
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Freehand Sketch Generation from Mechanical Components
Anonymous Authors

Caster Gear

O
u
rs

C
L
IP
as
so

L
B
S

Valve Pulley Bush

Figure 1: Various mechanical freehand sketches generated by ours and other approaches. Our method produces sketches from
mechanical components while maintaining a freehand style and their essential modeling features, e.g., grooves of the pulley,
through holes on the bush, and gear teeth. (LBS[24] can’t generate vector results, leading to blurriness upon enlargement.)

ABSTRACT
Drawing freehand sketches of mechanical components on multime-

dia devices for AI-based engineeringmodeling becomes a new trend.

However, its development is being impeded because existing works

cannot produce suitable sketches for data-driven research. These

works either generate sketches lacking a freehand style or utilize

generative models not originally designed for this task resulting

in poor effectiveness. To address this issue, we design a two-stage

generative framework mimicking the human sketching behavior

pattern, called MSFormer, which is the first time to produce hu-

manoid freehand sketches tailored for mechanical components. The

first stage employs Open CASCADE technology to obtain multi-

view contour sketches from mechanical components, filtering per-

turbing signals for the ensuing generation process. Meanwhile, we

design a view selector to simulate viewpoint selection tasks during

human sketching for picking out information-rich sketches. The

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

second stage translates contour sketches into freehand sketches by

a transformer-based generator. To retain essential modeling fea-

tures as much as possible and rationalize stroke distribution, we

introduce a novel edge-constraint stroke initialization. Furthermore,

we utilize a CLIP vision encoder and a new loss function incorpo-

rating the Hausdorff distance to enhance the generalizability and

robustness of the model. Extensive experiments demonstrate that

our approach achieves state-of-the-art performance for generating

freehand sketches in the mechanical domain.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Freehand Sketch, Generative Model, Mechanical Components

1 INTRODUCTION
Nowadays, with the vigorous development of multimedia technol-

ogy, a new mechanical modeling approach has gradually emerged,

known as freehand sketch modeling [25, 26]. Different from tradi-

tional mechanical modeling paradigms, freehand sketch modeling

on multimedia devices does not require users to undergo prior

training with CAD tools. In the process of freehand sketch model-

ing for mechanical components, engineers can utilize sketches to

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

achieve tasks such as component sketch recognition, components

fine-grained retrieval based on sketches, and three-dimensional

reconstruction from sketches to components. Modeling in this way

greatly improves modeling efficiency. However, limited by the lack

of appropriate freehand sketches for these data-driven studies in the

sketch community, the development of freehand sketch modeling

for mechanical components is hindered. It is worth emphasizing

that manual sketching and collecting mechanical sketches is a time-

consuming and resource-demanding endeavor. To address the bot-

tleneck, we propose a novel two-stage generative model to produce

freehand sketches from mechanical components automatically.

To meet the requirements of information richness and accuracy

for modeling, we expect that freehand sketches used for mechan-

ical modeling maintain a style of hand-drawn while preserving

essential model information as much as possible. Previous works

that generate engineering sketches [15, 33, 38, 44, 52], primarily

focus on perspective and geometric features of models. As a re-

sult, their sketches lack a hand-drawn style, making them unsuit-

able as the solution of data generation for freehand sketch mod-

eling. Existing data-driven freehand sketch generation methods

[3, 5, 11, 28, 29, 32, 43, 47, 50, 58] also fall short in this task because

they require the existence and availability of relevant datasets.

While CLIPasso [49] and LBS [24] can produce abstract sketches

without additional datasets, as shown in Figure 1, their results for

mechanical components are afflicted by issues such as losing fea-

tures, line distortions, and random strokes. In contrast, we propose a

mechanical vector sketch generation technique that excels in main-

taining precise and abundant modeling features and a freehand

style without additional sketch datasets.

Our method, the first time to generate freehand sketches for

mechanical components, employs a novel two-stage architecture. It

mimics the human sketching behavior pattern which commences

with selecting optimal viewpoints, followed by hand-sketching. In

Stage-One, we generate multi-perspective contour sketches from

mechanical components via Open CASCADE, removing irrelevant

information for engineering modeling which may also mislead

stroke distribution in generated sketches. To select information-

rich sketches, we devise a view selector to simulate the viewpoint

choices made by engineers during sketching. Stage-Two trans-

lates regular contour sketches into humanoid freehand sketches

by a transformer-based generator. It is trained by sketches created

by a guidance sketch generator that utilizes our innovative edge-

constraint initialization to retain more modeling features. Our in-

ference process relies on trained weights to stably produce sketches

defined as a set of Bézier curves. Additionally, we employ a CLIP

vision encoder combining a pretrained vision transformer [8] ViT-

B/32 model of CLIP [41] with an adapter [10], which utilizes a

self-attention mechanism [48] to establish global relations among

graph blocks, enhancing the capture of overall features. It fortifies

the method’s generalization capability for unseen models during

training and inputs with geometric transformation (equivariance).

Furthermore, our proposed new guidance loss, incorporating the

Hausdorff distance, considers not only the spatial positions but also

the boundary features and structural relationships between shapes.

It improves model’s ability to capture global information leading

to better equivariance. Finally, we evaluate our method both quan-

titatively and qualitatively on the collected mechanical component

dataset, which demonstrates the superiority of our proposed frame-

work. We also conduct ablation experiments on key modules to

validate their effectiveness.

In summary, our contributions are the following:

• As far as our knowledge goes, this is the first time to produce

freehand sketches tailored for mechanical components. To

address this task, we imitate the human sketching behav-

ior pattern to design a novel two-stage sketch generation

framework.

• We introduce an innovative edge-constraint initialization

method to optimize strokes of guidance sketches, ensuring

that outcomes retain essential modeling features and ratio-

nalize stroke distribution.

• We utilize an encoder constituted by CLIP ViT-B/32 model

and an adapter to improve the generalization and equivari-

ance of the model. Furthermore, we propose a novel Haus-
dorff distance-based guidance loss to capture global features

of sketches, enhancing the method’s equivariance.

• Extensive quantitative and qualitative experiments demon-

strate that our approach can achieve state-of-the-art perfor-

mance compared to previous methods.

2 RELATEDWORK
Due to little research on freehand sketch generation from mechani-

cal components, there is a review of mainstream generation meth-

ods relevant to our work in the sketch community.

Traditional Generation Method In the early stages of sketch

research, sketches from 3D models were predominantly produced

via traditional edge extraction methodologies [4, 33, 35, 40, 45, 53].

Among them, Occluding contours [35] which detects the occluding

boundaries between foreground objects and the background to ob-

tain contours, is the foundation of non-photorealistic 3D computer

graphics. Progressions in occluding contours [35] have catalyzed

advancements in contour generation, starting with Suggestive con-

tours [7], and continuing with Ridge-valley lines [37] and kinds of

other approaches [17, 33]. A comprehensive overview [6] is avail-

able in existing contour generalizations. Similarly to the results of

generating contours, Han et al. [15] present an approach to gener-

ate line drawings from 3D models based on modeling information.

Building upon previous work that solely focused on outlines of

models, CAD2Sketch [14] addresses the challenge of representing

line solidity and transparency in results, which also incorporates

certain drawing styles. However, all of these traditional approaches

lack a freehand style like ours.

Learning Based Methods Coupled with deep learning, sketch

generation approaches [3, 5, 11, 29, 38, 47, 56, 58] have been further

developed. Combining the advantage of traditional edge extrac-

tion approaches for 3D models and deep learning, Neural Contours

[29] employs a dual-branch structure to leverage edge maps as

a substitution for sketches. SketchGen [38], SketchGraphs [44],

and CurveGen and TurtleGen [52] produce engineering sketches

for Computer-Aided Design. However, such approaches generate

sketches that only emphasize the perspective and geometric fea-

tures of models, which align more closely with regular outlines, the

results do not contain a freehand style. Generative adversarial net-

works (GANs) [12] provide new possibilities for adding a freehand

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Freehand Sketch Generation from Mechanical Components ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

style to sketches [11, 27, 30, 34, 51]. These approaches are based

on pixel-level sketch generation, which is fundamentally different

from how humans draw sketches by pens, resulting in unsuitability

for freehand sketch modeling. Therefore, sketches are preferred to

be treated as continuous stroke sequences. Recently, Sketch-RNN

[13] based on recurrent neural networks (RNNs) [57] and varia-

tional autoencoders (VAEs) [19], reinforcement learning [9, 54, 60],

diffusion models [32, 50] are explored for generating sketches. How-

ever, they perform poorly in generating mechanical sketches with

a freehand style due to the lack of relevant training datasets. Fol-

lowing the integration of Transformer [48] architectures into the

sketch generation, the sketch community has witnessed the emer-

gence of innovative models [28, 43, 52]. CLIPasso [49] provides a

powerful image to abstract sketch model based on CLIP [41] to

generate vector sketches, but this method will take a long time to

generate a single sketch. More critically, CLIPasso [49] initializes

strokes by sampling randomly, and optimizes strokes by using an

optimizer for thousands of steps rather than based on pre-trained

weights, leading to numerical instability. Despite LBS [24] being an

improvement over Clipasso [49], it performs unsatisfactorily in gen-

eralization capability for inputs unseen or transformed. Compared

to many previous approaches, our proposed generative model can

produce vector sketches based on mechanical components, perse-

vering key modeling features and a freehand style, greatly meeting

the development needs of freehand sketch modeling.

3 METHOD
We first elaborate on problem setting in section 3.1. Then, we intro-

duce our sketch generation process that presents Stage-One (CSG)

and Stage-Two (FSG) of MSFormer in sections 3.2 and 3.3.

3.1 Problem Setting
Given a mechanical component, our goal is to produce a freehand

sketch. As depicted in Figure 2, it is carried out by stages: contour

sketch generator and freehand sketch generator. We describe an

mechanical component asM ∈ Δ3
, where Δ3

represents 3D homo-

geneous physical space. Each point on model corresponds to a coor-

dinate (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) ∈ R3, where R is information dimension. Through

an affine transformation, a 3D model is transformed into 2D con-

tour sketches C ∈ Δ2
, which consists of a series of black curves

expressed by pixel coordinates (𝑥𝑖 , 𝑦𝑖) ∈ R2. In the gradual opti-

mization process of Stage-Two, process sketches {P𝑖 }𝐾𝑖=1 are guided
by guidance sketches {G𝑖 }𝐾𝑖=1, K is the number of sketches. Deriving

from features of contour sketch C and guidance sketches {G𝑖 }𝐾𝑖=1,
our model produces an ultimate output freehand sketch S, which is

defined as a set of n two-dimensional Bézier curves {𝑠1, 𝑠2, . . . , 𝑠𝑛}.
Each of curve strokes is composed by four control points 𝑠𝑖 =

{(𝑥1, 𝑦1) (𝑖) , (𝑥2, 𝑦2) (𝑖) , (𝑥3, 𝑦3) (𝑖) , (𝑥4, 𝑦4) (𝑖) } ∈ R8,∀𝑖 ∈ 𝑛.

3.2 Stage-One: Contour Sketch Generator
Contour Sketch Generator (CSG), called Stage-One, is designed for

filtering noise (colors, shadows, textures, etc.) and simulating the

viewpoint selection during human sketching to obtain recognizable

and informative contour sketches from mechanical components.

Previous methods optimize sketches using details such as the dis-

tribution of different colors and variations in texture. However,

mechanical components typically exhibit monotonic colors and

subtle texture changes. We experimentally observe that referencing

this information within components not only fails to aid inference

but also introduces biases in final output stroke sequences, result-

ing in the loss of critical features. As a result, when generating

mechanical sketches, the main focus is on utilizing the contours of

components to create modeling features.

Modeling engineers generally choose specific perspectives for

sketching rather than random ones, such as three-view (Front/Top/

Right views), isometric view (pairwise angles between all three pro-

jected principal axes are equal), etc. As shown in Figure 2 Stage-One,

we can imagine placing a mechanical component within a cube and

selecting centers of the six faces, midpoints of the twelve edges,

and eight vertices of the cube as 26 viewpoints. Subsequently, we

use PythonOCC[39], a Python wrapper for the CAD-Kernel Open-

CASCADE, to infer engineering modeling information and render

regular contour sketches of the model from these 26 viewpoints.

Generated contour sketches are not directly suitable for subse-

quent processes. By padding, we ensure all sketches are presented

in appropriate proportions. Given that most mechanical compo-

nents exhibit symmetry, the same sketch may be rendered from

different perspectives. We utilize ImageHash technology for dedu-

plication. Additionally, not all of generated sketches are useful and

information-rich for freehand sketch modeling. For instance, some

viewpoints of mechanical components may represent simple or

misleading geometric shapes that are not recognizable nor effective

for freehand sketch modeling. Therefore, we design a viewpoint se-

lector based on ICNet [59], which is trained by excellent viewpoint

sketches picked out by modeling experts, to simulate the viewpoint

selection task engineers face during sketching, as shown in Figure

2. Through viewpoint selection, we obtained several of the most

informative and representative optimal contour sketches for each

mechanical component. The detailed procedure of Stage-One is

outlined in Algorithm 1.

Algorithm 1 Stage-One: Contour Sketch Generation

Input:Mechanical components

Output Contour Sketches of mechanical components

1: procedure cad_to_contours
2: 𝐼 ← Read a mechanical component in STEP format

3: Set OCC to HLR mode and enable anti-aliasing

4: 𝑉 1 ← Acquire contour sketches of 𝐼 from the 26 built-in

viewpoints in OCC

5: 𝑉 2← Center the object in 𝑉 1 and maintain a margin from

edges of the picture

6: 𝑉 3 ← Remove duplicates from sketches in 𝑉 2 using the

𝐼𝑚𝑎𝑔𝑒𝐻𝑎𝑠ℎ library

7: 𝑂 ← Filter the top 𝑁 contours with the most information

from 𝑉 3 using an image complexity estimator

3.3 Stage-Two: Freehand Sketch Generator
Stage-Two, in Figure 2, comprises the Freehand Sketch Generator

(FSG), which aims to generate freehand sketches based on regular

contour sketches obtained from Stage-One. To achieve this goal,

we design a transformers-based [24, 31, 43] generator trained by

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: An overview of our method. (1) Stage-One: we generate contour sketches based on 26 viewpoints (represented by
colorful points) of a cube (grey). After that, Preprocessing and View Selection export appropriate contour sketches. (2) Stage-Two:
By receiving initial strokes and features captured by our encoder from regular contour sketch, the stroke generator produces a
set of strokes, which are next fed to a differentiable rasterizer to create a vector freehand sketch.

guidance sketches, which stably generates freehand sketches with

precise geometric modeling information. Our generative model

does not require additional datasets for training. All training data

are derived from the excellent procedural sketches produced by the

guidance sketch generator.

Generative process As illustrated in Figure 2, freehand sketch

generator consists of four components: an encoder, a stroke gen-

erator, a guidance sketch generator, and a differentiable rasterizer.

Our encoder utilizes CLIP ViT-B/32[41] and an adapter to extract

essential vision and semantic information from input. Although,

in previous works, CLIPasso [49] performs strongly in creating

abstract sketches, it initializes strokes by sampling randomly and

uses an optimizer for thousands of steps to optimize sketches, re-

sulting in a high diversity of outputs and numerical instability. To

a ensure stable generation of sketches, we design a training-based

stroke generator that employs improved CLIPasso[49] from the

guidance sketch generator as ideal guidance. It allows us to in-

fer high-quality sketches stably by utilizing pre-trained weights.

Our stroke generator consists of eight transformer decoder layers

and two MLP decoder layers. During training, to guarantee the

stroke generator learns features better, process sketches {P𝑖 }𝐾𝑖=1
(K=8 in this paper) extracted from each intermediate layer are

guided by guidance sketches {P𝑖 }𝐾𝑖=1 generated at the correspond-

ing intermediate step of the optimization process in the guidance

sketch generator. In the inference phase, the stroke generator op-

timizes initial strokes generated from trainable parameters into

a set of n Bezier curves {𝑠1, 𝑠2, . . . , 𝑠𝑛}. These strokes are then

fed into the differentiable rasterizer R to produce a vector sketch

S = R(𝑠1, . . . , 𝑠𝑛) = R({(𝑥 𝑗 , 𝑦 𝑗) (1) }4𝑗=1, . . . , {(𝑥 𝑗 , 𝑦 𝑗)
(𝑛) }4

𝑗=1
).

Edge-constraint Initialization The quality of guidance sketches

plays a pivotal role in determining our outcomes’ quality. Original

CLIPasso[49] initializes strokes via stochastic sampling from the

saliency map. It could lead to the failure to accurately capture fea-

tures, as well as the aggregation of initial strokes in localized areas,

resulting in generated stroke clutter. To address these issues, as

shown in Figure 3, we modify the mechanism for initializing strokes

in our guidance sketch generator. We segment contour sketches

using SAM[20] and based on segmentation results accurately place

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Freehand Sketch Generation from Mechanical Components ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

the initial stroke on the edges of component’s features to constraint

stroke locations. It ensures guidance generator not only generates

precise geometric modeling information but also optimizes the dis-

tribution of strokes. Initialization comparison to original CLIPasso

[49] is provided in the Appendix.

(a) (b) (c) (d) (e)

Figure 3: Edge-constraint Initialization. (a) and (b) are results
of segmenting through hole and overall segmentation of
flange by SAM [20] (distinguishing features through different
coloring). (c) The saliency map generated from CLIP ViT
activations. (d) and (e) are initial stroke locations (in red)
in final distribution map and input. It is evident that our
method accurately places initial strokes at features.

Encoder FSG requires an encoder to capture features. Previous

works for similar tasks predominantly employ a CNN encoder that

solely relies on local receptive fields to capture features, making it

susceptible to local variations and resulting in poor robustness for

inputs unseen or transformed. While vision transformer (ViT) uses

a self-attention mechanism [48] to establish global relationships be-

tween features. It enables the model to attend to overall information

in inputs, unconstrained by fixed posture or shape. Therefore, we

utilize ViT-B/32 model of CLIP[41] to encode semantic understand-

ing of visual depictions, which is trained on 400 million image-text

pairs. And we combine it with an adapter that consists of two fully

connected layers to fine-tune based on training data. As shown

in Figure 7 and Table 1, our encoder substantially improves the

robustness to unseen models during training and the equivariance.

Loss Function During training, we employ CLIP-based perceptual

loss to quantify the resemblance between generated freehand sketch

S and contour sketch C considering both geometric and semantic

differences [41, 49]. For synthesis of a sketch that is semantically

similar to the given contour sketch, the goal is to constrict the

distance in the embedding space of the CLIP model represented by

𝐶𝐿𝐼𝑃 (𝑥), defined as:

L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = 𝜙 (𝐶𝐿𝐼𝑃 (𝐶),𝐶𝐿𝐼𝑃 (𝑆)), (1)

where 𝜙 represents the cosine proximity of the CLIP embeddings,

i.e., 𝜙 (𝑥,𝑦) = 1 − cos(𝑥,𝑦). Beyond this, the geometric similarity is

measured by contrasting low-level features of output sketch and

input contour, as follows:

L𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 =
∑︁
𝑖=3,4

𝑑𝑖𝑠𝑡 (𝐶𝐿𝐼𝑃𝑖 (𝐶),𝐶𝐿𝐼𝑃𝑖 (𝑆)), (2)

where 𝑑𝑖𝑠𝑡 represents the L2 norm, explicitly, 𝑑𝑖𝑠𝑡 (𝑥,𝑦) = ∥𝑥 −𝑦∥2
2
,

and 𝐶𝐿𝐼𝑃𝑖 is the 𝑖-th layer CLIP encoder activation. As recom-

mended by [49], we use layers 3 and 4 of the ResNet101 CLIP model.

Finally, the perceptual loss is given by:

L𝑝𝑒𝑟𝑐𝑒𝑝𝑡 = L𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 + 𝛽𝑠L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 , (3)

where 𝛽𝑠 is set to 0.1.

In the process of optimizing the stroke generator, a guidance

loss is employed to quantify the resemblance between guidance

sketches G and process sketches P. Firstly, we introduce the Jonker-
Volgenant algorithm [22] to ensure that guidance loss is invariant to

arrangement of each stroke’s order, which is extensively utilized in

assignment problems. The mathematical expression is as follows:

L𝐽 𝐾 =

𝐾∑︁
𝑘=1

min

𝛼

𝑛∑︁
𝑖=1

L1 (𝑔 (𝑖)𝑘 , 𝑝
𝛼 (𝑖)
𝑘
), (4)

where L1is the manhattan distance, 𝑛 is the number of strokes in

the sketch. 𝑝
(𝑖)
𝑘

is the 𝑖-th stroke of the sketch from the 𝑘-th middle

process layer (with a total of 𝐾 layers), and 𝑔
(𝑖)
𝑘

is the guidance

stroke corresponding to 𝑝
𝛼 (𝑖)
𝑘

, 𝛼 is an arrangement of stroke indices.

Additionally, we innovatively integrate bidirectional Hausdorff
distance into the guidance loss, which serves as a metric quantifying

the similarity between two non-empty point sets that our strokes

can be considered as. It aids the model in achieving more precise

matching of guidance sketch edges and maintaining structural

relationships between shapes during training, thereby capturing

more global features and enhancing the model’s robustness to input

with transformations. Experiment evaluation can be seen in section

4.5 , The specific mathematical expression is as follows:

𝛿𝐻 = max{ ˜𝛿𝐻 (G,P), ˜𝛿𝐻 (P,G)}, (5)

where P = {𝑝1, . . . , 𝑝𝑛} is the process sketch from each layer and

G = {𝑔1, . . . , 𝑔𝑛} is the guidance sketch corresponding to P. 𝑔𝑖 and
𝑝𝑖 represent the strokes that constitute corresponding sketch. Both

P and G are sets containing n 8-dimensional vectors.
˜𝛿𝐻 (G,P)

signifies the one-sided Hausdorff distance from set G to set P:
˜𝛿𝐻 (G,P) = max

𝑔∈G
{min

𝑝∈P
∥𝑔 − 𝑝 ∥}, (6)

where ∥ · ∥ is the Euclidean distance. Similarly,
˜𝛿𝐻 (P,G) represents

the unidirectional Hausdorff distance from set P to set G:
˜𝛿𝐻 (P,G) = max

𝑝∈P
{min

𝑔∈G
∥𝑝 − 𝑔∥}. (7)

The guidance loss is as follows:

L𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 = L𝐽 𝐾 + 𝛽ℎ𝛿𝐻 , (8)

where 𝛽ℎ is set to 0.8.

Our final loss function is as follows:

L𝑡𝑜𝑎𝑡𝑙 = L𝑝𝑒𝑟𝑐𝑒𝑝𝑡 + L𝑔𝑢𝑖𝑑𝑎𝑛𝑐𝑒 (9)

4 EXPERIMENTS
4.1 Experimental Setup
Dataset We collect mechanical components in STEP format from

TraceParts[1] databases, encompassing various categories. On the

collected dataset, we employ hashing techniques for deduplication

ensuring the uniqueness of models. Additionally, we removemodels

with poor quality, which are excessively simplistic or intricate, as

well as exceptionally rare instances. Following this, we classify

these models based on ICS [2] into 24 main categories. Ultimately,

we obtain a clean dataset consisting of 926 models for experiments.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Implementation Details All experiments are conducted on the

Ubuntu 20.04 operating system. Our hardware specifications in-

clude an Intel Xeon Gold 6326 CPU, 32GB RAM, and an NVIDIA

GeForce RTX 4090. The batch size is set to 32. Contour sketches

from Stage-one are processed to a size of 224 × 224 pixels. Detailed

information about experiments is provided in the Appendix.

4.2 Qualitative Evaluation
Due to the absence of research on the same task, we intend to

compare our approach from two perspectives, which involve ap-

proaches designed for generating engineering sketches and existing

state-of-the-art freehand sketches generative methods.

Sketches of mechanical components In Figure 4, we contrast

our method with Han et al. [15] and Manda et al. [33], using our

collected components as inputs. Han et al.[15] use PythonOCC[39]

to produce view drawings, while Manda et al.[33] create sketches

through image-based edge extraction techniques. Although their re-

sults preserve plentiful engineering features, it is apparent that their

outcomes resembling extracted outlines from models lack the style

of freehand, which limits applicability in freehand sketch modeling.

In contrast, our approach almost retains essential information of

mechanical components equivalent to their results, such as through

holes, gear tooth, slots, and overall recognizable features, while our

results also demonstrate an excellent freehand style.

Input Han et al. Manda et al. Ours

Figure 4: Comparison to other methods for generating
sketches of mechanical components.

Sketch with a freehand style We compare our method with ex-

cellent freehand sketch generative methods like CLIPasso [49] and

LBS[24]. Moreover, we present a contrast with DALL-E[42], which

is a mainstream large-model-based image generation approach. As

shown in Figure 5, all results are produced by 25 strokes using

our collected dataset. In the first example, CLIPasso’s [49] result

exhibits significant disorganized strokes, and LBS [24] almost com-

pletely covers the handle of valve with numerous strokes, leading

to inaccurate representation of features. In the second and third

examples, results by CLIPasso [49] lose key features, such as the

gear hole and the pulley grooves. For LBS[24], unexpected stroke

connections appear between modeling features and its stroke dis-

tribution is chaotic. In contrast, our strokes accurately and clearly

are distributed over the features of components. These differences

are attributed to the fact that CLIPasso[49] initializes strokes via

sampling randomly from the saliency map resulting in features that

may not always be captured. Although LBS [24] modifies initializa-

tion of CLIPasso[49], it initializes strokes still relying on saliency

maps influenced by noise information like monotonous colors and

textures in mechanical components. Our method addresses this

issue by introducing a novel edge-constraint initialization, which

accurately places initial strokes on feature edges. Additionally, as

LBS reported that its transformer-based model uses a CNN encoder.

So its robustness comparison to our method will be similar to the

results in Figure 7. In contrast to DALL-E[42], we employ inputs

consistent with previous experiments coupled with the prompt

("Create a pure white background abstract freehand sketch of input

in 25 strokes") as the final inputs. It is evident that the large-model-

based sketch generation method is still inadequate for our task.

Input CLIPasso OursLBS DALL-E

Figure 5: Comparison to other state-of-the-art method for
generating sketches with a freehand style.

4.3 Quantitative Evaluation
Metrics Evaluation We rasterize vector sketches into images

and utilize evaluation metrics for image generation to assess the

quality of generated sketches. FID (Fréchet Inception Distance)

[16] quantifies the dissimilarity between generated sketches and

standard data by evaluating the mean and variance of sketch fea-

tures, which are extracted from Inception-V3[46] pre-trained on

ImageNet[21]. GS (Geometry Score) [18] is used to contrast the geo-

metric information of data manifold between generated sketches

and standard ones. Additionally, we apply the improved precision

and recall [23] as supplementary metrics following other gener-

ative works [36]. In this experiment, we employ model outlines

processed by PythonOCC[39] as standard data, which encapsulate

the most comprehensive engineering information. The lower FID

and GS scores and higher Prec and Rec scores indicate a greater

degree of consistency in preserving modeling features between the

generated sketches and the standard data. As shown in Table 1,

we classify generated sketches into three levels based on the num-

ber of strokes (𝑁𝑜𝑆): Simple (16 ≤ 𝑁𝑜𝑆 < 24 strokes), Moderate

(24 ≤ 𝑁𝑜𝑆 < 32 strokes), and Complex (32 ≤ 𝑁𝑜𝑆 < 40 strokes).

The first part of Table 1 showcases comparisons between our ap-

proach and other competitors, revealing superior FID, GS, Precision,

and Recall scores across all three complexity levels. Consistent with

the conclusions of qualitative evaluation, our approach retains more

precise modeling features while generating freehand sketches. Ad-

ditional metrics evaluation (standard data employ human-drawn

sketches) is provided in the Appendix.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Freehand Sketch Generation from Mechanical Components ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Quantitative comparison results by metrics. "-T" means test by transformed inputs. "-U" means test by unseen inputs.

Simple Moderate Complex

Method FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑
CLIPasso [49] 10.28 5.70 0.44 0.79 12.03 7.40 0.35 0.72 13.43 9.91 0.30 0.69

LBS [24] 9.46 5.29 0.45 0.81 11.57 7.03 0.32 0.71 12.71 8.78 0.31 0.66

Ours 6.80 3.37 0.53 0.87 7.07 3.96 0.47 0.83 7.27 4.52 0.42 0.81
Ours(VIT-B/32+adapter) -T 7.01 3.98 0.48 0.83 7.25 6.08 0.38 0.72 7.42 6.51 0.32 0.70

Ours(CNN) -T 17.46 28.10 0.18 0.56 19.44 63.14 0.13 0.37 25.13 79.44 0.11 0.25

Ours(VIT-B/32+adapter) -U 8.60 4.10 0.44 0.81 10.68 6.20 0.33 0.68 13.44 7.24 0.31 0.63

Ours(CNN) -U 18.85 30.33 0.19 0.51 20.78 70.66 0.11 0.40 27.54 87.54 0.10 0.20

User Study We randomly select 592 mechanical components from

15 main categories in collected dataset as the test dataset utilized

in user study. We compare the results produced by Han et al.[15],

Manda et al.[33], CLIPasso[49], LBS[24] and our method (the last

three methods create sketches in 25 strokes). We invite 47 mechan-

ical modeling researchers and ask them to score sketches based on

two aspects: engineering information and the freehand style. Scores

range from 0 to 5, with higher scores indicating better performance

in creating features and possessing a hand-drawn style. Finally,

we compute average scores for all components in each method.

As shown in Table 2, the result of user study indicates that our

method achieves the highest style score and overall score. These

reveal our results have a human-prefer freehand style and a better

comprehensive performance in balancing information with style.

Table 2: User study results. "Information" is the engineering
information content score , "Style" denotes the score of free-
hand style, and "Overall" is the average of these two scores.

Method Information↑ Style↑ Overall↑
Han et al.[15] 4.20 0.84 2.52

Manda et al. [33] 4.04 1.21 2.63

CLIPasso [49] 2.71 3.81 3.26

LBS [24] 2.94 3.76 3.35

Ours 3.80 3.84 3.82

4.4 Performance of the Model
Different from traditional sketch generation methods, our genera-

tive model does not require additional sketch datasets. All training

sketches are produced from our guidance sketch generator, which

is optimized via CLIP[41], a model pre-trained on four billion text-

image pairs, producing high-quality guidance sketches. Benefiting

from the guidance sketch generation process not being limited to

specific categories, our method demonstrates robustness across a

wide variety of mechanical components. In Figures 1 and 6, we

showcase excellent generation results for various mechanical com-

ponents. More qualitative results are provided in Appendix.
Previous works like [24] predominantly employ a CNN encoder

that uses fixed-size convolution kernels and pooling layers to ex-

tract local features. It leads to the neglect of global information,

Figure 6: Robust performance across abundant categories.

Input CNN encoder Our encoder Input CNN encoder Our encoder

10
°

Figure 7: Comparison to our method with different encoders.

resulting in poor robustness. To address this issue, we utilize a CLIP

ViT-B/32 combined with an adapter as our encoder. Qualitative and

quantitative comparative experiments are designed to demonstrate

the efficacy of our encoder. In the first row of Figure 7, we employ

models which are similar-category, but unseen in training as test

inputs. Compared to the method using a CNN encoder (ResNeXt18

[55] is used in this experiment), which only produces chaotic and

shapeless strokes, the method with our encoder creates sketches

with recognizable overall contours and essential features. In the

second row, we apply contour sketches seen in training as inputs,

each of which is transformed to the right and downward by 5 pix-

els and rotated counterclockwise by 10°. It can be observed that

the method with our encoder still accurately infers component

sketches, whereas the one using a CNN encoder fails to gener-

ate recognizable features. The quantitative comparison results are

presented in the second part of Table 1. Consistent with our ex-

pectations, the method with our encoder performs better in terms

of evaluation metrics. It showcases that our encoder fortifies the

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Ablation Study with metrics evaluation. S-O: Stage-One, E-I: Guidance sketches generated by edge-constraint initializa-
tion , L-H: Training using L𝐻𝑎𝑢𝑠𝑑𝑜𝑟 𝑓 𝑓 . "-T" means test by transformed inputs.

.

Simple Moderate Complex

Model S-O I-O L-H FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑ FID↓ GS↓ Prec↑ Rec↑
Ours ✓ ✓ 9.01 4.73 0.45 0.81 10.57 6.79 0.39 0.75 11.11 7.20 0.31 0.68

Ours ✓ ✓ 7.69 4.38 0.47 0.82 8.28 5.08 0.40 0.78 8.62 6.43 0.33 0.70

Ours ✓ ✓ ✓ 6.80 3.37 0.53 0.87 7.07 3.96 0.47 0.83 7.27 4.52 0.42 0.81
Ours -T ✓ ✓ 9.42 5.38 0.40 0.74 10.23 7.34 0.32 0.65 11.04 8.77 0.21 0.63

Ours -T ✓ ✓ ✓ 7.01 3.98 0.48 0.83 7.25 5.28 0.38 0.72 7.42 6.51 0.32 0.70

encoding robustness for unseen and transformed inputs, enhancing

the generalization and equivariance of the model.

Abstraction is an important characteristic of freehand sketches.

Our method effectively achieves it by individually training the

stroke generator on different levels of abstraction sketches datasets.

As shown in Figure8, we respectively present the generated sketches

from an input gear component using 35, 30, 25, and 20 strokes.

As the number of strokes decreases, the abstraction level of gear

sketches increases. Our method constrains strokes to create the

essence of the gear. Iconic characteristics of a gear such as the

general contour, teeth, and tooth spaces can be maintained, even

though some minor details like through-holes may be removed.

Input 35s 30s 25s 20s

Figure 8: Different levels of abstraction generated by ours.
Left to right: gear model and results in 35, 30, 25, 20 strokes.

4.5 Ablation Study
Stage-One As shown in Figure 9, the results of the method lacking

Stage-One are susceptible to issues such as producing unstructured

features and line distortions in qualitative ablation experiment.

Excellent metric scores in Table 3 demonstrate our complete frame-

work can create richer and more accurate modeling information.

This improvement is attributed to Stage-One, which filters out noise

information such as color, texture, and shadows, mitigating their

interference with the generation process.

Edge-constraint Initialization In order to verify whether edge-

constraint initialization can make precise geometric modeling fea-

tures, we remove the optimized mechanism in the initial process.

Comparison in Figure 9 clearly demonstrates that sketches gener-

ated with edge-constraint initialization(E-I) exhibit better perfor-

mance in details generation andmore reasonable stroke distribution.

These benefit from E-I ensuring that initial strokes are accurately

distributed on the edges of model features. Similarly, we utilized

quantitative metrics to measure the generation performance. As

shown in Table 3, sketches generated after initialization optimiza-

tion achieve improvements in metrics such as FID, GS, and so on.

Hausdorff distance Loss Hausdorff distance is a metric used to

measure the distance between two shapes, considering not only

the spatial positions but also the structural relationships between

shapes. By learning shape invariance and semantic features, the

model can more accurately match shapes with different transfor-

mations and morphologies, aiding in the model’s equivariance. The

ablation experimental result is depicted in Table 3. It is evident that

all the quantitative metrics for our method training with Hausdorff

distance become better on the transformed test dataset.

Input w/o Stage-one w/o E-I Ours

Figure 9: Ablation study. E-I: Edge-constraint initialization,
"Ours" are the results produced by our complete framework.

5 CONCLUSION AND FUTUREWORK
This paper proposes a novel two-stage framework, which is the first

time to generate freehand sketches for mechanical components. We

mimic the human sketching behavior pattern that produces optimal-

view contour sketches in Stage-One and then translate them into

freehand sketches in Stage-Two. To retain abundant and precise

modeling features, we introduce an innovative edge-constraint

initialization. Additionally, we utilize a CLIP vision encoder and

propose a Hausdorff distance-based guidance loss to improve the

robustness of the model. Our approach aims to promote research on

data-driven algorithms in the freehand sketch domain. Extensive

experiments demonstrate that our approach performs superiorly

compared to state-of-the-art methods.

Through experiments, we discover that we would better uti-

lize a comprehensive model rather than direct inference to obtain

desirable outcomes for unseen models with significant geometric

differences. In future work, we will explore methods to address this

issue, further enhancing the model’s generalizability.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Freehand Sketch Generation from Mechanical Components ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2001. TraceParts. https://www.traceparts.com/en.

[2] 2015. International Classification for Standards. https://www.iso.org/publication/

PUB100033.html.

[3] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer,

Fahad Shahbaz Khan, Jorma Laaksonen, and Michael Felsberg. 2022. Doodle-

former: Creative sketch drawing with transformers. In European Conference on
Computer Vision. Springer, 338–355.

[4] John Canny. 1986. A computational approach to edge detection. IEEE Transactions
on pattern analysis and machine intelligence 6 (1986), 679–698.

[5] Nan Cao, Xin Yan, Yang Shi, and Chaoran Chen. 2019. AI-sketcher: a deep

generative model for producing high-quality sketches. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 33. 2564–2571.

[6] Doug DeCarlo. 2012. Depicting 3D shape using lines. Human Vision and Electronic
Imaging XVII 8291 (2012), 361–376.

[7] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella.

2023. Suggestive contours for conveying shape. In Seminal Graphics Papers:
Pushing the Boundaries, Volume 2. 401–408.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers

for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
[9] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol

Vinyals. 2018. Synthesizing Programs for Images using Reinforced Adversarial

Learning. In Proceedings of the 35th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas

Krause (Eds.). PMLR, 1666–1675. https://proceedings.mlr.press/v80/ganin18a.

html

[10] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang,

Hongsheng Li, and Yu Qiao. 2024. Clip-adapter: Better vision-language models

with feature adapters. International Journal of Computer Vision 132, 2 (2024),

581–595.

[11] Songwei Ge, Vedanuj Goswami, C. Lawrence Zitnick, and Devi Parikh. 2020.

Creative Sketch Generation. arXiv:2011.10039 [cs.CV]

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

nets. Advances in neural information processing systems 27 (2014).
[13] David Ha and Douglas Eck. 2017. A neural representation of sketch drawings.

arXiv preprint arXiv:1704.03477 (2017).

[14] Felix Hähnlein, Changjian Li, Niloy J Mitra, and Adrien Bousseau. 2022.

CAD2Sketch: Generating Concept Sketches from CAD Sequences. ACM Transac-
tions on Graphics (TOG) 41, 6 (2022), 1–18.

[15] Wenyu Han, Siyuan Xiang, Chenhui Liu, Ruoyu Wang, and Chen Feng. 2020.

Spare3d: A dataset for spatial reasoning on three-view line drawings. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
14690–14699.

[16] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to

a local nash equilibrium. Advances in neural information processing systems 30
(2017).

[17] Tilke Judd, Frédo Durand, and Edward Adelson. 2007. Apparent ridges for line

drawing. ACM transactions on graphics (TOG) 26, 3 (2007), 19–es.
[18] Valentin Khrulkov and Ivan Oseledets. 2018. Geometry score: A method for com-

paring generative adversarial networks. In International conference on machine
learning. PMLR, 2621–2629.

[19] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114 (2013).
[20] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura

Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.

2023. Segment anything. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 4015–4026.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[22] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[23] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo

Aila. 2019. Improved precision and recall metric for assessing generative models.

Advances in neural information processing systems 32 (2019).
[24] Hyundo Lee, Inwoo Hwang, Hyunsung Go, Won-Seok Choi, Kibeom Kim, and

Byoung-Tak Zhang. 2023. Learning Geometry-aware Representations by Sketch-

ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 23315–23326.

[25] Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra. 2020. Sketch2CAD:

sequential CAD modeling by sketching in context. ACM Trans. Graph. 39, 6,
Article 164 (nov 2020), 14 pages. https://doi.org/10.1145/3414685.3417807

[26] Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra. 2022. Free2CAD:

parsing freehand drawings into CAD commands. ACM Trans. Graph. 41, 4, Article
93 (jul 2022), 16 pages. https://doi.org/10.1145/3528223.3530133

[27] SuChang Li, Kan Li, Ilyes Kacher, Yuichiro Taira, Bungo Yanatori, and Imari Sato.

2020. Artpdgan: Creating artistic pencil drawing with key map using generative

adversarial networks. In Computational Science–ICCS 2020: 20th International
Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part VII 20.
Springer, 285–298.

[28] Hangyu Lin, Yanwei Fu, Xiangyang Xue, and Yu-Gang Jiang. 2020. Sketch-bert:

Learning sketch bidirectional encoder representation from transformers by self-

supervised learning of sketch gestalt. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 6758–6767.

[29] Difan Liu, Mohamed Nabail, Aaron Hertzmann, and Evangelos Kalogerakis. 2020.

Neural contours: Learning to draw lines from 3d shapes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5428–5436.

[30] Runtao Liu, Qian Yu, and Stella X Yu. 2020. Unsupervised sketch to photo

synthesis. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part III 16. Springer, 36–52.

[31] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Ruifeng Deng, Xin Li, Errui

Ding, and Hao Wang. 2021. Paint Transformer: Feed Forward Neural Painting

With Stroke Prediction. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV). 6598–6607.

[32] Troy Luhman and Eric Luhman. 2020. Diffusion models for handwriting genera-

tion. arXiv preprint arXiv:2011.06704 (2020).
[33] Bharadwaj Manda, Shubham Dhayarkar, Sai Mitheran, VK Viekash, and Ra-

manathan Muthuganapathy. 2021. ‘CADSketchNet’-An annotated sketch dataset

for 3D CAD model retrieval with deep neural networks. Computers & Graphics
99 (2021), 100–113.

[34] V Manushree, Sameer Saxena, Parna Chowdhury, Manisimha Varma, Harsh

Rathod, Ankita Ghosh, and Sahil Khose. 2021. XCI-Sketch: Extraction of Color

Information from Images for Generation of Colored Outlines and Sketches. arXiv
preprint arXiv:2108.11554 (2021).

[35] David Marr. 1977. Analysis of occluding contour. Proceedings of the Royal Society
of London. Series B. Biological Sciences 197, 1129 (1977), 441–475.

[36] Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising diffu-

sion probabilistic models. In International conference on machine learning. PMLR,

8162–8171.

[37] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. 2004. Ridge-valley

lines on meshes via implicit surface fitting. In ACM SIGGRAPH 2004 Papers.
609–612.

[38] Wamiq Para, Shariq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra, Leonidas J

Guibas, and Peter Wonka. 2021. SketchGen: Generating Constrained CAD

Sketches. In Advances in Neural Information Processing Systems, M. Ranzato,

A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34.

Curran Associates, Inc., 5077–5088. https://proceedings.neurips.cc/paper_files/

paper/2021/file/28891cb4ab421830acc36b1f5fd6c91e-Paper.pdf

[39] T Paviot. 2018. pythonocc, 3d cad/cae/plm development framework for the

python programming language.

[40] Judith MS Prewitt et al. 1970. Object enhancement and extraction. Picture
processing and Psychopictorics 10, 1 (1970), 15–19.

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

et al. 2021. Learning transferable visual models from natural language supervision.

In International conference on machine learning. PMLR, 8748–8763.

[42] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec

Radford,Mark Chen, and Ilya Sutskever. 2021. Zero-shot text-to-image generation.

In International conference on machine learning. Pmlr, 8821–8831.

[43] Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and Moacir Ponti. 2020.

Sketchformer: Transformer-Based Representation for Sketched Structure. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

[44] Ari Seff, Yaniv Ovadia, Wenda Zhou, and Ryan P Adams. 2020. Sketchgraphs: A

large-scale dataset for modeling relational geometry in computer-aided design.

arXiv preprint arXiv:2007.08506 (2020).
[45] Irwin Sobel, Gary Feldman, et al. 1968. A 3x3 isotropic gradient operator for

image processing. a talk at the Stanford Artificial Project in 1968 (1968), 271–272.

[46] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. 2016. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
2818–2826.

[47] Zhengyan Tong, Xuanhong Chen, Bingbing Ni, and XiaohangWang. 2021. Sketch

generation with drawing process guided by vector flow and grayscale. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 609–616.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[49] Yael Vinker, Ehsan Pajouheshgar, Jessica Y Bo, Roman Christian Bachmann,

Amit Haim Bermano, Daniel Cohen-Or, Amir Zamir, and Ariel Shamir. 2022.

https://www.traceparts.com/en
https://www.iso.org/publication/PUB100033.html
https://www.iso.org/publication/PUB100033.html
https://proceedings.mlr.press/v80/ganin18a.html
https://proceedings.mlr.press/v80/ganin18a.html
https://arxiv.org/abs/2011.10039
https://doi.org/10.1145/3414685.3417807
https://doi.org/10.1145/3528223.3530133
https://proceedings.neurips.cc/paper_files/paper/2021/file/28891cb4ab421830acc36b1f5fd6c91e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/28891cb4ab421830acc36b1f5fd6c91e-Paper.pdf

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Clipasso: Semantically-aware object sketching. ACM Transactions on Graphics
(TOG) 41, 4 (2022), 1–11.

[50] Qiang Wang, Haoge Deng, Yonggang Qi, Da Li, and Yi-Zhe Song. 2022.

SketchKnitter: Vectorized Sketch Generation with Diffusion Models. In The
Eleventh International Conference on Learning Representations.

[51] Tianying Wang, Wei Qi Toh, Hao Zhang, Xiuchao Sui, Shaohua Li, Yong Liu, and

Wei Jing. 2020. Robocodraw: Robotic avatar drawingwith gan-based style transfer

and time-efficient path optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34. 10402–10409.

[52] Karl DDWillis, Pradeep Kumar Jayaraman, Joseph G Lambourne, Hang Chu, and

Yewen Pu. 2021. Engineering sketch generation for computer-aided design. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2105–2114.

[53] Holger Winnemöller, Jan Eric Kyprianidis, and Sven C Olsen. 2012. XDoG:

An eXtended difference-of-Gaussians compendium including advanced image

stylization. Computers & Graphics 36, 6 (2012), 740–753.
[54] Ning Xie, Hirotaka Hachiya, and Masashi Sugiyama. 2013. Artist agent: A

reinforcement learning approach to automatic stroke generation in oriental

ink painting. IEICE TRANSACTIONS on Information and Systems 96, 5 (2013),

1134–1144.

[55] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.

Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1492–1500.

[56] Meijuan Ye, Shizhe Zhou, and Hongbo Fu. 2019. DeepShapeSketch : Generating

hand drawing sketches from 3D objects. In 2019 International Joint Conference on
Neural Networks (IJCNN). 1–8. https://doi.org/10.1109/IJCNN.2019.8851809

[57] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural

network regularization. arXiv preprint arXiv:1409.2329 (2014).
[58] Liliang Zhang, Liang Lin, Xian Wu, Shengyong Ding, and Lei Zhang. 2015. End-

to-end photo-sketch generation via fully convolutional representation learning.

In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval.
627–634.

[59] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, and Jiaya Jia.

2018. Icnet for real-time semantic segmentation on high-resolution images. In

Proceedings of the European conference on computer vision (ECCV). 405–420.
[60] Ningyuan Zheng, Yifan Jiang, and Dingjiang Huang. 2018. Strokenet: A neural

painting environment. In International Conference on Learning Representations.

https://doi.org/10.1109/IJCNN.2019.8851809

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Problem Setting
	3.2 Stage-One: Contour Sketch Generator
	3.3 Stage-Two: Freehand Sketch Generator

	4 Experiments
	4.1 Experimental Setup
	4.2 Qualitative Evaluation
	4.3 Quantitative Evaluation
	4.4 Performance of the Model
	4.5 Ablation Study

	5 Conclusion and Future Work
	References

