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Abstract

Network embedding, which maps graphs to distributed representations, is a unified frame-
work for various graph inference tasks. According to the topology properties (e.g., structural
roles and community memberships of nodes) to be preserved, it can be categorized into the
identity and position embedding. Most existing methods can only capture one type of prop-
erty. Some approaches can support the inductive inference that generalizes the embedding
model to new nodes or graphs but relies on the availability of attributes. Due to the compli-
cated correlations between topology and attributes, it is unclear for some inductive methods
which type of property they can capture. In this study, we explore a unified framework for
the joint inductive inference of identity and position embeddings without attributes. An
inductive random walk embedding (IRWE) method is proposed, which combines multiple
attention units to handle the random walk (RW) on graph topology and simultaneously
derives identity and position embeddings that are jointly optimized. We demonstrate that
some RW statistics can characterize node identities and positions while supporting the in-
ductive inference. Experiments validate the superior performance of IRWE over various
baselines for the transductive and inductive inference of identity and position embeddings.

1 Introduction

For various graph inference techniques, network embedding (a.k.a. graph representation learning) is a com-
monly used framework. It maps each node of a graph to a low-dimensional vector representation (a.k.a.
embedding) with some key properties preserved. The derived representations are used to support several
downstream inference tasks, e.g., node classification (Kipf & Welling, 2017; Veličković et al., 2018), node
clustering (Ye et al., 2022; Qin et al., 2023a; Gao et al., 2023), and link prediction (Lei et al., 2018; 2019;
Qin et al., 2023b; Qin & Yeung, 2023).

According to the topology properties to be preserved, existing network embedding techniques can be catego-
rized into the identity and position embedding (Zhu et al., 2021). The identity embedding (a.k.a. structural
embedding) preserves the structural role of each node characterized by its rooted subgraph, which is also
defined as node identity. The position embedding (a.k.a. proximity-preserving embedding) captures the link-
age similarity between nodes in terms of the overlap of local neighbors (i.e., community structures (Newman,
2006)), which is also defined as node position or proximity. In Fig. 1 (a), each color denotes a structural role.
For instance, red and yellow may indicate the opinion leader and hole spanner in a social network (Yang
et al., 2015). Moreover, there are two communities denoted by the two dotted circles in Fig. 1, where nodes
in the same community have dense linkages and thus are more likely to have similar positions.

The identity and position embedding should respectively force nodes with similar identities (e.g., {v1, v8})
and positions (e.g., {v1, v2, v6}) to have close embeddings. As a demonstration, we applied struc2vec (Ribeiro
et al., 2017) and node2vec (Grover & Leskovec, 2016) (with embedding dimensionality d = 2), which are

1

https://openreview.net/forum?id=bDse8Z2gff


Published in Transactions on Machine Learning Research (10/2024)

v1

v2

v3

v4

v5

v6 v7 v8

v9

v10

v11

v12

Community#1 Community#2

v13

(a) Example graph topology (b) Embeddings of struc2vec (d=2) (c) Embeddings of node2vec (d=2)

Figure 1: An example of identity and position embedding in terms of (b) struc2vec and (c) node2vec, where
each color denotes a unique identity while nodes in the same community have similar positions.

typical identity and position embedding methods, to the example in Fig. 1 (a) and visualize the derived
embeddings. Note that two nodes may have the same identity even though they are far away from each
other. In contrast, nodes with similar positions must be close to each other with dense linkage and short
distances. Due to the contradiction, it is challenging to simultaneously capture the two types of properties in
a common embedding space. For instance, v1 and v8 with the same identity have close identity embeddings
in Fig. 1 (b). However, their position embeddings are far away from each other in Fig. 1 (c). Since the two
types of embeddings may be appropriate for different downstream tasks (e.g., structural role classification
and community detection), we expect a unified embedding model.

Most conventional embedding methods (Wu et al., 2020; Grover & Leskovec, 2016; Ribeiro et al., 2017;
Donnat et al., 2018) follow the embedding lookup scheme and can only support transductive embedding
inference. In this scheme, node embeddings are model parameters optimized only for the currently observed
graph topology. When applying the model to new unseen nodes or graphs, one needs to re-train the model
from scratch. Compared with transductive methods, some state-of-the-art techniques (Hamilton et al.,
2017; Velickovic et al., 2019) can support the advanced inductive inference, which directly generalizes the
embedding model trained on observed topology to new unseen nodes or graphs without re-training.

Most existing inductive approaches (e.g., those based on graph neural networks (GNNs) (Wu et al., 2020))
rely on the availability of node attributes and an attribute aggregation mechanism. However, prior studies
(Qin et al., 2018; Li et al., 2019; Wang et al., 2020; Qin & Lei, 2021) have demonstrated some complicated
correlations between graph topology and attributes. For instance, attributes may provide (i) complemen-
tary characteristics orthogonal to topology for better quality of downstream tasks or (ii) inconsistent noise
causing unexpected quality degradation. It is unclear for most inductive methods that their performance
improvement is brought about by the incorporation of attributes or better exploration of topology. When
attributes are unavailable, most inductive approaches require additional procedures to extract auxiliary at-
tribute inputs from topology (e.g., one-hot node degree encodings). Our experiments demonstrate that some
inductive baselines with these naive attribute extraction strategies may even fail to outperform conventional
transductive methods on the inference of identity and position embeddings. It is also hard to determine
which type of properties (i.e., node identities or positions) that some inductive approaches can capture.

In this study, we consider the unsupervised network embedding and explore a unified framework for the joint
inductive inference of identity and position embeddings. To clearly distinguish between the two types of
embeddings, we consider the case where topology is the only available information source. This eliminates
the unclear influence from graph attributes due to the complicated correlations between the two sources.
Different from most existing inductive approaches relying on the availability of node attributes, we propose
an inductive random walk embedding (IRWE) method. It combines multiple attention units with different
choices of key, query, and value to handle the random walk (RW) and induced statistics on graph topology.

RW is an effective technique to explore topology properties for network embedding. However, most RW-
based methods (Grover & Leskovec, 2016; Ribeiro et al., 2017) follow the transductive embedding lookup
scheme, failing to support the advanced inductive inference. We demonstrate that anonymous walk (AW)
(Ivanov & Burnaev, 2018), the anonymization of RW, and its induced statistics can be informative features
shared by all possible nodes and graphs and thus have the potential to support inductive inference.
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Although the identity and position embedding encodes properties that may contradict with one another,
there remains a relation that nodes with different identities should have different contributions in forming
the local community structures. For the example in Fig. 1, v1 and v2 may correspond to an opinion leader
and ordinary audience of a social network, where v1 is expected to contribute more in forming community#1
than v2. By incorporating this relation, IRWE jointly derives and optimizes two sets of embeddings w.r.t.
node identities and positions. In particular, we demonstrate that some AW statistics can characterize node
identities to derive identity embeddings, which can be further used to generate position embeddings. It is
also expected that the joint learning of the two sets of embeddings can improve the quality of one another.

Our major contributions are summarized as follows. (i) In contrast to most existing inductive embedding
methods relying on the availability of node attributes, we propose an alternative IRWE approach, whose
inductiveness is only supported by the RW on graph topology. (ii) To the best of our knowledge, we are
the first to explore a unified framework for the joint inductive inference of identity and position embeddings
using RW, AW, and induced statistics. (iii) Experiments on public datasets validate the superiority of IRWE
over various baselines for the transductive and inductive inference of identity and position embeddings.

2 Related Work

2.1 Identity & Position Embedding

In the past several years, a series of network embedding techniques have been proposed. Rossi et al. (2020)
gave an overview of existing methods covering the identity and position embedding. Most existing embedding
approaches can only capture one type of topology properties (i.e., node identities or positions).

Perozzi et al. (2014) proposed DeepWalk that applies skip-gram to learn node embeddings from RWs on
graph topology. The ability of DeepWalk to capture node positions is further validated in (Pei et al., 2020;
Rossi et al., 2020). Grover & Leskovec (2016) modified the RW in DeepWalk to a biased form and introduced
node2vec that can derive richer position embeddings by adjusting the trade-off between breadth- and depth-
first sampling. Cao et al. (2015) reformulated the RW in DeepWalk to matrix factorization objectives. Wang
et al. (2017), Ye et al. (2022), and Chen et al. (2023) introduced community-preserving embedding methods
based on nonnegative matrix factorization, hyperbolic embedding, and graph contrastive learning.

Ribeiro et al. (2017) proposed struc2vec, an identity embedding method, by applying RW to a multi-
layer graph constructed via hierarchical similarities w.r.t. node degrees. Donnat et al. (2018) used graph
wavelets to develop GraphWave and proved its ability to capture node identities. Pei et al. (2020) introduced
struc2gauss, which encodes node identities in a space formulated by Gaussian distributions, and analyzed the
effectiveness of different energy functions and similarity measures. Guo et al. (2020) enhanced the ability of
GNNs to preserve node identities by reconstructing several manually-designed statistics. Chen et al. (2022)
enabled the graph transformer to capture node identities by incorporating the rooted subgraph of each node.

Hoff (2007) demonstrated that the latent class and distance models can respectively capture node positions
and identities but real networks may exhibit combinations of both properties. An eigen-model was proposed,
which can generalize either the latent class model or distance model. However, the proposed eigen-model is a
conventional probabilistic model and cannot simultaneously capture both properties in a unified framework.
Zhu et al. (2021) proposed a PhUSION framework with three steps and showed which components can
be used for the identity or position embedding. Although PhUSION reveals the similarity and difference
between the two types of embeddings, it can only derive one type of embedding under each unique setting.
Rossi et al. (2020) validated that some techniques (e.g., RW and attribute aggregation) of existing methods
can only derive either identity or position embeddings. Srinivasan & Ribeiro (2020) proved that the relation
between identity and position embeddings can be analogous to that of a probability distribution and its
samples. Similarly, PaCEr (Yan et al., 2024) is a concurrent transductive method that considers the relation
between the two types of embeddings based on RW with restart. Although these methods (Srinivasan &
Ribeiro, 2020; Yan et al., 2024) can derive both identity and position embeddings, they only involve the
optimization of one type of embedding and a simple transform to another type. In contrast, we focus on the
joint learning and inductive inference of the two types of embeddings.
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2.2 Inductive Network Embedding

Some recent studies explore the inductive inference that directly derives embeddings for new unseen nodes or
graphs by generalizing the model parameters optimized on known topology. Hamilton et al. (2017) introduced
GraphSAGE, an inductive GNN framework, including the neighbor sampling and feature aggregation with
different choices of aggregation functions. GAT (Veličković et al., 2018) leverages self-attention into the
attribute aggregation of GNN, which automatically determines the aggregation weights for the neighbors of
each node. Velickovic et al. (2019) proposed DGI that maximizes the mutual information between patch
embeddings and high-level graph summaries. Without using the feature aggregation of GNN, Nguyen et al.
(2021) developed SANNE that applies self-attention to handle RWs sampled from graph topology. However,
the inductiveness of the these methods relies on the availability of node attributes.

Some recent research analyzed the ability of several new GNN structures to capture node identities or
positions in specific cases about node attributes (e.g., all the nodes have the same scalar attribute input (Xu
et al., 2019)). Wu et al. (2019) and You et al. (2021) proposed DEMO-Net and ID-GNN that can capture
node identities using the degree-specific multi-task graph convolution and heterogeneous message passing on
the rooted subgraph of each node, respectively. Jin et al. (2020) leveraged AW statistics into the feature
aggregation to enhance the ability of GNN to preserve node identities. P-GNN (You et al., 2019) can derive
position-aware embeddings based on a distance-weighted aggregation scheme over the sets of sampled anchor
nodes. However, these GNN structures can only capture either node identities or positions.

In contrast to the aforementioned methods, we explore a unified inductive framework for the joint inference
of identity and position embeddings without relying on the availability and aggregation of attributes.

3 Problem Statements & Preliminaries

We consider the unsupervised network embedding on undirected unweighted graphs. A graph can be repre-
sented as G = (V, E), with V = {v1, v2, . . . , vN} and E = {(vi, vj)|vi, vj ∈ V} as the sets of nodes and edges.
We also assume that graph topology is the only available information source and attributes are unavailable.

Definition 1 (Node Identity). Node identity describes the structural role that a node v plays in graph
topology (e.g., opinion leader and hole spanner w.r.t. red and yellow nodes in Fig. 1 (a)), which can be
characterized by its l-hop rooted subgraph Gs(v, l). Given a pre-set l, nodes (v, u) with similar subgraphs
(Gs(v, l),Gs(u, l)) (e.g., measured by the WL graph isomorphism test) are expected to play similar structural
roles and have similar identities.

Definition 2 (Node Position). Positions of nodes in graph topology can be encoded by their relative
distances and can be further characterized by the linkage similarity in terms of the overlap of l-hop neighbors
(i.e., community structures). Nodes with a high overlap of l-hop neighbors are more likely to (i) have short
distance, (ii) belong to the same community, and thus (iii) have similar positions.

Definition 3 (Network Embedding). Given a graph G, we consider the network embedding (a.k.a. graph
representation learning) f : V 7→ Rd that maps each node v to a vector f(v) (a.k.a. embedding), with
either node identities or positions preserved. We define f(v) := ψ(v) (or f(v) := γ(v)) as the identity (or
position) embedding if {ψ(v)} (or {γ(v)}) preserve node identities (or positions). Namely, nodes (v, u) with
similar identities (or positions) should have close representations (ψ(v), ψ(u)) (or (γ(v), γ(u))). The learned
embeddings are adopted as the inputs of some downstream modules to support concrete inference tasks.

The embedding inference includes the transductive and inductive settings. A transductive method focuses
on the optimization of f on the currently observed topology G = (V, E) and can only support inference
tasks on V. In contrast, an inductive approach can directly generalize its model parameters, which are first
optimized on (V, E), to new unseen nodes V ′ or even a new graph G′′ = (V ′′, E ′′) and support tasks on V ′

or V ′′ (i.e., the inductive inference for new nodes or across graphs). A transductive method cannot support
the inductive inference but an inductive approach can tackle both settings.

We focus on the joint inductive inference of identity and position embeddings. A novel IRWE method is
proposed which combines multiple attention units to handle RWs and induced AWs.
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Figure 2: Model architecture of IRWE including modules of (b) identity and (c) position embeddings.

Definition 4 (Random Walk & Anonymous Walk). An RW with length l is a node sequence w =
(w(0), w(1), . . . , w(l)), where w(j) ∈ V is the j-th node and (w(j), w(j+1)) ∈ E . Assume that the index j
starts from 0. For an RW w, one can map it to an AW ω = (Iw(w(0)), . . . , Iw(w(l))), where Iw(w(j)) maps
w(j) to its first occurrence index in w.

In Fig. 1 (a), (v1, v4, v5, v1, v6) is a valid RW with (0, 1, 2, 0, 3) as its AW. In particular, two RWs (e.g.,
(v1, v4, v5, v1) and (v8, v10, v9, v8)) can be mapped to a common AW (i.e., (0, 1, 2, 0)). In Section 4, we
further demonstrate that AW and its induced statistics can be features shared by all possible topology and
thus can support the inductive embedding inference without attributes.

4 Methodology

In this section, we elaborate on the model architecture as well as the optimization and inference of IRWE.
Fig. 2 (a) gives an overview of the model architecture, including two jointly optimized modules that derive
identity embeddings {ψ(v)} and position embeddings {γ(v)}.

4.1 Identity Embedding Module

Fig. 2 (b) highlights details of the identity embedding module. It derives identity embeddings {ψ(v)} based
on auxiliary AW embeddings {φ(ω)}, AW statistics {s(v)}, and high-order degree features {δ(v)}. Fig. 3
gives running examples about the extraction of {φ(ω)}, {s(v)}, and {δ(v)} based on the local topology of
node v1 in Fig. 1, where we set RW length l = 3 and the number of sampled RWs nS = 5 as a demonstration.
The optimization and inference of this module includes the (1) AW embedding auto-encoder, (2) identity
embedding encoder, and (3) identity embedding decoder.
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Figure 3: Running examples about the derivation of one-hot AW encodings {ρ(ω)}, AW statistics {s(v)},
and high-order degree features {δ(v)} based on the local topology of node v1 in Fig. 1.

4.1.1 AW Embedding Auto-Encoder

As discussed in Section 3, it is possible to map RWs with different sets of nodes to a common AW. For
instance, (0, 1, 2, 0) is the common AW of RWs (v1, v2, v3, v1) and (v1, v4, v5, v1) in Fig. 3. Given a fixed
length l, RWs on all possible topology structures can only be mapped to a finite set of AWs Ωl. Namely, Ωl
and its induced statistics are shared by all possible nodes and graphs, thus having the potential to support the
inductive embedding inference. Based on this intuition, IRWE maintains an AW embedding φ(ω) ∈ Rd for
each AW ω ∈ Ωl. In this setting, {φ(ω)} can be used as a special embedding lookup table for the derivation
of inductive features regarding graph topology.

We also consider an additional constraint on {φ(ω)}, where two AWs with more common elements in corre-
sponding positions should have closer representations. For instance, (0, 1, 2, 1, 2) and (0, 1, 0, 1, 2) should be
closer in the AW embedding space than (0, 1, 2, 1, 2) and (0, 1, 0, 2, 3). To apply this constraint, we transform
each AW ω with length l to a one-hot encoding ρ(ω) ∈ {0, 1}(l+1)2 , where ρ(ω)jl:(j+1)l (i.e., subsequence
from the jl-th to the (j + 1)l-th positions) is the one-hot encoding of the j-th element in ω. For instance,
we have ρ(ω) = [0000 0100 0010 0001] for ω = (0, 1, 2, 3) in Fig. 3. An auto-encoder is then introduced to
derive and regularize {φ(ω)}, including an encoder and a decoder. Given an AW ω, the encoder Encφ(·) and
decoder Decφ(·) are defined as

φ(ω) = Encφ(ω) := MLP(ρ(ω)), ρ̂(ω) = Decφ(ω) := MLP(φ(ω)), (1)

which are both multi-layer perceptrons (MLPs). The encoder takes ρ(ω) as input and derives AW embedding
φ(ω). The decoder reconstructs ρ(ω) with φ(ω) as input. Since similar AWs have similar one-hot encodings,
similar AWs can have close embeddings by minimizing the reconstruction error between {ρ(ω)} and {ρ̂(ω)}.

4.1.2 Identity Embedding Encoder

IRWE derives identity embeddings {ψ(v)} via the combination of AW embeddings {φ(ω)} inspired by the
following Theorem 1 (Micali & Zhu, 2016).

Theorem 1. Let Gs(v, r) be the rooted subgraph induced by nodes with a distance less than r from v. Let
q(v, l) be the distribution of AWs w.r.t. RWs starting from v with length l. One can reconstruct Gs(v, r) in
time O(n2) with O(n2) access to [q(v, 1), · · · , q(v, l)], where l = O(m); n and m are the numbers of nodes
and edges in Gs(v, r).

For a given length l, let ηl be the number of AWs. q(v, l) can be represented as an ηl-dimensional vector, with
the j-th element as the occurrence probability of the j-th AW. Since AWs with length l include sequences
of those with length less than l (e.g., (0, 1, 2, 3) provides information about (0, 1, 2)), one can derive q(v, k)
(k < l) based on q(v, l). Therefore, q(v, l) can be used to characterize Gs(v, r) according to Theorem 1.
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Algorithm 1: Derivation of AW Statistics
Input: target node v; RW length l; sampled RWs W(v); AW lookup table Ωl; number of AWs ηl
Output: AW statistic s(v) w.r.t. v

1 s(v)← [0, 0, · · · , 0]ηl //Initialize s(v)
2 for each w ∈ W(v) do
3 map RW w to its AW ω
4 get the index j of AW ω in lookup table Ωl
5 s(v)j ← s(v)j + 1 //Update s(v)

As defined in Section 3, nodes with similar rooted subgraphs are expected to play similar structural roles and
thus have similar identities. For instance, in Fig. 1, Gs(v1, 1) and Gs(v8, 1) have the same topology structure,
which is consistent with the same identity they have. Hence, q(v, l) can characterize the identity of node v.

To estimate q(v, l), we extract AW statistic s(v) for each node v using Algorithm 1. We first sample RWs
with length l starting from v via the standard unbiased strategy (Perozzi et al., 2014) (see Algorithm 6 in
Appendix A). Let W(v) be the set of sampled RWs starting from v. Each RW w ∈ W(v) is then mapped
to its AW. Let Ωl be an AW lookup table including all the ηl AWs with length l, which is fixed and shared
by all possible topology. We define the AW statistic as s(v) := [c(ω1), · · · , c(ωηl)] ∈ Zηl+ , where c(ωj) is the
frequency of the j-th AW in Ωl as illustrated in Fig. 3.
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Figure 4: Visualization of AW statistics {s(v)} on Brazil.

Table 1: Variation of the Number of AWs and its
Reduced Value w.r.t. Length l on Brazil

l 4 5 6 7 8 9
ηl 52 203 877 4,140 21,147 115,975
η̃l 15 52 195 610 1,540 3,173

Although ηl grows exponentially with the increase of length l, {s(v)} are usually sparse. Fig. 4 visualizes the
example AW statistics {s(v)} derived from RWs on the Brazil dataset (see Section 5.1 for details) with l = 4
and |W(v)| = 1, 000. The i-th row in Fig. 4 is the AW statistic s(vi) of node vi. Dark blue indicates that the
corresponding element is 0. There exist many AWs {ωj} not observed during the RW sampling (i.e., ∀v ∈ V
s.t. s(v)j = 0). We then remove terms w.r.t. these unobserved AWs in Ωl and {s(v)}. Let Ω̃l, s̃(v), and η̃l
be the reduced Ωl, s(v), and ηl. Table 1 shows the variation of ηl and η̃l on Brazil as l increases from 4 to
9, where ηl is significantly reduced.

In addition to {s̃(v)}, one can also characterize node identities from the view of node degrees (Ribeiro et al.,
2017; Wu et al., 2019) based on the following Hypothesis 1.

Hypothesis 1. Nodes with the same degree are expected to play the same structural role. This concept can
be extended to high-order neighbors of nodes. Namely, nodes are expected to have similar identities if they
have similar node degree statistics (e.g., distribution over all degree values) w.r.t. their high-order neighbors.

Based on this motivation, we extract high-order degree feature δ(v) for each node v using Algo-
rithm 2. Given a node u, one can construct a bucket one-hot encoding ρd(u) ∈ {0, 1}e w.r.t. its de-
gree deg(u), where only the j-th element ρd(u)j is set to 1 with the remaining elements set to 0 and
j = ⌊(deg(u) − degmin)e/(degmax − degmin)⌋; degmin and degmax are the minimum and maximum degrees.
Since high-order neighbors of a node v can be explored by RWs W(v) starting from v, we define δ(v) ∈ Z(l+1)e

as an (l + 1)e-dimensional vector, where the subsequence δ(v)ie:(i+1)e is the sum of bucket one-hot degree
encodings w.r.t. nodes occurred at the i-th position of RWs in W(v). Fig. 3 gives a running example to
derive δ(v1) (with e = 5) for node v1 in Fig. 1.
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Algorithm 2: Derivation of Degree Features
Input: target node v; RW length l; one-hot degree encoding dimensionality e; sampled RWs W(v); minimum

degree degmin; maximum degree degmax
Output: high-order degree feature δ(v) w.r.t. v

1 δ(v)← [0, 0, · · · , 0](l+1)e //Initialize degree feature δ(v)
2 for each w ∈ W(v) do
3 for i from 0 to l do
4 u← w(i) //i-th node in current RW w
5 ρd(u)← [0, · · · , 0] ∈ Re //Initialize degree encoding ρd(u)
6 j ← ⌊(deg(u)− degmin)e/(degmax − degmin)⌋
7 ρd(u)j ← 1 //Update ρd(u)
8 δ(v)ie:(i+1)e ← δ(v)ie:(i+1)e + ρd(u)//Update δ(v)

Following the aforementioned discussions regarding Theorem 1 and Hypothesis 1, IRWE derives identity
embeddings {ψ(v)} via the adaptive combination of AW embeddings {φ(ω)} w.r.t. AW statistics {s̃(v)} and
degree features {δ(v)}. The multi-head attention is applied to automatically determine the contribution of
each AW embedding φ(ω) in the combination, where we treat {φ(ω)} as the key and value; the concatenated
feature [s̃(v)||δ(v)] is used as the query. Before feeding [s̃(v)||δ(v)] ∈ R(η̃l+le) to the multi-head attention,
we introduce a feature reduction unit Reds(·), an MLP, to reduce its dimensionality to d:

ḡ(v) = Reds(v) := MLP([s̃(v)||δ(v)]). (2)

The multi-head attention that derives identity embeddings {ψ(v)} is defined as

Z = Att(Q,K,V) = Att({ḡ(v)}, {φ(ω)}, {φ(ω)}), (3)

where Att(·, ·, ·) is the standard multi-head attention unit (see Appendix D for details), with Q, K, and V
as inputs of query, key, and value. In (3), we have Qi,: = ḡ(vi), Kj,: = Vj,: = φ(ωj), and Zi,: = ψ(vi).

4.1.3 Identity Embedding Decoder

An identity embedding decoder Decψ(·) is introduce to regularize identity embeddings {ψ(v)} using statistics
{[s̃(v)||δ(v)]}. It takes the ψ(v) of a node v as input and reconstruct corresponding [s̃(v)||δ(v)] via

ĝ(v) = Decψ(v) := MLP(ψ(v)), (4)

where ĝ(v) is the reconstructed statistic. It can force {ψ(v)} to capture node identities hidden in {[s̃(v)||δ(v)]}
by minimizing the reconstruction error between {ĝ(v)} and {[s̃(v)||δ(v)]}. Note that we only apply Decψ(·)
to optimize {ψ(v)} and do not need this unit in the inference phase.

4.2 Position Embedding Module

Fig. 2 (c) gives an overview of the position embedding module. It derives position embeddings {γ(v)}
based on (i) identity embeddings {ψ(v)} given by the previous module and (ii) auxiliary position encodings
{πg(v), πl(j)} extracted from the sampled RWs {W(v)}. Instead of using the attribute aggregation mechanism
of GNNs, we convert the graph topology into a set of RWs and use the transformer encoder (Vaswani et al.,
2017), a sophisticated structure that can process sequential data, to handle RWs. Besides the sequential
input, transformer also requires a ‘position’ encoding to describe the position of each element in the sequence.
As highlighted in Definition 3, the physical meaning of node position in non-Euclidean graphs is different
from that in Euclidean sequences (e.g., sentences and RWs). To describe the (i) Euclidean position in RWs
and (ii) node position in a graph, we introduce the local and global position encodings (denoted as πl(j) and
πg(v)) for a sequence position with index j and each node v. The optimization and inference of this module
includes the (1) input fusion unit, (2) position embedding encoder, and (3) position embedding decoder.
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Algorithm 3: Derivation of Global Position Encoding
Input: target node v; sampled RWs W(v); node set V; random matrix Θ ∈ R|V|×d

Output: global position encoding πg(v) w.r.t. v
1 r(v)← [0, 0, · · · , 0]|V| //Initialize RW statistic r(v)
2 for each w ∈ W(v) do
3 for each vj ∈ w do
4 r(v)j ← r(v)j + 1 //Update r(v)

5 πg(v)← r(v)Θ //Derive πg(v)

4.2.1 Input Fusion Unit

The input fusion unit extracts {πl(j), πg(v)} and derives inputs of the transformer encoder combined with
{ψ(v)}. Since the RW length l is usually not very large (e.g., ≤ 10 in our experiments), we define the local
position encoding πl(j) ∈ {0, 1}l+1 as the standard one-hot encoding of index j. Inspired by previous studies
(Perozzi et al., 2014; Grover & Leskovec, 2016; Zhu et al., 2021) that validated the potential of RW for
exploring local community structures, we extract the global position encoding {πg(v)} for each node v w.r.t.
RW statistic r(v) using Algorithm 3.

Given a node v, we maintain r(v) ∈ Z|V|, with the j-th element r(v)j as the frequency that node vj occurs
in RWs W(v) starting from v. For instance, we have r(v1) = [8, 2, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0, 1] for the running
example in Fig. 3 with 13 nodes. Since nodes in a community are densely connected, nodes within the same
community are more likely to be reached via RWs. Therefore, nodes (v, u) with similar positions are expected
to have similar statistics (r(v), r(u)). We then derive πg(v) by mapping r(v) to a d-dimensional vector via
the following Gaussian random projection, an efficient dimension reduction technique that can preserve the
relative distance between input features with a rigorous guarantee (Arriaga & Vempala, 2006):

πg(v) = r(v)Θ with Θ ∈ R|V|×d,Θir ∼ N (0, 1/d). (5)

In this setting, the non-Euclidean node positions in a graph topology are encoded in terms of the relative
distance between {πg(v)}. Hence, πg(v) has the initial ability to encode the position of node v. IRWE
integrates the relation between node identities and positions based on the following Hypothesis 2.

Hypothesis 2. In a community (i.e., node cluster with dense linkages), nodes with different structural roles
may have different contributions in forming the community structure.

For instance, in a social network, an opinion leader (e.g., v1 and v8 in Fig. 1) is expected to have more
contributions in forming the community it belongs to than an ordinary audience (e.g., v2 and v9 in Fig. 1).
Based on this intuition, we use identity embeddings {ψ(v)} to reweight global position encodings {πg(v)},
with the reweighting contributions determined by a modified attention operation. Concretely, we set identity
embeddings {ψ(v)} as the query and let global position encodings {πg(v)} as the key and value (i.e., Qi,: =
ψ(vi) and Ki,: = Vi,: = πg(vi)). The modified attention operation is defined as

Z = ReAtt(Q,K,V) := (MLP(Q̃) + MLP(K̃)) ⊙ Ṽ, (6)

where Q̃ := BN(Q), K̃ := BN(K), and Ṽ := BN(V); BN(·) and ⊙ are the batch normalization and element-
wise multiplication. In (6), we apply two MLPs to derive nonlinear mappings of the normalized {Q,K} and
use their sum to support the element-wise reweighting of the normalized V. For convenience, we denote
the reweighted vector w.r.t. a node vi as π̄g(vi) = Zi,:. Given an RW w = (w(0), w(1), · · · , w(l)), IRWE
concatenates the reweighted vector π̄g(w(j)) and local position encoding πl(j) for the j-th node and feeds its
linear mapping to the transformer encoder:

t(w(j)) := [π̄g(w(j))||πl(j)]Wt, (7)

where Wt ∈ R(d+l+1)×d is a trainable parameter.
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4.2.2 Position Embedding Encoder

IRWE uses the transformer encoder TransEnc(·) to handle an RW w = (w(0), · · · , w(l)):

(t̄(w(0)), · · · ) = TransEnc(t(w(0)), · · · , t(w(l))). (8)

It takes the corresponding sequence of vectors (t(w(0)), · · · , t(w(l))) as input and derives another sequence
of vectors (t̄(w(0)), · · · , t̄(w(l))) with the same dimensionality. TransEnc(·) follows a multi-layer structure,
with each layer including the self-attention, skip connections, layer normalization, and feedforward mapping.
Due to space limit, we omit details of TransEnc(·) that can be found in (Vaswani et al., 2017).

For an RW w starting from a node v, the first output vector t̄(w(0)) = t̄(v) can be a representation of v. As
we sample multiple RWs W(v) starting from each node v, one can obtain multiple such representations based
on W(v). However, we only need one unique positon embedding γ(v) for v. Let t̄(v) := {t̄(w(0))|w ∈ W(v)}. A
naive strategy to derive γ(v) is to average representations in t̄(v). Instead, we develop the following attentive
readout function to compute the weighted mean of t̄(v), with the weights determined by attention:

z = ROut(t̄(v), πg(v)) := Att(πg(v), t̄(v), t̄(v)), γ(v) := zWγ + bγ , and γ̄(v) := zWγ̄ + bγ̄ . (9)

In (9), Att(·, ·, ·) is the standard multi-head attention unit (see Appendix D for details), where we let the
global position encoding πg(v) be the query (i.e., Q = πg(v) ∈ R1×d) and t̄(v) be the key and value (i.e.,
Kj,: = Vj,: = t̄

(v)
j ). γ(v) and γ̄(v) are the (i) position embedding and (ii) auxiliary context embedding of node

v, with {Wγ ,bγ ,Wγ̄ ,bγ̄} as trainable parameters.

4.2.3 Position Embedding Decoder

The position embedding decoder is introduced to optimize position embeddings {γ(v)} together with auxiliary
context embeddings {γ̄(v)}. Some of existing embedding methods (Perozzi et al., 2014; Tang et al., 2015;
Hamilton et al., 2017) are optimized via the following contrastive loss with negative sampling:

min Lcnr = −
∑

(vi,vj)∈D
[pij ln σ(γ(vi)γ̃T (vj)/τ) +Qnj ln σ(−γ(vi)γ̃T (vj)/τ)], (10)

where D denotes the training set including positive and negative samples in terms of node pairs {(vi, vj)};
pij is defined as the statistic of a positive node pair (vi, vj) (e.g., the frequency that (vi, vj) occurs in the
RW sampling); Q is the number of negative samples; nj is usually set to be the probability that (vi, vj) is
selected as a negative sample; σ(·) is the sigmoid function; τ is a temperature parameter to be specified. We
follow prior work (Tang et al., 2015) to let pij := Aij/deg(vi) (i.e., the probability that there is an edge from
vi to vj with A ∈ {0, 1}|V|×|V| as the adjacency matrix) and nj ∝ (

∑
i:(vi,vj)∈E pij)0.75. In the next section,

we demonstrate that the contrastive loss (10) can be converted to a reconstruction loss such that the joint
optimization of IRWE only includes several reconstruction objectives.

4.3 Model Optimization & Inference

Given an RW length l, let Ω̃l be the reduced AW lookup table w.r.t. the reduced AW statistics {s̃(v)} in
(2). The optimization objective of identity embeddings {ψ(v)} can be described as

min Lψ := Lreg−φ + αLreg−ψ, (11)

Lreg−φ :=
∑

ω∈Ω̃l
|ρ(ω) − ρ̂(ω)|22, (12)

Lreg−ψ :=
∑

v∈V
|[s̃(v)||δ(v)]/|W(v)| − ĝ(v)|22, (13)

where Lreg−φ regularizes auxiliary AW embeddings {φ(ω)} by reconstructing the one-hot AW encodings
{ρ(ω)} via the auto-encoder defined in (1); Lreg−ψ regularizes the derived identity embeddings {ψ(v)} by
minimizing the error between (i) features {[s̃(v)||δ(v)]} normalized by the number of sampled RWs |W(v)|
and (ii) reconstructed values {ĝ(v)} given by (4); α is a tunable parameter.

10
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Algorithm 4: Model Optimization of IRWE
Input: topology (V, E); RW settings {l, nS , nI}; local position encodings {πl(j)}; optimization settings

{m,mψ,mγ , λψ, λγ}
Output: sampled RWs {W(v),W(v)

I }; reduced AW lookup table Ω̃l & induced statistics {s̃(v), δ(v), πg(v)};
optimized model parameters {θ∗

ψ, θ
∗
γ}

1 get AW lookup table Ωl w.r.t. length l
2 get min degree degmin & max degree degmax of (V, E)
3 get contrastive statistic C
4 for each node v ∈ V do
5 sample nS RWs W(v) staring from v via Algorithm 6
6 get AW statistic s(v) w.r.t. W(v) via Algorithm 1
7 get degree feature δ(v) w.r.t. {W(v), dmin, dmax} via Algorithm 2
8 get global position encoding πg(v) w.r.t. W(v) via Algorithm 3
9 randomly select nI RWs W(v)

I from W(v)

10 get reduced AW statistic {s̃(v)} by deleting unobserved AWs
11 get reduced AW lookup table Ω̃l w.r.t. {s̃(v)}
12 initial model parameters {θψ, θγ}
13 for iter_count from 1 to m do
14 for countψ from 1 to mψ do
15 get {ρ̂(ω), ĝ(v)} w.r.t. {Ω̃l, s̃(v), δ(v)}
16 get training loss Lψ via (11)
17 optimize identity embeddings {ψ(v)} via Opt(λψ, θψ,Lψ)
18 for countγ from 1 to mγ do
19 get identity embeddings {ψ(v)} w.r.t. {Ω̃l, s̃(v), δ(v)}
20 get position embeddings {γ(v)} w.r.t. {ψ(v), πg(v), πl(j),W(v)

I }
21 get training loss Lγ via (14)
22 optimize position embeddings {γ(v)} via Opt(λγ , {θψ, θγ},Lγ)
23 save model parameters {θψ, θγ}

As described in Section 4.2.3, one can optimize position embeddings {γ(v)} via a contrastive loss (10). It
can be converted to another reconstruction loss based on the following Proposition 1. In this setting, the
optimization of {ψ(v)} and {γ(v)} only includes three simple reconstruction losses.

Proposition 1. Let Γ ∈ R|V|×d and Γ̄ ∈ R|V|×d be the matrix forms of {γ(vi)} and {γ̄(vi)} with the i-th
rows denoting the corresponding embeddings of node vi. We introduce the auxiliary contrastive statistics
C ∈ R|V|×|V | in terms of a sparse matrix where Cij = ln pij − ln(Qnj) if (vi, vj) ∈ E and Cij = 0 otherwise.
The contrastive loss (10) is equivalent to the following reconstruction loss:

min Lγ =
∥∥ΓΓ̄T /τ − C

∥∥2
F
. (14)

The key idea to prove Proposition 1 is to let the partial derivative ∂Lcnr/∂[γ(vi)γ̄T (vj)/τ ] w.r.t. each edge
(vi, vj) to 0. We leave the proof of Proposition 1 in Appendix C.

Algorithm 4 summarizes the joint optimization procedure of IRWE. Before formally optimizing the model, we
sampled nS RWs W(v) starting from each node v and derive statistics {s̃(v), δ(v), πg(v)} induced by {W(v)}.
In particular, we randomly select nI RWs W(v)

I from W(v) (nI < nS) for each node, which are handled by
the transformer encoder in the position embedding module. Namely, we use a ratio of the sampled RWs to
derive {γ(v)} due to the high complexity of transformer. We only sample RWs and derive induced statistics
once, which are shared by the following optimization iterations.

To jointly optimize {ψ(v)} and {γ(v)}, one can combine (11) and (14) to derive a single hybrid optimization
objective. Our pre-experiments show that better embedding quality can be achieved if we separately optimize
the two types of embeddings. One possible reason is that the two modules have unbalanced scales of
parameters. Let θψ and θγ be the sets of model parameters of the identity and position modules. The scale
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Algorithm 5: Inductive Inference within a Graph
Input: optimized model parameters {θ∗

ψ, θ
∗
γ}; new topology (V ∪ V ′, E ′); RW settings {l, nS , nI}; local position

encodings {πl(j)}; {Ω̃l,degmin, degmax, s̃(v), δ(v), πg(v)} derived in model optimization on old topology
(V, E)

Output: inductive embeddings {ψ(v)} & {γ(v)} w.r.t. V ′

1 for each node v ∈ V ′ do
2 sample nS RWs W(v) from v w.r.t. E ′ via Algorithm 6
3 get AW statistic s̃′(v) w.r.t. {W(v), Ω̃l} via Algorithm 8
4 get degree feature δ′(v) w.r.t. {W(v),dmin, dmax} via Algorithm 9
5 get global position encoding π′

g(v) w.r.t. {W(v),V} via Algorithm 10
6 randomly select nI RWs W(v)

I from W(v)

7 add s̃′(v), δ′(v), & π′
g(v) to {s̃(v)}, {δ(v)}, & {πg(v)}

8 get {ψ(v)} based on {Ω̃l, s̃(v), δ(v)} w.r.t. V ∪ V ′

9 get {γ(v)} based on {ψ(v), πg(v), πl(j),W(v)
I } w.r.t. V ′

of θγ is larger than θψ due to the application of transformer. As described in lines 14-17 and lines 19-22, we
respectively update {ψ(v)} and {γ(v)} mψ ≥ 1 and mγ ≥ 1 times based on (11) and (14) in each iteration,
where we can balance the optimization of {ψ(v)} and {γ(v)} by adjusting mψ and mγ .

Note that {ψ(v)} are inputs of the position embedding module, providing node identity information for the
inference of {γ(v)}. The optimization of {γ(v)} also includes the update of θψ via gradient descent, which
also affect the inference of {ψ(v)}. Therefore, the two types of embeddings are jointly optimized although we
adopt a separate updating strategy. The Adam optimizer is used to update {θψ, θγ}, with λψ and λγ as the
learning rates for {ψ(v)} and {γ(v)}. Finally, we save model parameters after m iterations.

During the model optimization, we save the sampled RWs {W(v),W(v)
I }, reduced AW lookup table Ω̃l, and

induced statistics {s̃(v), δ(v), πg(v)} (i.e., lines 4-11 in Algorithm 4) and use them as inputs of the transductive
inference of {ψ(v)} and {γ(v)}. Then, the transductive inference only includes one feedforward propagation
through the model. We summarize this simple inference procedure in Algorithm 7 (see Appendix A).

To support the inductive inference for new nodes within a graph, we adopt an incremental strategy to
get the inductive statistics {s̃(v), δ(v), πg(v)} via modified versions of Algorithms 1, 2, and 3 that utilize
some intermediate results derived during the training on old topology (V, E). Algorithm 5 summarizes the
inductive inference within a graph. Let V ′ and E ′ be the set of new nodes and edge set induced by V ∪ V ′.
We sample RWs W(v) for each new node v ∈ V ′ and get the AW statistic s̃(v) w.r.t. AWs in the lookup
table Ω̃l reduced on old topology (V, E) rather than all AWs. δ(v) is derived based on the one-hot degree
encoding truncated by the minimum and maximum degrees of (V, E). In the derivation of πg(v), we compute
truncated RW statistic r(v) only w.r.t. previously observed nodes V. We detail procedures to derive inductive
{s̃(v), δ(v), πg(v)} in Algorithms 8, 9, and 10 (see Appendix A). Similar to the transductive inference, given
the derived {s̃(v), δ(v), πg(v)}, we obtain the inductive {ψ(v)} and {γ(v)} via one feedforward propagation.

For the inductive inference across graphs, we sample RWs {W(v),W(v)
I } on each new graph (V ′′, E ′′). Since

there are no shared nodes between the training and inference topology, we only incrementally compute the
reduced/truncated statistics {s̃(v), δ(v)} using the procedures of lines 3-4 in Algorithm 5. We derive global
position encodings {πg(v)} from scratch via Algorithm 3. We summarize this inductive inference procedure
in Algorithm 11 (see Appendix A). We also leave detailed complexity analysis of IRWE in Appendix B.

5 Experiments

In this section, we elaborate on our experiments. Section 5.1 introduces experiment setups. Evaluation
results for the transductive and inductive embedding inference are described and analyzed in Sections 5.2
and 5.3. Ablation study and parameter analysis are introduced in Sections 5.4 and 5.5. Due to space limit,
we leave detailed experiment settings and further experiment results in Appendix D and E.
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5.1 Experiment Setups

Table 2: Statistics of Datasets
Datasets N E K
PPI 3,890 38,739 50
Wiki 4,777 92,517 40
BlogCatalog 10,312 333,983 39
USA 1,190 13,599 4
Europe 399 5,993 4
Brazil 131 1,003 4
PPIs 1,021-3,480 4,554-26,688 10

Table 3: Details of Methods to be Evaluated
Methods Trans Ind Pos Ide
node2vec (Grover & Leskovec, 2016)

√ √

GraRep (Cao et al., 2015)
√ √

struc2vec (Ribeiro et al., 2017)
√ √

struc2gauss (Pei et al., 2020)
√ √

PaCEr (Yan et al., 2024)
√

∆ ∆
PhUSION (Zhu et al., 2021)

√
∆ ∆

GraphSAGE (Hamilton et al., 2017)
√

- -
DGI (Velickovic et al., 2019)

√
- -

GraphMAE (Hou et al., 2022)
√

- -
GraphMAE2 (Hou et al., 2023)

√
- -

P-GNN (You et al., 2019)
√ √

CSGCL (Chen et al., 2023)
√ √

GraLSP (Jin et al., 2020)
√ √

SPINE (Guo et al., 2019)
√ √

GAS (Guo et al., 2020)
√ √

SANNE (Nguyen et al., 2021)
√

- -
UGFormer (Nguyen et al., 2022)

√
- -

IRWE (ours)
√ √ √

Datasets. We used seven datasets commonly used by related research to validate the effectiveness of IRWE,
with statistics shown in Table 2, where N , E, and K are the numbers of nodes, edges, and classes.

PPI, Wiki, and BlogCatalog are the first type of datasets (Grover & Leskovec, 2016; Zhu et al., 2021)
providing the ground-truth of node positions for multi-label classification. USA, Europe, and Brazil are the
second type of datasets (Ribeiro et al., 2017; Zhu et al., 2021) with node identity ground-truth for multi-class
classification. In summary, PPI, Wiki, and BlogCatalog are widely used to evaluate the quality of position
embedding while USA, Europe, and Brazil are well-known datasets for the evaluation of identity embedding.

PPIs is a widely used dataset for the inductive inference across graphs (Hamilton et al., 2017; Veličković
et al., 2018), which includes a set of protein-protein interaction graphs (in terms of connected components).
In addition to graph topology, PPIs also provides node features and ground-truth for node classification.
As stated in Section 3, we do not consider graph attributes due to the complicated correlations between
topology and attributes. It is also unclear whether the classification ground-truth is dominated by topology
or attributes. Therefore, we only used the graph topology of PPIs.

Downstream Tasks. We adopted multi-label and multi-class node classification for the evaluation of
position and identity embeddings on the first and second types of datasets, respectively. In particular, each
node may belong to multiple classes in multi-label classification while each node only belongs to one class
in multi-class classification. We used Micro F1-score as the quality metric for the two classification tasks.
To avoid the exception that some labels are not presented in all training examples, we removed classes with
very few numbers of members (i.e., less than 8) when conducting node classification.

We also adopted unsupervised node clustering to evaluate the quality of identity and position embeddings.
Inspired by spectral clustering (Von Luxburg, 2007) and Hypothesis 1, we constructed an auxiliary (top-10)
similarity graph GD based on the high-order degree features {δ′(v) ∈ R(l+1)e} derived via a procedure similar
to Algorithm 2. The only difference between {δ′(v)} (used for evaluation) and {δ(v)} (used in IRWE) is that
δ′(v) is derived from the rooted subgraph Gs(v, l′) but not the sampled RWs W(v). To obtain {δ′(v)}, we set
l = 5 (i.e., the order of neighbors) and e = 500 (i.e., the dimensionality of the one-hot degree encoding) for
the first type of datasets while we let l = 3 and e = 200 for PPIs. Namely, we applied a clustering algorithm
to embeddings learned on the original graph G but evaluated the clustering result on GD. We define this task
as the node identity clustering and expect that it can measure the quality of identity embeddings becuase
high-order degree features {δ′(v)} can capture node identities.

In addition, we treated the node clustering evaluated on the original graph G as community detection (New-
man, 2006), a task commonly used for the evaluation of position embeddings. Normalized cut (NCut)
(Von Luxburg, 2007) w.r.t. GD and modularity (Newman, 2006) w.r.t. G were used as quality metrics for
node identity clustering and community detection. We leave details of NCut and modularity in Appendix D.
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Logistic regression and KMeans were used as downstream algorithms for node classification and clustering.
Larger F1-score and modularity as well as smaller NCut implies better performance of downstream tasks,
thus indicating better embedding quality.

In summary, we adopted (i) node identity clustering and (ii) multi-label node classification to respectively
evaluate identity and position embeddings on the first type of datasets. For the second type of datasets,
(i) multi-label node classification and (ii) community detection were used to evaluate identity and position
embeddings. We only applied the unsupervised (i) node identity clustering and (ii) community detection to
evaluate the two types of embeddings for PPIs, since we did not consider its ground-truth.

Baselines. We compared IRWE with 17 unsupervised baselines, covering identity and position embedding
as well as transductive and inductive approaches. Table 3 summarizes all the methods to be evaluated,
where ‘-’ denotes that it is unclear for a baseline which type of property it can capture. PhUSION has
multiple variants using different proximities for different types of embeddings. We used variants with (i)
positive point-wise mutual information and (ii) heat kernel, which are recommended proximities for position
and identity embedding, as two baselines denoted as PhN-PPMI and PhN-HK. Each variant of PhUSION
can only derive one type of embedding. Although PaCEr also considers the correlation between identity and
position embeddings (denoted as PaCEr(I) and PaCEr(P)) and derives both types of embeddings, it only
optimizes PaCEr(P) based on the observed graph topology and simply transform PaCEr(P) to PaCEr(I).

For each transductive baseline, we can distinguish that it captures node identities or positions. For inductive
baselines, GraLSP, SPINE, and GAS are claimed to be identity embedding methods while P-GNN and
CSGCL can preserve node positions. Similar to our method, GraLSP and SPINE use RWs and induced
statistics to enhance the embedding quality. SANNE applies the transformer encoder to handle RWs. All
the inductive baselines rely on the availability of node attributes. We used the bucket one-hot encodings
of node degrees as their attribute inputs, a widely-used strategy for inductive methods when attributes are
unavailable. All the transductive methods learn their embeddings only based on graph topology. To validate
the challenge of capturing node identities and positions in one embedding space, we introduced an additional
baseline [n2v||s2v] by concatenating node2vec and struc2vec.

Most of the baseline can only generate one set of embeddings. We have to use this unique set of embeddings
to support two different tasks on each dataset. Our IRWE method can support the inductive inference of
identity and position embeddings, simultaneously generating two sets of embeddings. For convenience, we
denote the derived identity and position embeddings as IRWE(ψ) and IRWE(γ).

As stated in Section 3, we consider the unsupervised network embedding. There exist supervised inductive
methods (e.g., GAT (Veličković et al., 2018), GIN (Xu et al., 2019), ID-GNN (You et al., 2021), DE-GNN (Li
et al., 2020), DEMO-Net (Wu et al., 2019), and SAT (Chen et al., 2022)) that do not provide unsupervised
training objectives in their original designs. To ensure the fairness of comparison, these supervised baselines
are not included in our experiments. Due to space limit, we leave details of layer configurations, parameter
settings, and experiment environment in Appendix D.

5.2 Evaluation of Transductive Embedding Inference

We first evaluated the transductive embedding inference of all the methods on the first and second types
of datasets. For the two classification tasks, we randomly sampled T ∈ {20%, 40%, 60%, 80%} and 10% of
the nodes to form the training and validation sets with the remaining nodes as the test set on each dataset.
Similar to 10-fold cross-validation, we repeated the data splitting 10 times, where we split the node set into
10 subsets with each one as the validation set in a round and used the average quality w.r.t. the validation
set to tune parameters of all the methods. Evaluation results of the transductive embedding inference are
shown in Tables 4 and 5, where metrics are in bold or underlined if they perform the best or within top-3.

For transductive baselines, identity embedding approaches (i.e., struc2vec, struc2gauss, and PhN-HK) and
position embedding methods (i.e., node2vec, GraRep, PhN-PPMI) are in groups with top clustering perfor-
mance (in terms of NCut and modularity) on the first and second types of datasets, respectively. Since prior
studies have demonstrated the ability of these transductive baselines to capture node identities or positions,
the evaluation results validate our motivation of using node identity clustering and community detection to
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Table 4: Transductive Embedding Inference w.r.t. Node Position Classification and Node Identity Clustering
PPI Wiki BlogCatalog

F1-score↑ (%) Ncut↓ F1-score↑ (%) Ncut↓ F1-score↑ (%) Ncut↓20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%
node2vec 17.79 19.15 20.16 21.58 45.18 47.43 51.05 52.25 53.87 38.89 37.20 39.45 40.45 41.58 36.82
GraRep 17.94 20.54 22.00 23.49 39.92 49.87 53.33 54.18 55.09 37.12 30.83 33.58 34.71 35.68 34.32
PaCEr(P) 15.94 17.30 18.69 19.70 45.42 43.80 45.81 46.32 47.76 36.93 35.06 37.98 38.89 39.76 34.10
PhN-PPMI 20.17 22.34 23.64 24.84 45.31 46.11 49.04 50.35 51.22 38.88 38.86 40.97 41.69 42.71 36.21
struc2vec 7.70 7.99 8.04 8.47 30.51 40.70 41.14 41.17 41.34 30.96 14.67 15.09 15.28 14.79 30.47
struc2gauss 10.59 11.40 11.91 12.59 38.01 41.09 41.06 40.86 41.13 27.66 17.16 17.21 17.28 16.95 34.41
PaCEr(I) 9.93 10.38 10.70 10.86 40.40 41.70 41.70 41.22 42.08 24.93 16.26 16.44 16.55 16.36 32.89
PhN-HK 9.60 9.57 9.44 9.95 31.52 41.54 41.58 41.35 41.77 29.47 17.28 17.33 17.32 17.04 34.45
[n2v||s2v] 14.29 14.67 14.66 14.38 31.99 38.95 39.75 41.85 44.37 32.32 26.94 28.75 31.34 33.75 31.14
GraSAGE 6.59 6.29 7.12 6.88 36.00 41.14 41.06 40.82 40.89 30.71 16.79 16.77 16.70 16.56 34.28
DGI 10.98 12.37 13.36 14.24 45.35 42.63 43.44 43.91 44.33 36.85 19.24 20.81 21.92 22.22 33.35
GraMAE 11.58 12.76 13.76 14.00 37.72 42.01 42.52 42.87 43.32 25.14 19.29 20.38 20.57 21.02 28.35
GraMAE2 9.63 10.40 11.26 11.52 45.26 41.85 42.04 41.73 42.34 38.26 17.76 18.14 18.23 18.29 35.56
P-GNN 11.70 12.71 13.71 13.75 39.74 43.16 44.38 44.92 45.88 37.31 19.29 20.64 21.39 21.43 34.75
CSGCL 14.93 16.14 17.13 17.81 41.66 42.77 43.39 43.47 44.06 25.94 18.91 19.25 19.30 19.42 30.58
GraLSP 9.08 9.35 9.37 9.95 29.76 41.05 41.00 40.62 41.40 11.00 16.65 17.50 17.44 17.58 23.46
SPINE 8.36 9.07 9.97 10.41 44.49 40.92 40.87 40.59 40.50 38.89 16.25 16.51 16.50 16.39 37.47
GAS 9.25 9.88 10.59 11.15 39.47 41.29 41.40 41.44 42.24 34.59 18.07 18.47 18.76 18.94 34.11
SANNE 7.77 8.18 8.05 9.57 46.87 41.07 41.08 41.01 41.56 38.35 16.56 16.77 16.70 16.72 37.10
UGFormer 6.57 6.04 6.31 6.31 32.30 41.15 41.07 40.81 40.88 21.16 16.73 16.84 16.76 16.53 28.01
IRWE(ψ) 11.45 13.52 14.48 15.60 28.92 45.18 46.49 46.93 47.46 9.85 17.84 18.73 19.05 19.20 24.58
IRWE(γ) 19.63 22.75 24.20 25.88 42.78 52.02 54.29 54.94 56.20 19.31 38.99 41.42 41.86 42.76 36.07

Table 5: Transductive Embedding Inference w.r.t. Node Identity Classification and Community Detection
USA Europe Brazil

F1-score↑ (%) Mod↑ F1-score↑ (%) Mod↑ F1-score↑ (%) Mod↑
20% 40% 60% 80% (%) 20% 40% 60% 80% (%) 20% 40% 60% 80% (%)

node2vec 47.02 50.42 53.16 53.36 25.88 36.19 39.65 41.98 41.46 7.43 32.50 32.12 39.75 37.14 11.76
GraRep 52.52 57.86 61.93 62.01 27.54 39.18 44.32 48.09 44.87 11.48 34.89 40.45 43.50 42.14 19.76
PaCEr(P) 47.44 49.36 51.46 53.95 22.12 42.56 45.27 48.76 50.00 4.13 37.83 39.09 45.50 50.71 2.35
PhN-PPMI 50.28 54.31 57.45 57.05 25.03 36.58 40.54 44.21 43.17 7.26 32.60 36.51 39.00 40.00 9.12
struc2vec 56.85 58.97 59.91 62.52 0.38 51.85 53.93 57.27 57.31 -5.61 65.43 71.66 75.25 74.29 -1.43
struc2gauss 60.88 61.89 62.32 64.36 3.27 49.50 53.38 55.53 56.34 -6.49 68.69 72.72 75.50 73.57 -3.31
PaCEr(I) 59.80 60.47 60.42 61.40 -0.19 50.61 54.84 56.12 59.92 -3.60 63.91 67.86 68.18 73.75 -2.74
PhN-HK 58.64 60.97 62.43 63.19 13.14 50.32 52.13 54.79 56.09 -6.01 61.84 68.78 74.75 69.28 -5.19
[n2v||s2v] 54.02 55.69 58.79 57.05 2.91 48.25 52.23 54.79 52.43 -5.22 59.78 65.75 64.75 60.71 2.28
GraSAGE 45.49 50.06 54.70 55.37 1.55 34.23 46.31 45.70 46.82 -0.71 35.86 39.09 54.00 57.85 2.93
DGI 54.62 57.78 58.85 59.49 3.45 44.23 48.05 52.39 49.02 -4.78 36.19 41.36 48.25 47.85 9.18
GraMAE 58.86 62.33 64.62 64.11 5.86 45.19 49.10 52.72 49.26 1.70 44.56 55.00 63.00 66.42 3.18
GraMAE2 55.91 56.90 57.67 59.07 18.73 35.97 40.09 43.96 42.92 7.03 36.63 38.93 39.00 37.85 5.95
P-GNN 58.55 61.29 62.54 61.34 21.48 45.33 47.06 51.65 50.00 0.29 46.08 50.15 49.75 52.85 1.78
CSGCL 59.49 59.41 61.79 61.09 21.14 46.87 53.03 56.36 52.68 -8.61 38.91 44.39 48.50 52.14 13.04
GraLSP 57.89 58.87 60.58 61.84 2.72 42.59 47.66 45.70 51.70 0.65 43.15 52.12 61.25 64.28 0.32
SPINE 35.07 37.42 40.64 40.25 2.16 25.12 25.82 23.71 30.00 -0.08 23.36 21.51 19.25 23.57 0.05
GAS 60.46 62.97 64.48 64.45 22.45 51.56 52.18 55.12 58.04 5.20 67.06 69.09 72.75 74.28 1.51
SANNE 54.95 56.86 58.15 61.01 14.59 44.63 50.25 54.46 49.51 6.21 40.43 45.61 51.25 51.43 5.90
UGFormer 51.61 53.85 53.95 55.88 0.78 36.12 43.83 45.79 48.29 1.35 35.22 39.70 47.00 46.42 2.65
IRWE(ψ) 58.02 63.58 66.19 65.46 1.78 52.06 54.88 58.10 60.24 -0.52 70.22 74.09 72.25 75.00 1.17
IRWE(γ) 55.25 58.69 60.64 61.68 31.24 43.67 47.41 50.25 49.27 17.74 36.85 40.15 44.25 41.43 21.26

evaluate the quality of identity and position embeddings. Our node identity clustering results also validate
Hypothesis 1 that the high-order degree features {δ(v)} can encode node identity information.

On each dataset, most baselines can only achieve relatively high performance for one task w.r.t. identity
or position embedding. It indicates that most existing embedding methods can only capture either node
identities or positions. In most cases, [n2v||s2v] outperforms neither (i) node2vec for tasks w.r.t. node
positions nor (ii) struc2vec for those w.r.t. node identities. It implies that the simple integration of the two
types of embeddings may even damage the quality of capturing node identities or positions. Therefore, it is
challenging to preserve both properties in a common embedding space.

For tasks w.r.t. each type of embedding, conventional transductive baselines can achieve much better per-
formance than most of the advanced inductive baselines. One possible reason is that existing inductive
embedding approaches rely on the availability of node attributes. However, there are complicated correla-
tions between graph topology and attributes as discussed in Section 1. Our results imply that the embedding
quality of some inductive baselines is largely affected by their attribute inputs. Some standard settings for the
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Table 6: Inductive Inference for New Nodes within a Graph and across Graphs
PPI Wiki BlogCatalog USA Europe Brazil PPIs

F1↑ Ncut↓ F1↑ Ncut↓ F1↑ Ncut↓ F1↑ Mod↑ F1↑ Mod↑ F1↑ Mod↑ Mod↑ Ncut↓
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

GraSAGE 7.35 36.13 40.71 28.86 16.30 26.50 57.81 0.88 52.68 0.02 71.42 2.18 3.90 6.69
DGI 14.64 45.18 44.16 36.89 22.76 33.71 65.54 3.90 52.19 0.69 58.57 3.65 3.52 8.31
GraMAE 14.54 38.58 43.78 24.73 20.94 27.78 66.72 1.62 54.15 1.11 64.29 3.42 2.82 7.40
GraMAE2 11.81 45.28 41.27 37.88 19.05 35.94 59.83 9.56 46.34 4.46 42.86 5.34 3.68 8.14
PGNN 14.29 42.91 43.74 37.57 22.06 35.33 59.49 16.15 51.70 1.36 61.42 3.93 7.83 7.95
CSGCL 16.13 41.46 43.96 25.54 19.30 31.14 63.36 18.17 56.59 -7.81 61.43 5.81 -0.26 5.88
GraLSP 6.39 47.24 40.62 31.78 16.51 37.39 25.21 -0.34 44.39 0.12 38.57 -0.80 0.88 8.48
SPINE 9.12 47.21 40.80 38.95 16.87 37.45 44.87 0.76 24.88 0.16 37.14 0.41 0.38 8.63
GAS 11.50 39.33 41.84 34.44 18.94 33.89 64.87 23.05 56.59 3.51 68.57 4.27 -2.10 7.15
SANNE 5.19 45.58 40.86 33.88 16.39 34.11 25.71 0.01 26.34 -0.01 25.13 -0.01 1.43 8.22
UGFormer 5.59 34.70 40.71 21.39 16.23 27.84 59.83 2.03 45.85 0.73 62.86 1.95 -0.83 5.43
IRWE(ψ) 10.53 32.95 41.05 15.93 16.10 26.58 68.40 10.07 60.00 -1.12 72.86 -5.28 0.16 4.62
IRWE(γ) 18.29 45.54 47.32 19.47 27.04 35.96 49.75 25.54 45.85 11.65 44.29 12.31 11.41 8.47

case without available attributes (e.g., using one-hot degree encodings as attribute inputs) cannot help derive
informative identity or position embeddings.

Our IRWE method achieves the best quality for both identity and position embedding in most cases. It
indicates that IRWE can jointly derive informative identity and position embeddings in a unified framework.

5.3 Evaluation of Inductive Embedding Inference

We further consider the inductive inference (i) for new unseen nodes within a graph and (ii) across graphs,
which were evaluated on the (i) first two types of datasets (i.e., PPI, Wiki, BlogCatalog, USA, Europe,
and Brazil) and (ii) PPIs, respectively. We could only evaluate the quality of inductive methods because
transductive baselines cannot support the inductive inference.

For the inductive inference within a graph, we randomly selected 80%, 10%, and 10% of nodes on each
single graph to form the training, validation, and test sets (denoted as Vtrn, Vval, and Vtst), where Vval
and Vtst represent sets of new nodes not observed in Vtrn. The embedding model of each inductive method
was optimized only on the topology induced by Vtrn. When validating and testing a method using the
node classification task, embeddings w.r.t. Vtrn and Vtrn ∪ Vval were used to train the downstream logistic
regression. We repeated the data splitting 10 times following a strategy similar to 10-fold cross validation
and used the average quality w.r.t. the validation set to tune parameters of all the methods.

For the inductive inference across graphs, we sampled 3 graphs from PPIs denoted as Gtrn, Gval, and Gtst,
which were used for training, validation, and testing. We first optimized the embedding model on Gtrn.
To validate or test the model, we derived inductive embeddings w.r.t. Gval or Gtst and obtained clustering
results for evaluation by applying KMeans. This procedure was repeated 5 times, where 15 graphs were
sampled. Finally, the average quality over the 5 data splits was reported.

Evaluation results of the inductive embedding inference are depicted in Table 6, where metrics are in bold
or underlined if they perform the best or within top-3. IRWE achieves the best quality in most cases.
In particular, the quality metrics of IRWE are significantly better than other inductive baselines, whose
inductiveness relies on the availability of node attributes. Our results further demonstrate that IRWE can
support the inductive inference of identity and position embeddings, simulataneously generating two sets of
informative embeddings, without relying on the availability and aggregation of any graph attributes.

5.4 Ablation Study

In ablation study, we respectively removed some components from the IRWE model to explore their effec-
tiveness for ensuring the high embedding quality of our method. For the identity embedding module, we
considered the (i) AW embedding regularization loss Lreg−φ (12), (ii) AW statistic inputs {s̃(v)}, (iii) high-
order degree feature inputs {δ(v)}, and (iv) identity embedding regularization loss Lreg−ψ (13). In cases (i)
and (iv), identity embeddings were only optimized via one loss (i.e., Lreg−ψ or Lreg−φ).
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Table 7: Ablation Study w.r.t. Node Position Classification and Node Identity Clustering on PPI as well as
Node Identity Classification and Community Detection on USA.

PPI USA
F1↑ (%) Ncut↓ F1↑ (%) Mod↑ (%)

IRWE 25.88 28.94 67.31 31.24
(1) w/o loss Lreg−φ 25.43 30.14 66.55 30.82
(2) w/o input {s̃(v)} 24.76 29.68 65.21 29.31
(3) w/o input {δ(v)} 25.14 30.61 67.07 31.08
(4) w/o loss Lreg−ψ 25.65 36.02 45.79 30.11
(5) w/o input {ψ(v)} 24.95 29.28 65.79 30.44
(6) w/o input {πg(v)} 25.08 29.62 65.79 29.45
(7) w/o ROut(·) 13.39 29.39 66.47 -0.76
(8) w/o loss Lγ 22.43 29.42 65.88 23.65
(9) base stat {s̃(v)} – 46.05 56.63 –
(10) base stat {δ(v)} – 34.06 63.94 –
(11) base stat {πg(v)} 17.52 – – 21.85
(12) based stat C (SVD) 22.60 – – 12.15

4 5 6 7 8 9

l

0.24

0.25

0.26

0.27

F
1
↑

(a) PPI, F1-score↑, l

0.1 0.5 1 5 10 50 100

α

0.25

0.255

0.26

0.265

F
1
↑

(b) PPI, F1-score↑, α

1 5 10 50 100 500 1000

τ

0.1

0.15

0.2

0.25

F
1
↑

(c) PPI, F1-score↑, τ

4 5 6 7 8 9

l

28

29

30

N
C

ut
↓

(d) PPI, NCut↓, l

0.1 0.5 1 5 10 50 100

α

28

29

30

N
C

ut
↓

(e) PPI, NCut↓, α

1 5 10 50 100 500 1000

τ

28

29

30

N
C

ut
↓

(f) PPI, NCut↓, τ

Figure 5: Parameter analysis w.r.t. l, α, and τ on PPI in terms of F1-score↑ (node position classification)
and NCut↓ (node identity clustering).

For the position embedding module, we checked the effectiveness of the (v) identity embedding inputs {ψ(v)},
(vi) global position encoding inputs {πg(v)}, (vii) attentive readout function ROut(·) described in (9), and
(viii) reconstruction loss Lγ (14). In case (v), the two modules of IRWE were independently optimized. For
case (vii), we simply averaged the representations in t̄(v) to replace ROut(·). For case (viii), we replaced the
contrastive statistics C in (14) with adjacency matrix A.

We also used some induced statistics as baselines. Concretely, we evaluated the quality of (ix) AW statistics
{s̃(v)} and (x) degree features {δ(v)} to capture node identities. In contrast, we checked the quality of
(xi) global position encodings {πg(v)} and (xii) contrastive statistics C for node positions. In case (xii), we
derived representations with the same dimensionality as other embedding methods by applying SVD to C.

As a demonstration, we report results of transductive embedding inference on PPI and USA (with 80% of
nodes sampled as the training set for classification) in Table 7. According to our results, Lreg−ψ is essential
for identity embedding learning, since there are significant quality declines for node identity clustering and
classification in case (iv). ROut(·) and Lγ are key components to capture node positions due to the significant
quality declines for node position classification and community detection in cases (vii) and (viii). All the
remaining components can further enhance the ability to capture node identities and positions. The joint
optimization of identity and position embeddings can also improve the quality of one another.

5.5 Parameter Analysis

We tested the effects of (i) RW length l, (ii) α in loss (11), and (iii) temperature parameter τ in loss (14).
Concretely, we set l ∈ {4, 5, · · · , 9}, α ∈ {0.1, 0.5, 1, 5, 10, 50, 100}, and τ ∈ {1, 5, 10, 50, 100, 500, 1000}.
Example parameter analysis results of the transductive embedding inference on PPI and USA (with 80%
of nodes sampled as the training set for classification) are illustrated in Fig. 5 and 6. The quality of both
types of embeddings is not sensitive to the settings of l. Compared with position embeddings, the quality
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Figure 6: Parameter analysis w.r.t. l, α, and τ on USA in terms of F1-score↑ (node identity classification)
and modularity↑ (community detection).

of identity embeddings is more sensitive to α (e.g., in terms of F1-score of node classification on USA and
NCut of node identity clustering on PPI ). The settings of τ would significantly affect the quality of the two
types of embeddings. The recommended parameter settings of IRWE are given in the Appendix D.

6 Conclusion

In this paper, we considered unsupervised network embedding and explored a unified framework for the joint
optimization and inductive inference of identity and position embeddings without relying on the availability
and aggregation of graph attributes. An IRWE method was proposed, which combines multiple attention
units with different designs to handle RWs on graph topology. We demonstrated that AW derived from
RW and induced statistics can (i) be features shared by all possible nodes and graphs to support inductive
inference and (ii) characterize node identities to derive identity embeddings. We also showed the intrinsic
relation between the two types of embeddings. Based on this relation, the derived identity embeddings
can be used for the inductive inference of position embeddings. Experiments on public datasets validated
that IRWE can achieve superior quality compared with various baselines for the transductive and inductive
inference of identity and position embeddings. We leave discussions of future directions in Appendix F.
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A Detailed Algorithms

The RW sampling procedure starting from a node is summarized in Algorithm 6, which uniformly sample
the next node vt from the neighbors of each source node vs.

Algorithm 7 summarizes the transductive inference procedure of IRWE, where the RWs {W(v),W(v)
I }, AW

lookup table Ω̃l, and statistics {s̃(v), δ(v), πg(v)} derived the model optimization are used as the inputs.
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Algorithm 6: RW Sampling Starting from a Node
Input: topology (V, E); target node v; RW length l; number of samples nS
Output: set of sampled RWs W(v)

1 W(v) ← ∅ //Initialize W(v)

2 for sample_count from 1 to nS do
3 vs ← v and w ← (vs) //Initialize current RW w
4 while |w| ≤ (l + 1) do
5 randomly sample a node vt from vs’s neighbors
6 append vt to w
7 vs ← vt

8 add w to W(v)

Algorithm 7: Transductive Inference
Input: RWs {W(v),W(v)

I }, AW lookup table Ω̃l, & statistics {s̃(v), δ(v), πg(v)} saved in model optimization;
inference topology (V, E)

Output: transductive embddings {ψ(v)} & {γ(v)} w.r.t. V
1 get {ψ(v)} based on {Ω̃l, s̃(v), δ(v)} w.r.t. V
2 get {γ(v)} based on {ψ(v), πg(v), πl(j),W(v)

I } w.r.t. V

Therefore, the transudcitve inference of identity embeddings {ψ(v)} and position embeddings {γ(v)} only
includes one feedforward propagation through the model.

Procedures to get inductive AW statistics {s(v)}, high-order degree features {δ(v)}, and global position
encodings {πg(v)}, which support the inductive inference for new nodes within a graph (i.e., Algorithm 5),
are described in Algorithms 8, 9, and 10, respectively. When deriving {s(v)}, we only compute the frequency
of AWs in the lookup table Ω̃l reduced on (V, E) rather than all AWs. Moreover, we get {δ(v)} based on the
one-hot degree encoding truncated by the minimum and maximum degrees of the training topology (V, E)
but not those of the inference topology (V ∪ V ′, E ′). For πg(v), we compute truncated RW statistic r(v) only
w.r.t. previously observed nodes V rather than V ′ ∪ V.

The inductive inference across graphs is summarized in Algorithm 11. We sample RWs {W(v),W(v)
I } on

each new graph (V ′′, E ′′). Since there are no shared nodes between the training topology (V, E) and infer-
ence topology (V ′′, E ′′), we only incrementally compute statistics {s̃(v), δ(v)} based on {Ω̃l,degmin,degmax}
derived from (V, E) but compute global position encodings {πg(v)} from scratch.

B Complexity Analysis

The complexity of the RW sampling starting from each node (i.e., Algorithm 6) is no more than O(nSl).
The complexities to derive AW statistics s(v) (i.e., Algorithm 1), high-order degree features δ(v) (i.e.,
Algorithm 2), and global position encoding πg(v) (i.e., Algorithm 3) w.r.t. a node v are O(nS), O(nSl), and
O(nSl + k(v)d), with k(v) as the number of nodes observed in W(v). The overall complexity to derive the
RW-induced statistics (i.e., the feature inputs of IRWE) from a graph (V, E) is no more than O(|V|nSl +
|V|nS + |V|nSl + (|V|nSl + k̄d)) = O(|V|nSl + k̄d), with k̄ :=

∑
v∈V k(v).

As described in Algorithm 7, the transductive inference of IRWE only includes one feedforward propagation
through the model. Its complexity is no more than O(η̃ll2d+ |V|(el+ η̃l)d+ |V|η̃ldh+(|V|d2 + |V|d)+ |V|(d+
l)d + |V|nI l2dh + nId) = O(|V|(η̃l + nI l

2)dh), where we assume that el ≈ d, l2 ≪ |V|, and d ≪ η̃l; h is the
number of attention heads. According to Algorithm 5, the complexity of inductive inference for new nodes
within a graph is O(|V ′|nSl+ k̄′d+ |V ∪V ′|(η̃l+nI l

2)dh), with k̄′ :=
∑
v∈V′ k(v). The complexity of inductive

inference across graphs (i.e., Algorithm 11) is O(|V ′′|nSl+ k̄′′d+ |V ′′|(η̃l +nI l
2)dh), with k̄′′ :=

∑
v∈V′′ k(v).

Table 8 summarizes and compares the complexities of model parameters to be learned for all the methods
in our experiments, where N is the number of nodes; d is the dimensionality of input feature or embedding;
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Algorithm 8: Inductive Derivation of AW Statistics
Input: new target node v ∈ V ′; sampled RWs W(v); AW lookup table Ω̃l reduced on old topology (V, E)
Output: inductive AW statistic s(v) w.r.t. v

1 η̃l ← |Ω̃l| //Get size of reduced AW lookup table
2 s(v)← [0, 0, · · · , 0]η̃l //Initialize s(v)
3 for each w ∈ W(v) do
4 map RW w to its corresponding AW ω

5 if ω ∈ Ω̃l then
6 get the index j of AW ω in reduced lookup table Ω̃l
7 s(v)j ← s(v)j + 1 //Update s(v)

Algorithm 9: Inductive Derivation of Degree Feature
Input: new target node v ∈ V ′; RW length l; one-hot degree encoding dimensionality e; sampled RWs W(v);

degmin & degmax in old topology (V, E)
Output: inductive degree feature δ(v) w.r.t. v

1 δ(v)← [0, 0, · · · , 0](l+1)e //Initialize degree feature δ(v)
2 for each w ∈ W(v) do
3 for i from 0 to l do
4 u← w(i) //i-th node in current RW w
5 if u ∈ V then
6 ρd(u)← [0, · · · , 0]e//Initialize one-hot degree encoding
7 if deg(u) < degmin then
8 j ← 0
9 else if deg(u) > degmax then

10 j ← (e− 1)
11 else
12 j ←

⌊
(deg(u)−degmin)e
(degmax−degmin)

⌋
13 ρd(u)j ← 1 //Update ρd(u)
14 δ(v)ie:(i+1)e ← δ(v)ie:(i+1)e + ρd(u)

l is the RW/AW length; ηl and η̃l denote the (i) number of AWs w.r.t. length l and (ii) reduced value of ηl;
L is the number of layers of GNN or transformer encoder; h is the number of attention heads. Since most
transductive embedding methods (e.g., node2vec and struc2vec) follow the embedding lookup scheme, their
model parameters are with a complexity of at least O(Nd). Most inductive approaches rely on the attribute
aggregation mechanism of GNNs. Their model parameters have a complexity of at least O(Ld2). Methods
based on the multi-head attention or transformer encoder (e.g., SANNE, UGFormer, and IRWE) should
have at least O(Lhd2) learnable model parameters. In addition, IRWE also includes the AW auto-encoder
and MLPs in the identity embedding encoder and decoder. Therefore, the model parameters of IRWE have
a complexity of O(l2d+ (η̃l + le)d+ Lhd2) = O(l2d+ η̃ld+ Lhd2), where we assume that el ≈ d.

C Proof of Proposition 1

For simplicity, we let zij := γ(vi)γ̃T (vj)/τ . To minimize the contrastive loss Lcnr (10), one can let its
partial derivative ∂Lcnr/zij w.r.t. each edge (vi, vj) ∈ E to 0. Since σ(x) = 1/(1 + e−x) and dσ(x)/dx =
σ(x)[1 − σ(x)], we have

0 = ∂Lcnr/zij = −pij(1 − σ(zij)) +Qnj(1 − σ(−zij)), (15)

which can be rearranged as
pijσ(zij) −Qnjσ(−zij) = pij −Qnj . (16)
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Algorithm 10: Inductive Derivation of Global Position Encoding
Input: new target node v ∈ V ′; sampled RWs W(v); old training node set V; random matrix Θ ∈ R|V|×d

Output: inductive global position encoding πg(v) w.r.t. v
1 r(v)← [0, 0, · · · , 0]|V| //Initialize RW stat r(v)
2 for each w ∈ W(v) do
3 for each node v ∈ w do
4 if v ∈ V then
5 get index j of v in the training node set V
6 r(v)j ← r(v)j + 1 //Update r(v)

7 πg(v)← r(v)Θ //Derive πg(v)

Algorithm 11: Inductive Inference across Graphs
Input: optimized model parameters {θ∗

ψ, θ
∗
γ}; new topology (V ′′, E ′′); RW settings {l, nS , nI}; local position

encodings {πl(j)}; {Ω̃l,degmin, degmax} derived in model optimization on old topology (V, E)
Output: inductive embeddings {ψ(v)} & {γ(v)} w.r.t. V ′′

1 for each node v ∈ V ′′ do
2 sample nS RWs W(v) from v w.r.t. E ′′ via Algorithm 6
3 get AW statistics s̃(v) w.r.t. {W(v), Ω̃l} via Algorithm 8
4 get degree feature δ(v) w.r.t. {W(v), dmin, dmax} via Algorithm 9
5 get global position encoding πg(v) w.r.t. W(v) via Algorithm 3
6 randomly select nI RWs W(v)

I from W(v)

7 get {ψ(v)} based on {Ω̃l, s̃(v), δ(v)} w.r.t. V ′′

8 get {γ(v)} based on {ψ(v), πg(v), πl(j),W(v)
I } w.r.t. V ′′

Table 8: Summary of the Complexities of Model Parameters to be Learned.
node2vec GraRep struc2vec struc2gauss PaCEr PhN GSAGE DGI GMAE
O(Nd) O(Ndl) O(Nd) O(Nd) O(N(d + N)) O(Nd) O(Ld2) O(Ld2) O(Ld2)
GMAE2 P-GNN CSGCL GraLSP SPINE GAS SANNE UGFormer IRWE
O(Ld2) O(Ld2) O(Ld2) O(Ld2 + ηld) O(d2) O(Ld2) O(Lhd2) O(Lhd2) O(l2d + η̃ld + Lhd2)

By applying σ(−x) = e−xσ(x), we have

pijσ(zij) −Qnj · exp{−zij}σ(zij) = pij −Qnj
⇒ pij−Qnj ·exp{−zij}

1+exp{−zij} = pij −Qnj

⇒ pij+Qnj−Qnj(1+exp{−zij})
1+exp{−zij} = pij −Qnj

⇒ (pij +Qnj)σ(zij) = pij
⇒ σ(zij) = pij/(pij +Qnj)
⇒ 1 + exp{−zij} = (pij +Qnj)/pij
⇒ exp{−zij} = Qnj/pij

. (17)

By taking the logarithm of both sides, we further have

zij = ln pij − ln(Qnj). (18)

Let C ∈ R|V|×|V| be an auxiliary matrix with the same definition as that in Proposition 1. From the
perspective of matrix factorization, we can rewrite the aforementioned equation to another matrix form
ΓΓ̃T /τ = C, which is equivalent to the reconstruction loss Lγ (14).

24



Published in Transactions on Machine Learning Research (10/2024)

Table 9: Parameter Settings for Transductive Inference.
(d, e, nS , nI) (λψ , λγ) (m, mψ , mγ) (l, α, τ)

PPI (256, 100, 1e3, 10) (5e-4,1e-3) (2e3, 10, 1) (7, 0.1, 5e2)
Wiki (256, 100, 1e3, 10) (1e-3,1e-3) (1e3, 5, 1) (7, 10, 1e3)
Blog (256, 100, 1e3, 10) (5e-4,5e-4) (3e3, 1, 20) (9, 10, 10)
USA (128, 100, 1e3, 20) (1e-3,5e-4) (500, 10, 1) (9, 10, 10)
Europe (64, 100, 1e3, 20) (5e-4,5e-4) (200, 1, 1) (9, 10, 10)
Brazil (64, 32, 1e3, 20) (5e-4,5e-4) (200, 1, 1) (9, 0.1, 1e2)

Table 10: Parameter Settings for Inductive Inference.
(d, e, nS , nI) (λψ , λγ) (m, mψ , mγ) (l, α, τ)

PPI (256, 100, 1e3, 10) (5e-4,1e-4) (1e3, 20, 1) (7, 10, 5e2)
Wiki (256, 100, 1e3, 10) (1e-3,5e-4) (1e3, 1, 1) (7, 10, 5e2)
Blog (256, 100, 1e3, 10) (5e-4,5e-4) (1e3, 20, 5) (5, 10, 5)
USA (128, 100, 1e3, 10) (5e-4,5e-4) (500, 10, 1) (9, 10, 10)
Europe (64, 100, 1e3, 10) (5e-4,5e-4) (200, 1, 1) (9, 10, 10)
Brazil (64, 32, 1e3, 10) (5e-4,5e-4) (200, 1, 1) (9, 0.1, 1e2)
PPIs (256, 100, 1e3, 10) (5e-4,5e-4) (1000, 5, 1) (9, 10, 50)

Table 11: Layer Configurations for Transductive Inference.
Datasets Identity Embedding Module Position Embedding Module

Encφ(·) Decφ(·) Reds(·) hψ Decψ(·) MLP in ReAtt(·) (Ltran, htran) hrout
PPI l2,128,t,d,t d,128,t,l2,t η̃l+le,2048,r,1024,r,512,r,d,r 64 d,512,t,le,t d,d,s,d,s,d,s,d,s (4, 64) 64
Wiki l2,128,t,d,t d,128,t,l2,t η̃l+le,1024,r,512,r,d,r 64 d,512,t,le,t d,d,s,d,s,d,s,d,s (4, 64) 64
Blog l2,128,t,d,t d,128,t,l2,t η̃l+le,1024,r,512,r,d,r 64 d,512,t,le,t d,d,s,d,s,d,s,d,s (5, 64) 64
USA l2,100,t,d,t d,100,t,l2,t η̃l+le,4096,r,2048,r,512,r,d,r 32 d,le,t d,d,s,d,s,d,s,d,s (4, 32) 32
Europe l2,64,t,d,t d,64,t,l2,t η̃l+le,4096,r,1024,r,256,r,d,r 16 d,256,t,512,t,le,t d,d,s,d,s (4, 16) 16
Brazil l2,64,t,d,t d,64,t,l2,t η̃l+le,1024,r,512,r,128,r,d,r 16 d,128,t,le,t d,d,s,d,s (4, 16) 16

Table 12: Layer Configurations for Inductive Inference.
Datasets Identity Embedding Module Position Embedding Module

Encφ(·) Decφ(·) Reds(·) hψ Decψ(·) MLP in ReAtt(·) (Ltran, htran) hrout
PPI l2,128,t,d,t d,128,t,l2,t η̃l+le,1024,r,512,r,d,r 64 d,le,t d,d,s,d,s,d,s,d,s (4, 64) 64
Wiki l2,128,t,d,t d,128,t,l2,t η̃l+le,1024,r,512,r,d,r 64 d,512,t,le,t d,d,s,d,s,d,s,d,s (4, 64) 64
Blog l2,128,t,d,t d,128,t,l2,t η̃l+le,1024,r,512,r,d,r 64 d,t,512,t,le,t d,d,s,d,s,d,s,d,s (5, 64) 64
USA l2,100,t,d,t d,100,t,l2,t η̃l+le,1024,r,512,r,d,r 32 d,512,t,le,t d,d,s,d,s,d,s,d,s (4, 16) 16
Europe l2,64,t,d,t d,64,t,l2,t η̃l+le,1024,r,512,r,d,r 16 d,256,t,512,t,le,t d,d,s,d,s (4, 16) 16
Brazil l2,64,t,d,t d,64,t,l2,t η̃l+le,512,r,128,r,d 16 d,256,t,le,t d,d,s,d,s (4, 16) 16
PPIs l2,128,t,d,t d,128,t,l2,t η̃l+le,1024,r,512,r,d,r 64 d,512,t,le,t d,d,s,d,s,d,s,d,s (6, 64) 64

D Detailed Experiment Settings

Given a clustering result C = {C1, · · · , CK}, NCut w.r.t. the auxiliary similarity graph GD is defined as

NCut(C; GD) := 0.5
∑K

r=1
[cut(Cr, C̄r)/vol(Cr)], (19)

where C̄r := V − Cr, cut(Cr, C̄r) :=
∑
vi∈Cr,vj∈C̄r (AD)ij , and vol(Cr) :=

∑
vi∈Cr,vj∈V (AD)ij , with AD as the

adjacency matrix of GD. Given a clustering result C, modularity w.r.t. the original graph G is defined as

Mod(C; G) := 1
2e

∑K

r=1

∑
vi,vj∈Cr

[Aij − deg(vi) deg(vj)/(2e)], (20)

where e :=
∑
i deg(vi)/2 is the number of edges.

The parameter settings of IRWE for the transductive and inductive inference are depicted in Tables 9 and
10, where d is the embedding dimensionality; e is the dimensionality of one-hot degree encoding for the
degree features {δ(v)}; nS := |W(v)| and nI := |W(v)

I | are the number of sampled RWs and number of
RWs used to infer position embeddings for each node v; λψ and λγ are learning rates to optimize identity
and position embeddings; m is the number of training iterations; in each iteration, we update identity and
position embeddings mψ and mγ times; l is the RW length; α and τ are hyper-parameters in the training
losses.

Tables 11 and 12 give layer configurations for the transductive and inductive embedding inference, where
Encφ(·) and Decφ(·) denote the AW encoder and decoder described in (1); Reds(·) is the feature reduction
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Table 13: Evaluation Results on Attributed Graphs for the Validation of Inconsistency of Attributes.
Cornell Texas Washington Wisconsin

Mod↑(%) NCut↓ Mod↑(%) NCut↓ Mod↑(%) NCut↓ Mod↑(%) NCut↓
node2vec 56.93 3.18 45.99 3.10 44.94 3.59 54.73 2.97
struc2vec -9.50 1.53 -11.37 1.17 -9.33 0.71 -8.94 1.34
att-emb -0.09 3.76 -0.01 3.75 -2.30 3.84 -3.54 3.75
[n2v||att] 50.80 3.38 35.26 3.12 44.05 3.50 54.02 3.13
[s2v||att] -5.76 1.81 -12.77 1.33 -2.81 1.00 -9.58 1.35

unit (2); Decψ(·) represents the identity embedding decoder (4); ReAtt(·) is the attentive reweighting function
(6); η̃l := |Ω̃l| is the reduced number of AWs; hψ, htran, and hrout represent the numbers of attention heads
in identity embedding encoder (3), transformer encoder (8), and attentive readout function (9); Ltran is
the number of transformer encoder layers; ’t’, ’s’, and ’r’ denote the activation functions of Tanh, Sigmoid,
and ReLU. For our IRWE method, we recommend setting l ∈ {4, 5, · · · , 9}, α ∈ {0.1, 0.5, 1, 5, 10}, τ ∈
{1, 5, 10, 50, 100, 500, 1000}, and mψ,mγ ∈ {1, 5, 10, 20}.

We adopted the standard multi-head attention (Vaswani et al., 2017) to build the identity embedding encoder
(3) and attentive readout unit (9) of IRWE. An attention unit includes the inputs of key, query, and value
described by K ∈ Rm×d, Q ∈ Rn×d, and V ∈ Rm×d. Assume that there are h attention heads. Let d̃ = d/h.
For the j-th head, we first derive linear mappings K̃(j) = KW(j)

k , Q̃(j) = QW(j)
q , and Ṽ(j) = VW(j)

v , with
{W(j)

k ∈ Rd×d̃,W(j)
q ∈ Rd×d̃,W(j)

v ∈ Rd×d̃} as trainable parameters. The attention head is defined as

Z(j) = Attj(Q,K,V) := softmax(Q̃(j)K̃(j)T /
√
d̃)Ṽ(j). (21)

We further concatenate the outputs of all the heads via Z = Att(Q,K,V) := [Z(1)|| · · · ||Z(h)].

All the experiments were conducted on a server with AMD EPYC 7742 64-Core CPU, 512GB main memory,
and one NVIDIA A100 GPU (80GB memory). We used the official code or public implementations of all
the baselines and tuned parameters to report their best performance. On each dataset, we set the same
embedding dimensionality for all the methods.

E Further Experiment Results

To demonstrate the possible inconsistency of graph attributes for identity and position embedding as dis-
cussed in Section 1, we conducted additional experiments on four attributed graphs (i.e., Cornell, Texas,
Washington, and Wisconsin) from WebKB1. For each graph, we extracted the largest connected component
from its topology. After the pre-processing, we have (N,E,M,K) = (183, 227, 1703, 5), (183, 279, 1703, 5),
(215, 365, 1703, 5), and (251, 450, 1703, 5) for Cornell, Texas, Washington, and Wisconsin, where N , E, and
K are numbers of nodes, edges, and clusters; M is the dimensionality of node attributes.

We then applied node2vec and struc2vec, which are typical position and identity embedding baselines as
described in Table 3, to the extracted topology of each graph, where we set embedding dimensionality d = 64.
Furthermore, we derived special attribute embeddings (denoted as att-emb) with the same dimensionality
by applying SVD to node attributes. Namely, we have three baseline methods (e.g., node2vec, struc2vec,
and att-emb). To simulate the incorporation of attributes, we concatenated att-emb with node2vec and
struc2vec, forming another two additional baselines denoted as [n2v||att] and [s2v||att]. The unsupervised
community detection and node identity clustering were adopted as the downstream tasks for position and
identity embedding, respectively. The evaluation results are depicted in Table 13, where att-emb outperforms
neither (i) node2vec for community detection nor (ii) struc2vec for node identity clustering; the concatenation
of att-emb cannot further improve the embedding quality of node2vec and struc2vec. The results imply that
(i) attributes may fail to capture both node positions and identities; (ii) the simple integration of attributes
may even damage the quality of position and identity embeddings.

1https://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
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F Discussions of Future Research Directions

Some possible future research directions of this study are summarized as follows.

In this study, we focused on network embedding where topology is the only available information source
without any attributes, due to the complicated correlations between the two sources (Qin et al., 2018; Li
et al., 2019; Wang et al., 2020; Qin & Lei, 2021). We intend to explore the adaptive incorporation of
attributes. Concretely, when attributes carry characteristics consistent with topology, one can fully utilize
attribute information to enhance the embedding quality. In contrast, when there is inconsistent noise in
attributes, we need to adaptively control the effect of attributes to avoid unexpected quality degradation.

In addition to mapping each node to a low-dimensional vector (a.k.a. node-level embedding), network
embedding also includes the representation of a graph (a.k.a. graph-level embedding). We plan to extend
IRWE to the graph-level embedding and evaluate the embedding quality for some graph-level downstream
tasks (e.g., graph classification). To analyze the relations of graph-level embeddings to identity and position
embeddings is also our next focus.

The optimization of IRWE adopts the standard full-batch setting, where we derive statistics or embeddings
w.r.t. all the nodes when computing the training losses. This setting may not be scalable to graphs with
large numbers of nodes. Inspired by recent studies of scalable GNNs (Zhang et al., 2022; Liu et al., 2023),
we intend to explore a scalable optimization strategy based on mini-batch settings.
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