold, we determine the performance of the ID
system under different usage requirements. In the double-
classification system, when the sensitivity is reduced to
98.5%, the specificity can reach 99.8%. When the specificity
is reduced to 97.9%, the sensitivity can reach 100.0%. At
different classification thresholds, the values of 1-sensitivity
and 1-specificity are shown in Appendices Figure 4.

Layers Output size
Convolution 224×224
SE Layer 224×224
Dense Block (1) 224×224 1×1 conv, 3×3 conv
Transition Layer (1) 112×112 2×2 ave pool
Dense Block (2) 112×112 1×1 conv, 3×3 conv
Transition Layer (2) 56×56 2×2 ave pool
Dense Block (3) 56×56 1×1 conv, 3×3 conv
SE Layer 56×56
Linear Layer fully-connected

Table 1: The CNN structure applied in this paper. The
DenseBlock is beneficial for extracting insignificant fea-
tures, and the SE-module can improve the accuracy when the
connection between different channels is meaningful. This
network structure has some advantages in this task compared
to the classical network structures.

Pr
Ac

A B Prcsn%

A 149 0 100.0
B 2 140 98.6

Rcll% 98.7 100.0

Table 2: The precision and recall of double-classification.
The identification result of two subjects indicates that the
individual information can be found in MCG signal. Ac: Ac-
tual, Pr: Predicted, Rcll: Recall, Prscn:Precision.

Then we apply the same method for a multi-classification.
The testing result is shown in TABLE 3.

As a result, we compute the macro F1-score of multi-
classification. The macro F1-score is 97.04%, which means
it can classify individuals effectively.

Robust
The important criteria to measure the quality of classifica-
tion models are accuracy, precision, recall, and F1-score.
Since the experimental data selected for this paper are ob-
tained in a stable magnetic field environment, it is necessary
to verify the robustness of the experimental results. We retest
the performance of the module utilizing noisy data. The ran-
dom noise and Gaussian noise are added to the MCG signals
(Phukpattaranont 2014; Wright et al. 2008).

Random Noise To more accurately represent the mag-
netic field noise that can arise when the detector is in a
non-stationary state, random noise is incorporated into the
wavelet-transformed time-frequency matrices. By incorpo-
rating this type of noise, the signal processing algorithm can
be evaluated under conditions that better represent the com-
plex and dynamic nature of real-world scenarios. In order
to examine the impact of different levels of noise on the ac-
curacy of the algorithm, a range of random noise intensities
spanning from 0 to 10 dB−1 is introduced into the signal.
This range of intensities has been selected to enable a sys-



Table 3: The precision and recall of multi-classification. The identification result of five subjects is not as good as the result of
two subjects. Nevertheless, the result still indicate that the individual identification based on MCG is feasible. Ac: Actual, Pr:
Predicted, Rcll: Recall, Prscn:Precision.

Actual A Actual B Actual C Actual D Actual E Total Precision
Precision A 173 0 1 2 3 179 96.65%
Precision B 1 138 0 3 1 143 96.50%
Precision C 0 0 30 0 0 30 100.00%
Precision D 0 1 0 163 1 165 98.79%
Precision E 5 0 1 1 151 158 95.57%
Total Recall 179 139 32 169 156 675

tematic exploration of the algorithm’s performance across a
broad spectrum of noise levels. It is important to note that
all of the random noise added to the signal possesses the
same standard deviation, which ensures consistency across
all levels of noise intensity.

Gaussian Noise In order to better simulate the natural
noise present in the Earth’s geomagnetic field, Gaussian
noise is incorporated into the wavelet-transformed time-
frequency matrices. This approach is employed in recogni-
tion of the fact that the natural noise present in such fields
can often have Gaussian distributions. To enable a system-
atic and thorough investigation of the influence of different
levels of noise on the performance of the signal processing
algorithm, a range of Gaussian noise intensities spanning
from 0 to 10 dB−1 is added to the signal. It is worth not-
ing that all the noise introduced into the signal possesses the
same standard deviation, as this ensures the noise character-
istics are consistent across all levels of noise intensity. This
standardized approach helps to minimize the potential for
confounding factors to impact the accuracy of the findings.

Robustness of MCD-ID system With the previously
trained model, we test the dataset with noise. The relation-
ship between the test accuracy and the signal-to-noise ratio
(SNR) of the noise added is shown in Figure 5.

The results of the robustness test demonstrate that our pro-
posed identification method is capable of successful opera-
tion when the level of noise is significantly weaker than the
MCG signal. Specifically, our findings suggest that the iden-
tification method performs well in scenarios where the level
of noise is less than 2 dB−1 relative to the MCG signal.
It is worth noting that in such scenarios, the classification
method is able to function effectively and accurately iden-
tify the underlying signals. However, as the intensity of the
noise increases beyond this threshold, the accuracy of the
classification method is significantly compromised. At noise
levels exceeding 2 dB−1, the classification method is unable
to accurately distinguish between the signal and the noise,
leading to a decrease in performance.

Discussion
The feasibility of using MCG signals to create an identifi-
cation system has been demonstrated, using data collected
from subjects lying down and measured with a fixed probe
under a stable magnetic field. There are still some problems.
The results of the test in healthy men indicate that the MCG

signals can be utilized for individual identification. How-
ever, since it has proved that the CNN architecture can iden-
tify heart disease (Attia et al. 2019), there is a potential issue
with the training method used in this paper, as it could result
in MCG information related to heart disease being recorded
as individual identification information, potentially leading
to others with the same heart disease being incorrectly iden-
tified. This could lead to others with the same heart disease
being mistakenly identified as the subject due to their shared
pathological characteristics. Therefore, the effects of heart
disease on the ID system need to be studied. In addition, the
MCG signals of subjects with pneumoconiosis may be sig-
nificantly different from normal subjects(Freedman, Robin-
son, and Johnston 1980). There is concern that individuals
with pneumoconiosis who live in extreme environments may
not be accurately identified using this system.

We collect the MCG signal from multiple points to stan-
dardize our data collection. However, relying solely on the
MCG ID system does not guarantee that the data is obtained
from these points. To implement this system successfully,
we need to test various data collection matrices, such as a
triangular matrix or a more complex matrix. The robustness
test proposed in this paper is only a preliminary assessment.
To validate the performance of this model in real-world sce-
narios, we must test it against other types of noise as well.

Conclusion
Our self-built MCG system has enabled us to achieve
individual identification without the need for a magneti-
cally shielded room, even when operated at room tempera-
ture, demonstrating its successful implementation. We have
demonstrated that MCG signals captured on a grid matrix
placed in front of the human chest can be used to identify in-
dividuals. We collected MCG data from five subjects, com-
prising 3,276 3-second-long recordings, which were con-
verted into 240×240 time-frequency matrices using wavelet
transforms. By adjusting the classification threshold to bal-
ance sensitivity and specificity, we achieved an F1-score of
97.04% on the training dataset. Testing the model on a sep-
arate dataset of 675 recordings yielded an accuracy rate of
97.03%. Moreover, we confirmed that this model has reli-
able classification performance even in the presence of noise
levels similar to or less than the signal. Our work not only
provides a potential new method for individual recognition,
but also advances the application of MCG in everyday life.
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Appendices

Figure 2: The photograph and schematic diagram of our
MCG system. It consists of two Bell-Bloom OPMs as a gra-
diometer and a set of two-layer 3D Helmholtz coils. The
gradiometer is applied to sense the cardiac magnetic field,
at room temperature and in natural magnetic environments.
The coils adjusts the direction and strength of the bias mag-
netic field and keeps the magnetic field around the vapor cell
to a setpoint.
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Figure 3: MCG signal was measured at the point (X4, Y4)
in an environmental magnetic field of 47000 nT. Since the
IFN is significantly larger than the intrinsic body activity
signal, some high-frequency noise still exists in the MCG
signal after filtering. (a) About 2 seconds of MCG signal
after denoising. We present the magnetic induction inten-
sity obtained by the probe in pT, and the time elapsed since
the measurement began in second, respectively. A positive
value and a negative value indicate that the direction of the
magnetic induction intensity is perpendicular to the thoracic
plane upward and downward, respectively. The peak of the
R-wave is about 20 pT, and the peak of the S-wave is about
-5 pT. (b) The power spectral density of MCG data after de-
noising, power spectral density is frequency. IFN still has
an effect, but the intrinsic body activity signal is the major
component. We present the frequency in Hz and the power
spectral density corresponding to the frequency in pT over
square Hz, respectively.

Figure 4: The sensitivity curve in double-classification.
Changing the classification threshold resulted in a less dif-
ference in accuracy, indicating that most of the test data sets
are significantly classified.

Figure 5: The performance of the trained module in classifi-
cation when two types of noise are added simultaneously.
We present the Gaussian noise intensity and the random
noise intensity, respectively. The intensity of noise is defined
as the bottom of the SNR. The real line and the dashed line
represent the maximum acceptable noise threshold when
the requirement for recognition accuracy is above 95% and
85%, respectively. The model is more robust to the Gaussian
noise following a normal distribution than the random noise.


