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ABSTRACT

Due to the limited scale and quality of video-text training corpus, most vision-
language foundation models employ image-text datasets for pretraining and pri-
marily focus on modeling visually semantic representations while disregarding
temporal semantic representations and correlations. To address this issue, we
propose COSA, a COncatenated SAmple pretrained vision-language foundation
model. COSA can jointly model visual contents and event-level temporal cues
using only image-text corpora. We achieve this by sequentially concatenating
multiple image-text pairs as inputs for pretraining. This transformation effec-
tively converts existing image-text corpora into a pseudo video-paragraph cor-
pus, enabling richer scene transformations and explicit event-description cor-
respondence. Extensive experiments demonstrate that COSA consistently im-
proves performance across a broad range of semantic vision-language down-
stream tasks, including paragraph-to-video retrieval, text-to-video/image retrieval,
video/image captioning and video QA. Notably, COSA achieves state-of-the-
art results on various competitive benchmarks. Code and model are released
at https://github.com/TXH-mercury/COSA.

1 INTRODUCTION

Image-text and video-text pretraining models have garnered increasing attention in recent years due
to their strong capabilities in bridging the domains of vision and language. These models contribute
significantly to various vision-language tasks such as cross-modality retrieval, vision captioning, and
visual question answering (VQA). In the early stages, these models were independently trained using
distinct cross-modality corpora, network architectures, and training objectives. However, considering
that a video can be perceived as a sequence of multiple images (Lei et al., 2021), and an image
can be seen as a frozen video (Bain et al., 2021), most researchers lean towards training unified
foundation models using corpora from both domains, employing sparsely sampled frames as the
video representation.

Nevertheless, the majority of large-scale vision-language foundation models are usually trained solely
on image-text corpora, disregarding the joint modeling of images and videos. This limitation stems
from the restricted scale of video-text corpora, which is associated with the costly processes of video
uploading, storage, and downloading: currently, open-sourced web-crawled video-text corpora, such
as WebVid10M (Bain et al., 2021), are still two orders of magnitude smaller than its image-text
counterpart (LAION-2B (Schuhmann et al., 2021)), which implies the dominance of image-text data
in joint modeling. On the other hand, image-text pretraining can also bring benefits to video-related
tasks. In fact, some large-scale image-text foundation models (Radford et al., 2021; Wang et al.,
2022b) have achieved competitive or even superior performance on video tasks compared to dedicated
video-language pretraining models.

∗ Sihan Chen did this work when interning at Bytedance Inc.
B Corresponding authors

1

https://github.com/TXH-mercury/COSA


Published as a conference paper at ICLR 2024

Image-Text Corpus Pseudo Video-Paragraph Corpus

"Image result for dogs of the secret service. Filming location
... the skies are really this blue and the clouds this fluffy in
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Unified
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V-T tasks

Single Sample Training (SST)

Concatenate Sample Training (COSA)

Figure 1: Visualizations of the traditional image-text and video-text model pretraining pipeline and
proposed unified foundation model COSA, which transforms the image-text corpus into a synthetic
video-text corpus through online sample concatenation.
Despite the fact that image-text foundation models have acquired a broad range of semantic correla-
tions between visual concepts and language, they totally overlook temporal contexts within videos,
which are crucial for video-language reasoning. This raises the question that whether we can utilize
large-scale image-text corpora to train a unified foundation model capable of capturing both static
and temporal information during the pretraining phase.

Towards this goal, we propose a simple yet effective approach: training a foundation model with
concatenated samples. As illustrated in Figure 1, instead of modeling independently modeling
cross-modality samples via traditional single sample training (SST), COSA models the semantic and
event-level temporal information among multiple samples by conducting online sample concatenation
to transform image-text corpora into video-paragraph corpora, and thus further enhance the learning
of both image-language and video-language representations. Specifically, at each training step, for
every image-text training sample, we randomly select some other samples from current batch and
concatenate them (both images and texts) together. Ablation studies have demonstrated that model
trained with COSA can evidently outperform model trained with SST on 12 benchmarks including
both video-text and image-text tasks. We attribute it to two main reasons: 1) Concatenated samples
build connections between visual concepts and words within a sample group, which is more difficult
than build them within single sample, due to that both negative unmatched visual concepts and
textual words become more, and thus is helpful for learn more discriminative representations. 2) In
comparison to current video-text corpora (Bain et al., 2021), the on-the-fly concatenated corpus offers
richer scene transformations, reduced vision redundancy due to sampling randomness, and longer
temporally fine-grained captions that describe every frame in sequential order, which encourages
models to learn better event-level temporal understanding capabilities and thus further improve
performance on video-text tasks.

Enhanced by COSA, we deliver a unified vision-language foundation model. It possesses a simple
architecture, takes concatenated samples as input during pretraining with training objectives modifid
to build connections among multiple cross-modality samples. Extensive experiments have shown that
COSA model is capable of handling both discriminative and generative tasks such as cross-modality
retrieval, captioning, question answering, and achieves new state-of-the-art results across a wide
range of benchmarks under different model scale settings.

2 RELATED WORK

Temporal Learning in Video-Language Pretraining (VidLP). Temporal information is the essence
that distinguishes videos from images. Early methods aimed to enhance temporal learning in VidLP
by either employing models pretrained on action classification tasks as vision backbones (Bain et al.,
2021; Li et al., 2022a; Fu et al., 2021; 2022) or designing specific training objectives such as frame
order modeling (FOM) (Li et al., 2020; Zellers et al., 2021) or masked video modeling (MVM) (Fu
et al., 2021; 2022). We divide temporal learning into two aspects, namely event-level and action-level
temporal modeling, in which the former emphasize on the differences and relations across multiple
events/scenes, while the latter concentrates the temporal relations of consecutive frames in single
event/scene.
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Figure 2: Model architecture and training objectives of COSA. Circles and squares in the figure
represent global and patch features, respectively.
However, Singularity (Lei et al., 2022) reveals that temporal modeling in pretraining may not
be necessary, as sampling a single frame can yield comparable performance to utilizing multiple
frames. They attribute this to the static appearance bias in video-language downstream benchmarks.
We hypothesize that another contributing factor lies in the limitation of current video-text corpus
(WebVid-2.5M (Bain et al., 2021)) for both action-level and event-level temporal learning. In terms of
action-level temporal learning, the corpus contains fewer annotated actions compared to recognition
datasets like Kinetics-400 (Kay et al., 2017), and there is significant caption redundancy as actions
are often associated with several predicates rather than the entire sentence. For event-level temporal
learning, the corpus is typically constrained to a single scene and description, whereas rich scene
transformations and event-sentence correspondence are crucial. To address these limitations, OmniVL
(Wang et al., 2022d) extends the idea of UniCL (Lu et al., 2022) to the video domain and incorporates
Kinetics-400 into the training corpus. HiTeA (Ye et al., 2022) tackles caption redundancy through
specific fine-grained alignment designs. Compared to above two methods which target at enhancing
action-level temporal learning, LF_VILA (Sun et al., 2022) constructs a long-form dataset from the
large-scale HD_VILA_100M (Xue et al., 2022a) dataset to enhance event-level temporal learning.
In contrast to the aforementioned methods, this work proposes concatenated sample learning to
dynamically compose pseudo video-paragraph corpora from existing image-text or video-text corpus,
and simultaneously enhance image-text and event-level temporal video-text learning.

Unified Vision-Language Foundation Model. The Frozen model (Bain et al., 2021) was the first to
leverage a mixture of image-text (CC3M (Sharma et al., 2018)) and video-text corpus (WebVid2.5M
(Bain et al., 2021)) for training VidLP models by sparsely sampling the video corpus and treating the
image corpus as frozen videos. Subsequent VidLP methods have followed this route to support both
image-text and video-text tasks, with advanced vision backbones (Fu et al., 2021; 2022; Ye et al.,
2022) or specially designed training objectives (Li et al., 2022a; Ye et al., 2022; Ge et al., 2022b).

Regarding large-scale unified vision-language foundation models, they can be classified into two
types: co-training methods and two-stage training methods. Co-training methods train on both image
and video corpora simultaneously and a typical representative method is Flamingo (Alayrac et al.,
2022). Two-stage training methods first train models on image-text corpora and then adapt them for
video-text tasks. Image-text models can be trained via contrastive learning (Radford et al., 2021;
Jia et al., 2021), generative learning (Wang et al., 2022b; Chen et al., 2022; Wang et al., 2021), or
a combination of both them(Yu et al., 2022). Regarding adapting image-text models to video-text
ones, CLIP-based models (Luo et al., 2022; Xue et al., 2022b) employ temporal fusion transformers
and frame-word fine-grained alignment learning to enable text-to-video retrieval. GIT (Wang et al.,
2022b) directly finetune models by concatenating multiple frame features as input to the text decoder
and achieves state-of-the-art performance on most video captioning benchmarks. VideoCoCa (Yan
et al., 2022) adapts the CoCa model (Yu et al., 2022) through continuous learning on video-language
corpora. MaMMUT (Kuo et al., 2023) applies a similar temporal perceiving capability enhancement
during finetuning as TubeViT (Piergiovanni et al., 2022). In comparison to the above methods, COSA
simultaneously model image-text and video-text learning during the pretraining stage, with image-text
corpora utilized only.

3 METHOD

3.1 SIMPLE MODEL ARCHITECTURE

COSA adopts a simple architecture, consisting of a vision encoder (ViT (Dosovitskiy et al., 2020))
and a text encoder (BERT (Devlin et al., 2018)), which facilitates both single-modality encoding and
cross-modality interaction. Specifically, we introduce additional cross-attention layers between the
self-attention and feed-forward layers of BERT. These cross-attention layers are activated during the
forward pass for cross-modality understanding or generation, while deactivated during the forward
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Table 1: Model configurations of COSA. CC14M is a combination of CC3M (Sharma et al., 2018),
CC12M (Changpinyo et al., 2021), COCO (Lin et al., 2014), SBU (Ordonez et al., 2011), and VG
(Krishna et al., 2017b) datasets. The largest 1.2B COSA model is trained with a data bootstrapping
strategy inspired by BLIP (Li et al., 2022b), and captions in training corpora (marked with ‘*’) are
generated by us through an additionally trained captioner, more details can be found in Appendix. The
400M image-text pairs used in CLIP and LAION-400M (Schuhmann et al., 2021) used in EVAClip
are also included in the training examples statistics. LAION-102M is a randomly sampled subset
from LAION-400M.

Model Vision Encoder Param Training corpora Example Step

COSA-B Swin-B(Liu et al., 2021) 251M CC3M+WebVid2.5M 5M 100K
COSA-B Swin-B(Liu et al., 2021) 251M CC14M+WebVid2.5M 17M 160K
COSA-L CLIP/ViT-L/14(Radford et al., 2021) 468M CC14M+WebVid2.5M 417M 160K
COSA EVAClip/VIT-G/14(Sun et al., 2023) 1.2B CC14M*+LAION-102M* 415M 150K

pass for single-modality encoding. The text encoder can serve as a single-modality encoder, cross-
modality encoder and decoder.

3.2 CONCATENATED SAMPLE TRAINING

Online Sample Concatenation. As illustrated in Figure 2, unlike traditional foundation models
that take a single image-text pair or frames-text pair as input (SST, single sample training), COSA
employs an online transformation to convert them into a pseudo video-paragraph corpus. To illustrate
this process, let’s consider the image-text corpus. Given a batch containing nb image-text samples,
for the i-th sample Si with its image and text denoted as Ii and Ti respectively, we randomly select nc

(nc = 3 by default) other samples from the current batch and group them together. Consequently, the
single sample (Ii, Ti) is transformed into a grouped sample (Igroup = [Ii, Ij1, ..., Ijnc

], Tgroup =
[Ti, Tj1, ..., Tjnc

]). Subsequently, we concatenate both the images and texts in the same order
to establish their event-level temporal correspondence. Specifically, for the grouped images, we
individually feed them into the vision encoder, incorporate learnable temporal embeddings into
the output features, and concatenate them along the sequential dimension. Regarding the grouped
texts, we directly concatenate them into a paragraph where the temporal relations can be encoded
by BERT’s vanilla position embedding layer. Through the process of in-order sample concatenation
and the use of position embeddings, the model can learn explicit scene-level temporal alignment.
This concatenation procedure is applied to all samples in the batch. COSA can also be applied on
video-text corpus and in this scenario, we sample a single frame from each video and perform the
same concatenation process.

The concatenated images can be viewed as a series of snapshots from multiple clips within a pseudo
video, where each clip captures a different scene accompanied by its corresponding descriptions. It is
noted that these pseudo videos exhibit rapid scene changes with reduced visual redundancy but little
semantic coherence due to the random sampling process. However, our experiments demonstrate
that the cost of sacrificing clip coherence is negligible, and random sampling yields superior results
compared to other settings where clip relevance is intentionally enforced.

Training Objectives. We employ four training objectives, namely Image-Text Contrastive (ITC),
Image-Text Matching (ITM), Masked Language Modeling (MLM), and Generative Modeling (GM),
to enhance the model’s cross-modality alignment, understanding, and generation capabilities. These
objectives are modified to accommodate the use of concatenated samples as input, as opposed to
single samples.

Concatenated Image-Text Contrastive (CITC). The pseudo video frames are individually passed
through the vision encoder, and the average pooling of the output [CLS] token features serves as the
global representation of the pseudo videos. The [CLS] token feature from BERT is utilized as the
paragraph representation. A bi-directional contrastive loss is employed to bring paired concatenated
samples closer together while pushing away unpaired ones.

Concatenated Image-Text Matching (CITM). This task requires the model to determine whether a
pseudo video and a paragraph correspond to each other. Hard negative mining is used following the
approach in (Li et al., 2021a). The [CLS] token feature from the multimodal encoder (text encoder)
is used to compute a binary classification loss through a two-layer MLP.
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Table 2: Performance comparison on text-to-video retrieval benchmarks. For fair comparison,
evaluation results before employing post-processing methods such as dual softmax (Cheng et al.,
2021) are compared. Recall@1,5,10 are used as evaluation metrics.

Method Example MSRVTT DiDeMo LSMDC ActivityNet

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ClipBert(Lei et al., 2021) 5.4M 22.0 46.8 59.9 20.4 48.0 60.8 - - - 21.3 49.0 63.5
Frozen(Bain et al., 2021) 5M 31.0 59.5 70.5 34.6 65.0 74.7 15.0 30.8 39.8 - - -
BridgeFormer(Ge et al., 2022a) 5M 37.6 64.8 75.1 37.0 62.2 73.9 17.9 35.4 44.5 - - -
MILES(Ge et al., 2022b) 5M 37.7 63.6 73.8 36.6 63.9 74.0 17.8 35.6 44.1 - - -
OA-Trans(Wang et al., 2022c) 5M 35.8 63.4 76.5 34.8 64.4 75.1 18.2 34.3 43.7 - - -
Clover(Huang et al., 2022) 5M 38.6 67.4 76.4 45.1 74.3 82.2 22.7 42.0 52.6 - - -
VIOLETv2(Fu et al., 2022) 5M 37.2 64.8 75.8 47.9 76.5 84.1 24.0 43.5 54.1 - - -
LF-VILA(Sun et al., 2022) 8.5M - - - 35.0 64.5 75.8 - - - 35.3 65.4
COSA-B(Ours) 5M 42.2 69.0 79.0 57.8 80.6 87.9 27.3 46.7 55.2 55.6 80.7 89.1
OmniVL(Wang et al., 2022d) 17M 47.8 74.2 83.8 52.4 79.5 85.4 - - - - - -
HiTeA(Ye et al., 2022) 17M 46.8 71.2 81.9 56.5 81.7 89.7 28.7 50.3 59.0 49.7 77.1 86.7
SINGULARITY(Lei et al., 2022) 17M 41.5 68.7 77.0 53.9 79.4 86.9 - - - 47.1 75.5 85.5
VINDLU-B(Cheng et al., 2022) 17M 45.3 69.9 79.6 59.2 84.1 89.5 - - - 54.4 80.7 89.0
LAVENDER(Li et al., 2022c) 30M 40.7 66.9 77.6 53.4 78.6 85.3 26.1 46.4 57.3 - - -
COSA-B(Ours) 17M 46.9 72.1 81.3 64.1 86.1 90.6 31.2 50.9 57.8 59.3 83.8 90.9
All-in-one(Wang et al., 2022a) 138M 37.9 68.1 77.1 32.7 61.4 73.5 22.4 53.7 67.7 - - -
CLIP4Clip(Luo et al., 2022) 400M 44.5 71.4 81.6 43.4 70.2 80.6 22.6 41.0 49.1 40.5 72.4 -
X-CLIP(Ma et al., 2022) 400M 49.3 75.8 84.8 47.8 79.3 - 26.1 48.4 46.7 46.2 75.5 -
mPLUG-2(Xu et al., 2023) 417M 53.1 77.6 84.7 56.4 79.1 85.2 34.4 55.2 65.1 - - -
UMT-L(Li et al., 2023b) 425M 58.8 81.0 87.1 70.4 90.1 93.5 43.0 65.5 73.0 66.8 89.1 94.9
VALOR-L(Chen et al., 2023) 433.5M 54.4 79.8 87.6 57.6 83.3 88.8 31.8 52.8 62.4 63.4 87.8 94.1
CLIP-VIP(Xue et al., 2022b) 500M 54.2 77.2 84.8 50.5 78.4 87.1 29.4 50.6 59.0 53.4 81.4 90.0
COSA-L(Ours) 417M 54.4 77.2 84.7 68.3 88.1 91.7 38.6 59.1 67.4 66.8 87.6 93.9
COSA(Ours) 415M 57.9 79.6 86.1 70.5 89.3 92.4 39.4 60.4 67.7 67.3 89.0 95.0

Concatenated Masked Language Modeling (CMLM). We randomly mask 15% of the tokens in the
paragraphs and employ BERT’s vanilla prediction layer to reconstruct the masked tokens given the
context of the pseudo videos.

Concatenated Generation Modeling (CGM). We randomly mask 60% of the tokens in the paragraphs
and utilize the same prediction layer as in CMLM to reconstruct the masked tokens in the context of
the pseudo videos. CGM incorporates causal attention masks in the self-attention layers of BERT to
prevent information leakage and enhance the model’s capabilities for text generation.

In addition to the four training objectives that utilize concatenated samples as input, we also include
two vanilla objectives (ITC and ITM) that take raw single samples as input to enhance the model’s
ability to process single samples.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We train COSA models using the PyTorch framework and 64 Tesla V100 cards. To ensure a fair
comparison with state-of-the-art video-language pretraining models and vision-language foundation
models, we train four model variants with different parameter and data sizes, as illustrated in Table
1. All models utilize BERT-Base as the text encoder. The initial learning rate is set to 1e-4, and a
10% warm-up strategy with a linear decay schedule is employed. The batch size is set to 2048. For
ablation studies, we utilize the frozen CLIP/ViT-B/16 (Radford et al., 2021) as the vision encoder for
efficiency purposes, and the models are trained on CC3M for 30K steps with a batch size of 1024,
unless specified otherwise. Six training losses are equally weighted. For pretraining and video-text
tasks finetuning, we use 224 image resolution, while for image-text tasks finetuning, we use higher
resolution, which is presented together with Other details in Appendix.

4.2 COMPARISON TO STATE-OF-THE-ART

Text-to-Video Retrieval. We evaluate text-to-video retrieval on four benchmarks, including MSRVTT
(Xu et al., 2016), DiDeMo (Anne Hendricks et al., 2017), LSMDC (Rohrbach et al., 2017), and
ActivityNet (Krishna et al., 2017a). ITC and ITM are used as the training objectives. During testing,
we rank all candidates using similarity scores computed by ITC and then rerank the top-50 candidates
via ITM. As shown in Table 2, COSA-B (5M) outperforms previous models of similar scale by a
significant margin on all four benchmarks, especially for the paragraph-to-video retrieval benchmarks
(DiDeMo and ActivityNet). This demonstrates the effectiveness of concatenated sample training. It
is noted that LF-VILA(Sun et al., 2022) is customized designed for paragraph-to-video retrieval with
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Table 3: Performance comparison on open-ended video QA benchmarks. Accuracy is used as the
evaluation metric.

Method Example MSR MSVD TGIF ANet

ClipBERT(Lei et al., 2021) 5.4M 37.4 - 60.3 -
ALPRO(Li et al., 2022a) 5M 42.1 45.9 - -
VIOLETv2(Fu et al., 2022) 5M 44.5 54.7 72.8 -
Clover(Huang et al., 2022) 5M 43.9 51.9 71.4 -
COSA-B(Ours) 5M 46.2 54.3 73.4 46.5
OmniVL(Wang et al., 2022d) 17M 44.1 51.0
HiTeA(Ye et al., 2022) 17M 45.9 55.3 73.2 46.4
SINGULARITY(Lei et al., 2022) 17M 43.5 - - 43.1
VINDLU-B(Cheng et al., 2022) 17M 43.8 - - 44.6
LAVENDER(Li et al., 2022c) 30M 45.0 56.6 73.5 -
JustAsk(Yang et al., 2021) 69M 41.5 46.3 - 38.9
COSA-B(Ours) 17M 46.9 55.5 75.0 47.3
MERLOT(Zellers et al., 2021) 180M 43.1 - 69.5 41.4
All-in-one(Wang et al., 2022a) 228.5M 46.8 48.3 66.3 -
FrozenBiLM(Yang et al., 2022) 410M 47.0 54.8 68.6 43.2
mPLUG-2(Xu et al., 2023) 417M 48.0 58.1 75.4 -
UMT-L(Li et al., 2023b) 425M 47.1 55.2 - 47.9
VALOR-L(Chen et al., 2023) 433.5M 49.2 60.0 78.7 48.6
InternVideo(Wang et al., 2022g) 646M 47.1 55.5 72.2 -
GIT(Wang et al., 2022b) 1.7B 43.2 56.8 72.8 -
Flamingo(80B)(Alayrac et al., 2022) 2.3B 47.4 - - -
VideoCoCa (2.1B)(Yan et al., 2022) 4.8B 46.0 56.9 - -
GIT2 (5.1B)(Wang et al., 2022b) 12.9B 45.6 58.2 74.9 -
COSA-L(Ours) 417M 48.8 58.6 77.6 49.2
COSA(Ours)(1.2B) 415M 49.2 60.0 79.5 49.9

Table 4: Performance comparison on video captioning benchmarks. BLEU@4 (Papineni et al., 2002)
(B@4) and CIDEr (Vedantam et al., 2015) (C) are used as metrics. Results of models utilizing
additional modalities such as audio (Chen et al., 2023) and subtitle (Tang et al., 2021; Li et al., 2021b)
are denoted by dashed color. Following (Tang et al., 2021; Chen et al., 2023; Wang et al., 2022b),
we employ SCST finetuning (Rennie et al., 2017) on the VATEX benchmark, and the corresponding
results are marked with ‘*’.

Method Example MSRVTT MSVD VATEX YouCook2 TVC

B@4 C B@4 C B@4 C B@4 C B@4 C

VIOLETv2(Fu et al., 2022) 5M - 58.0 - 139.2 - - - - - -
HiTeA(Ye et al., 2022) 5M - 62.5 - 145.1 - - - - - -
COSA-B(Ours) 5M 48.1 64.3 66.9 146.0 40.5 72.6 7.8 100.9 15.6 59.2
LAVENDER(Li et al., 2022c) 30M - 60.1 - 150.7 - - - - -
COSA-B(Ours) 17M 48.5 64.7 68.7 150.9 41.4 74.4 8.6 106.2 16.2 61.0
VALUE(Li et al., 2021b) 136M - - - - - 58.1 12.4 130.3 11.6 50.5
CLIP4Caption++(Tang et al., 2021) 400M - - - - 40.6* 85.7* - - 15.0 66.0
VALOR-L(Chen et al., 2023) 433.5M 54.4 74.0 80.7 178.5 45.6* 95.8* - - - -
GIT(Wang et al., 2022b) 1.7B 53.8 73.9 79.5 180.2 41.6* 91.5* 10.3 129.8 16.2 63.0
Flamingo(80B)(Alayrac et al., 2022) 2.3B - - - - - - - 118.6 - -
GIT2 (5.1B)(Wang et al., 2022b) 12.9B 54.8 75.9 82.2 185.4 42.7* 94.5* 9.4 131.2 16.9 66.1
COSA-L(Ours) 417M 53.2 72.1 74.0 169.1 45.4 84.4 10.2 125.8 17.7 67.5
COSA(Ours)(1.2B) 415M 53.7 74.7 76.5 178.5 43.7* 96.5* 10.1 131.3 18.8 70.7

specialized framework and corpus, but fall behinds COSA-B which takes a simple unified architecture
as well as common corpora. In addition, COSA (17M) evidently surpasses VINDLU(Cheng et al.,
2022) which have searched a best training recipe targeted at retrieval tasks. When compared to
large-scale models, COSA achieves the best R@1 results on DiDeMo and ActivityNet datasets and
comparable results on other benchmarks.

Video QA. We evaluate video QA on four benchmarks, including MSRVTT-QA (Xu et al., 2017),
MSVD-QA (Xu et al., 2017), TGIF-QA (Li et al., 2016), and ActivityNet-QA (Yu et al., 2019), and
formulate it as an open-ended generative task to predict answers with questions as prefixes. As shown
in Table 3, COSA-B (5M) and COSA-B (17M) outperform all models of similar scale by a significant
margin. Under the large-scale pretraining scenario, COSA achieves state-of-the-art accuracy on 4
benchmarks, using only 415M training data and 1.2B parameters.

Video Captioning. We evaluate video captioning on five benchmarks, including MSRVTT (Xu
et al., 2016), MSVD (Chen & Dolan, 2011), VATEX (Wang et al., 2019), YouCook2 (Zhou et al.,
2018), and TVC (Lei et al., 2020). The GM objective is used, and captions are autoregressively
generated during inference. From the results in Table 4, we can see that COSA-B (5M) outperforms
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Table 5: Performance comparison on text-to-image retrieval, image captioning, and image QA
benchmarks. ‘ZS’ stands for zero-shot evaluation. CIDEr (C) and SPICE (S) are reported for
captioning. SCST finetuning is employed on COCO caption, and corresponding results are marked
with ‘*’.

MSCOCO-Ret Flickr30K-Ret (ZS) MSCOCO-Cap VQAv2
Method Example R@1 R@5 R@10 R@1 R@5 R@10 C S dev std

OFA(Wang et al., 2022e) 18M - - - - - - 154.9* 26.6* 82.0 82.0
BEiT-3(Wang et al., 2022f) 21M 67.2 87.7 92.8 81.5 95.6 97.8 147.6 25.4 84.19 84.03
BLIP(Li et al., 2022b) 129M 65.1 86.3 91.8 86.7 97.3 98.7 136.7 - 78.25 78.32
BLIP-2(Li et al., 2023a) 129M 68.3 87.7 92.6 89.7 98.1 98.9 145.8 - 82.19 82.30
mPLUG-2(Xu et al., 2023) 417M 65.7 87.1 92.6 - - - 137.7 23.7 81.11 81.13
VALOR(Chen et al., 2023) 433.5M 61.4 84.4 90.9 - - - 152.5* 25.7* 78.46 78.62
Florence(Yuan et al., 2021) 900M 63.2 85.7 - 76.7 93.6 - - - 80.16 80.36
GIT(Wang et al., 2022b) 1.7B - - - - - - 151.1* 26.3* 78.6 78.8
SimVLM(Wang et al., 2021) 1.8B - - - - - - 143.3 25.4 80.03 80.34
ALIGN(Jia et al., 2021) 1.8B 59.9 83.3 89.8 75.7 93.8 96.8 - - - -
Flamingo (80B)](Alayrac et al., 2022) 2.3B - - - - - - 138.1 - 82.0 82.1
CoCa(2.1B)(Yu et al., 2022) 4.8B - - - 80.4 95.7 97.7 143.6 24.7 82.3 82.3
GIT2(5.1B)(Wang et al., 2022b) 12.9B - - - - - - 152.7* 26.4* 81.7 81.9
COSA(Ours)(1.2B) 415M 68.5 88.0 93.0 90.2 98.4 99.4 150.6* 27.0* 80.46 80.54

Table 6: Experiment results of SST (baseline), COSA, and COSA variants on a broad range of
video/image-language benchmarks. R@1, CIDEr, and Acc are reported for retrieval, captioning, and
QA tasks, respectively.
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SST 49.2 43.8 39.4 62.4 85.4 67.6 53.9 45.9 73.0 53.9 124.7 14.8
COSA 54.8 51.2 43.5 63.9 91.9 68.1 55.4 46.5 73.7 54.7 125.4 20.7
COSA-copy 43.5 39.3 42.3 60.8 84.6 65.8 52.0 45.4 72.2 51.6 122.7 11.9
COSA-shuffle 50.9 48.1 44.7 64.0 88.8 67.7 54.4 46.6 73.9 54.5 124.9 14.2

VIOLETv2, and HiTeA which utilizes a more advanced vision backbone (MViTv2 (Fan et al., 2021)).
COSA-B (17M) surpasses LAVENDER, which is trained on 30M vision-text pairs. When compared
to large-scale foundation models, COSA achieves comparable performances on the MSRVTT and
MSVD datasets. Additionally, COSA outperforms GIT2, which specializes in captioning tasks, and
achieves new state-of-the-art performances on both open-domain benchmarks (Wang et al., 2019)
and domain benchmarks (Zhou et al., 2018; Lei et al., 2020) (cooking and TV), using only 24% of its
parameters and 3.2% of the training examples. It is worth noting that both GIT2 and COSA do not use
any video-text corpus in the pretraining stage, but COSA can generate online pseudo video-paragraph
pairs. Furthermore, utilizing the vision modality alone, COSA achieves higher CIDEr scores than
VALOR and CLIP4Caption++, which additionally incorporate audio and subtitle modalities.

Image-Text Benchmarks. We evaluate COSA on image-text benchmarks, including text-to-image
retrieval on MSCOCO (Lin et al., 2014) and Flickr30K (Plummer et al., 2015) (zero-shot), captioning
on MSCOCO, and image QA on VQAv2 (Goyal et al., 2017). As shown in Table 5, COSA surpasses
BLIP-2 and BEiT-3, and achieves new state-of-the-art results on the MSCOCO and Flickr30K
benchmarks. Additionally, COSA achieves the best SPICE score (27.0) on MSCOCO caption
benchmark and comparable results on VQAv2 benchmark.

4.3 ABLATION STUDY

In this subsection, we conduct extensive ablation experiments to demonstrate the effectiveness of
COSA when compared with SST and the method’s robustness to different vision backbones and
training corpora. We also explore the influence of training objectives, iterations, concatenation num-
bers, and sampling methods. Besides above mentioned benchmarks, we further evaluate the model
on the Visual Storytelling Benchmark (VIST), which requires models to perceive the relationships
among multiple images and describe them in sequential paragraphs, thus demanding strong narrative
abilities.

COSA vs SST. As presented in Table 6, COSA consistently improves performance on 12 benchmarks
of video-text as well as image-text tasks, with significant margins compared to the SST baseline.
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Table 7: Experiment results of different training objectives for COSA. R, C, Q in the parentheses
represent retrieval, captioning, and QA tasks, respectively.

ITC ITM MLM GM CITC CITM CMLM CGM DiD(R) ANET(R) MSR(R) TVC(C) TGIF(Q)

a ✓ ✓ ✓ ✓ 49.2 43.8 39.4 53.9 73.0
b ✓ ✓ ✓ ✓ 53.0 50.6 42.8 55.7 73.7
c ✓ ✓ ✓ ✓ ✓ ✓ 54.8 51.2 43.5 55.4 73.7
d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 52.3 49.9 42.3 55.5 73.6

Table 8: Experiment results of changing dataset and vision backbone (Enc).

Exp Enc Data #Frame DiD(R) ANET(R) MSR(R) YOU(C) VIST(C) TVC(C) MSR(Q)

SST Swin-B CC3M - 35.3 30.4 34.7 91.2 14.3 51.6 44.6
COSA Swin-B CC3M - 45.1 41.7 36.2 94.6 22.3 53.1 44.9
SST CLIP-B WebVid2.5M 1 43.6 40.2 40.7 89.3 12.2 53.5 46.0
SST CLIP-B WebVid2.5M 4 51.4 47.3 42.5 90.8 11.9 54.0 46.2
COSA CLIP-B WebVid2.5M 1 54.7 52.2 44.0 93.4 17.4 55.0 46.4

We further investigate two COSA variants named COSA-copy and COSA-shuffle. COSA-copy
simply duplicates a single sample (image and text) multiple times and concatenates them, instead of
performing cross-sample concatenation as in COSA. On the other hand, COSA-shuffle concatenates
cross-samples from a batch, but with the captions randomly shuffled before concatenation to disrupt
event-level temporal correspondence. From the results we can find that 1) Both COSA and COSA-
shuffle can outperform SST with huge margins on all benchmarks, demonstrating the effectiveness
of modeling vision-language connections within sample group instead of single sample. 2) Due to
maintaining the same concatenation order for image and text, model can learn better event-level
temporal correspondence between visual scenes and descriptions, and thus improve the performance
on most benchmarks especially on paragraph-to-video retrieval benchmarks such as ActivityNet,
whose video and caption are relatively longer and contain more complicated scenes. 3) COSA-copy
achieves lower performance than SST on most benchmarks, demonstrating that the improvement
of COSA over SST comes from multiple samples concatenation, instead of longer visual and text
sequences.

Training Objectives. As depicted in Table 7, compared to the SST baseline, incorporating COSA
while modifying the MLM and GM objectives to CMLM and CGM leads to evident improvements
across all five benchmarks (b vs a). The default objectives (c) yield the best results for most
benchmarks.

Generality. We further explore the generality of COSA with respect to different vision encoders
and training corpora. The previous experiments employed CLIP-B as the vision backbone and were
conducted on the CC3M dataset. In this experiment, we replace them with Swin Transformer(Liu
et al., 2021) and WebVid2.5M, respectively. From the results in Table 8, it is evident that COSA
consistently outperforms SST under different backbone and corpus settings. Additionally, we observe
that sampling multiple frames for SSL can improve downstream performance (except for VIST), but
is still much less effective when compared with proposed COSA.

Equal samples seen. In the previous experiments, models were trained for 30K steps for efficiency
purposes. One might argues that the improvements of COSA could be attributed to faster convergence
rather than cross-sample learning and introduced event-level temporal correspondence, as the model
can see each sample multiple times per iteration. However, the results in Figure 4 demonstrate that as
training iterations prolong, the performance gap between COSA and SST remains consistent, even
when SST has already converged. Moreover, pretraining with COSA for 30K steps outperforms
pretraining with SST for 120K steps on all benchmarks, which demonstrates COSA still outperforms
SST with same samples seen and much less iterations.

Concatenate Number. Figure 3 shows the performance of models trained with different concatenate
numbers (nc) ranging from 0 (SST) to 4. Based on the results, we choose nc = 3 as it consistently
performs well across all benchmarks.

Training Speed. We have made statistics that transferring from SST to COSA averagely cost 0.9x
more training time when four samples are concatenated. We think this is unavoidable cause the
frames become more and sentences become longer, but affordable because we only need to pretrain
once, and the finetuning, testing, inference speed of COSA and SST are totally the same.
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Table 9: Experiment results of different sampling methods for online sample concatenation.

Sampling DiD(R) ANet(R) MSR(R) VAT(R) TVC(C) VIST(C) MSR(Q)

random 54.8 51.2 43.5 63.9 55.4 20.7 46.5
vision similarity 53.7 50.9 43.0 63.6 55.1 20.4 46.4
text similarity 48.2 45.4 42.6 62.4 55.2 20.2 46.3

Figure 3: Experiment results of different concatenation numbers used in COSA.

Sampling Choice. By default, we randomly choose samples within a batch for grouping and
concatenation. We also experimented with two alternative choices: selecting the top nc most similar
samples based on the similarity matrix computed by either the image or text encoder output features.
The results in Table 9 demonstrate the importance of reducing semantic relevance among grouped
samples through random sampling. More explanations and visualizations could be found in Appendix.

Figure 4: Experiment results of SST and COSA when training for more iterations.

5 CONCLUSION

This paper introduces COSA, a concatenated sample pretrained unified vision-language foundation
model. COSA transforms image-text corpora into pseudo video-paragraph corpora, enabling explicit
event-sentence correspondence and promoting event-level temporal learning in foundation models.
Extensive ablation studies demonstrate the effectiveness of COSA in improving various downstream
tasks, including video-language tasks and image-text tasks. COSA achieves state-of-the-art results on
multiple benchmarks. However, it is important to note that the proposed COSA has only been proven
effective in the vision-language pretraining field, and we hope that it can inspire further research on
co-learning multiple samples in other AI communities.
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A APPENDIX

A.1 PRETRAINING SETTINGS

Table 10: Pretraining Settings for COSA models. ’*’ means that captions in those corpora has been
replaced by descriptions generated by a separately trained captioner.

Model Vision Encoder param Sample Training Corpus Batch Size Steps Epoch

COSA-B Swin-B 251M 5M CC3M 2048 50000 35
WebVid2.5M 2048 50000 41

COSA-B Swin-B 251M 17M
CC4M 2048 60000 25
CC12M 2048 60000 12
WebVid2.5M 2048 40000 33

COSA-L CLIP-ViT-L 468M (17+400)M
CC4M 2048 60000 25
CC12M 2048 60000 12
WebVid2.5M 2048 35000 29

COSA EVAClip-ViT-G 1.2B (15+400)M
CC4M 2048 50000 20
CC12M* 2048 50000 10
LAION-102M* 2048 50000 1

The specific pretraining settings of all scales of COSA models are presented in Table 10. It is
noted that the training corpus of the largest one (COSA) has been clean by a separately trained
captioner. Specifically, the captioner takes the same model architecture of COSA and is pretrained
with generative modeling loss (GM) only on the same corpus with original captions (CC4M, CC12M
and LAION-102M) without concatenated samples applied. After pretraining, the captioner is
finetuned with GM loss on a mixture of downstream of datasets including MSRVTT, VATEX, MSVD
and MSCOCO. At last we use trained captioner to generate high-quality captions for CC12M and
LAION-102M with top-10 sampling method.

A.2 DOWNSTREAM DATASET DESCRIPTIONS

COSA is evaluated on a series of downstream datasets including MSRVTT, MSVD, LSMDC,
DiDeMo, VATEX, YouCook2, ActivityNet Caption, TGIF, TVC, MSCOCO, Flickr30K and VQAv2.
Train/val/test splits of different benchmarks of those datasets are presented in Table 11.

Specifically, MSRVTT (Xu et al., 2016) dataset consists of 10K video clips and 20K captions. Our
evaluation encompasses text-to-video retrieval, video captioning, and video QA tasks on this dataset.
For retrieval, we adopt the ‘1K-A split’ and for captioning and QA, we adhere to the standard split.
MSVD(Chen & Dolan, 2011) dataset comprises 1,970 videos, each accompanied by approximately
40 captions. Our evaluation involves video captioning using the official split and video QA using
the split proposed by Xu et al.(Xu et al., 2017). LSMDC (Rohrbach et al., 2017) dataset consists of
118,000 clips from 202 movies, with each clip paired with a single caption. We evaluate text-to-video
retrieval on this dataset using the official split. DiDeMo (Anne Hendricks et al., 2017) dataset includes
10K long-form videos sourced from Flickr. For each video, four short sentences are annotated in
temporal order. We concatenate these short sentences and evaluate ‘paragraph-to-video’ retrieval
and the official split is employed. VATEX(Wang et al., 2019) dataset contains 41,250 video clips
sourced from the Kinetics-600 dataset(Kay et al., 2017), accompanied by 825,000 sentence-level
descriptions. Our evaluation focuses on text-to-video retrieval and video captioning tasks. Regarding
captioning, we employ the official split, while for retrieval, we follow the HGR (Chen et al., 2020)
split protocol. YouCook2 (Zhou et al., 2018) dataset comprises 14K video clips extracted from 2K
instructional cooking videos on YouTube. Each video showcases multiple actions performed by
a chef, along with corresponding textual descriptions and temporal annotations. We assess video
captioning on this dataset using the official splits. ActivityNet Caption(Krishna et al., 2017a) dataset
encompasses 20K long-form videos sourced from YouTube whose average length are 180 seconds.
We evaluate text-to-video retrieval and video QA on this dataset. For retrieval, we use the official
split, while for video QA, we adopt the split proposed by Yu et al.(Yu et al., 2019). TGIF (Jang
et al., 2017) dataset features three video QA benchmarks, including TGIF-Action, TGIF-Transition,
and TGIF-Frame, with the first two being multiple-choice QA and the last one being open-ended

15



Published as a conference paper at ICLR 2024

Table 11: Downstream datasets splits.

Task Benchmark #Videos/#Images #Captions/#QA-pairs

Train Val Test Train Val Test

Text-to-Video Retrieval

MSRVTT 9000 - 1000 180000 - 1000
DiDeMo 8394 1065 1003 8394 1065 1003
ANET 10009 - 4917 10009 - 4917
LSMDC 101046 7408 1000 101046 7408 1000

Video Captioning

MSRVTT 6513 497 2990 130260 9940 59800
YouCook2 10337 3492 - 10337 3492 -
MSVD 1200 100 670 48774 4290 27763
VATEX 25991 3000 6000 259910 30000 60000
TVC 86603 10841 - 174350 43580 -

Video QA

MSVD-QA 1200 250 520 30933 6,415 13157
TGIF-FrameQA 32345 - 7132 39389 - 13691
MSRVTT-QA 6513 497 2990 158581 12278 72821
ANET-QA 3200 1800 800 32000 18000 8000

Text-to-Image retrieval MSCOCO 113287 5000 5000 566747 25010 25010
Flickr30K 29000 1014 1000 145000 5070 5000

Image Captioning MSCOCO 113287 5000 5000 566747 25010 25010

Image QA VQAv2 82783 40504 37K/81K 4437570 2143540 1.1M/4.5M

QA. We evaluate VAST on the TGIF-Frame benchmark using the official split. TVC (Lei et al.,
2020) dataset is a multi-channel video captioning dataset, comprising 108,000 video moments and
262,000 paired captions. Additional input in the form of video subtitles can be utilized. We evaluate
video captioning on this benchmark using the official split with vision information utilized only.
MSCOCO (Lin et al., 2014) dataset contains 123K images, each paired with five annotated captions.
We evaluate text-to-image retrieval and image captioning tasks on this dataset using the Karpathy
split (Karpathy & Fei-Fei, 2015). Flickr30K (Plummer et al., 2015) dataset consists of 31K images,
with each image paired with five annotated captions. We assess text-to-image retrieval on this dataset
using the Karpathy split (Karpathy & Fei-Fei, 2015). VQAv2 (Goyal et al., 2017) dataset comprises
1.1 million questions and 11.1 million answers related to MSCOCO images and we utilize train+val
set for training and evaluate on the online test server.

A.3 VISUALIZATIONS OF DIFFERNET SAMPLING METHODS

In our experiments, COSA trained with random sampling works better than the one trained with
relavant sampling. As shown in figure 5, we observe a real video-language sample from ActivityNet
caption dataset, which is shown in the top green part of figure, we can find that the 1) sampled
vision frames are relevant and coherent, and 2) the corresponding texts are very informative and can
strictly match to different frames in temporal order. Motivated by this, an ideal large-scale pretraining
dataset for video-language tasks should also possess those two characteristics to help model learn the
capabilities of perceiving evnets happed in videos and their relative order. In this work, we propose
COSA to imitate those pretrain dataset from image-text data. And the examples of COSA with
different sampling methods are shown in the bottom pink part of the figure, from which we can find
that even though the random sampling example shows little relevance between four independent
scenes, but it has the strenth that each sentance can strictly correspond to one image, which satisfy
the second charatersic. By contrast, even though relevant (vision/text similarity) sampling examples
have shown vision relevance to some extent, they have strong semantic redundancy, and one sentence
can correspond to many frames, which could confuse models’ event-level temporal learning. And we
think that’s why it performs weaker than random sampling. In addition, considering that the scene
changes are somewhat hard in random sampling, we think other soft sampling methods could be a
future research direction.
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Figure 5: Visualization of different sampling methods of COSA. The top green part in the figure is
the example from real video dataset (ActivityNet-captions), and bottom pink part in the figure are
examples of COSA with different sampling methods.
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Table 12: Downstream task finetuning settings of COSA models. Lr, Bs, Epo, F_train, F_test and
Res denote learning rate, batch size, epoch, training sampling frames, testing sampling frames and
resolution, respectively.

Task Benchmark Lr Bs Epo F_train F_test Res

Text-to-Video Retrieval

MSRVTT 2e-5 64 3.6 8 16 224
VATEX 2e-5 64 2.5 8 16 224
DiDeMo 2e-5 64 40 8 32 224
ANET 2e-5 64 20 8 32 224
LSMDC 2e-5 64 5 8 32 224

Video Captioning

MSRVTT 2e-5 128 10 8 8 224
YouCook2 3e-5 64 30 8 16 224
MSVD 1e-5 64 1.2 8 8 224
VATEX 2e-5 64 10 8 20 224
VATEX(SCST) 7e-6 64 5 8 20 224
TVC 3e-5 64 40 8 8 224

Video QA

MSVD-QA 1e-5 64 8 8 18 224
TGIF-FrameQA 2e-5 64 10 4 4 224
MSRVTT-QA 2e-5 64 4.5 8 8 224
ANET-QA 2e-5 64 10 8 16 224

Text-to-Image retrieval MSCOCO 1e-5 256 5 - - 384

Image Captioning MSCOCO 1e-5 64 5 - - 480
MSCOCO(SCST) 2.5e-6 64 2.5 - - 480

Image QA VQAv2 2e-5 128 20 - - 384

A.4 FINETUNING SETTINGS

Specific finetuning settings of COSA model such as learning rate, batch size, training epochs and
sampled frames are presented in Table 12.

A.5 QUALITATIVE COMPARISON ON VIST BENCHMARK

The qualitative comparisons between model trained with SST (Single Sample Training) and proposed
COSA (Concatenated Sample Training) prediction on visual story telling benchmark (VIST) is shown
in Figure 6, from which we can find that COSA can generate comprehensive captions (storys) for
multiple frames under both zero-shot and finetuning settings, while SST can only generate one
sentence describing limited contents under zero-shot setting, and is easy to generate duplicated
captions under finetuning settings.
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COSA(ZS) : the front of the house. a view of the cathedral from outside the cathedral. a photo of a graduate and a student
in a graduation ceremony. a city in the sunshine.

COSA(FT) : the lawn was very nice. the building was very nice. the architecture was very old. the students were very proud
of themselves. the building was very beautiful.

COSA(ZS) : baseball players warm up before a game. fans watch a baseball game. person, the mascot, is shown during a game
against baseball team. a general view of the scoreboard.

COSA(FT) : i went to the baseball game last weekend. there were a lot of people there. i took a lot of pictures. i got to meet
some of the players. it was a great night.

COSA(ZS) : person is all smiles after receiving his diploma during the graduation ceremony. person, waves to family and
friends during the graduation ceremony. person, left, and person are all smiles after receiving his diploma at the school's
commencement ceremony. the pool is full of people.

COSA(FT) : graduation day is finally here. all of the students line up to receive their diplomas. the students wave to the crowd.
family and friends pose for a picture. after the ceremony, the family relaxes by the pool.

COSA(ZS) : people walking in the street. person, left, and person, right, enjoy a day out. a bicycle with a basket attached to it.
person with the girls at the party

COSA(FT) : there were a lot of people at the festival today. there were a lot of funny characters. some of them were very cute.
they rode their bikes around the city. it was a great time.

SST(ZS) :  english civil parish in the sunshine.

SST(FT) :  this is where i grew up. this is where i grew up. this is where i grew up. this is where i grew up. 
this is where i grew up. this is where i am growing up.
 

GroundTruth :  this is where i go to school. i like the building a lot because it looks nice. at this angle it looks even better.
a couple of my classmates are going to graduate. this is one beautiful building .

SST(ZS) :  person, center, watches a game.

SST(FT) :  we went to the baseball game. there were a lot of people there. some of them were crazy. some of the players 
didn't like it. the crowd was crazy.
 

GroundTruth :  we are going to watch a baseball game today. the players are doing a great job. we even got to interact 
with the crowd. the mascot was great , and very funny. final score is here , what a great day.

SST(ZS) :  a graduate celebrates after receiving his diploma.

SST(FT) :  he was excited to finally graduate from college. the group of friends and family gathered in the pool for the 
graduation ceremony. the boy was very excited to finally graduate. the family was very proud of him.

GroundTruth : graduation day has finally arrived. all the students started filing in. he was thrilled to finally be graduation. 
everyone posed for pictures outside the venue. and to cap off the day, we all hung out at the pool .

SST(ZS) : a group of people pose for a photo.

SST(FT) : there were a lot of people at the event today. the characters were very popular. the characters were very popular. 
the characters were very funny. the characters were very popular.

GroundTruth :  the streets were filled during the festival. some came dressed in huge cartoon outfits. they were fun to dance
and take pictures with. we got around using rent-able bikes. it was a memorable day.

Figure 6: Qualitative comparison between SST and COSA on the visual story telling (VIST) bench-
mark. ZS and FT denote zero-shot and finetuning, respectively.

19


	Introduction
	Related Work
	Method
	Simple Model Architecture
	Concatenated Sample Training

	Experiments
	Implementation Details
	Comparison to State-of-the-Art
	Ablation Study

	Conclusion
	Appendix
	Pretraining Settings
	Downstream Dataset Descriptions
	Visualizations of differnet sampling methods
	Finetuning Settings
	Qualitative Comparison on VIST Benchmark


