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ABSTRACT

Randomized smoothing has achieved great success for certified adversarial robust-
ness. However, existing methods (especially the theory for certification guarantee)
rely on a fixed i.i.d. noise distribution for all dimensions of the data (e.g., all the
pixels in an image), and may result in limited performance of certified robustness.
To address this limitation, we propose UCAN: a novel technique that Universally
amplifies randomized smoothing for Certified robustness with Anisotropic Noise.
It can theoretically transform any randomized smoothing method with isotropic
noise to ensure certified robustness based on different variants of anisotropic noise.
The theories universally work for using different noise distributions against differ-
ent ℓp perturbations. Furthermore, we also design a novel framework with three
example noise parameter generators (NPGs) for customizing the anisotropic noise.
Finally, experimental results demonstrate that UCAN significantly outperforms the
state-of-the-art (SOTA) methods, e.g., the certified accuracy can be improved by
up to 182.6% at large certified radii on MNIST, CIFAR10, and ImageNet datasets.

1 INTRODUCTION

Deep learning (DL) models have been proven to be vulnerable to well-crafted adversarial perturbations
(Goodfellow et al., 2015; Carlini & Wagner, 2017). To protect DL models against adversarial attacks,
defense methods with certified robustness guarantees are desired. Recently, randomized smoothing
methods (Lecuyer et al., 2019; Teng et al., 2020; Cohen et al., 2019) were proposed to provide efficient
certified robustness to any classifier and become the state-of-the-art. By injecting noise into the
training and inference phases, randomized smoothing turns any classifier into a smoothed classifier.
Theoretical bounds were then derived based on the noise distributions used for randomized smoothing.
For example, Cohen et al. (2019) derives a tight ℓ2 certified radius for adopting the Gaussian noise
to smoothen the classifier where the same distribution is used for all the data dimensions (called
“isotropic noise”). More recently, some works (Zhang et al., 2020; Yang et al., 2020; Hong et al., 2022)
improve the certified robustness performance of randomized smoothing by seeking better isotropic
noise distributions, e.g., hyperbolic secant distribution (Hong et al., 2022), Pareto distribution (Yang
et al., 2020), or general exponential distribution (Zhang et al., 2020).

However, most existing randomized smoothing methods cannot provide the best possible certification
since their theories for certified robustness guarantees are limited to isotropic noise distributions. To
unlock the certification guarantee with anisotropic noise-based randomized smoothing, there are two
major challenges. The first challenge is how to develop novel theories universally for anisotropic
noise distributions, in which noises with different means and variances are assigned to different data
dimensions. The second challenge is how to assign proper means and variances for different data
dimensions to optimize the certification performance.

In this paper, we propose a novel technique to Universally amplify randomized smoothing for Certified
robustness with Anisotropic Noise (“UCAN”). Specifically, we first propose a universal theory that
can convert any randomized smoothing-based certification with isotropic noise into certification with
anisotropic noise (see Table 1). Second, we propose three different methods under a unified framework
to customize the anisotropic noise distributions for different data dimensions. Thus, UCAN can
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universally amplify the certification performance of all the existing randomized smoothing methods.
In summary, UCAN makes the following key contributions to certified robustness:

1) First Universal Theory for certification with Anisotropic Noise. To our best knowledge,
we take the first step to propose a universal theory for certifying the robustness of randomized
smoothing with any (anisotropic) noise distribution. This new theory universally supports
all the existing (and future) randomized smoothing methods using anisotropic noises for
certification and against various ℓp perturbations (e.g., ℓ1, ℓ2,. . . , ℓ∞).

2) Novel Noise Parameter Generators (NPGs) for Customizing Anisotropic Noise. We
also design three NPGs (including two novel neural networks) to efficiently customize the
element-wise hyper-parameters (mean and variance) in the anisotropic noise distributions for
all the data dimensions. They significantly amplify the certification from different aspects.

3) Significantly Boosted Certification. Experimental results on benchmark datasets demon-
strate that UCAN drastically outperforms the SOTA randomized smoothing-based certified
robustness methods. For instance, the certified accuracy can be improved by 142.5%,
182.6%, and 121.1% over the SOTAs on MNIST, CIFAR10, and ImageNet, respectively.

2 RELATED WORK

Randomized Smoothing. It was first studied by Lecuyer et al. (2019) based on the Differential
Privacy theory Dwork (2006). Simultaneously, the first tight guarantee was proposed by Cohen et al.
(2019), in which, the smoothed classifier’s prediction (via Gaussian noise) can be tightly guaranteed to
be consistent within a ℓ2 certified radius. Later, a series of methods have been proposed to guarantee
the robustness against different ℓp perturbations with different noise distributions, e.g., Teng et al.
(2020) derived the certified radius for ℓ1 perturbations with Laplace noise, and Lee et al. (2019)
derived the certified radius against ℓ0 perturbations with uniform noise. Another line of methods
(Zhang et al., 2020; Yang et al., 2020; Hong et al., 2022) proposed unified theories to guarantee the
robustness against a diverse set of ℓp perturbations with different noises. However, all these methods
(especially the theories) are limited to adopting isotropic noises for randomized smoothing.

Data-Dependent Randomized Smoothing. It aims to improve the certified robustness by optimizing
the noise distribution for different inputs (but still based on isotropic noise distributions due to the
lack of theories for randomized smoothing with anisotropic noise). For example, Alfarra et al. (2020)
optimized the variance parameter in Gaussian distribution via the gradient of the certified radius w.r.t.
the variance. Súkenı́k et al. (2021) considered the variance as a function of the input, and models the
relationship between them. Wang et al. (2020) selected a proper variance by grid-search.

Anisotropic Randomized Smoothing. Recently Eiras et al. (2022) proposed a theorem for
anisotropic randomized smoothing based on Lipschitz theories under a specific setting. However, its
theory is based on assumptions that the networks are L-Lipschitz continuous and thus the universality
is relatively limited. Furthermore, UCAN significantly outperforms Eiras et al. (2022) as shown in
our experiments.

3 UCAN: THEOREM AND METRIC

3.1 RANDOMIZED SMOOTHING WITH ISOTROPIC NOISE FOR CERTIFIED ROBUSTNESS

We study the classification problem that maps input from Rd to classes C. Given any base classifier f ,
existing randomized smoothing turns f into a “smoothed” classifier g with the isotropic noise. Given
the noise ϵ ∈ Rd from any isotropic distribution ϕ, and let X = x+ ϵ, the smoothed classifier can be
defined as: g(x) = argmaxc∈C P(f(X) = c). Then existing theorems can be summarized as:

Theorem 3.1 (Certified Robustness via Randomized Smoothing with Isotropic Noise). Given a
smoothed classifier g based on arbitrary standard classifier f . For a specific x ∈ Rd, let X = x+ ϵ,
if the top-1 class is cA ∈ C, the lower bound probability of the top-1 classes pA ∈ [0, 1], and the
upper bound probability of other classes pB ∈ [0, 1] satisfies:

P(f(X) = cA) ≥ pA ≥ pB ≥ max
c̸=cA

P(f(X) = c) (1)
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Table 1: Certified radii (binary-case) for randomized smoothing with isotropic and anisotropic noise.
d is the dimension size. Φ−1 denotes the inverse CDF of normal distribution. λ is the scalar parameter
of the isotropic noise. σi is the multiplier for the scale parameter λ in the i-th dimension

Distribution PDF Adv. Isotropic Guarantee ℓp Radius for Iso. RS Anisotropic Guarantee ℓp Radius for Ani. RS Alt. Lebesgue Measure

Gaussian Cohen et al. (2019) ∝ e−∥ z
λ∥2

2 ℓ2 ||δ||2 ≤ λ(Φ−1(pA)) λ(Φ−1(pA)) || δ
′
i

σi
||2 ≤ λ(Φ−1(pA

′)) min{σi}λ(Φ−1(pA))
d

√∏d
i=1 σiλ(Φ

−1(pA
′))

Gaussian Yang et al. (2020) ∝ e−∥ z
λ∥2

2 ℓ1 ||δ||1 ≤ λ(Φ−1(pA)) λ(Φ−1(pA)) || δ
′
i

σi
||1 ≤ λ(Φ−1(pA

′)) min{σi}λ(Φ−1(pA))
d

√∏d
i=1 σiλ(Φ

−1(pA
′))

ℓ∞ ||δ||∞ ≤ λ(Φ−1(pA))/
√
d λ(Φ−1(pA))/

√
d || δ

′
i

σi
||∞ ≤ λ(Φ−1(pA

′))/
√
d min{σi}λ(Φ−1(pA))/

√
d d

√∏d
i=1 σiλ(Φ

−1(pA
′))/

√
d

Laplace Teng et al. (2020) ∝ e−∥ z
λ∥1 ℓ1 ||δ||1 ≤ −λ log(2(1− pA)) −λ log(2(1− pA)) || δ

′
i

σi
||1 ≤ −λ log(2(1− pA

′)) −min{σi}λ log(2(1− pA))
d

√∏d
i=1 σiλ log(2(1− pA

′))

Exp. ℓ∞ Yang et al. (2020) ∝ e−∥ z
λ∥∞ ℓ1 ||δ||1 ≤ 2dλ(pA − 1

2 ) 2dλ(pA − 1
2 ) || δ

′
i

σi
||1 ≤ 2dλ(pA

′ − 1
2 ) 2min{σi}dλ(pA − 1

2 ) 2 d

√∏d
i=1 σidλ(pA

′ − 1
2 )

ℓ∞ ||δ||∞ ≤ λ log( 1
2(1−pA) ) λ log( 1

2(1−pA) ) || δ
′
i

σi
||∞ ≤ λ log( 1

2(1−pA
′) ) min{σi}λ log( 1

2(1−pA) )
d

√∏d
i=1 σiλ log( 1

2(1−pA
′) )

Uniform ℓ∞ Lee et al. (2018) ∝ I(∥z∥∞ ≤ λ) ℓ1 ||δ||1 ≤ 2λ(pA − 1
2 ) 2λ(pA − 1

2 ) || δ
′
i

σi
||1 ≤ 2λ(pA

′ − 1
2 ) 2min{σi}λ(pA − 1

2 ) 2 d

√∏d
i=1 σiλ(pA

′ − 1
2 )

ℓ∞ ||δ||∞ ≤ 2λ(1− d

√
3
2 − pA) 2λ(1− d

√
3
2 − pA) || δ

′
i

σi
||∞ ≤ 2λ(1− d

√
3
2 − pA′) 2min{σi}λ(1− d

√
3
2 − pA) 2 d

√∏d
i=1 σiλ(1− d

√
3
2 − pA′)

Power Law ℓ∞ Yang et al. (2020) ∝ 1
(1+∥ z

λ∥∞)a ℓ1 ||δ||1 ≤ 2dλ
a−d (pA − 1

2 )
2dλ
a−d (pA − 1

2 ) || δ
′
i

σi
||1 ≤ 2dλ

a−d (pA − 1
2 ) min{σi} 2dλ

a−d (pA − 1
2 ) 2 d

√∏d
i=1 σi

dλ
a−d (pA − 1

2 )

then the prediction of g on the perturbed input x+ δ will consistently be cA if ||δ||p < R(pA, pB),
where || · ||p denotes the ℓp-norm, and R(·) denotes a general function of certified radius formulas.

The certified radius formula varies when the noise PDFs are different. We list several certified radius
functions of existing randomized smoothing theorems with isotropic noise in Table 1 (left 5 columns).
The Alternative Lebesgue Measure will be introduced as an anisotropic measure for anisotropic RS
in Section 3.2.

3.2 THEOREM FOR ANISOTROPIC NOISE

In this section, we establish a universal theory for the certification via randomized smoothing with
anisotropic noise. Given any isotropic randomized smoothing methods, our method can universally
transform them to anisotropic randomized smoothing for certified robustness.

Specifically, given an arbitrary isotropic noise with zero-mean and the scale parameter λ (w.r.t.
the variance of the PDF) in each dimension, we can represent any anisotropic noise with the
anisotropic mean offsets µ = [µ1, µ2, ..., µd] and the anisotropic multipliers of the scale param-
eter σ = diag(σ1, σ2, ..., σd) with σi for the i-th dimension, and σi > 0. Then, the i-th dimension of
the anisotropic noise has the mean µi and scale parameter σiλ, where λ is multiplied by σi. Formally,
denoting any isotropic noise as ϵ (generated by λ), we define the respective anisotropic noise ϵ′ as:

ϵ′ = ϵ⊤σ + µ (2)

Then robustness of randomized smoothing with anisotropic noise can be ensured per Theorem 3.2.
Theorem 3.2 (Anisotropic Randomized Smoothing via Universal Transformation). Let f : Rd →
C be any deterministic or random function. Suppose that for the multivariate random variable with
isotropic noise X = x + ϵ in Theorem 3.1, the certified radius function is R(·). Then, for the
corresponding anisotropic input Y = x+ ϵ⊤σ + µ, if there exist c′A ∈ C and pA

′, pB ′ ∈ [0, 1] such
that:

P(f(Y ) = c′A) ≥ pA
′ ≥ pB

′ ≥ max
c̸=c′A

P(f(Y ) = c) (3)

then g′(x+δ′) ≡ argmaxc∈C P(f(Y +δ′) = c) = c′A for all || δ
′
i

σi
||p ≡ (

∑d
i (

δ′i
σi
)p)

1
p ≤ R(pA

′, pB
′)

where g′ denotes the smoothed classifier based on anisotropic noise, δ′ the perturbation on x, and i
the dimension index.

Proof. See the detailed proof in Appendix A.

In Table 1, we derive the corresponding certified radius functions of anisotropic noise-based random-
ized smoothing methods, transformed from most of the existing randomized smoothing methods
with isotropic noise (derived based on Theorem 3.2). For other randomized smoothing methods (e.g.,
Zhang et al. (2020); Hong et al. (2022)) without explicit certified radius functions, our transformation
method can be directly applied to the numerical certified radius result. We also present the binary
case of Theorem 3.2 (binary classifier) in Appendix B.

In Figure 1(a), we illustrate the benefits that the anisotropic noise can bring to randomized smoothing.
In Theorem 3.2, we observe that the mean offset µi does not affect the derivation of the certified
robustness with anisotropic noise. Thus, it is likely that the probabilities pA

′ and pB
′ can be
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Figure 1: (a) The benefits of anisotropic noise over isotropic noise. When evaluating x over smoothed
classifiers, the decision regions of the base classifier f are denoted in different colors. The dashed
lines are the level sets of the noise distribution. The left figure shows the randomized smoothing
with isotropic Gaussian noise N (0, λ2I) in Cohen et al. (2019) whereas the right figure illustrates the
randomized smoothing with anisotropic Gaussian noise N (µ,Σ), where Σ = λ2diag(σ2

1 , σ
2
2 , ..., σ

2
d).

The anisotropic noise can improve the certified robustness by improving the gap of pA and pB . (b)
Illustration of the robustness region constructed with isotropic (blue) and anisotropic (green) noise.

improved by a proper mean offset in the anisotropic noise. Also, with the heterogeneous variance,
the anisotropic noise can fit different dimensions of the input better without over-distortion.

Boundary for Certified Region. In Corollary 3.3, we derive the certified radii R′ for anisotropic
randomized smoothing in the formation of isotropic ℓp-ball, i.e., ||δ′||p ≤ R′. However, certified radii
might be inaccurate for evaluating the certified robustness under anisotropic circumstances due to the
asymmetric shape of the robustness region constructed by the anisotropic noise. In other words, the
certified area represented by the isotropic ℓp-ball is a subset of anisotropic certified region depicted
by (

∑d
i (

δ′i
σi
)p)

1
p ≤ R(pA

′, pB
′) (see Figure 1(b) for illustration).

Corollary 3.3. For the anisotropic input Y in Theorem 3.2, if the condition in Eq. (3) is satisfied,
then g′(x+ δ′) ≡ argmaxc∈C P(f(Y + δ′) = c) = c′A for all ||δ′||p ≤ R′ such that

R′ = min{σi}R (4)

where R is the corresponding certified radius of randomized smoothing via isotropic noise, and
min{·} denotes the minimum entry.

Proof. The guarantee in Theorem 3.2 holds for || δ
′
i

σi
||p ≤ R. Since || δ

′
i

σi
||p ≤ || δ′i

min{σi} ||p, if

|| δ′i
min{σi} ||p ≤ R, the guarantee still holds. This requires ||δ′||p ≤ min{σi}R.

Besides the ℓp radii, we also introduce a general metric, i.e., Alternative Lebesgue Measure (ALM)

Eiras et al. (2022), which is defined as ALM = d

√∏d
i=1 σiR for auxiliary evaluation on the

anisotropic robustness region (note that ℓp radius fall short to evaluate the robustness gain in some
dimensions due to its symmetry, see Figure 1(b)). ALM is equivalent to the certified radii when
applied to traditional isotropic RS where σi = 1 for all dimensions. See Eiras et al. (2022) and
Appendix C for detailed theoretical analysis and discussions about the ALM.

4 CUSTOMIZING ANISOTROPIC NOISE

With Theorem 3.2, it is feasible to assign heterogeneous noise parameters to different data dimensions.
However, finding more optimal heterogeneous noise parameters rather than randomly assigning them
remains a challenge. To this end, in UCAN, we design a unified framework to customize anisotropic
noise for randomized smoothing (see Figure 2(a)), which integrates three noise parameter generators
(NPGs) with different scales of trainable parameters (see Figure 2(b)) and optimality:

1) Customizing pattern-fixed anisotropic noise by assigning heterogeneous noise parameters
based on certain patterns of the data. The NPG is training-free and inference-free, but with
low optimality.

2) Customizing universal anisotropic noise by optimizing trainable noise parameter generator
according to a specific dataset. It requires the pre-training of the NPG (a neural network)
and one-time inference for the dataset, with moderate optimality.
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Figure 2: (a) The framework for customizing anisotropic noise for randomized smoothing. (b) Three
example noise parameter generators (NPGs).

3) Customizing input-dependent anisotropic noise by optimizing the input-dependent noise
parameter generator during training. It requires the pre-training of the NPG (a neural
network) and one-time inference for each input, but with high optimality.

Note that these three different types of NPGs are only example methods. Other methods can also be
designed with different objectives. The practical algorithms are detailed in Appendix F.

4.1 PATTERN-FIXED ANISOTROPIC NOISE

The NPG for pattern-fixed anisotropic noise is motivated by the intuitive understanding that different
portion of the data (e.g., areas on the image) may influence the prediction variably (Gilpin et al., 2018).
Typically, an image’s center, where an object likely exists, may include more visual information
than its borders, necessitating lower variance in the center to avoid blurring informative areas; while
the borders can tolerate larger noise (e.g., higher variance) without notably hindering classification
performance. Hence, this NPG assigns fixed spatial patterns for anisotropic noise.

𝜎 𝑎, 𝑏 = 𝑎, 𝑏 1
2 + 1 𝜎 𝑎, 𝑏 = 𝑎, 𝑏 2

2 + 1 𝜎 𝑎, 𝑏 = 𝑎, 𝑏 ∞
2 + 1

Figure 3: Spatial distributions for variances
of the noise parameters (pattern-fixed)

Specifically, let the spatial distribution of the vari-
ances follow a function σ(a, b), where a and b are
the pixel’s coordinates of the horizon and vertical
axes such that the center of the image is denoted
as (a, b) = (0, 0). As discussed above, the central
variance can be intuitively set to be smaller than the
border’s variance. Thus, we design three different
types of spatial distribution as follows:

σ(a, b) = κ||(a, b)||2p + ι, p = 1, 2,∞ (5)

where ||(a, b)||p denotes the ℓp-norm distance between (a, b) and (0, 0), κ is a constant parameter
tuning the overall magnitude of the variance, ι denotes the variance of a center pixel since σ(0, 0) = ι,
and ι > 0 such that d

√∏
(a,b) σ(a, b) ̸= 0. Figure 3 shows three examples of the spatial distribution

when p = 1, 2,∞, where κ and ι are set as 1. The noise mean is set as 0 to avoid unnecessary
deviation in the images.

The pattern-fixed anisotropic noise is an intuitive improvement by considering the different con-
tributions to the classification results by different portions of the data (e.g., pixels). However, it
is not sufficiently fine-tuned especially considering the diverse characteristics of different datasets.
In the next subsection, we propose an automated approach that can derive the near-optimal spatial
distribution of the variances for the anisotropic noise for each dataset.

4.2 UNIVERSAL ANISOTROPIC NOISE

This NPG leverages a fix-input neural network generator (Creswell et al., 2018) to learn anisotropic
variances during the robust training (i.e., training with noise), which is shown in Figure 2(b). Specifi-
cally, the generator takes a fixed constant as the input and outputs an anisotropic σ tensor and µ tensor
with each element µi and σi denoting the mean offset and the multiplier of noise (viz. variance) per
pixel, respectively. Given any noise ϵ drawn from any noise distribution, the anisotropic noise can be
generated as ϵ′ = ϵ⊤σ + µ. Then, the noise will be added to the input for randomized smoothing.

Architecture. We adapt the generator architecture (a multi-layer perception) in Generative Adversar-
ial Network (GAN) (Goodfellow et al., 2020) to design a novel neural network generator. Different
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from GAN, this NPG does not depend on the input data but depends on the entire dataset. Therefore,
we fixed the input as constants. The NPG consists of 5 linear layers and the first 4 of them are
followed by activation layers. The output will be transformed by a hyperbolic tangent function with
an amplification factor γ, i.e., γtanh(·). This amplified hyperbolic tangent layer is to limit the value
of the variances since an infinite value in the noise parameters will fail the training.

Loss Function. To train the NPG towards a desired convergence, we need to design a proper loss
function. Note that certified robustness with anisotropic noise can be measured by the ALM in a
general way. Then, the NPG training should aim to maximize the product d

√∏
σ and the traditional

certified radius R. To increase the product, we alternatively maximize the average σ since maximizing
the product could lead to unstable training. Since the certified radius is a function of pA, improving
the prediction accuracy over the noise can improve the certified region (measured by ALM), which is
also the goal of training the smoothed classifier. The loss function can be formally defined as:

L(θf , θg) = −
1

d

∑
i

(σi(θg))︸ ︷︷ ︸
Variance Loss

−
N∑

k=1

yk log ŷk(x+ ϵ⊤σ(θg) + µ(θg), θf , θg)︸ ︷︷ ︸
Smoothing Loss

where θf and θg denote the model parameters of the classifier and parameter generator, respectively,
k denotes the prediction class, N represents the total number of classes, yk denotes the label of input
x, and ŷk is the prediction of yk. The training of the NPG for µ is also guided by the smoothing loss
to improve the prediction over the dataset.

Universality. The universality of noise and that of our robustness are different: the former focuses
on using one noise to universally protect an entire dataset, and the latter focuses on defending against
a wide range of perturbations (e.g., different ℓp-norms) with various anisotropic noise distribution.

4.3 INPUT-DEPENDENT ANISOTROPIC NOISE

Although the universal anisotropic noise optimizes the noise parameters during training to provide
better robustness guarantees, it is still not sufficiently fine-tuned to fully capture the heterogeneity
between different input samples. Since the certification is also an input-dependent process that
provides specific guarantees for different inputs (the guarantee is only valid on the corresponding
certified input), it is intuitive to generate the best anisotropic noise for each data sample. Therefore,
we design an input-dependent NPG to produce the anisotropic noise, which considers additional
heterogeneity between different inputs besides the heterogeneity between the data dimensions.

Different from generating the universal anisotropic noise, the parameter generators for mean and
variance are not in parallel, but cascaded (see Figure 2(b)). Specifically, in the training and
certification, the mean parameter generator takes the input x and returns a µ map. Then the variance
parameter generator takes x+ µ as the input to returns a σ map (scale parameter of the noise). After
that, the noisy input will be injected to the base classifier to train the smoothed classifier.

Architecture. This NPG learns the mapping from the image to the µ and σ maps, which is similar
to the function of neural networks in image transformation. Hence, inspired by the image super-
resolution (Zhang et al., 2018), we also adapt the “dense blocks” Huang et al. (2017) as the main
architecture to design the NPG. The details for the architecture can be found in Appendix E.

Loss Functions. The loss function is similar to that used for the universal anisotropic noise, but the
NPG takes x as input and outputs µ and σ.

5 EXPERIMENTS

We comprehensively evaluate UCAN in this section. Specifically, in Section 5.1, we test UCAN with
the three different ways of generating anisotropic noises and compare them with the randomized
smoothing baseline with isotropic noises. In Section 5.2, we thoroughly evaluate the universality of
UCAN, including the universality on noise distributions and against different ℓp perturbations. In
Section 5.3, we benchmark the best performance of UCAN with the SOTA RS methods.

Metrics. We derive the certified accuracy per the Alternative Lebesgue Measure (ALM) Eiras
et al. (2022), which can be defined as the fraction of the test set that is certified to be consistently
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correct within the ALM (certified region). Formally, certified accuracy w.r.t. certified radius and
ALM can be defined as: Acc(R) = 1

N

∑N
j=1 1[g′(xj+δ)=yj ], ∀ ||δ||p ≤ R and Acc(ALM) =

1
N

∑N
j=1 1[g′(xj+δ)=yj ], ∀ ||δ||p ≤ d

√∏
σiR, respectively, where xj and yj denote the j-th sample

and its label in the test set, respectively. N denotes the number of inputs/images in the test set.

To fairly position our methods, when compared to the SOTA methods (mostly isotropic), we present
the certified accuracy w.r.t. both the ℓp radius and the ALM.

Experimental Settings. We test UCAN on three image datasets: MNIST (LeCun et al., 2010),
CIFAR10, (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015). Following Cohen et al.
(2019) on certification, we obtain the certified accuracy on the entire test set in CIFAR10 and MNIST
while randomly picking 500 samples in the test set of ImageNet; we set α = 0.001 and the numbers
of Monte Carlo samples n0 = 100 and n = 100, 000. More details about the experimental settings
can be found in Appendix I.

5.1 COMPARISON OF RANDOMIZED SMOOTHING WITH ANISOTROPIC AND ISOTROPIC NOISE

We first evaluate randomized smoothing with anisotropic noise generated by the three example
NPGs. W.l.o.g., we adopt Gaussian distribution (with zero-mean) to generate the anisotropic noise
for randomized smoothing against ℓ2 perturbation and compare with the isotropic Gaussian baseline
Cohen et al. (2019), which derives the tight certified radius (under multi-class setting) against ℓ2
perturbations. Other distributions against different ℓp perturbations (universality of UCAN) are
detailed in Section 5.2.

Parameter Setting. We follow Cohen et al. (2019) to set different variances for isotropic Gaussian
noise. For our pre-assigned anisotropic noise, since the variance varies in different dimensions, we
re-scale σ(a, b) such that d

√∏
σi = 1.0. For the universal method, we set γ = 5 for MNIST and

CIFAR10 and γ = 2 for ImageNet to achieve the best trade-off. After training, d
√∏

σi for MNIST,
CIFAR10, and ImageNet are 1.56, 0.93, and 0.92, respectively. For the input-dependent method, the
amplified factor γ in the parameter generator is set as 1.0 for all the datasets.

Experimental Results. The experimental results are presented in Figure 4(a)-4(c). It shows that
the certified accuracy of pattern-fixed anisotropic noise is strictly above the baseline with variance
λ = 1.0 on all the datasets. Note that when d

√∏
σi = 1.0, the Alternative Lebesgue Measure is equal

to R. Therefore, it suggests that with the same level of variance, the anisotropic noise can achieve
higher prediction accuracy since the key parts of the images (showing the objects) were less perturbed
(see visualized examples in Figure 7(b)). Figure 4(d)-4(f) shows that the universal anisotropic noise
significantly boosts the certified accuracy on CIFAR10 and achieves the best trade-off between
certified accuracy and Alternative Lebesgue Measure (certified region). The certified accuracy is
improved up to 39%. Figure 4(g)-4(i) shows that the input-dependent anisotropic noise significantly
boosts the certified accuracy. The best improvement of the certified accuracy is 54%, and 35% for
CIFAR10, and ImageNet, respectively, since the noise parameter generator (NPG) learns the best
spatial distribution of noise parameters (see the examples in Figure 7(d)).

5.2 UNIVERSALITY (DIFFERENT NOISE PDFS AGAINST DIFFERENT ℓp PERTURBATIONS)

In this section, we evaluate the universality of UCAN over different noise distributions against
different ℓp perturbations. Specifically, we evaluate the universality over noise distributions listed
in Table 1. For a fair comparison, we follow Yang et al. (2020) to set the scalar parameter λ of
different noise distributions such that the variance is equal to 1. For the anisotropic noise, we follow
the settings in Section 5.1 to set the parameters for pattern-fixed, universal, and input-dependent
anisotropic noise. We only present the ℓ2 pattern of the pattern-fixed anisotropic noise due to the
similar performance of different patterns. We only present the certified defenses against ℓ1 and ℓ∞
perturbations due to lack of existing works against ℓ2 perturbations in Table 1 (the comparison with
Cohen et al. (2019) against ℓ2 perturbations has been given earlier).

The experimental results are shown in Figure 5. In all settings, UCAN can universally amplify the
certified robustness of randomized smoothing with isotropic noise.
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(c) Pattern-fixed (ImageNet)
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(f) Universal (ImageNet)
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(g) Input-dependent (MNIST)
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(h) Input-dependent (CIFAR10)
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Figure 4: Comparison of randomized smoothing with anisotropic noise and that with isotropic noise
(Gaussian distribution for certified defense against ℓ2 perturbations, comparing with Cohen et al.
(2019)) – UCAN gives significantly better certified accuracy and larger certified region.

Table 2: Certified accuracy vs. ℓ2 perturbations (MNIST).
Radius and ALM (equivalent for isotropic) 0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Cohen’s Cohen et al. (2019) 83% 61% 43% 32% 22% 17% 14% 9% 7% 4%
Sample-wise Wang et al. (2020) 98% 97% 96% 93% 88% 81% 73% 57% 41% 25%
Input-depend Súkenı́k et al. (2021) 99% 98% 97% 94% 88% 79% 58% 27% 0% 0%
MACER Zhai et al. (2020) 99% 99% 96% 95% 90% 83% 73% 50% 36% 28%
SmoothMix Jeong et al. (2021) 99% 99% 98% 97% 93% 89% 82% 71% 45% 37%
DRT Yang et al. (2021) 99% 98% 98% 97% 93% 89% 83% 70% 48% 40%
Ours (certified accuracy w.r.t. radius) 99% 99% 99% 99% 99% 99% 98% 98% 98% 97%
Ours (certified accuracy w.r.t. ALM) 98% 98% 98% 98% 97% 97% 96% 96% 95% 94%
Improvement over Baseline (%) +0.0% +0.0% +1.0% +2.1% +6.5% +11.2% +18.1% +38.0% +104.2% +142.5%

5.3 BEST PERFORMANCE COMPARISON VS. SOTA METHODS

We also compare our best performance (certification with input-dependent anisotropic noise) with the
best performance of 12 SOTA methods.1 Here we present the certified accuracy w.r.t. both ALM and
ℓp radius. Note that the ALM and radius are equivalent for SOTA methods with isotropic noise.

Following the same settings in such existing randomized smoothing methods Cohen et al. (2019);
Alfarra et al. (2020); Súkenı́k et al. (2021); Wang et al. (2020), we focus on the Gaussian noise
against ℓ2 perturbations to benchmark with them. Results are shown in Table 2, 3, and 4. We mark
the best performance of our methods and the baselines as red and blue, respectively. We also present
the improvement of our method over the best baseline in percentage.

1W.l.o.g., we compare them on ℓ2 perturbations, and can draw similar observations on other ℓp perturbations.
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(a) Pattern-fixed vs. ℓ1 pert.
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(b) Universal vs. ℓ1 pert.
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(c) Input-dependent vs. ℓ1 pert.
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(d) Pattern-fixed vs. ℓ∞ pert.
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(e) Universal vs. ℓ∞ pert.
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(f) Input-dependent vs. ℓ∞ pert.

Figure 5: UCAN with three types of anisotropic noise (AN) vs. randomized smoothing with isotropic
noise – different noise PDFs against different ℓp perturbations (universality) on CIFAR10.

Table 3: Certified accuracy vs. ℓ2 perturbations (CIFAR10).
Radius and ALM (equivalent for isotropic) 0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Cohen’s Cohen et al. (2019) 83% 61% 43% 32% 22% 17% 14% 9% 7% 4%
SmoothAdvSalman et al. (2019) – 81% 63% 52% 37% 33% 29% 25% 18% 16%
MACER Zhai et al. (2020) 81% 71% 59% 47% 39% 33% 29% 23% 19% 17%
Consistency Jeong & Shin (2020) 78 % 69% 58% 49% 38% 34% 30% 25% 20% 17%
SmooothMix Jeong et al. (2021) 77% 68% 58% 48% 37% 32% 26% 20% 17% 15%
Boosting Horváth et al. (2021) 83% 71% 60% 52% 39% 34% 30% 25% 20% 17%
DRT Yang et al. (2021) 73 % 67% 60% 51% 40% 36% 30% 24% 20% –
Black-box Zhang et al. (2020) – 61% 46% 37% 25% 19% 16% 14% 11% 9%
Data-depend Alfarra et al. (2020) 82% 68% 53% 44% 32% 21% 14% 8% 4% 1%
Sample-wise Wang et al. (2020) 84% 74% 61% 52% 45% 41% 36% 32% 27% 23%
Input-depend Súkenı́k et al. (2021) 83% 62% 43% 27% 18% 11% 5% 2% 0% 0%
Denoise 1 Carlini et al. (2023) 80% 70% 55% 48% 37% 32% 29% 25% 15% 14%
Denoise 2 Zhang et al. (2023) 85% 76% 66% 57% 44% 37% 31% 25% 22% 20%
ANCER Eiras et al. (2022) 86% 85% 77% – 53% – 31% – 17% –
Ours (certified accuracy w.r.t. radius) 85% 83% 81% 80% 77% 75% 73% 70% 68% 65%
Ours (certified accuracy w.r.t. ALM) 86% 84% 82% 80% 74% 71% 68% 65% 61% 57%
Improvement over Baseline (%) +0% -1.2% +6.5% +40.4% +45.3% +82.9% +102.8% +118.8% +151.9% +182.6%

Table 4: Certified accuracy vs. ℓ2 perturbations (ImageNet).
Radius and ALM (equivalent for isotropic) 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
Cohen’s Cohen et al. (2019) 67% 49% 37% 28% 19% 15% 12% 9%
SmoothAdv Salman et al. (2019) 67% 56% 45% 38% 28% 26% 20% 17%
MACER Zhai et al. (2020) 68% 57% 43% 37% 27% 25% 20% –
Consistency Jeong & Shin (2020) 57% 50% 44% 34% 24% 21% 17% –
SmoothMix Jeong et al. (2021) 55% 50% 43% 38% 26% 24% 20% –
Boosting Horváth et al. (2021) 68% 57% 45% 38% 29% 25% 21% 19%
DRTYang et al. (2021) 50% 47% 44% 39% 30% 29% 23% –
Black-box Zhang et al. (2020) – 50% 39% 31% 21% 17% 13% 10%
Data-depend Alfarra et al. (2020) 62% 59% 48% 43% 31% 25% 22% 19%
Denoise 1 Carlini et al. (2023) 48% 41% 30% 24% 19% 16% 13% –
Denoise 2 Zhang et al. (2023) 66% 59% 48% 40% 31% 25% 22% –
ANCER Eiras et al. (2022) 70% 70% 62% 61% 42% 36% 29% –
Ours (certified accuracy w.r.t. radius) 65% 62% 58% 53% 50% 46% 43% 38%
Ours (certified accuracy w.r.t. ALM) 71% 66% 62% 58% 54% 51% 47% 42%
Improvement over Baseline (%) +1.4% -5.7% +0% -4.9% +28.6% +41.7% +62.1% +121.1%

On all the three datasets, UCAN significantly boosts the certified accuracy. For instance, it achieves
the improvement of 142.5%, 182.6%, and 121.1% over the best baseline on MNIST, CIFAR10,
and ImageNet, respectively. UCAN also achieves the best trade-off between certified accuracy and
ALM/radius (two important metrics): 1) UCAN presents both larger radius/ALM and higher certified
accuracy in general, and 2) On large ALM/radius, UCAN can still achieve high certified accuracy.
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Finally, some examples of anisotropic vs. isotropic noise and the results for efficiency are given in
Appendix G and H.

6 CONCLUSION

In this paper, we propose a novel randomized smoothing framework called UCAN. UCAN can
transform any randomized smoothing scheme with isotropic noise into randomized smoothing with
anisotropic noise with robustness guarantees. Extensive experimental results validate that UCAN
significantly boosts the certified robustness of existing randomized smoothing methods.
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A PROOF OF THEOREM 3.2

We restate Theorem 3.2:

Theorem 3.2 (Anisotropic Randomized Smoothing via Universal Transformation). Let f : Rd →
C be any deterministic or random function. Suppose that for the multivariate random variable with
isotropic noise X = x + ϵ in Theorem 3.1, the certified radius function is R(·). Then, for the
corresponding anisotropic input Y = x+ ϵ⊤σ + µ, if there exist c′A ∈ C and pA

′, pB ′ ∈ [0, 1] such
that:

P(f(Y ) = c′A) ≥ pA
′ ≥ pB

′ ≥ max
c̸=c′A

P(f(Y ) = c) (3)

then g′(x+δ′) ≡ argmaxc∈C P(f(Y +δ′) = c) = c′A for all || δ
′
i

σi
||p ≡ (

∑d
i (

δ′i
σi
)p)

1
p ≤ R(pA

′, pB
′)

where g′ denotes the smoothed classifier based on anisotropic noise, δ′ the perturbation on x, and i
the dimension index.

Proof. Let X = x + ϵ,X ∈ Rd be a multivariate random variable where ϵ follows isotropic
noise distribution. Let Y = x + ϵ⊤σ + µ, Y ∈ Rd be a multivariate random variable following
anisotropic noise distribution. Given the input x, anisotropic multiplier σ, and the mean offsets µ, let
µ′ = µ+ x− x⊤σ, so the anisotropic input can be written as Y = (x+ ϵ)⊤σ + µ′ = X⊤σ + µ′

Define a transformation h as:
h(z) = z⊤σ + µ′ (6)

Given any deterministic or random function f : Rd → C, define the anisotropic smoothed classifier
as:

g′(x) = argmax
c∈C

P(f(x+ ϵ⊤σ + µ) = c) (7)

Suppose that for an anisotropic random variable Y , there exist c′A ∈ C and pA
′, pB ′ ∈ [0, 1] such

that:

P(f(Y ) = c′A) ≥ pA
′ ≥ pB

′ ≥ max
c ̸=c′

A

P(f(Y ) = c) (8)

By transformation h, the satisfied condition Eq. (8) is equivalent to:

P(f(Y ) = c′A) =P(f(X⊤σ + µ′) = c′A) (9)

=P(f(h(X)) = c′A) (10)

≥pA
′ ≥ pB

′ ≥ max
c̸=c′A

P(f(h(X)) = c) (11)

Consider a new classifier f ′(x) = f(h(x)) that maps any isotropic input to class space C, Eq. (10)
and (11) can be written as:

P(f ′(X) = c′A) ≥ pA
′ ≥ pB

′ ≥ max
c ̸=c′

A

P(f ′(X) = c) (12)

This is the prerequisite condition in any isotropic randomized smoothing theory as defined in
Definition 3.1, so we can obtain the guarantee with isotropic certified radius R such that:
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argmax
c∈C

P(f ′(X + δ) = c) = c′A (13)

s.t. ||δ||p ≤ R(pA
′, pB

′) (14)

By Eq. (6) and Y = X⊤σ + µ′, the Eq. (13) is equivalent to:

argmax
c∈C

P(f ′(X + δ) = c) = argmax
c∈C

P(f(h(X + δ)) = c) (15)

=argmax
c∈C

P(f((X + δ)⊤σ + µ′) = c) (16)

=argmax
c∈C

P(f(Y + δ⊤σ)) = c) = c′A (17)

Define δ′ = δ⊤σ, with Eq. (17), the guarantee in Eq. (13) and (14) is equivalent to:

argmax
c∈C

P(f(Y + δ′) = c) = c′A (18)

s.t. || δ
′
i

σi
||p ≤ R(pA

′, pB
′) (19)

By Eq. (7) we have g′(x + δ′) = argmaxc∈C P(f(Y + δ′) = c) = c′A for all || δ
′
i

σi
||p ≡

(
∑d

i (
δ′i
σi
)p)

1
p ≤ R(pA

′, pB
′).

This completes the proof.

B BINARY CASE OF THEOREM 3.2

Theorem B.1 (Universal Transformation for Anisotropic Noise). Let f : Rd → C be any
deterministic or random function. Suppose that for the isotropic input X in Definition 3.1, the
certified radius function for the binary case is R(·). Then, for the corresponding anisotropic input Y
where Yi = xi + ϵiσi + µi, if there exist c′A ∈ C and pA

′ ∈ (1/2, 1] such that:

P(f(Y ) = c′A) ≥ pA
′ ≥ 1

2
(20)

Then g′(x+ δ′) = argmaxc∈C P(f(Y ) = c) = c′A for all ||δ′i/σi||p ≤ R(pA
′) where g′ denotes the

anisotropic smoothed classifier, δ′ denotes the perturbation injected to g′.

Proof. The proof for the binary case is similar to the proofs for the multiclass-case (See Appendix
A).

C NEW ACCURATE METRIC FOR CERTIFIED REGION

How to develop a general metric for evaluating the robustness region for randomized smoothing
with anisotropic noise is an important but challenging problem. We observe that the guarantee in
Theorem 3.2 forms a certified region, within which the perturbation is certifiably safe to the smoothed
classifier. The ℓp-norm bounding on the scaled perturbation δ′i/σi results in the anisotropy of the
certified region around the input. We illustrate the anisotropic certified region for different ℓp-norm
guarantees in Figure 1(b). It shows that if the δ space is a 2-dimension space, then the guarantee of
anisotropic RS draws a rhombus, ellipse, and rectangle in ℓ1, ℓ2, and ℓ∞ norms, respectively. Within
the anisotropic region, we can find an isotropic region that also satisfies the robustness guarantee (a
subset of the anisotropic region), which results in an explicit certified radius (see Corollary 3.3).

13
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However, while evaluating the performance of randomized smoothing with anisotropic noise via Eq.
(4) in Corollary 3.3, although is correct and explicit, is inaccurate since it only captures a subset
of the certified region and ignores the anisotropy of the guarantee (such radius is sufficient but not
necessary to the certified guarantee).

Specifically, Eq. (4) evaluates the performance only based on the blue region in Figure 1(b), but the
guarantee in Theorem 3.2 actually guarantees that all the δ (perturbations) within the green region are
safe. Therefore, to fairly and accurately evaluate the performance of certification via anisotropic noise,
we need to develop a novel metric that can cover the entire certified region in highly-dimensional δ
space, and also cover the adversarial perturbations in all ℓp-norms.

From another perspective, evaluating the performance of randomized smoothing can be considered as
evaluating the size of the robust perturbation set S(n, p).

Definition C.1. The d-dimensional robust perturbation set is defined as

S(d, p) ≡ {(δ1, δ2, ..., δd) : ||
δi
σi

||p ≤ R, p > 0} (21)

Consider the Euclidean structure, S(d, p) is a finite set in d-dimensional Euclidean space. Therefore,
we leverage the Lebesgue measure Bartle (2014) to compute the size of S(d, p) (see Theorem C.2).

Theorem C.2 (Lebesgue Measure of the Robust Perturbation Set S(d, p)). Let S(d, p) be defined
as in Eq. (21), then the Lebesgue measure of the robust perturbation set is given by

VS(d, p) =
(2RΓ(1 + 1

p ))
d
∏d

i=1 σi

Γ(1 + d
p )

(22)

where Γ is the Euler gamma function defined in Definition D.1.

Proof. See the detail proof in Appendix D

We observe that for a fixed d and p, the
(2Γ(1+ 1

p ))
d

Γ(1+ d
p )

factor in the Lebesgue measure is a constant. Then,

when comparing the Lebesgue measure in the same norm ℓp and the same space Rd, the constant
term can be ignored. Also, the Rd factor can lead to infinite numeral computation, thus we also scale
the Lebesgue measure by calculating the d-th root. As a result, we define the Alternative Lebesgue
Measure (ALM) of the robust perturbation set with the same d and p as:

V ′
S = d

√√√√ d∏
i=1

σiR (23)

Alternative Lebesgue Measure2 vs. Isotropic Radius. When the multipliers of the scale parameter
for anisotropic noise σ1 = σ2 = ... = 1, the noise turns into the isotropic noise and the alternative
Lebesgue measure turns into the certified radius R. Therefore, the alternative Lebesgue measure can
be treated as a generalized metric compared to the certified radius. This generalization based on the
certified radius also enables us to fairly compare the randomized smoothing based on anisotropic
noise with isotropic noise.

Note that the new metric ALM is not developed to bound the perturbation, but to accurately measure
the certified guarantees of randomized smoothing with anisotropic noise.

D PROOF OF THEOREM C.2

Proof.

2ALM is like the normalized radius of the certified region in all d dimensions.

14
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Definition D.1 (Euler Gamma Function). The Euler gamma function is defined by

Γ(β) =

∫ ∞

0

αβ−1e−αdα (24)

There are some properties of Γ: 1) For all β > 0, βΓ(β) = Γ(β + 1), 2) For all positive integers n,
Γ(n) = (n− 1)!, and 3) Γ(1/2) =

√
π.

Definition D.2 (n-dimensional Generalized Super-ellipsoid). The d-dimensional generalized
super-ellipsoid ball is defined as

E(d, p) = {(δ1, δ2, ..., δd) :
d∑

i=1

|δi
ci
|pi ≤ 1, pi > 0} (25)

Lemma D.3 (Lebesgue Measure of Generalized Super-ellipsoids Ahmed & Saleeby (2018)). The
Lebesgue measure of the generalized super-ellipsoids is given by

VE(d, p) = 2d
∏d

i=1 ciΓ(1 +
1
pi
)

Γ(1 +
∑d

i=1
1
pi
)
; pi > 0, d = 1, 2, 3, ... (26)

We leverage Lemma D.3 to prove Theorem 3.2. Let pi = p, the d-dimensional robust perturbation set
is equivalent to

S(d, p) = {(δ1, δ2, ..., δd) :
d∑

i=1

| δi
σiR

|p ≤ 1} (27)

The Lebesgue measure in Lemma D.3 will be

VE(d, p) =2d
∏d

i=1 ciRΓ(1 + 1
p )

Γ(1 +
∑d

i=1
1
p )

=
(2RΓ(1 + 1

p ))
d
∏d

i=1 σi

Γ(1 + d
p )

;

p > 0, d = 1, 2, 3, ... (28)

Thus, this completes the proof.

E INPUT-DEPENDENT NOISE PARAMETER GENERATOR (NPG)

It consists of 4 convolutional layers followed by leaky-ReLU Xu et al. (2015). Similar to the generator
in universal anisotropic noise, the output is rectified by the amplified hyperbolic tangent function to
stabilize the training process. Note that our parameter generator is a small network (5 layers), thus it
can be plugged in before any classifier for generating the input-dependent anisotropic noise without
consuming too many computing resources (see Section H for a detailed discussion on running time).
For both µ and σ, we train different parameter generators using the same architecture.

𝝁/𝝈

Features Convolution w/ LReLU Amplified Tanh Layer

Figure 6: Architecture of parameter generator for input-dependent anisotropic noise
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F PRACTICAL ALGORITHMS

Following Cohen et al. Cohen et al. (2019), we also use the Monte Carlo algorithm to bound the
prediction probabilities of smoothed classifier and compute the ALM (certified region). Different
from Cohen et al. Cohen et al. (2019), our noise distributions are either pre-assigned (as pattern-fixed)
or produced by the parameter generator (either universal or input-dependent). Our algorithms for
certification and prediction using different noise generation methods are summarized in Algorithm 1
and 2 (w.l.o.g., taking the binary classifier as an example).

For simplicity of notations, the generation of anisotropic µ and σ are summarized by the noise
generation method(s) M . In case of pattern-fixed anisotropic noise, M outputs pre-assigned fixed
variance and zero-means; in case of universal and input-dependent anisotropic noise, M adopts the
parameter generators to generate the mean and variance maps. In the certification (Algorithm 1), we
select the top-1 class ĉA by the CLASSIFYSAMPLES function, in which the base classifier outputs the
prediction on the noisy input sampled from the noise distribution. Once the top-1 class is determined,
classification will be executed on more samples and the LOWERCONFBOUND function will output
the lower bound of the probability pA

′ computed by the Binomial test. If pA′ > 1
2 , we output the

prediction class and the ALM (measuring the certified region). Otherwise, it outputs ABSTAIN. In
the prediction (Algorithm 2), we also generate the noise and then compute the prediction counts over
the noisy inputs. If the Binomial test succeeds, then it outputs the prediction class. Otherwise, it
returns ABSTAIN.

Algorithm 1 UCAN-Certification
Given: Base classifier f , anisotropic noise generation method M , input (e.g., image) x, number of Monte
Carlo samples n0 and n, confidence 1− α

1: µ, σ ←M
2: counts select←CLASSIFYSAMPLES(f, x, µ, σ, n0)
3: ĉA ← top index in counts select
4: counts← CLASSIFYSAMPLES(f, x, µ, σ, n)
5: pA

′ ← LOWERCONFBOUND(counts[ĉA], n, 1− α)

6: if pA′ > 1
2

then
7: return prediction ĉA and ALM (certified region) d

√∏
i σiR

8: else
9: return ABSTAIN

10: end if

Algorithm 2 UCAN-Prediction
Given: Base classifier f , anisotropic noise generation method M , input (e.g., image) x, number of Monte
Carlo samples n, confidence 1− α

1: µ, σ ←M
2: counts← CLASSIFYSAMPLES(f, x, µ, σ, n)
3: ĉA ← top index in counts
4: nA ← counts[ĉA]
5: if BINOMIALPVALUE(nA, n, 0.5) ≤ α then
6: return prediction ĉA
7: else
8: return ABSTAIN
9: end if

G VISUALIZATION

We present several examples of anisotropic and isotropic noise in Figure 7. All the proposed
anisotropic noise generation methods find better spatial distribution to generate the anisotropic noise.
Both the pattern-fixed and universal anisotropic reduce the variance on the key area, except the
universal anisotropic noise on ImageNet (it seems the parameter generator does not find a constant
key area on ImageNet due to the complicated data distribution in ImageNet). We also observe that the
parameter generator for input-dependent anisotropic noise generates large mean offsets to compensate
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MNIST CIFAR10 ImageNet

(a) Examples of isotropic noise
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(b) Examples of pattern-fixed anisotropic noise

𝜇

𝜎

Input 
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Noise

MNIST CIFAR10 ImageNet

(c) Examples of universal anisotropic noise

𝜇

𝜎

Input

+

Noise

MNIST CIFAR10 ImageNet

(d) Examples of input-dependent anisotropic noise

Figure 7: Visualized examples of anisotropic noise vs. isotropic noise. The visualization are based on
the input examples in (a).

for the high σ values. It turns out that with high variance (σi ≈ 1), the object is still recognizable in
the input-dependent anisotropic noise.

H EFFICIENCY

UCAN is a universal framework that can be readily integrated into existing randomized smoothing to
boost performance. Whether the extra neural network components (parameter generator) in UCAN
will degrade the efficiency of existing randomized smoothing is an important question. We show
that the running time overhead resulting from the parameter generator is negligible compared to the
running time of the certification, since for each input, the classifier needs to evaluate N noise samples
while µ and σ are generated once. Typically, N = 100, 000. UCAN can be trained offline and
tested online to boost the performance of randomized smoothing. We evaluate the online certification
running time for input-dependent anisotropic noise generation and traditional randomized smoothing
Cohen et al. (2019) on ImageNet with four Tesla V100 GPUs and 2, 000 batch size, the average
runtimes over 500 samples are 27.43s and 27.09s per sample for our method and Cohen et al. (2019)’s
method, respectively. Thus, the NPG will only slightly increase the overall runtime.

I EXPERIMENT DETAILS

We use the original size of the images in MNIST and CIFAR10, i.e., 28 × 28 and 3 × 32 × 32,
respectively. For the ImageNet dataset, we resize the images to 3× 224× 224. In the training, we
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train the base classifier and the parameter generator (if needed) with all the training set in three
datasets. For the MNIST dataset, we use a simple two-layer CNN as the base classifier. For the
CIFAR10 and ImageNet datasets, we use the ResNet110 and ResNet50 He et al. (2016) as the base
classifier, respectively.
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