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Figure 1: Various mechanical freehand sketches generated by ours and other approaches. Our method produces sketches from
mechanical components while maintaining a freehand style and their essential modeling features, e.g., grooves of the pulley,
through holes on the bush, and gear teeth. (LBS[24] can’t generate vector results, leading to blurriness upon enlargement.)

ABSTRACT
Drawing freehand sketches of mechanical components on multime-

dia devices for AI-based engineeringmodeling becomes a new trend.

However, its development is being impeded because existing works

cannot produce suitable sketches for data-driven research. These

works either generate sketches lacking a freehand style or utilize

generative models not originally designed for this task resulting

in poor effectiveness. To address this issue, we design a two-stage

generative framework mimicking the human sketching behavior

pattern, called MSFormer, which is the first time to produce hu-

manoid freehand sketches tailored for mechanical components. The

first stage employs Open CASCADE technology to obtain multi-

view contour sketches from mechanical components, filtering per-

turbing signals for the ensuing generation process. Meanwhile, we

design a view selector to simulate viewpoint selection tasks during

human sketching for picking out information-rich sketches. The
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second stage translates contour sketches into freehand sketches by

a transformer-based generator. To retain essential modeling fea-

tures as much as possible and rationalize stroke distribution, we

introduce a novel edge-constraint stroke initialization. Furthermore,

we utilize a CLIP vision encoder and a new loss function incorpo-

rating the Hausdorff distance to enhance the generalizability and

robustness of the model. Extensive experiments demonstrate that

our approach achieves state-of-the-art performance for generating

freehand sketches in the mechanical domain.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Freehand Sketch, Generative Model, Mechanical Components

1 INTRODUCTION
Nowadays, with the vigorous development of multimedia technol-

ogy, a new mechanical modeling approach has gradually emerged,

known as freehand sketch modeling [25, 26]. Different from tradi-

tional mechanical modeling paradigms, freehand sketch modeling

on multimedia devices does not require users to undergo prior

training with CAD tools. In the process of freehand sketch model-

ing for mechanical components, engineers can utilize sketches to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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achieve tasks such as component sketch recognition, components

fine-grained retrieval based on sketches, and three-dimensional

reconstruction from sketches to components. Modeling in this way

greatly improves modeling efficiency. However, limited by the lack

of appropriate freehand sketches for these data-driven studies in the

sketch community, the development of freehand sketch modeling

for mechanical components is hindered. It is worth emphasizing

that manual sketching and collecting mechanical sketches is a time-

consuming and resource-demanding endeavor. To address the bot-

tleneck, we propose a novel two-stage generative model to produce

freehand sketches from mechanical components automatically.

To meet the requirements of information richness and accuracy

for modeling, we expect that freehand sketches used for mechan-

ical modeling maintain a style of hand-drawn while preserving

essential model information as much as possible. Previous works

that generate engineering sketches [15, 33, 38, 44, 52], primarily

focus on perspective and geometric features of models. As a re-

sult, their sketches lack a hand-drawn style, making them unsuit-

able as the solution of data generation for freehand sketch mod-

eling. Existing data-driven freehand sketch generation methods

[3, 5, 11, 28, 29, 32, 43, 47, 50, 58] also fall short in this task because

they require the existence and availability of relevant datasets.

While CLIPasso [49] and LBS [24] can produce abstract sketches

without additional datasets, as shown in Figure 1, their results for

mechanical components are afflicted by issues such as losing fea-

tures, line distortions, and random strokes. In contrast, we propose a

mechanical vector sketch generation technique that excels in main-

taining precise and abundant modeling features and a freehand

style without additional sketch datasets.

Our method, the first time to generate freehand sketches for

mechanical components, employs a novel two-stage architecture. It

mimics the human sketching behavior pattern which commences

with selecting optimal viewpoints, followed by hand-sketching. In

Stage-One, we generate multi-perspective contour sketches from

mechanical components via Open CASCADE, removing irrelevant

information for engineering modeling which may also mislead

stroke distribution in generated sketches. To select information-

rich sketches, we devise a view selector to simulate the viewpoint

choices made by engineers during sketching. Stage-Two trans-

lates regular contour sketches into humanoid freehand sketches

by a transformer-based generator. It is trained by sketches created

by a guidance sketch generator that utilizes our innovative edge-

constraint initialization to retain more modeling features. Our in-

ference process relies on trained weights to stably produce sketches

defined as a set of Bézier curves. Additionally, we employ a CLIP

vision encoder combining a pretrained vision transformer [8] ViT-

B/32 model of CLIP [41] with an adapter [10], which utilizes a

self-attention mechanism [48] to establish global relations among

graph blocks, enhancing the capture of overall features. It fortifies

the method’s generalization capability for unseen models during

training and inputs with geometric transformation (equivariance).

Furthermore, our proposed new guidance loss, incorporating the

Hausdorff distance, considers not only the spatial positions but also

the boundary features and structural relationships between shapes.

It improves model’s ability to capture global information leading

to better equivariance. Finally, we evaluate our method both quan-

titatively and qualitatively on the collected mechanical component

dataset, which demonstrates the superiority of our proposed frame-

work. We also conduct ablation experiments on key modules to

validate their effectiveness.

In summary, our contributions are the following:

• As far as our knowledge goes, this is the first time to produce

freehand sketches tailored for mechanical components. To

address this task, we imitate the human sketching behav-

ior pattern to design a novel two-stage sketch generation

framework.

• We introduce an innovative edge-constraint initialization

method to optimize strokes of guidance sketches, ensuring

that outcomes retain essential modeling features and ratio-

nalize stroke distribution.

• We utilize an encoder constituted by CLIP ViT-B/32 model

and an adapter to improve the generalization and equivari-

ance of the model. Furthermore, we propose a novel Haus-
dorff distance-based guidance loss to capture global features

of sketches, enhancing the method’s equivariance.

• Extensive quantitative and qualitative experiments demon-

strate that our approach can achieve state-of-the-art perfor-

mance compared to previous methods.

2 RELATEDWORK
Due to little research on freehand sketch generation from mechani-

cal components, there is a review of mainstream generation meth-

ods relevant to our work in the sketch community.

Traditional Generation Method In the early stages of sketch

research, sketches from 3D models were predominantly produced

via traditional edge extraction methodologies [4, 33, 35, 40, 45, 53].

Among them, Occluding contours [35] which detects the occluding

boundaries between foreground objects and the background to ob-

tain contours, is the foundation of non-photorealistic 3D computer

graphics. Progressions in occluding contours [35] have catalyzed

advancements in contour generation, starting with Suggestive con-

tours [7], and continuing with Ridge-valley lines [37] and kinds of

other approaches [17, 33]. A comprehensive overview [6] is avail-

able in existing contour generalizations. Similarly to the results of

generating contours, Han et al. [15] present an approach to gener-

ate line drawings from 3D models based on modeling information.

Building upon previous work that solely focused on outlines of

models, CAD2Sketch [14] addresses the challenge of representing

line solidity and transparency in results, which also incorporates

certain drawing styles. However, all of these traditional approaches

lack a freehand style like ours.

Learning Based Methods Coupled with deep learning, sketch

generation approaches [3, 5, 11, 29, 38, 47, 56, 58] have been further

developed. Combining the advantage of traditional edge extrac-

tion approaches for 3D models and deep learning, Neural Contours

[29] employs a dual-branch structure to leverage edge maps as

a substitution for sketches. SketchGen [38], SketchGraphs [44],

and CurveGen and TurtleGen [52] produce engineering sketches

for Computer-Aided Design. However, such approaches generate

sketches that only emphasize the perspective and geometric fea-

tures of models, which align more closely with regular outlines, the

results do not contain a freehand style. Generative adversarial net-

works (GANs) [12] provide new possibilities for adding a freehand
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style to sketches [11, 27, 30, 34, 51]. These approaches are based

on pixel-level sketch generation, which is fundamentally different

from how humans draw sketches by pens, resulting in unsuitability

for freehand sketch modeling. Therefore, sketches are preferred to

be treated as continuous stroke sequences. Recently, Sketch-RNN

[13] based on recurrent neural networks (RNNs) [57] and varia-

tional autoencoders (VAEs) [19], reinforcement learning [9, 54, 60],

diffusion models [32, 50] are explored for generating sketches. How-

ever, they perform poorly in generating mechanical sketches with

a freehand style due to the lack of relevant training datasets. Fol-

lowing the integration of Transformer [48] architectures into the

sketch generation, the sketch community has witnessed the emer-

gence of innovative models [28, 43, 52]. CLIPasso [49] provides a

powerful image to abstract sketch model based on CLIP [41] to

generate vector sketches, but this method will take a long time to

generate a single sketch. More critically, CLIPasso [49] initializes

strokes by sampling randomly, and optimizes strokes by using an

optimizer for thousands of steps rather than based on pre-trained

weights, leading to numerical instability. Despite LBS [24] being an

improvement over Clipasso [49], it performs unsatisfactorily in gen-

eralization capability for inputs unseen or transformed. Compared

to many previous approaches, our proposed generative model can

produce vector sketches based on mechanical components, perse-

vering key modeling features and a freehand style, greatly meeting

the development needs of freehand sketch modeling.

3 METHOD
We first elaborate on problem setting in section 3.1. Then, we intro-

duce our sketch generation process that presents Stage-One (CSG)

and Stage-Two (FSG) of MSFormer in sections 3.2 and 3.3.

3.1 Problem Setting
Given a mechanical component, our goal is to produce a freehand

sketch. As depicted in Figure 2, it is carried out by stages: contour

sketch generator and freehand sketch generator. We describe an

mechanical component asM ∈ Δ3
, where Δ3

represents 3D homo-

geneous physical space. Each point on model corresponds to a coor-

dinate (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) ∈ R3, where R is information dimension. Through

an affine transformation, a 3D model is transformed into 2D con-

tour sketches C ∈ Δ2
, which consists of a series of black curves

expressed by pixel coordinates (𝑥𝑖 , 𝑦𝑖 ) ∈ R2. In the gradual opti-

mization process of Stage-Two, process sketches {P𝑖 }𝐾𝑖=1 are guided
by guidance sketches {G𝑖 }𝐾𝑖=1, K is the number of sketches. Deriving

from features of contour sketch C and guidance sketches {G𝑖 }𝐾𝑖=1,
our model produces an ultimate output freehand sketch S, which is

defined as a set of n two-dimensional Bézier curves {𝑠1, 𝑠2, . . . , 𝑠𝑛}.
Each of curve strokes is composed by four control points 𝑠𝑖 =

{(𝑥1, 𝑦1) (𝑖 ) , (𝑥2, 𝑦2) (𝑖 ) , (𝑥3, 𝑦3) (𝑖 ) , (𝑥4, 𝑦4) (𝑖 ) } ∈ R8,∀𝑖 ∈ 𝑛.

3.2 Stage-One: Contour Sketch Generator
Contour Sketch Generator (CSG), called Stage-One, is designed for

filtering noise (colors, shadows, textures, etc.) and simulating the

viewpoint selection during human sketching to obtain recognizable

and informative contour sketches from mechanical components.

Previous methods optimize sketches using details such as the dis-

tribution of different colors and variations in texture. However,

mechanical components typically exhibit monotonic colors and

subtle texture changes. We experimentally observe that referencing

this information within components not only fails to aid inference

but also introduces biases in final output stroke sequences, result-

ing in the loss of critical features. As a result, when generating

mechanical sketches, the main focus is on utilizing the contours of

components to create modeling features.

Modeling engineers generally choose specific perspectives for

sketching rather than random ones, such as three-view (Front/Top/

Right views), isometric view (pairwise angles between all three pro-

jected principal axes are equal), etc. As shown in Figure 2 Stage-One,

we can imagine placing a mechanical component within a cube and

selecting centers of the six faces, midpoints of the twelve edges,

and eight vertices of the cube as 26 viewpoints. Subsequently, we

use PythonOCC[39], a Python wrapper for the CAD-Kernel Open-

CASCADE, to infer engineering modeling information and render

regular contour sketches of the model from these 26 viewpoints.

Generated contour sketches are not directly suitable for subse-

quent processes. By padding, we ensure all sketches are presented

in appropriate proportions. Given that most mechanical compo-

nents exhibit symmetry, the same sketch may be rendered from

different perspectives. We utilize ImageHash technology for dedu-

plication. Additionally, not all of generated sketches are useful and

information-rich for freehand sketch modeling. For instance, some

viewpoints of mechanical components may represent simple or

misleading geometric shapes that are not recognizable nor effective

for freehand sketch modeling. Therefore, we design a viewpoint se-

lector based on ICNet [59], which is trained by excellent viewpoint

sketches picked out by modeling experts, to simulate the viewpoint

selection task engineers face during sketching, as shown in Figure

2. Through viewpoint selection, we obtained several of the most

informative and representative optimal contour sketches for each

mechanical component. The detailed procedure of Stage-One is

outlined in Algorithm 1.

Algorithm 1 Stage-One: Contour Sketch Generation

Input:Mechanical components

Output Contour Sketches of mechanical components

1: procedure cad_to_contours
2: 𝐼 ← Read a mechanical component in STEP format

3: Set OCC to HLR mode and enable anti-aliasing

4: 𝑉 1 ← Acquire contour sketches of 𝐼 from the 26 built-in

viewpoints in OCC

5: 𝑉 2← Center the object in 𝑉 1 and maintain a margin from

edges of the picture

6: 𝑉 3 ← Remove duplicates from sketches in 𝑉 2 using the

𝐼𝑚𝑎𝑔𝑒𝐻𝑎𝑠ℎ library

7: 𝑂 ← Filter the top 𝑁 contours with the most information

from 𝑉 3 using an image complexity estimator

3.3 Stage-Two: Freehand Sketch Generator
Stage-Two, in Figure 2, comprises the Freehand Sketch Generator

(FSG), which aims to generate freehand sketches based on regular

contour sketches obtained from Stage-One. To achieve this goal,

we design a transformers-based [24, 31, 43] generator trained by
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Figure 2: An overview of our method. (1) Stage-One: we generate contour sketches based on 26 viewpoints (represented by
colorful points) of a cube (grey). After that, Preprocessing and View Selection export appropriate contour sketches. (2) Stage-Two:
By receiving initial strokes and features captured by our encoder from regular contour sketch, the stroke generator produces a
set of strokes, which are next fed to a differentiable rasterizer to create a vector freehand sketch.

guidance sketches, which stably generates freehand sketches with

precise geometric modeling information. Our generative model

does not require additional datasets for training. All training data

are derived from the excellent procedural sketches produced by the

guidance sketch generator.

Generative process As illustrated in Figure 2, freehand sketch

generator consists of four components: an encoder, a stroke gen-

erator, a guidance sketch generator, and a differentiable rasterizer.

Our encoder utilizes CLIP ViT-B/32[41] and an adapter to extract

essential vision and semantic information from input. Although,

in previous works, CLIPasso [49] performs strongly in creating

abstract sketches, it initializes strokes by sampling randomly and

uses an optimizer for thousands of steps to optimize sketches, re-

sulting in a high diversity of outputs and numerical instability. To

a ensure stable generation of sketches, we design a training-based

stroke generator that employs improved CLIPasso[49] from the

guidance sketch generator as ideal guidance. It allows us to in-

fer high-quality sketches stably by utilizing pre-trained weights.

Our stroke generator consists of eight transformer decoder layers

and two MLP decoder layers. During training, to guarantee the

stroke generator learns features better, process sketches {P𝑖 }𝐾𝑖=1
(K=8 in this paper) extracted from each intermediate layer are

guided by guidance sketches {P𝑖 }𝐾𝑖=1 generated at the correspond-

ing intermediate step of the optimization process in the guidance

sketch generator. In the inference phase, the stroke generator op-

timizes initial strokes generated from trainable parameters into

a set of n Bezier curves {𝑠1, 𝑠2, . . . , 𝑠𝑛}. These strokes are then

fed into the differentiable rasterizer R to produce a vector sketch

S = R(𝑠1, . . . , 𝑠𝑛) = R({(𝑥 𝑗 , 𝑦 𝑗 ) (1) }4𝑗=1, . . . , {(𝑥 𝑗 , 𝑦 𝑗 )
(𝑛) }4

𝑗=1
).

Edge-constraint Initialization The quality of guidance sketches

plays a pivotal role in determining our outcomes’ quality. Original

CLIPasso[49] initializes strokes via stochastic sampling from the

saliency map. It could lead to the failure to accurately capture fea-

tures, as well as the aggregation of initial strokes in localized areas,

resulting in generated stroke clutter. To address these issues, as

shown in Figure 3, we modify the mechanism for initializing strokes

in our guidance sketch generator. We segment contour sketches

using SAM[20] and based on segmentation results accurately place
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the initial stroke on the edges of component’s features to constraint

stroke locations. It ensures guidance generator not only generates

precise geometric modeling information but also optimizes the dis-

tribution of strokes. Initialization comparison to original CLIPasso

[49] is provided in the Appendix.

(a) (b) (c) (d) (e)

Figure 3: Edge-constraint Initialization. (a) and (b) are results
of segmenting through hole and overall segmentation of
flange by SAM [20] (distinguishing features through different
coloring). (c) The saliency map generated from CLIP ViT
activations. (d) and (e) are initial stroke locations (in red)
in final distribution map and input. It is evident that our
method accurately places initial strokes at features.

Encoder FSG requires an encoder to capture features. Previous

works for similar tasks predominantly employ a CNN encoder that

solely relies on local receptive fields to capture features, making it

susceptible to local variations and resulting in poor robustness for

inputs unseen or transformed. While vision transformer (ViT) uses

a self-attention mechanism [48] to establish global relationships be-

tween features. It enables the model to attend to overall information

in inputs, unconstrained by fixed posture or shape. Therefore, we

utilize ViT-B/32 model of CLIP[41] to encode semantic understand-

ing of visual depictions, which is trained on 400 million image-text

pairs. And we combine it with an adapter that consists of two fully

connected layers to fine-tune based on training data. As shown

in Figure 7 and Table 1, our encoder substantially improves the

robustness to unseen models during training and the equivariance.

Loss Function During training, we employ CLIP-based perceptual

loss to quantify the resemblance between generated freehand sketch

S and contour sketch C considering both geometric and semantic

differences [41, 49]. For synthesis of a sketch that is semantically

similar to the given contour sketch, the goal is to constrict the

distance in the embedding space of the CLIP model represented by

𝐶𝐿𝐼𝑃 (𝑥), defined as:

L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = 𝜙 (𝐶𝐿𝐼𝑃 (𝐶),𝐶𝐿𝐼𝑃 (𝑆)), (1)

where 𝜙 represents the cosine proximity of the CLIP embeddings,

i.e., 𝜙 (𝑥,𝑦) = 1 − cos(𝑥,𝑦). Beyond this, the geometric similarity is

measured by contrasting low-level features of output sketch and

input contour, as follows:

L𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 =
∑︁
𝑖=3,4

𝑑𝑖𝑠𝑡 (𝐶𝐿𝐼𝑃𝑖 (𝐶),𝐶𝐿𝐼𝑃𝑖 (𝑆)), (2)

where 𝑑𝑖𝑠𝑡 represents the L2 norm, explicitly, 𝑑𝑖𝑠𝑡 (𝑥,𝑦) = ∥𝑥 −𝑦∥2
2
,

and 𝐶𝐿𝐼𝑃𝑖 is the 𝑖-th layer CLIP encoder activation. As recom-

mended by [49], we use layers 3 and 4 of the ResNet101 CLIP model.

Finally, the perceptual loss is given by:

L𝑝𝑒𝑟𝑐𝑒𝑝𝑡 = L𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 + 𝛽𝑠L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 , (3)

where 𝛽𝑠 is set to 0.1.

In the process of optimizing the stroke generator, a guidance

loss is employed to quantify the resemblance between guidance

sketches G and process sketches P. Firstly, we introduce the Jonker-
Volgenant algorithm [22] to ensure that guidance loss is invariant to

arrangement of each stroke’s order, which is extensively utilized in

assignment problems. The mathematical expression is as follows:

L𝐽 𝐾 =

𝐾∑︁
𝑘=1

min

𝛼

𝑛∑︁
𝑖=1

L1 (𝑔 (𝑖 )𝑘 , 𝑝
𝛼 (𝑖 )
𝑘
), (4)

where L1is the manhattan distance, 𝑛 is the number of strokes in

the sketch. 𝑝
(𝑖 )
𝑘

is the 𝑖-th stroke of the sketch from the 𝑘-th middle

process layer (with a total of 𝐾 layers), and 𝑔
(𝑖 )
𝑘

is the guidance

stroke corresponding to 𝑝
𝛼 (𝑖 )
𝑘

, 𝛼 is an arrangement of stroke indices.

Additionally, we innovatively integrate bidirectional Hausdorff
distance into the guidance loss, which serves as a metric quantifying

the similarity between two non-empty point sets that our strokes

can be considered as. It aids the model in achieving more precise

matching of guidance sketch edges and maintaining structural

relationships between shapes during training, thereby capturing

more global features and enhancing the model’s robustness to input

with transformations. Experiment evaluation can be seen in section

4.5 , The specific mathematical expression is as follows:

𝛿𝐻 = max{ ˜𝛿𝐻 (G,P), ˜𝛿𝐻 (P,G)}, (5)

where P = {𝑝1, . . . , 𝑝𝑛} is the process sketch from each layer and

G = {𝑔1, . . . , 𝑔𝑛} is the guidance sketch corresponding to P. 𝑔𝑖 and
𝑝𝑖 represent the strokes that constitute corresponding sketch. Both

P and G are sets containing n 8-dimensional vectors.
˜𝛿𝐻 (G,P)

signifies the one-sided Hausdorff distance from set G to set P:
˜𝛿𝐻 (G,P) = max

𝑔∈G
{min

𝑝∈P
∥𝑔 − 𝑝 ∥}, (6)

where ∥ · ∥ is the Euclidean distance. Similarly,
˜𝛿𝐻 (P,G) represents

the unidirectional Hausdorff distance from set P to set G:
˜𝛿𝐻 (P,G) = max

𝑝∈P
{min

𝑔∈G
∥𝑝 − 𝑔∥}. (7)

The guidance loss is as follows:

L𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 = L𝐽 𝐾 + 𝛽ℎ𝛿𝐻 , (8)

where 𝛽ℎ is set to 0.8.

Our final loss function is as follows:

L𝑡𝑜𝑎𝑡𝑙 = L𝑝𝑒𝑟𝑐𝑒𝑝𝑡 + L𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 (9)

4 EXPERIMENTS
4.1 Experimental Setup
Dataset We collect mechanical components in STEP format from

TraceParts[1] databases, encompassing various categories. On the

collected dataset, we employ hashing techniques for deduplication

ensuring the uniqueness of models. Additionally, we removemodels

with poor quality, which are excessively simplistic or intricate, as

well as exceptionally rare instances. Following this, we classify

these models based on ICS [2] into 24 main categories. Ultimately,

we obtain a clean dataset consisting of 926 models for experiments.
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Implementation Details All experiments are conducted on the

Ubuntu 20.04 operating system. Our hardware specifications in-

clude an Intel Xeon Gold 6326 CPU, 32GB RAM, and an NVIDIA

GeForce RTX 4090. The batch size is set to 32. Contour sketches

from Stage-one are processed to a size of 224 × 224 pixels. Detailed

information about experiments is provided in the Appendix.

4.2 Qualitative Evaluation
Due to the absence of research on the same task, we intend to

compare our approach from two perspectives, which involve ap-

proaches designed for generating engineering sketches and existing

state-of-the-art freehand sketches generative methods.

Sketches of mechanical components In Figure 4, we contrast

our method with Han et al. [15] and Manda et al. [33], using our

collected components as inputs. Han et al.[15] use PythonOCC[39]

to produce view drawings, while Manda et al.[33] create sketches

through image-based edge extraction techniques. Although their re-

sults preserve plentiful engineering features, it is apparent that their

outcomes resembling extracted outlines from models lack the style

of freehand, which limits applicability in freehand sketch modeling.

In contrast, our approach almost retains essential information of

mechanical components equivalent to their results, such as through

holes, gear tooth, slots, and overall recognizable features, while our

results also demonstrate an excellent freehand style.

Input Han et al. Manda et al. Ours

Figure 4: Comparison to other methods for generating
sketches of mechanical components.

Sketch with a freehand style We compare our method with ex-

cellent freehand sketch generative methods like CLIPasso [49] and

LBS[24]. Moreover, we present a contrast with DALL-E[42], which

is a mainstream large-model-based image generation approach. As

shown in Figure 5, all results are produced by 25 strokes using

our collected dataset. In the first example, CLIPasso’s [49] result

exhibits significant disorganized strokes, and LBS [24] almost com-

pletely covers the handle of valve with numerous strokes, leading

to inaccurate representation of features. In the second and third

examples, results by CLIPasso [49] lose key features, such as the

gear hole and the pulley grooves. For LBS[24], unexpected stroke

connections appear between modeling features and its stroke dis-

tribution is chaotic. In contrast, our strokes accurately and clearly

are distributed over the features of components. These differences

are attributed to the fact that CLIPasso[49] initializes strokes via

sampling randomly from the saliency map resulting in features that

may not always be captured. Although LBS [24] modifies initializa-

tion of CLIPasso[49], it initializes strokes still relying on saliency

maps influenced by noise information like monotonous colors and

textures in mechanical components. Our method addresses this

issue by introducing a novel edge-constraint initialization, which

accurately places initial strokes on feature edges. Additionally, as

LBS reported that its transformer-based model uses a CNN encoder.

So its robustness comparison to our method will be similar to the

results in Figure 7. In contrast to DALL-E[42], we employ inputs

consistent with previous experiments coupled with the prompt

("Create a pure white background abstract freehand sketch of input

in 25 strokes") as the final inputs. It is evident that the large-model-

based sketch generation method is still inadequate for our task.

Input CLIPasso OursLBS DALL-E

Figure 5: Comparison to other state-of-the-art method for
generating sketches with a freehand style.

4.3 Quantitative Evaluation
Metrics Evaluation We rasterize vector sketches into images

and utilize evaluation metrics for image generation to assess the

quality of generated sketches. FID (Fréchet Inception Distance)

[16] quantifies the dissimilarity between generated sketches and

standard data by evaluating the mean and variance of sketch fea-

tures, which are extracted from Inception-V3[46] pre-trained on

ImageNet[21]. GS (Geometry Score) [18] is used to contrast the geo-

metric information of data manifold between generated sketches

and standard ones. Additionally, we apply the improved precision

and recall [23] as supplementary metrics following other gener-

ative works [36]. In this experiment, we employ model outlines

processed by PythonOCC[39] as standard data, which encapsulate

the most comprehensive engineering information. The lower FID

and GS scores and higher Prec and Rec scores indicate a greater

degree of consistency in preserving modeling features between the

generated sketches and the standard data. As shown in Table 1,

we classify generated sketches into three levels based on the num-

ber of strokes (𝑁𝑜𝑆): Simple (16 ≤ 𝑁𝑜𝑆 < 24 strokes), Moderate

(24 ≤ 𝑁𝑜𝑆 < 32 strokes), and Complex (32 ≤ 𝑁𝑜𝑆 < 40 strokes).

The first part of Table 1 showcases comparisons between our ap-

proach and other competitors, revealing superior FID, GS, Precision,

and Recall scores across all three complexity levels. Consistent with

the conclusions of qualitative evaluation, our approach retains more

precise modeling features while generating freehand sketches. Ad-

ditional metrics evaluation (standard data employ human-drawn

sketches) is provided in the Appendix.
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Table 1: Quantitative comparison results by metrics. "-T" means test by transformed inputs. "-U" means test by unseen inputs.

Simple Moderate Complex

Method FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑
CLIPasso [49] 10.28 5.70 0.44 0.79 12.03 7.40 0.35 0.72 13.43 9.91 0.30 0.69

LBS [24] 9.46 5.29 0.45 0.81 11.57 7.03 0.32 0.71 12.71 8.78 0.31 0.66

Ours 6.80 3.37 0.53 0.87 7.07 3.96 0.47 0.83 7.27 4.52 0.42 0.81
Ours(VIT-B/32+adapter) -T 7.01 3.98 0.48 0.83 7.25 6.08 0.38 0.72 7.42 6.51 0.32 0.70

Ours(CNN) -T 17.46 28.10 0.18 0.56 19.44 63.14 0.13 0.37 25.13 79.44 0.11 0.25

Ours(VIT-B/32+adapter) -U 8.60 4.10 0.44 0.81 10.68 6.20 0.33 0.68 13.44 7.24 0.31 0.63

Ours(CNN) -U 18.85 30.33 0.19 0.51 20.78 70.66 0.11 0.40 27.54 87.54 0.10 0.20

User Study We randomly select 592 mechanical components from

15 main categories in collected dataset as the test dataset utilized

in user study. We compare the results produced by Han et al.[15],

Manda et al.[33], CLIPasso[49], LBS[24] and our method (the last

three methods create sketches in 25 strokes). We invite 47 mechan-

ical modeling researchers and ask them to score sketches based on

two aspects: engineering information and the freehand style. Scores

range from 0 to 5, with higher scores indicating better performance

in creating features and possessing a hand-drawn style. Finally,

we compute average scores for all components in each method.

As shown in Table 2, the result of user study indicates that our

method achieves the highest style score and overall score. These

reveal our results have a human-prefer freehand style and a better

comprehensive performance in balancing information with style.

Table 2: User study results. "Information" is the engineering
information content score , "Style" denotes the score of free-
hand style, and "Overall" is the average of these two scores.

Method Information↑ Style↑ Overall↑
Han et al.[15] 4.20 0.84 2.52

Manda et al. [33] 4.04 1.21 2.63

CLIPasso [49] 2.71 3.81 3.26

LBS [24] 2.94 3.76 3.35

Ours 3.80 3.84 3.82

4.4 Performance of the Model
Different from traditional sketch generation methods, our genera-

tive model does not require additional sketch datasets. All training

sketches are produced from our guidance sketch generator, which

is optimized via CLIP[41], a model pre-trained on four billion text-

image pairs, producing high-quality guidance sketches. Benefiting

from the guidance sketch generation process not being limited to

specific categories, our method demonstrates robustness across a

wide variety of mechanical components. In Figures 1 and 6, we

showcase excellent generation results for various mechanical com-

ponents. More qualitative results are provided in Appendix.
Previous works like [24] predominantly employ a CNN encoder

that uses fixed-size convolution kernels and pooling layers to ex-

tract local features. It leads to the neglect of global information,

Figure 6: Robust performance across abundant categories.

Input CNN encoder Our encoder Input CNN encoder Our encoder

10
°

Figure 7: Comparison to our method with different encoders.

resulting in poor robustness. To address this issue, we utilize a CLIP

ViT-B/32 combined with an adapter as our encoder. Qualitative and

quantitative comparative experiments are designed to demonstrate

the efficacy of our encoder. In the first row of Figure 7, we employ

models which are similar-category, but unseen in training as test

inputs. Compared to the method using a CNN encoder (ResNeXt18

[55] is used in this experiment), which only produces chaotic and

shapeless strokes, the method with our encoder creates sketches

with recognizable overall contours and essential features. In the

second row, we apply contour sketches seen in training as inputs,

each of which is transformed to the right and downward by 5 pix-

els and rotated counterclockwise by 10°. It can be observed that

the method with our encoder still accurately infers component

sketches, whereas the one using a CNN encoder fails to gener-

ate recognizable features. The quantitative comparison results are

presented in the second part of Table 1. Consistent with our ex-

pectations, the method with our encoder performs better in terms

of evaluation metrics. It showcases that our encoder fortifies the
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Table 3: Ablation Study with metrics evaluation. S-O: Stage-One, E-I: Guidance sketches generated by edge-constraint initializa-
tion , L-H: Training using L𝐻𝑎𝑢𝑠𝑑𝑜𝑟 𝑓 𝑓 . "-T" means test by transformed inputs.

.

Simple Moderate Complex

Model S-O I-O L-H FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑
Ours ✓ ✓ 9.01 4.73 0.45 0.81 10.57 6.79 0.39 0.75 11.11 7.20 0.31 0.68

Ours ✓ ✓ 7.69 4.38 0.47 0.82 8.28 5.08 0.40 0.78 8.62 6.43 0.33 0.70

Ours ✓ ✓ ✓ 6.80 3.37 0.53 0.87 7.07 3.96 0.47 0.83 7.27 4.52 0.42 0.81
Ours -T ✓ ✓ 9.42 5.38 0.40 0.74 10.23 7.34 0.32 0.65 11.04 8.77 0.21 0.63

Ours -T ✓ ✓ ✓ 7.01 3.98 0.48 0.83 7.25 5.28 0.38 0.72 7.42 6.51 0.32 0.70

encoding robustness for unseen and transformed inputs, enhancing

the generalization and equivariance of the model.

Abstraction is an important characteristic of freehand sketches.

Our method effectively achieves it by individually training the

stroke generator on different levels of abstraction sketches datasets.

As shown in Figure8, we respectively present the generated sketches

from an input gear component using 35, 30, 25, and 20 strokes.

As the number of strokes decreases, the abstraction level of gear

sketches increases. Our method constrains strokes to create the

essence of the gear. Iconic characteristics of a gear such as the

general contour, teeth, and tooth spaces can be maintained, even

though some minor details like through-holes may be removed.

Input 35s 30s 25s 20s

Figure 8: Different levels of abstraction generated by ours.
Left to right: gear model and results in 35, 30, 25, 20 strokes.

4.5 Ablation Study
Stage-One As shown in Figure 9, the results of the method lacking

Stage-One are susceptible to issues such as producing unstructured

features and line distortions in qualitative ablation experiment.

Excellent metric scores in Table 3 demonstrate our complete frame-

work can create richer and more accurate modeling information.

This improvement is attributed to Stage-One, which filters out noise

information such as color, texture, and shadows, mitigating their

interference with the generation process.

Edge-constraint Initialization In order to verify whether edge-

constraint initialization can make precise geometric modeling fea-

tures, we remove the optimized mechanism in the initial process.

Comparison in Figure 9 clearly demonstrates that sketches gener-

ated with edge-constraint initialization(E-I) exhibit better perfor-

mance in details generation andmore reasonable stroke distribution.

These benefit from E-I ensuring that initial strokes are accurately

distributed on the edges of model features. Similarly, we utilized

quantitative metrics to measure the generation performance. As

shown in Table 3, sketches generated after initialization optimiza-

tion achieve improvements in metrics such as FID, GS, and so on.

Hausdorff distance Loss Hausdorff distance is a metric used to

measure the distance between two shapes, considering not only

the spatial positions but also the structural relationships between

shapes. By learning shape invariance and semantic features, the

model can more accurately match shapes with different transfor-

mations and morphologies, aiding in the model’s equivariance. The

ablation experimental result is depicted in Table 3. It is evident that

all the quantitative metrics for our method training with Hausdorff

distance become better on the transformed test dataset.

Input w/o  Stage-one w/o  E-I Ours

Figure 9: Ablation study. E-I: Edge-constraint initialization,
"Ours" are the results produced by our complete framework.

5 CONCLUSION AND FUTUREWORK
This paper proposes a novel two-stage framework, which is the first

time to generate freehand sketches for mechanical components. We

mimic the human sketching behavior pattern that produces optimal-

view contour sketches in Stage-One and then translate them into

freehand sketches in Stage-Two. To retain abundant and precise

modeling features, we introduce an innovative edge-constraint

initialization. Additionally, we utilize a CLIP vision encoder and

propose a Hausdorff distance-based guidance loss to improve the

robustness of the model. Our approach aims to promote research on

data-driven algorithms in the freehand sketch domain. Extensive

experiments demonstrate that our approach performs superiorly

compared to state-of-the-art methods.

Through experiments, we discover that we would better uti-

lize a comprehensive model rather than direct inference to obtain

desirable outcomes for unseen models with significant geometric

differences. In future work, we will explore methods to address this

issue, further enhancing the model’s generalizability.
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