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Abstract

Network embedding, which maps graphs to distributed representations, is a unified frame-
work for various graph inference tasks. According to the topology properties (e.g., structural
roles and community memberships of nodes) to be preserved, it can be categorized into the
identity and position embedding. However, existing methods can only capture one type of
property. Some approaches can support the inductive inference that generalizes the embed-
ding model to new nodes or graphs but relies on the availability of attributes. Due to the
complicated correlations between topology and attributes, it is unclear for some inductive
methods which type of property they can capture. In this study, we explore a unified frame-
work for the joint inductive inference of identity and position embeddings without attributes.
An inductive random walk embedding (IRWE) method is proposed, which combines multi-
ple attention units to handle the random walk on graph topology and simultaneously derives
identity and position embeddings that are jointly optimized. In particular, we demonstrate
that some random walk statistics can be informative features to characterize node identities
and positions while supporting the inductive embedding inference. Experiments validate the
superior performance of IRWE beyond various baselines for the transductive and inductive
inference of identity and position embeddings.

1 Introduction

For various state-of-the-art graph inference techniques, network embedding (a.k.a. graph representation
learning) is a commonly used framework. It maps each node of a graph to a low-dimensional vector repre-
sentation (a.k.a. embedding) with some key properties preserved. The derived representations are further
used to support several downstream graph inference tasks (e.g., node classification (Kipf & Welling] 2017}
Velickovi¢ et all [2018), node clustering (Ye et al., 2022 |Qin et all [2023a; |Gao et al.l 2023), and link
prediction (Lei et al., 2018} [2019; |Qin et all 2023b} |Qin & Yeung, 2023)).

According to the topology properties to be preserved, existing network embedding techniques can be catego-
rized into the identity and position embedding (Rossi et al., [2020; [Zhu et al.,|2021). The identity embedding
(a.k.a. structural embedding) aims to preserve the structural role that each node plays in graph topology,
which is also defined as the node identity. In contrast, the position embedding (a.k.a. proximity-preserving
embedding) captures the linkage similarity between nodes (e.g., community structures (Newman, 2006)),
which is also defined as node position or proximity. In Fig. (1| (a), each color denotes a unique structural role.
For instance, red and yellow may indicate the opinion leader and hole spanner in a social network (Yang
et al., [2015). Moreover, there are two communities denoted by the two dotted circles in Fig. |1} where nodes
in the same community have dense linkages and thus are more likely to have similar positions.

The identity and position embedding should respectively force nodes with similar identities (e.g., {v1,vs}) and
positions (e.g., {v1,v2,v6}) to have close low-dimensional representations. As a demonstration, we applied
struc2vec (Ribeiro et al., 2017) and node2vec (Grover & Leskovec, |2016) (with embedding dimensionality
d = 2), which are typical identity and position embedding methods, to the example graph in Fig. [1] (a) and
vislized the derived embeddings. Note that two nodes may have the same identity even though they are
far away from each other. In contrast, nodes with similar positions must be close to each other with dense
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Figure 1: An example of identity and position embedding in terms of (b) struc2vec and (c) node2vec,
respectively. In the (a) example graph, each color denotes a unique identity while nodes in the same
community have similar positions.

linkage and short distances. Due to the contradiction, it is challenging to simultaneously capture the two
types of properties in a common embedding space. For instance, v; and vg with the same identity have close
identity embeddings in Fig.[1| (b). However, their position embeddings are far away from each other in Fig.
(c). Since the two types of embeddings may be appropriate for different downstream tasks (e.g., structural
role classification and community detection), we expect a unified embedding model.

Most conventional embedding methods (Wu et all 2020; |Grover & Leskovec, [2016; Ribeiro et al.l 2017}
Donnat et all [2018) follow the embedding lookup scheme and can only support the transductive embedding
inference. In this scheme, the low-dimensional node representations are model parameters optimized only
for the currently observed graph topology. When applying the model to new unseen nodes or graphs, one
needs to optimize model parameters from scratch with high complexities. Compared with these transductive
methods, some state-of-the-art embedding techniques (Hamilton et al. 2017, [Velickovic et all 2019)) can
support the advanced inductive inference, which aims to directly generalize the embedding model trained on
observed topology to new unseen nodes or graphs without additional optimization.

Most existing inductive approaches (e.g., those based on graph neural networks (GNNs) (Wu et al.| [2020))
rely on the availability of node attributes and derive inductive embeddings via attribute aggregation. How-
ever, previous studies (Qin et al.| [2018; |Li et al.| 2019; Wang et al., [2020; |Qin & Lei, [2021]) have demonstrated
some complicated correlations between graph topology and attributes. For instance, attributes may provide
(i) complementary characteristics orthogonal to topology for better performance of downstream tasks or (ii)
inconsistent noise resulting in unexpected quality degradation. Therefore, it is unclear for most inductive
methods that their performance improvement is brought about by the incorporation of attributes or better
exploration of topology. When attributes are unavailable, most inductive approaches need additional pro-
cedures to extract auxiliary attribute inputs from topology (e.g., one-hot encodings of node degrees). Our
experiments demonstrate that some inductive baselines with naive auxiliary attribute extraction strategies
may even fail to outperform conventional transductive methods on the inference of identity and position
embeddings. Moreover, it is also hard to determine which type of topology properties (i.e., node identities
or positions) that some inductive approaches can capture.

In this study, we focus on the unsupervised network embedding and explore the possibility of a unified
framework for the joint inductive inference of identity and position embeddings. To clearly distinguish
between the two types of embeddings, we consider the case where topology is the only available information
source. This eliminates the unclear influence from graph attributes due to the complicated correlations
between the two sources. Different from most existing inductive approaches relying on the availability of
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node attributes, we propose an inductive random walk embedding (IRWE) method. It combines multiple
attention units with different choices of key, query, and value to handle the random walk (RW) and induced
statistics on graph topology.

RW is an effective technique to explore topology properties for network embedding. However, most RW-based
methods (Grover & Leskovec, 2016} Ribeiro et al.| [2017) follow the transductive embedding lookup scheme,
failing to support the advanced inductive inference. In this study, we demonstrate that anonymous walk
(AW) (Ivanov & Burnaev, [2018)), the anonymization of RW, and its induced statistics can be informative
features shared by all possible nodes and graphs and thus have the potential to support inductive inference.

Although the identity and position embedding encodes properties contradictory with one another, there
remains a relation between node identities and positions that nodes with different identities should have
different contributions in forming the local community structures. For the example in Fig. [l v; and vy may
correspond to an opinion leader and ordinary audience of a social network, where v is expected to contribute
more in forming community #1 than v,. By incorporating this relation, IRWE simultaneously derives and
jointly optimizes two sets of embeddings w.r.t. node identities and positions. In particular, we demonstrate
that some AW statistics can characterize node identities to derive identity embeddings, which can be further
used to generate position embeddings. It is also expected that the joint optimization of the two sets of
embeddings can improve the quality of one another.

Our major contributions are summarized as follows.

e In contrast to most existing inductive embedding methods relying on the availability of node at-
tributes, we propose an alternative IRWE approach, whose inductiveness is only supported by the
RW on graph topology.

e To the best of our knowledge, we are the first to explore a unified framework for the joint inductive
inference of identity and position embeddings using RW, AW, and induced statistics.

o Experiments on public datasets validate the superiority of IRWE beyond various baselines for the
transductive and inductive inference of identity and position embeddings.

In the rest of this paper, we review some representative related work in Section [2l The problem statements
and preliminaries of this study are given in Section [3] We further elaborate on the proposed IRWE method
in Section [4 including the model architecture as well as the algorithms of optimization and inference.
Experiment settings and results are described and analyzed in Section [5} Finally, Section [6] concludes this
paper and indicates possible future directions.

2 Related Work

In the past several years, a series of network embedding techniques have been proposed. Rossi et al.| (2020)
gave a comprehensive overview of existing methods covering the identity and position embedding.

2.1 Identity & Position Embedding

To the best of our knowledge, existing embedding approaches can only capture one type of topology properties
(i.e., node identities or positions). They cannot encode both types of properties in a unified framework and
support the joint inference of the two types of embeddings.

Perozzi et al.| (2014) proposed Deep Walk that applies skip-gram to learn node embeddings from RWs on
graph topology. The ability of Deep Walk to capture node positions is further discussed and validated in
(Pei et al., [2020; [Rossi et al., [2020)). |Grover & Leskovec| (2016]) modified the RW in Deep Walk to a biased
form and introduced node2vec that can derive richer position embeddings by adjusting the trade-off between
breadth- and depth-first sampling. From a probabilistic view, |(Cao et al.| (2015) reformulated the RW in
DeepWalk to matrix factorization objectives w.r.t. all steps in RW. Moreover, |Wang et al. (2017)), [Ye et al.
(2022), and |Chen et al.| (2023)) introduced community-preserving embedding methods based on nonnegative
matrix factorization, hyperbolic embedding, and graph contrastive learning, respectively.
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Ribeiro et al.| (2017) proposed struc2vec, a typical identity embedding method, by applying RW to an
auxiliary multilayer graph constructed via a hierarchical similarity measurement based on node degrees.
From a graph signal processing view,|Donnat et al.| (2018) used spectral graph wavelets to develop Graph Wave
and theoretically proved its ability to capture node identities. To tackle the uncertainty of node embeddings,
Pei et al.| (2020) introduced struc2gauss, which encodes node identities in a space formulated by Gaussian
distributions, and analyzed the effectiveness of different energy functions and structural similarity measures
for Gaussian embeddings. Moreover, (Guo et al| (2020) enhanced the capabilities of GNNs to preserve
identity information by reconstructing several manually-designed statistics. |(Chen et al.| (2022)) enabled the
graph transformer to capture node identities by incorporating the rooted subgraph of each node.

Some recent research discussed and analyzed the relation between the two types of embeddings. [Zhu et al.
(2021) proposed the PhUSION framework with three steps (i.e., computation of node proximities, non-linear
filtering, and dimension reduction) and demonstrated which components (e.g., proximity measurements) can
be used for the identity or position embedding. Although PRUSION can reveal the similarity and difference
between the two types of embeddings, it can only derive one type of embedding under each unique setting.
Rossi et al.| (2020) proved that some typical techniques (e.g., RW and attribute aggregation) adopted by
existing methods can only derive either identity or position embeddings, which validates our discussions in
Section Based on the invariant theory, |Srinivasan & Ribeiro| (2020) proved that the relation between
identity and position embedding can be analogous to that of a probability distribution and its samples.
They also demonstrated that transductive and inductive embedding learning is unrelated to which type of
properties to be preserved. Although some conclusions in this research are consistent with our motivations
regarding node identities and positions, it only considers the optimization of one type of embedding and the
transformation to another type. Its inductive inference still relies on the availability of node attributes. In
contrast, we focus on the joint optimization and inductive inference of the two types of embeddings without
considering the effects of graph attributes.

2.2 Inductive Network Embedding

Most conventional embedding methods (Grover & Leskovec, [2016; Ribeiro et al.l |2017; [Donnat et al., |2018])
are transductive. They optimize their model parameters for each single graph and can only support the
downstream tasks on such a graph. Some state-of-the-art studies explore the inductive inference that directly
derives embeddings for new unseen nodes or graphs by generalizing the model parameters optimized on known
topology, without additional optimization.

Hamilton et al.| (2017)) introduced GraphSAGE, an inductive GNN framework, including the neighbor sam-
pling and feature aggregation with different choices of aggregation functions (e.g., mean, max-pooling, and
LSTM). GAT (Velickovié et al., 2018)) leverages self-attention into the feature aggregation of GNN, which
automatically determines the aggregation weights for the neighbors of each node. Focusing on the unsuper-
vised network embedding, [Velickovic et al. (2019)) proposed DGI that maximizes the mutual information
between patch embeddings and high-level graph summaries derived from a specified GNN variant (e.g., GCN
(Kipf & Welling| 2017))). Without using the feature aggregation of GNN, Nguyen et al. (2021) developed
SANNE that applies self-attention to handle RWs sampled from graph topology. However, the inductiveness
of the aforementioned methods relies on the availability of node attributes. It is unclear for some approaches
which type of properties (i.e., node identities or positions) they can capture, due to the complicated correla-
tions between graph topology and attributes as discussed in Section[]] When node attributes are unavailable,
these inductive methods have to use additional procedures to extract auxiliary attribute inputs (e.g., one-hot
encodings of node degrees).

Some recent research analyzed the ability of several new GNN structures to capture node identities or
positions in specific cases regarding node attributes (e.g., all the nodes have the same scalar attribute input
(Xu et all 2019)). [Wu et al| (2019) and [You et al.| (2021) proposed DEMO-Net and ID-GNN that can
capture node identities using the degree-specific multi-task graph convolution and heterogeneous message
passing on the rooted subgraph of each node, respectively. |Jin et al| (2020) leveraged AW statistics into
the feature aggregation to enhance the ability of GNN to preserve node identity information. Moreover,
P-GNN (You et al., [2019) can derive position-aware embeddings based on a distance-weighted aggregation
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Table 1: Definitions of Some Major Notations in This Study

Notations | Definitions

w, W an RW & an AW

P(v) identity embedding of node v

v(v), ¥(v) position & (auxiliary) context embeddings of node v

w®) set of sampled RWs starting from node v

Q, AW lookup table w.r.t. length [ & its reduced version

Ny, M number of AWs w.r.t. length [ & its reduced value

p(w) one-hot encoding of AW w

p(w) AW embedding of AW w

Gs(v, 1) rooted subgraph of node v with distance r

q(v,1) distribution of AWs w.r.t. RWs from node v with length [

s(v), §(v) AW statistics of node v & its reduced version

pa(v) bucket one-hot encoding w.r.t. the degree of node v

d(v) high-order degree features of node v

ng) set of RWs used to infer the position embedding of node v

r(v) RW statistics of node v

m(§), mg(v) | local & global position encodings of index j & node v
contrastive statistics to optimize position embeddings {v(v)}

scheme over the sets of sampled anchor nodes. However, these GNN structures can only capture either node
identities or positions.

In contrast to all the aforementioned inductive methods, we explore a unified inductive framework for the
joint inference of identity and position embeddings without relying on the availability and aggregation of
graph attributes.

3 Problem Statements & Preliminaries

In this study, we consider the unsupervised network embedding. Table [[| summarizes some major notations
used in this paper. In general, a graph can be represented as a tuple G = (V, &), with V = {vy,v9,...,0x}
and € = {(v;,vj)|vs, v; € V} as the sets of nodes and edges, respectively. We also assume that graph topology
is the only available information source and additional attributes are unavailable.

Definition 1 (Network Embedding). Given a graph G, network embedding (a.k.a. graph representation
learning) learns a function f : V +— R< that maps each node v to a low-dimensional vector f(v) (a.k.a.
embedding), with some key properties of G preserved. In this study, we assume that f is learned via an
unsupervised objective. The learned embeddings are adopted as the inputs of some downstream modules
(e.g., logistic regression and K Means) to support concrete inference tasks (e.g., node classification and
clustering).

According to the topology properties to be preserved, network embedding can be categorized into the identity
and position embedding.

Definition 2 (Identity Embedding). The identity embedding (a.k.a. structural or role-based embedding
(Rossi et al., |2020; |Zhu et all [2021)), denoted as f(v) := 1(v), encodes the structural role (i.e., identity)
that a node v plays in the graph topology. Namely, nodes with similar structural roles (e.g., nodes with the
same color in Fig. [1)) should have similar representations.

Definition 3 (Position Embedding). The position embedding (a.k.a. proximity-preserving embedding (Rossi
et al) 2020; |Zhu et al. 2021)), denoted as f(v) := v(v), encodes the high-order linkage similarities (i.e.,
proximity or position) between nodes. Namely, nodes with dense linkage (e.g., nodes within a community in
Fig. |1) should have close representations.

The embedding inference includes the transductive and inductive settings. A transductive method focuses
on the optimization of f on the currently observed topology G = (V, £) and can only support inference tasks
on V. In contrast, model parameters of f for an inductive approach, which are first optimized on (V,€), can
be generalized to new unseen nodes V' or a new graph G” = (V",£"). Hence, it can support inference tasks
on V' or V" (i.e., the inductive inference for new nodes or across graphs) with model parameters shared by all
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Figure 2: Model architecture of IRWE with an identity embedding module and a position embedding module.

possible nodes and graphs. A transductive method cannot support the inductive inference but an inductive
approach can tackle both settings.

In this study, we focus on the joint inductive inference of identity and position embeddings. A novel IRWE
method is proposed which combines multiple attention units with different designs to handle RWs and
induced AWs.

Definition 4 (Random Walk & Anonymous Walk RW & AW). An RW with length ! can be described as
a sequence w = (w®, w® ... w®) where w) € V is the j-th node and (w®) wU+)) € £, We assume
that the index j starts from 0. For an RW w, one can map it to an AW w = (I,(w(®), ..., I,(w®)), where
I, (w¥) maps w9 to its first occurrence index in w.

In Fig. (1] (v1,v4,vs,v1,06) is a valid RW with (0, 1,2, 0, 3) as its AW. In particular, AW is the anonymization
of RW, indicating that two RWs (e.g., (v1,v4,vs,v1) and (vs, v10, V9, vs)) can be mapped to a common AW
(ie., (0,1,2,0)). In Section [4} we demonstrate that AW and its induced statistics can be features shared by
all possible nodes and graphs. It can thus support the inductive embedding inference without relying on the
availability and aggregation of attributes.

Definition 5 (Attention). A typical attention unit includes the inputs of key, query, and value, which can
be described by matrices K € R™*?¢ Q € R"*¢, and V € R™*?. Assume that there are h attention heads.
Let d = d/h. For the j-th head, a widely used de&gn (Vaswani et al., |2017)) first derives the linear mappings
of inputs via KU) = KW QW) = QWY and VU) = VW | with {W{) ¢ RIxd W) ¢ RdXd WS,J) €

RdXd} as trainable parameters. The attention head further outputs another matrix ZU) € Rxd y

; (j)Ku)T) o

Z9) = Att;(Q, K, V) := softmax( = v, (1)

where each row of Z() is the linear combination of rows in V) with the combination weights determined
by a row-wise softmax w.r.t. the inner product between QU) and K(). To derive the final output, one can
concatenate the outputs of all the heads via Z = Att(Q, K, V) = [ZD]|---[|Z™)].

4 Methodology

In this section, we elaborate on the model architecture as well as the optimization and inference of IRWE.
An overview of the model architecture is shown in Fig. It includes two modules that derive identity
embeddings {¢(v)} and position embeddings {y(v)} based on a series of statistics induced by sampled RWs.
In particular, {¢)(v)} from the first module is fed into the second module to generate {y(v)}, where the
relation between the two types of embeddings is incorporated. Both {¢(v)} and {y(v)} are also jointly
optimized in IRWE. Based on the local topology of node v; in Fig.[I] Fig. [3| further gives running examples
about the derivation of some RW-induced statistics, which are detailed in the rest of this section. Note that
we set RW length [ = 3 and number of sampled RWs ng = 5 just for a simple demonstration. To fully explore
the properties of real graphs, one may use larger values of these parameters (e.g., | = 5 and ng = 1,000).
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Figure 3: Running examples about the derivation of one-hot AW encodings {p(w)}, AW statistics {s(v)},
high-order degree features {§(v)}, and RW statistics {r(v)} for node v; in the example topology of Fig.
with the RW length [ = 3 and number of sampled RWs ng = 5.
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Figure 4: Overview of the identity embedding module.

4.1 Identity Embedding Module

Fig. 4| highlights details of the identity embedding module. It generates identity embeddings {)(v)} based on
the inputs of auxiliary AW embeddings {¢(w)}, AW statistics {s(v)}, and high-order degree features {§(v)},
with {s(v), d(v)} extracted from the sampled RWs. To support the inductive inference of identity embeddings,
we demonstrate that (i) {¢(w)} can be a special embedding lookup table shared by all possible topology and
(ii) {s(v),0(v)} are informative features to characterize node identities in the rest of this subsection.

In summary, the optimization and inference of this module includes the (1) AW embedding derivation, (2)
identity embedding derivation, and (3) identity embedding regularization.

4.1.1 AW Embedding Derivation

As defined in Section [3] AW is the anonymization of RWs. It is possible to map RWs with different sets of
nodes to a common AW. For instance, (0, 1,2,0) is the common AW of RWs (v1, ve, v3,v1) and (v1, vy, vs, v1)
as illustrated in Fig. [3] Given a fixed length I, RWs on all possible topology structures can only be mapped
to a finite set of AWs ;. Namely, ; and its induced statistics can be shared by all possible nodes and graphs,
thus having the potential to support the inductive embedding inference.

Based on this intuition, IRWE maintains an auxiliary AW embedding ¢(w) € R? (i.e., a d-dimensional vector)
for each unique AW w € ;. In this setting, {¢(w)} can be used as a special embedding lookup table for the
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derivation of inductive features regarding graph topology. The inductive inference of identity embeddings
{t(v)} is then supported by the combination of {p(w)} in the next identity embedding derivation step.

IRWE also applies an additional constraint on AW embeddings {¢(w)}. Concretely, two AWs with more
common elements in corresponding positions are more likely to capture similar properties and thus should
have closer representations. For instance, we expect that (0,1,2,1,2) and (0, 1,0, 1,2) should be closer in
the AW embedding space than (0,1,2,1,2) and (0, 1,0,2, 3).

To apply this constraint, we transform each AW w with length [ to a one-hot encoding p(w) € {0, 1}(”1)2.
It is a representation that can be handled by typical neural networks, where p(w);i.(j+1y; (i-e., subsequence
from the ji-th to the (j + 1)I-th positions) is the one-hot encoding of the j-th element in w. For instance,
we have p(w) = [0000 0100 0010 0001] for w = (0,1,2,3) in Fig. |3 An auto-encoder is introduced to derive
and regularize {p(w)}, including an encoder and a decoder. For each AW w, the encoder takes p(w) as input
and outputs AW embedding ¢(w). The decoder tries to reconstruct p(w) with ¢(w) as its input. Given an
AW w, the encoder Enc,(-) and decoder Dec,(-) are defined as

p(w) = Ency(w) == MLP(p(w)), o)
plw) = Decy (w) = MLP(p(w)),

which are both multi-layer perceptrons (MLPs). Since two similar AWs are expected to have similar one-
hot encodings, similar AWs can have close AW embeddings by minimizing the reconstruction error between

{p(w)} and {H(w)}.
4.1.2 Identity Embedding Derivation

IRWE generates identity embeddings {¢(v)} via the combination of AW embeddings {p(w)} based on the
following Theorem 1 (Micali & Zhu, [2016).

Theorem 1. Let Gs(v,r) be the rooted subgraph induced by nodes {u} with a distance less than r from v
(i.e., dist(v,u) < r). Let q(v,l) denote the distribution of AWs w.r.t. RWs starting from v with length .
One can reconstruct Gs(v,r) using (q(v,1),q(v,2), -+ ,q(v,1)), where l = 2(m+1); m is the number of edges
in Gs(v,r).

For a given length [, let 7; be the number of all possible AWs. ¢(v,1) can be represented as an 7;-dimensional
vector, with the j-th element as the occurrence probability of the j-th AW. Since AWs with length [ include
sequences of those with length less than [ (e.g., (0, 1,2, 3) provides information about (0, 1,2)), one can easily
derive g(v,k) (k < 1) based on ¢(v,l). Therefore, g(v,1) can be used to characterize Gs(v,r) according to
Theorem 1.

Furthermore, nodes with similar rooted subgraphs are usually expected to play similar structural roles,
indicating that a rooted subgraph Gs(v,r) can characterize the identity of node v. For instance, in Fig.
G(v1,1) and G(vs, 1) have the same topology structure, which is consistent with the same structural role
(i.e., identity) they play, even though they are induced by {v1, ve, v3,v4, v5,v6} and {vr, vs, vg, v10, V11, V12},
respectively. In summary, the distribution q(v,l) has the potential to characterize the structural identity of a
node v.

To estimate g(v,l), we introduce the AW statistic s(v) for each node v. As depicted in Fig. [3] we first
sample RWs with length [ starting from v using the standard unbiased strategy (Perozzi et al., |2014) (see
Algorithm |§| in Appendix. Let W() be the set of sampled RWs starting from v. Each RW w € W) can
be mapped to a corresponding AW. Let €; be an AW lookup table including all the 1; AWs with length [,
which is fixed and shared by all possible topology according to our previous discussions. We define the AW
statistic as s(v) := [¢(w1), -+ ,c(wy, )], an m-dimensional vector with ¢(w;) as the frequency of the j-th AW
in Q w.r.t. W®. Algorithm [1| summarizes the procedure to derive s(v) for a node v.

Although n; grows exponentially with the increase of length [, {s(v)} are usually sparse, which can be utilized
to reduce the model complexity for a large [. Fig. |5 visualizes the example AW statistics {s(v)} derived
from RWs on the Brazil dataset (see Section for its details) with I = 4 and |W®)| = 1,000. The i-th
row in Fig. [5] is the AW statistic s(v;) of node v;. Dark blue indicates that the corresponding element is
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Figure 5: Visualization of example AW statistics {s(v)} on the Brazil dataset in a matrix form, where the
i-th row is the AW statistic s(v;) of node v;; dark blue indicates that the corresponding element is 0.

Table 2: Variation of the Number of AWs and its Reduced Value w.r.t. RWs on Brazil as the Length Increases
l 4 5 6 7 8 9
m | 52 203 877 4,140 21,147 115,975
| 15 52 195 610 1,540 3,173

0. There exist many AWs {w;} not observed during the RW sampling (i.e., s(v); = 0 for Yv € V). We can
remove terms w.r.t. these unobserved AWs in Q; and {s(v)}. Let €, 5(v), and 7; be the reduced Q, s(v),
and 7, respectively. Table [2| shows the variation of 7; and 7); on Brazil as | increases from 4 to 9 (with
IW®)| = 1,000), where 7; can be significantly reduced (e.g., from more than 100K to about 3K for I = 9).

In addition to the reduced AW statistics {§(v)}, one can also characterize node identities from the view of
node degrees (Ribeiro et all [2017; Wu et al.,2019) based on the following Hypothesis 1.

Hypothesis 1. Nodes with the same degree are expected to play the same structural role. This concept can
be extended to the high-order neighbors of each node. Namely, nodes are expected to have similar identities
if they have similar node degree statistics (e.g., frequencies or distribution over all possible degree values)
w.r.t. their high-order neighbors.

Consistent with Hypothesis 1, we introduce a high-order degree feature §(v) for each node v. Algorithm
summarizes the procedure to derive §(v). For each node u, we can obtain a bucket one-hot encoding
pa(u) € {0,1}° w.r.t. its degree deg(u) (i.e., lines 5-7). Concretely, only the j-th element pgq(u); is set to 1
with the remaining elements in pg(u) set to 0, where j = |(deg(u) — degin)e/(degrax — degmin)l; d€&min
and deg, ., are the minimum and maximum degrees among all the nodes. Since high-order neighbors of a
node v can be explored by RWs W) starting from v, we define §(v) € Z+1¢ as an (I + 1)e-dimensional
vector with the subsequence §(v);e:(i+1)e s the sum of bucket one-hot degree encodings w.r.t. nodes occurred
at the i-th position of RWs in W) (i.e., line 8). Fig. gives a running example to derive 0(v1) (with e = 5)
for node vy in Fig.

Following the aforementioned discussions regarding Theorem 1 and Hypothesis 1, IRWE derives identity
embeddings {¢(v)} via the adaptive combination of AW embeddings {p(w)} according to the information
encoded in AW statistics {5(v)} and high-order degree features {5(v)}. The multi-head attention is applied
to automatically determine the contribution of each AW embedding ¢(w) in the combination, where we treat
{¢(w)} as the key and value; the concatenated feature [5(v)||0(v)] is used as the query. Note that [5(v)||6(v)]
is an (7 + le)-dimensional vector. Before feeding it to the multi-head attention, we introduce the feature
reduction encoder Red;(+), an MLP, to reduce its dimensionality to d:

5(v) = Red,(v) := MLP([3(v)|[6(v)])- (3)
In summary, the multi-head attention that derives identity embeddings {¢(v)} can be described as
Z = Att(Q, K, V) = Att({s(v) }, {v(w)} {o(w)}), (4)

where Att(-, -, -) has the same definition as that in (1)) with Q, . = 5(v;), K;. = V. = p(w,), and Z; . = ¢ (v;).
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Algorithm 1: Derivation of AW Statistics

Input: target node v; RW length I; sampled RWs W("); AW lookup table €;; number of AWs m
Output: AW statistic s(v) w.r.t. v
s(v) < [0,0,---,0]" //Initialize s(v)
for each w € W do
map RW w to its corresponding AW w
get the index j of AW w in lookup table ;
s(v); < s(v); +1 //Update s(v)

Algorithm 2: Derivation of Degree Features

Input: target node v; RW length [; one-hot degree encoding dimensionality e; sampled RWs W*); minimum
degree deg, ;. ; maximum degree deg, ..

Output: high-order degree feature §(v) w.r.t. v

5(v) « [0,0,--- 0]+ Ve //Initialize degree feature §(v)

for each w € W do

for i from 0 to [ do

u + w' //i-th node in current RW w
pa(u) < [0,---,0] € R® //Initialize degree encoding pa(u)
J 4 [(deg(u) — degy;n)e/(degmay — degmin)]
pa(u); <1 //Update pa(u)
0(V)ie:(i41)e < 0(V)ie:(i+1)e + pa(u)//Update 6(v)

4.1.3 Identity Embedding Regularization

In addition, statistics {[$(v)||d(v)]} induced by the sampled RWs can also be used to regularize identity
embeddings {¢(v)} during the model optimization. We introduce an identity embedding regularization unit
Regw(-), which takes the identity embedding v (v) of each node v as input and uses an MLP to reconstruct

the corresponding feature [$(v)||0(v)]:

9(v) = Reg, (v) := MLP(¢(v)), ()

with §(v) as the reconstructed feature. By minimizing the reconstruction error between {j(v)} and
{[8(v)||d(v)]}, it can force {¢(v)} to encode properties of node identities hidden in {[5(v)||d(v)]}. Note
that we only apply Reg, () to optimize {1)(v)}. We do not need this unit in the inference phase.

4.2 Position Embedding Module

An overview of the position embedding module is depicted in Fig. @ It takes (i) {#(v)} given by the previous
identity embedding module and (ii) auxiliary position encodings {7y(v),m;(j)} derived from the sampled RWs
{W®) as inputs and finally generates position embeddings {y(v)}.

Instead of using the attribute aggregation on graph topology (e.g., message passing of GNNs), we convert
the topology into a set of RWs, to which some neural network structures designed for sequential data (e.g.,
RNN and attention) can be applied. As a demonstration, we use the transformer encoder (Vaswani et al.,
2017)), a sophisticated attention-based structure, to handle RWs.

In addition to the sequential input (e.g., sampled RWs), transformer also includes the input of ‘position’ en-
coding that describes the position of each element in a sequence. However, graph topology is non-Euclidean,
where (i) node indices are permutation-invariant and (ii) different nodes may have different numbers of neigh-
bors. As described in Definition 3, the node position in graph topology has a different physical meaning
from that in Euclidean sequences (e.g., sentences and RWs). To describe both the (i) Euclidean position in
RWs and (ii) node position in graph topology, we introduce the local and global position encodings (denoted
as m(j) and m4(v)) for a sequence position with index j and each node v, respectively.

10
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Figure 6: Overview of the position embedding module.

Algorithm 3: Derivation of Global Position Encoding

Input: target node v; sampled RWs W); node set V; random matrix © € RIVIx¢

Output: global position encoding 7y (v) w.r.t. v

r(v) + [0,0,---,0]'V //Initialize RW statistic r(v)

for each w € W™ do
for each v; € w do
L r(v); < r(v); + 1 //Update r(v)

mg(v) < r(v)® //Derive m4(v)

In summary, the optimization and inference of this module includes the (1) input feature fusion, (2) position
embedding derivation, and (3) position embedding regularization.

4.2.1 Input Feature Fusion

The first input feature fusion step extracts the local and global position encodings {m;(j), 74(v)} and further
derives inputs of the transformer encoder that incorporate identity embeddings {¢(v)}.

Since the RW length [ is usually not very large (e.g., less than 10 in our experiments), we define the local
position encoding 7;(j) € {0,1}*1 as the standard one-hot encoding of index 7, an (I +1)-dimensional vector
where only the j-th element is set to 1 with the remaining elements set to 0.

Inspired by previous studies (Perozzi et al 2014} |Grover & Leskoved, |2016; |[Zhu et al, 2021)) that validated
the potential of RW for exploring node positions (e.g., community structures), we extract the global position
encodings {m,(v)} based on auxiliary RW statistics {r(v)}.

Algorithm 3| summarizes the procedure to derive my(v) for a node v. Concretely, we maintain a vector
r(v) € ZV! with the j-th element r(v); as the frequency that node v; occurs in RWs W) starting from v
(i.e., lines 1-4), which is usually sparse. A running example to derive 7(v;) w.r.t. node vy in Fig. [I]is depicted
in Fig. 3] Since nodes in a community should be densely connected, nodes within the same community are
more likely to be reached via RWs compared with those in different communities.
sitmilar positions (e.g., in the same community) are highly believed to have similar RW statistics (e.g., in
terms of {r(v)}). We then derive 7,(v) by mapping r(v) to a d-dimensional vector via the Gaussian random
projection (i.e., line 5), an efficient dimension reduction technique that can preserve the relative distance
between original features with a theoretical guarantee (Arriaga & Vempalaj 2006). Concretely, we define

7,(v) = r(v)© with @ € RVI*4 @, ~ N(0,1/d).

Therefore, nodes with

(6)

In this setting, the non-Euclidean positions between nodes in graph topology can be encoded in terms of the
relative distance between {my(v)}. Therefore, m,(v) has the initial ability to encode the node position of v.

11
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We further demonstrate that the utilization of transformer encoder, which integrates initial position encod-
ings {my(v)} and identity embeddings {t/(v)} w.r.t. the sampled RWs, can derive more informative position
embeddings {y(v)}. IRWE incorporates the intrinsic relation between node identities and positions based
on the following Hypothesis 2.

Hypothesis 2. In a (local) community (i.e., node cluster with dense linkages), nodes with different structural
roles may have different contributions in forming the community structure.

For instance, in a social network, an opinion leader (e.g., v1 and vs in Fig. is expected to have more
contribution in forming the community it belongs to than an ordinary audience (e.g., vo and vg in Fig. .
Based on this intuition, we use identity embeddings {¢(v)} to reweight global position encodings {mq(v)},
with the reweighting contributions automatically determined by a modified attention unit. In this attentive
reweighting unit, we set identity embeddings {¢(v)} as the query and let global position encodings {m,(v)}
as the key and value (i.e., Q;; = ¥(v;) and K; . = V; . = my(v;)). Different from the standard attention unit
described in , the modified attention unit is defined as

Z = ReAtt(Q, K, V) := (MLP(Q) + MLP(K)) © V, )
Q :=BN(Q),K := BN(K),V := BN(V),

where BN(:) and ® are the batch normalization and element-wise multiplication. Namely, the attentive
reweighting unit first conducts the batch normalization on {Q, K, V}. We then apply two MLPs to respec-
tively derive nonlinear mappings of the normalized {Q, K} and use their sum to support the element-wise
reweighting of the normalized V. We denote the reweighted vector w.r.t. a node v; as 7y4(v;) = Z; ..

Given a sampled RW w = (w® w® ... w®) TRWE concatenates the reweighted vector 7, (w?)) and local
position encoding m;(j) for the j-th node and feeds its linear mapping to the transformer encoder, i.e.,

t(w?) = [7g (w")[|m (§)] W, (8)

where W, € R(F+1xd jg trainable. In this setting, the global and local position encodings {m,(v), m(5)}
as well as identity embeddings {¢(v)} can be adaptively integrated.

4.2.2 Position Embedding Derivation

In the position embedding derivation step, IRWE uses the transformer encoder to handle each sampled RW
w = (w®, - wh), with the corresponding sequence of vectors (t(w(®),---  t(w®)) as input, which can
be described as

(t(w?),---) = TransEnc(t(w®), - -, t(w®)). (9)

The transformer encoder TransEnc(-) then outputs another sequence of vectors (£(w(®),--- , #(w®)) that has
the same dimensionality as the input. TransEnc(-) follows a multi-layer structure, where each layer consists
of the self-attention, skip connections, layer normalization, and feedforward mapping (Vaswani et al., |2017)).

Let (ug® >, u " ') and (ug*>, -+ ,u">) be the input and output of the k-th transformer encoder
layer, where we have (u5%>, -+ ,u; %) = (¢(w")), -+ ,t(w?)). By reshaping the input to a matrix U<k—1>

with Uff“1> = u?il, the k-th transformer encoder layer can be described as

U<k-1> _ Att(U<k*1>,U<k*1>,U<k*1>),
Y<k-1> _ LN(U<"3*1> + I_J<k*1>), (10)
u<k> — LN(Y<k71> + FFN(Y<I€71>))7

where the self-attention Att(-, -, -) shares a definition with (1)) and Q = K = V = U<F~1>: LN(.) is the layer
normalization; FFN(X) := ReLU(XW7 + b1)W3 + b represents a 2-layer MLP with trainable parameters
{Wla b17 W2a b2}

For a given RW w starting from each node v (i.e., w(®) = v), the first vector #(w(®)) = #(v) in the output of
transformer encoder can be used as a representation of v. Since we sample multiple RWs W) starting from
each node v, we can derive multiple such representations for v based on W), However, we only need one
unique representation y(v) for each node v to encode its position information. Let t*) := {#(w(®)|jw € W®)}

12
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(i.e., set of the multiple representations w.r.t. W®)). A naive strategy to derive y(v) is to average the
representations in ¢(*). In contrast, we introduce an attentive readout function that computes the weighted
mean of t(*) with the weights automatically determined by another multi-head attention unit. The attentive
readout operation to derive the unique representation w.r.t. a node v can be described as

z = ROut(t™), m, (v)) := Att(m,(v), ), t)), (11)
v(v) :=2zW, + by, ¥(v) := zZW5 + bs,

where Att(-,-,-) has the same definition as (1)); v(v) and 4(v) are the position embedding and auxiliary
context embedding of node v derived via two linear mappings of the output vector z € R%; {W.,,b,, W=, b~}
are trainable parameters. In particular, we let the global position encoding m4(v), which preserves initial
node position information, be the query and set #(*) to be the key and value (ie, Q =my(v) € R4 and

K;.=V,. =£").
4.2.3 Position Embedding Regularization

The position embedding reqularization step optimizes the derived position embeddings {v(v)} together with
auxiliary context embeddings {¥(v)}. In general, some of existing embedding methods (Perozzi et al., 2014;
Tang et all [2015; [Hamilton et al., |2017) are optimized via the following contrastive loss based on the
approximated negative sampling:
NT (0. NAT (-
min Loy, = — Z P hw(w) +Qn, lna(—M)], (12)
T T

(vi,vj)€D

where D denotes the training set including positive and negative samples in terms of node pairs {(v;,v;)};
pi; is defined as the statistic of a positive node pair (v;,v;) (e.g., the frequency that (v;,v;) occurs in the
l-step RW sampling or normalized edge weight of (v;,v;)); @ is the number of negative samples while n;
is usually set to be the probability that (v;,v;) is selected as a negative sample; o(z) = 1/(1 + e~ ") is
the sigmoid function; 7 is a temperature parameter to be specified. Note that different methods may have
different definitions regarding the positive and negative samples associated with {D, p;;,n;}. We follow prior
work (Tang et all 2015) to let p;; := A;;/deg(v;) (i.e., the probability that there is an edge from v; to v;
with A € {0, 1}V*VT as the adjacency matrix) and n; o (Z-:(%vj)eg pij)% ™. In the next subsection, we
demonstrate that the contrastive loss (12)) can be converted to an equivalent reconstruction loss such that
the joint optimization of IRWE only includes the combination of several reconstruction objectives.

4.3 Model Optimization & Inference

For a given RW length I, let Q; be the reduced AW lookup table w.r.t. the reduced AW statistics {5(v)} in
. According to our discussions in Section the optimization objective of identity embeddings {v(v)}
can be described as

min Ly, = Lreg—p + Lreg—y, (13)
Lo = 3 I0(e) — P2 (14)
Lreg—yp = Zvev |[3()II6(0)]/ W] = g(v)3, (15)

where L,eg—, regularizes auxiliary AW embeddings {¢(w)} by reconstructing the one-hot AW encodings
{p(w)} via the auto-encoder defined in (2)); Lreg—y regularizes the derived identity embeddings {¢(v)} by
minimizing the error between (i) features {[5(v)||0(v)]} normalized by the number of sampled RWs |[W(*)|
and (ii) reconstructed values {g(v)} given by (5); « is a tunable parameter.

As described in Section one can optimize position embeddings {y(v)} via a contrastive loss (12). It
can be converted to another reconstruction loss based on the following Proposition 1. In this setting, the
optimization of {¢(v)} and {y(v)} only includes three simple reconstruction losses.

Proposition 1. Let T' € RVI*? gnd T € RVIX? be the matriz forms of {y(vi)} and {7(v;)} with the i-th
rows denoting the corresponding embeddings of node v;. We introduce the auxiliary contrastive statistics

13
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Algorithm 4: Model Optimization of IRWE
Input: topology (V,E&); RW settings {l,ns,ns}; local position encodings {m;(j)}; optimization settings
{m7 M, My, )‘7/)7 /\‘/}
Output: sampled RWs {W"), W}U)}; reduced AW lookup table ; & induced statistics {3(v), d(v), 74 (v)};
optimized model parameters {6}, 605}
get AW lookup table Q; w.r.t. length [
get min degree deg,;,, & max degree deg, .. of (V,€)
get contrastive statistic C
for each node v € V do
sample ng RWs W) staring from v via Algorithm@
get AW statistic s(v) w.r.t. W) via Algorithm
get degree feature §(v) w.r.t. {W(”), dmin, dmax | via Algorithm
get global position encoding 74(v) w.r.t. W® via Algorithm
randomly select n; RWs W}U) from W)

get reduced AW statistic {5(v)} by deleting unobserved AWs
get reduced AW lookup table Q; w.r.t. {5(v)}
initial model parameters {0y, 6.}
for iter _count from 1 to m do
for county from 1 to my do
get {p(w), 3(0)} wort. {90, 5(v),6(0))
get training loss £, via
optimize identity embeddings {¢(v)} via Opt(Ay, Oy, Ly)

for count, from 1 to m, do

get identity embeddings {4 (v)} w.r.t. {4, 3(v),d(v)}

get position embeddings {vy(v)} w.r.t. {¢(v), e (v), m(5), Wl(v)}
get training loss £, via

| optimize position embeddings {y(v)} via Opt(Ay, {0y, 0~}, Ly)

save model parameters {6y, 0~}

C € RIVIXV| in terms of a sparse matriz where C;; = Inp;; — In(Qn;) if (vi,v;) € € and Ci; = 0 otherwise.
The contrastive loss (@ is equivalent to the following reconstruction loss:

min£, = |TT7/7 — C|[.. (16)

The basic idea to prove Proposition 1 is to let the partial derivative dLcp,/9[y(vi)7" (v;)/7] w.r.t. each
edge (v;,v;) to 0. For convenience, we leave the detailed proof of Proposition 1 in Appendix

Algorithm [4] summarizes the overall optimization procedure of IRWE. Before formally optimizing the model,
we sampled ng RWs W) starting from each node v and derive statistics {3(v),d(v),74(v)} induced by
(WO (ie., lines 4-10). In particular, we randomly select n; RWs W§v) from W) (n; < ng) for each
node (i.e., line 9), which are handled by the transformer encoder in the position embedding module for the
inference of {y(v)}. Namely, we use a small ratio of the sampled RWs to derive {v(v)} due to the high
complexity of transformer encoder. Note that we only sample RWs and derive induced statistics once, which
are shared by the following optimization iterations in lines 12-23.

To jointly optimize {¢(v)} and {y(v)}, one can combine and to derive a single hybrid optimization
objective. However, our pre-experiments show that better embedding quality can be achieved if we separately
optimize the two types of embeddings. One possible reason is that the two modules in IRWE usually have
unbalanced scales of parameters. Let 6, and 0, be the sets of model parameters of the identity and position
modules. The scale of §, may be larger than ¢,, due to the application of transformer encoder. As described
in lines 14-17 and lines 19-22, we respectively update {¢(v)} and {y(v)} my > 1 and m., > 1 times based
on and in each iteration, where we can effectively balance the optimization of {¢)(v)} and {v(v)}
by adjusting m, and m,.

14
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Algorithm 5: Inductive Inference within a Graph

Input: optimized model parameters {67,062 }; new topology (VU V', E’); RW settings {I,ns,nr}; local position
encodings {m(5)}; {2, degin, degax, §(v),8(v), mg(v)} derived in model optimization on old topology
V, €

Output(: ind)uctive embeddings {¢(v)} & {y(v)} w.r.t. V'

for each node v € V' do

sample ng RWs W™ from v w.r.t. £ via Algorithm@

get AW statistic ' (v) w.r.t. {W® Q) via Algorithm

get degree feature & (v) w.r.t. {W® dmin, dmax } via Algorithm@

get global position encoding 7 (v) w.r.t. {W<“>, V} via Algorithm

randomly select ny RWs W) from W)

| add §'(v), §'(v), & 7y (v) to {3(v)}, {d(v)}, & {my(v)}

get {1(v)} based on {Q,5(v),d(v)} wrt. VUV

get {v(v)} based on {y(v),m4(v), m (j)7W§“)} wr.t. V'

Note that {¢(v)} are inputs of the position embedding module, providing node identity information for the
inference of {y(v)}. The optimization of {y(v)} also includes the update of 8, via the backpropagation of
gradient descent, which may also affect the inference of {¢)(v)}. In this setting, the two types of embeddings
are jointly optimized although we adopt a separate updating strategy. The Adam optimizer is used to update
{0y,0,} during the optimization, with A, and A, as the learning rates for {¢)(v)} and {v(v)}. Finally, we
save model parameters after m iterations.

During the model optimization, we save the sampled RWs {W(”), W}v)}, reduced AW lookup table Q;, and
induced statistics {3(v), §(v), mg(v)} (i.e., lines 4-11 in Algorithm[4) and use them as inputs of the transductive
inference of {¢(v)} and {y(v)}. Then, the transductive inference only includes one feedforward propagation

through the model. For convenience, we summarize this simple inference procedure in Algorithm [7] (see
Appendix |A]).

To support the inductive inference for new nodes within a graph, we adopt an incremental strategy to get
the inductive statistics {5(v),d(v), mg(v)} via modified versions of Algorithms and [3| that utilize some
intermediate results derived during the optimization on old topology (V,&). Algorithm [5| summarizes the
inductive inference within a graph. Let V' and & be the set of new nodes and edge set induced by YV U V.
We sample RWs W) for each new node v € V' (i.e., line 2) and get the AW statistic 5(v) w.r.t. AWs in
the lookup table €; reduced on old topology (V,€) (i.e., line 3) rather than all AWs. §(v) is derived based
on the one-hot degree encoding truncated by the minimum and maximum degrees of (V, &) (i.e., line 4). In
the derivation of m,(v), we compute truncated RW statistic r(v) only w.r.t. previously observed nodes V
(i.e., line 5). For convenience, we detail procedures to derive inductive {5(v), d(v), m¢(v)} in Algorithms
@ and [10] (see Appendix . Similar to the transductive inference, given the derived {5(v),d(v), m4(v)}, we
can obtain the inductive {1)(v)} and {y(v)} via one feedforward propagation (i.e., lines 8-9).

For the inductive inference across graphs, we sample RWs {W®), W§v)} on each new graph (V" £"). Since
there are no shared nodes between the training and inference topology, we can only incrementally compute
the reduced/truncated statistics {5(v),d(v)} using the procedures of lines 3-4 in Algorithm We have
to derive global position encodings {m,(v)} from scratch via Algorithm We summarize this inductive
inference procedure in Algorithm [11| (see Appendix [A)).

4.4 Complexity Analysis

The complexity of the RW sampling starting from each node (i.e., Algorithm @ is no more than O(ngl).
The complexities to derive AW statistics s(v) (i.e., Algorithm [1)), high-order degree features d(v) (i.e.,
Algorithm [2), and global position encoding 7,4(v) (i.e., Algorithm w.r.t. a node v are O(ng), O(ngl), and
O(ngl+ k(v)d) (with k(v) as the number of nodes observed in W), respectively. Furthermore, the overall
complexity to derive the RW-induced statistics (i.e., the feature inputs of IRWE) from a graph (V, &) is no
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Table 3: Statistics of Datasets
N E K

Datasets Ground-Truth
PPI 3,890 38,739 50 )

Wiki 4,777 92,517 40 1(\11\’;[;1%5;?&)1
BlogCatalog | 10,312 333,983 39

USA 1,190 13,599 1 (Multi-Class)
FEurope 399 5,993 4 Node Identit
Brazil 131 1,003 4 y
PPls 1,021-3,480 4,554-26,688 10 N/A

more than O(|V|nsl + |V|ng + [V|nsl + (|V|nsl + kd)) = O(|V|nsl + kd) (with k =3
be significantly speeded up via parallel implementations.

vey k(v)), which can

As described in Algorithm [7] the transductive inference of IRWE only includes one feedforward propagation
through the model. Its complexity is no more than O(7,12d + |V|(el +7;)d + |V|fdh + (|V|d? + [V|d) + |V|(d +
D)d + [Vngl2dh + n;d) = O(|V|(7 + nsl?)dh), where we assume that el ~ d, > < |V|, and d < 7j;; h is the
number of attention heads.

According to Algorithm [5] the complexity of inductive inference for new nodes within a graph is O(|V'|nsl +
K'd+ VUV (i +nl?)dh), with k' := > vey k(v). In addition, the complexity of inductive inference across
graphs (i.e., Algorithm is O(|V"|nsl + k"d + [V"|(ily + nrl?)dh), with k" := 3", . k().

5 Experiments

In this section, we elaborate on our experiments. We introduce experiment setups in Section [5.1} including
datasets, downstream tasks, and baselines. Evaluation results for the transductive and inductive embedding
inference are described and analyzed in Sections and Ablation study and parameter analysis are
further introduced in Sections[5.4]and Moreover, we also demonstrate the possible inconsistency between
graph topology and attributes in Section 5.6, which verifies our motivation of not considering node attributes.

5.1 Experiment Setups

Datasets. We used seven datasets commonly used by related research to validate the effectiveness of IRWE.
Statistics of these datasets are depicted in Table[3] where N, E, and K are the number of nodes, edges, and
classes, respectively.

PPI, Wiki, BlogCatalog are the first type of datasets (Grover & Leskovec, |[2016; |Zhu et al., [2021) providing the
ground-truth of node positions for multi-label classification, which are extracted from (i) social relationships
of the BlogCatalog website, (ii) protein-protein interactions of a biology network, and (iii) word cooccurrence
of a Wikipedia dump. USA, Furope, and Brazil are the second type of datasets (Ribeiro et al., 2017; |Zhu
et all [2021) with node identity ground-truth for multi-class classification, which describe the commercial
flights of three air-traffic networks in different places. In summary, PPI, Wiki, and BlogCatalog are widely
used to evaluate the quality of position embedding while USA, Europe, and Brazil are well-known datasets
for the evaluation of identity embedding.

Moreover, PPIs is a widely used dataset for the inductive inference across graphs (Hamilton et al.l 2017}
Velickovi¢ et al., 2018), which includes a set of protein-protein interaction graphs (in terms of connected
components) with each graph corresponding to a human tissue. In addition to graph topology, the original
PPIs dataset also provides node features and ground-truth for node classification. As stated in Section
we do not consider graph attributes due to the complicated correlations between topology and attributes.
It is also unclear whether the classification ground-truth is dominated by topology or attributes. Therefore,
we only used the graph topology of PPIs in our experiments.

Downstream Tasks. We followed the experiment settings of prior work (Grover & Leskovec| [2016; Ribeiro
et al., [2017; |Zhu et al.l 2021) to adopt multi-label and multi-class node classification for the evaluation of
position and identity embeddings on the first and second types of datasets, respectively. In particular, each
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node may belong to multiple classes in multi-label classification while each node can only belong to one class
in multi-class classification. We used Micro FI-score as the quality metric for the two classification tasks. In
particular, to avoid the exception that some labels are not presented in all training examples, we removed
classes with very few numbers of members (i.e., less than 8) when conducting node classification.

In addition to node classification, we also adopted unsupervised node clustering to evaluate the quality of
identity and position embeddings. Inspired by spectral clustering (Von Luxburgl [2007) and Hypothesis
1, we can construct an auxiliary similarity graph Gp based on the high-order degree features {¢'(v) €
RU+DeY derived via a procedure similar to Algorithm The only difference between {¢’(v)} (used for
evaluation) and {§(v)} (used in IRWE) is that ¢’(v) is directly derived from the rooted subgraph Gs(v,1’)
but not the sampled RWs W®). We let Gp be the top-10 similarity graph based on the inner product
5'(1)¢)5'T(vj)/(|6'(vi)||<5'(vj)|). To obtain {6’'(v)}, we set I’ = 5 (i.e., the order of neighbors) and e = 500
(i.e., the dimensionality of the one-hot degree encoding) for the first type of datasets while we let [ = 3 and
e = 200 for PPIs. Since the high-order degree features are expected to capture node identities, we expect
that the node clustering evaluated on Gp can measure the quality of identity embeddings and define it as
the node identity clustering task. In this task, we applied a clustering algorithm to embeddings learned on
the original graph G but evaluated the clustering result on Gp.

We also treated the node clustering evaluated on the original graph G as community detection (Newman),
20006)), a typical task commonly used for the evaluation of position embeddings.

Normalized cut (NCut) (Von Luxburg, [2007) and modularity (Newman, |2006]) can be used as quality metrics
for node identity clustering and community detection. Given a clustering result C = {Cy, -+ ,Ck }, we define
NCut w.r.t. the auxiliary graph Gp as

NCut(C;Gp) = 0. 52 [cut(C,,C,)/vol(C,)], (17)
where C, = V — C,, cut(C,,C,) = ZviGCr,v,-GC_T (Ap)ij, and vol(C,) = Zviecr,vjev (Ap)ij, with Ap as the
adjacency matrix of Gp. For a clustering result C = {C1,- -+ ,Ck}, modularity w.r.t. the original graph G is
defined as

K
1 _ deg(v;) deg(v;)
Mod(C; ;" 18

where e = ), deg(v;)/2 is the number of edges.

Logistic regression and K Means were used as downstream algorithms for node classification and clustering,
respectively. In general, larger F1l-score and modularity as well as smaller NCut implies better performance
of downstream tasks, thus indicating better embedding quality.

In summary, we adopted (i) node identity clustering and (ii) multi-label node classification as downstream
tasks to respectively evaluate identity and position embeddings on the first type of datasets. For the second
type of datasets, (i) multi-label node classification and (ii) community detection were used to measure the
quality of identity and position embeddings. Moreover, we only applied the unsupervised (i) node identity
clustering and (ii) community detection to evaluate the two types of embeddings for PPIs, since we did not
consider its ground-truth.

Baselines. We compared IRWE with 16 unsupervised baselines, covering identity and position embedding
as well as transductive and inductive approaches. Table [4] summarizes all the methods to be evaluated,
where ‘-” denotes that it is unclear for a baseline which type of property (i.e., node identities or positions) it
can capture. PhUSION has multiple variants using different proximities for different types of embeddings.
We adopted two variants with (i) positive point-wise mutual information and (ii) heat kernel, which are
recommended proximities for position and identity embedding, as two baselines denoted as PhN-PPMI and
PhN-HK. Each variant of PhUSION can only derive one type of embedding.

For each transductive baseline, we can clearly distinguish that it captures node identities or positions. For
inductive baselines, GraLSP, SPINE, and GAS are claimed to be identity embedding methods while P-
GNN and CSGCL can preserve node positions. Similar to our method, GraLSP and SPINE use RWs and
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Table 4: Details of Embedding Methods to be Evaluated
Methods Transductive | Inductive | Position | Identity
node2vec (Grover & Leskovec) [2016]) v
GraRep (Cao et al.,[2015) 4
struc2vec (Ribeiro et al., |2017)
struc2gauss (Pei et al., [2020])
PhUSION (Zhu et al.| [2021)
GraphSAGE (Hamilton et al.[2017)
DGI (Velickovic et al., [2019))
GraphMAE (Hou et al.| [2022)
GraphMAE2 (Hou et al.} [2023)
P-GNN (You et al., |2019)
CSGCL (Chen et al.| |2023)
GraLSP (Jin et al.| [2020)
SPINE (Guo et al.| 2019)
GAS (Guo et al., [2020)
SANNE (Nguyen et al., 2021)
UGFormer (Nguyen et al.| [2022)
IRWE (ours) -

L
B SS

R

induced statistics to enhance the embedding quality. SANNE applies the transformer encoder to handle
RWs. However, all the inductive baselines rely on the availability of node attributes. We used the bucket
one-hot encodings of node degrees as their attribute inputs, which is a widely-used strategy for inductive
methods when attributes are unavailable. Moreover, the transductive methods learn their embeddings only
based on graph topology.

All the aforementioned baselines can only generate one set of embeddings. Therefore, we have to use this
unique set of embeddings to support two different tasks on each dataset. In contrast, our IRWE method can
support the inductive inference of identity and position embeddings, simultaneously generating two sets of
embeddings. Therefore, we used the two sets of embeddings to support different tasks, respectively.

To further validate the challenge of simultaneously capturing node identities and positions in one embedding
space, we introduced an additional baseline (denoted as [n2v||s2v]) by concatenating node2vec and struc2vec.

Note that we consider the unsupervised network embedding as stated in Section [3] There exist several
supervised inductive methods (e.g., GAT (Velickovié¢ et all, 2018), GIN (Xu et al., 2019), ID-GNN (You
et al.| 2021), DE-GNN (Li et al.,|2020), DEMO-Net (Wu et al.l [2019), and SAT (Chen et al., |2022))) that do
not provide unsupervised training objectives in their original designs. To ensure the fairness of comparison,
these supervised baselines are not included in our experiments.

All the experiments were conducted on a server with AMD EPYC 7742 64-Core CPU, 512GB main memory,
and one NVIDIA A100 GPU (80GB memory). We used the official code or public implementations of all
the baselines and tuned parameters to report their best performance. On each dataset, we set the same
embedding dimensionality for all the methods. For simplicity, we leave details of layer configurations and
parameter settings in Appendix [C}

5.2 Evaluation of Transductive Embedding Inference

We first evaluated the transductive embedding inference of all the methods on the first and second types
of datasets. For the two classification tasks (i.e., multi-label node position and multi-class node identity
classification), we randomly sampled T € {20%, 40%, 60%, 80%} and 10% of the nodes to form the training
and validation sets with the remaining nodes as the test set on each dataset. We repeated the data splitting
for node classification 10 times and reported the mean quality metric w.r.t. the 10 splits for each method.

Evaluation results of the transductive embedding inference are shown in Tables [5] and 6] where metrics of
IRWE are in bold or underlined if they perform the best or within top-3.

For transductive baselines, identity embedding approaches (i.e., struc2vec, struc2gauss, and PhN-HK) and
position embedding methods (i.e., node2vec, GraRep, PhN-PPMI) are in groups with top clustering perfor-
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Table 5: Transductive Embedding Inference w.r.t. Node Position Classification and Node Identity Clustering
on the First Type of Datasets

PPI Wiki BlogCatalog
F1l-scoreT (% Fl-scoret (% Fl-scorel (%

0% 40% 60‘(%) g0 Neutd o —10% 60§%) s0% eutl onn 0% GOg%) g0y~ Neutd
Todedvec 17.79 10.15 20.16 21.58 45.18 | 47.43 51.05 52.25 53.87 38.80 | 37.20 39.45 40.45 41.58 36.82
GraRep 17.94 20,54 22.00 23.49 30.92 | 49.87 53.33 54.18 55.09 37.12 | 30.83 33.58 34.71 35.68 34.32
PhN-PPMI | 20.17 22.34 23.64 24.84 4531 | 46.11 49.04 50.35 51.22 38.88 | 38.86 40.97 41.69 42.71 36.21
Strucavec 770 7.00 804 847 3051 | 40.70 41.14 41.17 4134 30.96 | 14.67 15.09 15.28 14.79 30.47
struc2gauss | 10.59 11.40 11.91 12.59 38.01 | 41.09 41.06 40.86 41.13 27.66 | 17.16 17.21 17.28 16.95 34.41
PhN-HK 9.60 9.57 944 9.95 31.52 | 41.54 41.58 41.35 41.77 29.47 | 17.28 17.33 17.32 17.04 34.45
[m2v]]s2v] 1420 14.67 14.66 14.38 31.00 | 38.05 30.75 41.85 44.37 32.32 | 26.04 28.75 31.34 33.75 31.14
GraSAGE [ 659 629 712 688 3600 | 4114 41.06 4082 40.80 30.71 | 16.79 16.77 16.70 16.56 34.28
DGI 10.98 12.37 13.36 14.24 4535 | 42.63 43.44 43.91 44.33 36.85 | 19.24 20.81 21.92 22.22 33.35
CGraMAE 11.58 12,76 13.76 14.00 37.72 | 42.01 42.52 42.87 43.32 25.14 | 19.29 20.38 20.57 21.02 28.35
GraMAE2 | 9.63 1040 11.26 11.52 45.26 | 41.85 42.04 41.73 42.34 38.26 | 17.76 18.14 18.23 18.29 35.56
P-GNN 1170 1271 13.71 13.75 30.74 | 43.16 44.38 44.92 45.88 37.31 | 19.29 20.64 21.39 21.43 34.75
CSGCL 14.93 16.14 17.13 17.81 41.66 | 42.77 43.39 43.47 44.06 25.94 | 18.91 19.25 10.30 19.42 30.58
GraLSP 9.08 9.35 9.37 9.95 20.76 | 41.05 41.00 40.62 41.40 11.00 | 16.65 17.50 17.44 17.58 23.46
SPINE 836 9.07 0.7 10.41 44.49 | 40.92 40.87 40.59 40.50 38.89 | 16.25 16.51 16.50 16.39 37.47
GAS 9.25 0.88 10.59 11.15 39.47 | 41.20 41.40 41.44 42.24 34.59 | 18.07 18.47 18.76 18.94 34.11
SANNE 777 818 805 0.57 d46.87 | 41.07 41.08 41.01 41.56 38.35 | 16.56 16.77 16.70 16.72 37.10
UGFormer | 6.57 6.04 6.31 6.31 2.30 41.15 41.07 40.81 40.88 21.16 | 16.73 16.84 16.76 16.53 28.01
TRWE 10.63 22.75 24.20 25.88 28.92 | 52.02 54.20 54.94 56.20 9.85 38.00 41.42 41.86 42.76 24.58

Table 6: Transductive Embedding Inference w.r.t. Node Identity Classification and Community Detection
on the Second Type of Datasets

USA Europe Brazil
Fl-scoreT (%) ModT F1-scoref (%) ModT F1-scoref (%) ModT

20% 40% 60% 80% (%) 20% 40% 60% 80% (%) 20% 40% 60% 80% (%)
node2vec 47.02 50.42 53.16 53.36 25.88 36.19 39.65 41.98 41.46 7.43 32.50 32.12 39.75 37.14 11.76
GraRep 52.52 57.86 61.93 62.01 27.54 39.18 44.32 48.09 44.87 11.48 34.89 40.45 43.50 42.14 19.76
PhN-PPMI 50.28 54.31 57.45 57.05 25.03 36.58 40.54 44.21 43.17 7.26 32.60 36.51 39.00 40.00 9.12
struc2vec 56.85 58.97 59.91 62.52 0.38 51.85 53.93 57.27 57.31 -5.61 65.43 71.66 75.25 74.29 -1.43
struc2gauss | 60.88 61.89 62.32 64.36 3.27 49.50 53.38 55.53 56.34 -6.49 68.69 72.72 75.50 73.57 -3.31
PhN-HK 58.64 60.97 62.43 63.19 13.14 50.32 52.13 54.79 56.09 -6.01 61.84 68.78 74.75 69.28 -5.19
[n2v][s2v] 54.02 55.69 58.79 57.06 2.91 48.25 52.23 54.79 52.43 -5.22 59.78 65.75 64.75 60.71 2.28
GraSAGE 45.49 50.06 54.70 55.37 1.55 34.23 46.31 45.70 46.82 -0.71 35.86 39.09 54.00 57.85 2.93
DGI 54.62 57.78 58.85 59.49 3.45 44.23 48.05 52.39 49.02 -4.78 36.19 41.36 48.25 47.85 9.18
GraMAE 58.86 62.33 64.62 64.11 5.86 45.19 49.10 52.72 49.26 1.70 44.56 55.00 63.00 66.42 3.18
GraMAE2 55.91 56.90 57.67 59.07 18.73 35.97 40.09 43.96 42.92 7.03 36.63 38.93 39.00 37.85 5.95
P-GNN 58.55 61.29 62.54 61.34 21.48 45.33 47.06 51.65 50.00 0.29 46.08 50.15 49.75 52.85 1.78
CSGCL 59.49 59.41 61.79 61.09 21.14 46.87 53.03 56.36 52.68 -8.61 38.91 44.39 48.50 52.14 13.04
GraLSP 57.89 58.87 60.58 61.84 2.72 42.59 47.66 45.70 51.70 0.65 43.15 52.12 61.25 64.28 0.32
SPINE 35.07 37.42 40.64 40.25 2.16 25.12 25.82 23.71 30.00 -0.08 23.36 21.51 19.25 23.57 0.05
GAS 60.46 62.97 64.48 64.45 22.45 51.56 52.18 55.12 58.04 5.20 67.06 69.09 72.75 74.28 1.51
SANNE 54.95 56.86 58.15 61.01 14.59 44.63 50.25 54.46 49.51 6.21 40.43 45.61 51.25 51.43 5.90
UGFormer 51.61 53.85 53.95 55.88 0.78 36.12 43.83 45.79 48.29 1.35 35.22 39.70 47.00 46.42 2.65
IRWE 58.88 64.71 66.30 67.31 31.24 53.13 55.82 58.42 60.48 17.74 69.24 71.67 75.50 75.71 21.26

mance (in terms of NCut and modularity) on the first and second types of datasets, respectively. Since prior
studies have demonstrated the ability of these transductive baselines to capture node identities or positions,
the evaluation results can validate our motivation of using node identity clustering and community detection
as the unsupervised tasks to evaluate the quality of identity and position embeddings. Our node identity clus-
tering results also validate Hypothesis 1 that the high-order degree features {6(v)} can effectively encode
node identity information.

On each dataset, most baselines can only achieve relatively high performance for one task w.r.t. identity
or position embedding. It indicates that most existing embedding methods can only capture either node
identities or positions.

In most cases, [n2v||s2v] outperforms neither (i) node2vec and PhN-PPMI for tasks w.r.t. node positions
nor (ii) struc2vec and PhN-HK for those w.r.t. node identities. It implies that the simple integration of the
two types of embeddings may even damage the quality of capturing node identities or positions. Therefore, it
is challenging to preserve both properties in a common embedding space.

For tasks w.r.t. each type of embedding, conventional transductive baselines can achieve much better per-
formance than most of the advanced inductive baselines. One possible reason is that existing inductive
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Table 7: Inductive Inference for New Nodes within a Graph and across Graphs

PPI Wiki BlogCatalog USA FEurope Brazil PPIs

F1T Ncut] F1T Ncut] | F1T Ncutl| F1T ModfT | F1f Modf F1T Modf | ModfT Ncut]

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
GraSAGE 7.35  36.13 40.71 28.86 16.30 26.50 57.81 0.88 52.68 0.02 71.42 2.18 3.90 6.69
DGI 14.64 45.18 44.16 36.89 22.76 33.71 65.54 3.90 52.19 0.69 58.57 3.65 3.562 831
GraMAE 14.54 38.58 43.78 24.73 20.94 27.78 66.72 1.62 54.15 1.11 64.29 3.42 2.82 7.40
GraMAE2 11.81 45.28 41.27 37.88 19.05 35.94 59.83 9.56 46.34 4.46 42.86 5.34 3.68 8.14
PGNN 14.29 42.91 43.74 37.57 22.06 35.33 59.49 16.15 51.70 1.36 61.42 3.93 7.83  7.95
CSGCL 16.13 41.46 43.96 25.54 19.30 31.14 63.36 18.17 56.59 -7.81 61.43 5.81 -0.26  5.88
GraLSP 6.39 47.24 40.62 31.78 16.51 37.39 25.21 -0.34 44.39 0.12 38.57 -0.80 0.88 8.48
SPINE 9.12 47.21 40.80 38.95 16.87 37.45 44.87 0.76 24.88 0.16 37.14 041 0.38 8.63
GAS 11.50 39.33 41.84 34.44 18.94 33.89 64.87 23.05 56.59 3.51 68.57 4.27 -2.10 7.15
SANNE 5.19  45.58 40.86 33.88 16.39 34.11 25.71 0.01 26.34 -0.01 25.13 -0.01 1.43  8.22
UGFormer | 5.59 34.70 40.71 21.39 16.23 27.84 59.83 2.03 45.85 0.73 62.86 1.95 -0.83  5.43
IRWE 18.29 32.95 47.32 15.93 0.28 27.72 68.40 25.80 59.02 11.65 74.29 12.83 | 11.41 4.62

embedding approaches usually rely on the availability of node attributes. However, there are complicated
correlations between graph topology and attributes as discussed in Section Our results imply that the
embedding quality of some inductive baselines is largely affected by their attribute inputs. Some standard
settings for the case without available attributes (e.g., using bucket one-hot degree encodings as attribute
inputs) cannot help derive informative identity or position embeddings.

Our IRWE method achieves the best quality for both identity and position embedding in most cases. It
indicates that IRWE can jointly derive informative identity and position embeddings in a unified framework.

5.3 Evaluation of Inductive Embedding Inference

We further consider the inductive embedding inference (i) for new unseen nodes within a graph and (ii)
across graphs, which were evaluated on the (i) first two types of datasets (i.e., PPI, Wiki, BlogCatalog, USA,
Europe, and Brazil) and (ii) PPIs, respectively. Note that we could only evaluate the quality of inductive
methods because transductive baselines cannot handle the inductive embedding inference.

For the inductive inference within a graph, we randomly selected 80%, 10%, and 10% of nodes on each single
graph to form the training, validation, and test sets (denoted as Virn, Vyai, and Vigt), where Vg and Vi
represent sets of new nodes not observed in Vi, wWith Vien N Veat = 0, Vien N Vi = 0, and Vyg N Vier = 0.
The embedding model of each inductive method was optimized only on the topology induced by Vy,,,. When
validating and testing a method using the node classification task, embeddings w.r.t. V., and Virp U Vyar
were respectively used to train the downstream logistic regression. We repeated the data splitting 5 times,
with the partitions of {Virpn, Vyal, Vist} shared by all the methods. Moreover, we independently conducted
the model optimization and evaluation on each split and reported the mean quality metric w.r.t. the 5 splits
for each method.

The inductive inference across graphs is usually conducted on graphs from the same domain with similar
underlying properties (Hamilton et all [2017;|Qin et al., 2023a)) (e.g., protein-protein interactions of different
human tissues). We sampled 3 graphs from PPIs denoted as Girn, Gual, and Gis, which were used for
training, validation, and testing. For each method, we first optimized the embedding model on G;.,. To
validate or test the model, we derived inductive embeddings w.r.t. the new topology of G, or G:s and
obtained clustering results for evaluation by applying KMeans. This procedure (i.e., graph sampling, model
optimization, and evaluation) was repeated 5 times, where 15 graphs were sampled. Finally, the mean quality
metric w.r.t. the 5 data splits was reported.

Evaluation results of the inductive embedding inference are depicted in Table [7] where metrics of IRWE are
in bold or underlined if they perform the best or within top-3.

In Table [7]] IRWE achieves the best quality for tasks w.r.t. both identity and position embedding in most
cases. In particular, the quality metrics of IRWE are significantly better than other inductive baselines,
whose inductiveness relies on the availability of node attributes. Our results further demonstrate that IRWE
can effectively support the inductive inference of identity and position embeddings, simulataneously generating
two sets of informative embeddings without relying on the availability and aggregation of graph attributes.
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Table 8: Ablation Study w.r.t. Node Position Classification and Node Identity Clustering on PPI as well as
Node Identity Classification and Community Detection on USA.

PPI USA
F1-Scoref (%) Ncutl] | F1-Score? (%) Mod?t (%)

IRWE 25.88 28.94 67.31 31.24
(1) w/o 1058 Lreg g 25.43 30.14 | 66.55 30.82
(2) w/o input {3(v)} 24.76 29.68 65.21 29.31
(3) w/o input {é(v)} 25.14 30.61 67.07 31.08
(4) W/0 1088 Lrog_1, 25.65 36.02 | 45.79 30.11
(5) w/o input {¢(v)} 24.95 29.28 65.79 30.44
(6) w/o input {mg(v)} 25.08 29.62 65.79 29.45
(7) w/o ROut(-) 13.39 20.30 | 66.47 -0.76
(8) w/o loss L 22.43 29.42 65.88 23.65
(9) base stat {s(v)} - 46.05 56.63 -

(10) base stat {6(v)} - 34.06 63.94 -

(11) base stat {mg(v)} 17.52 - - 21.85
(12) based stat C (SVD) | 22.60 - - 12.15

5.4 Ablation Study

In our ablation study, we respectively removed some key components from the IRWE model to explore their
effectiveness for ensuring the high embedding quality of our method.

For the identity embedding module, we considered the (i) AW embedding regularization loss Lieg—¢ 7
(ii) AW statistic inputs {3(v)}, (iii) high-order degree feature inputs {0(v)}, and (iv) identity embedding
regularization loss Lyeg—y (15)). In cases (i) and (iv), identity embeddings were only optimized via one loss
(i.e., Lreg—yp O Lreg—o)-

For the position embedding module, we checked the effectiveness of the (v) identity embedding inputs {¢(v)},
(vi) global position encoding inputs {my(v)}, (vii) attentive readout function ROut(-) described in (I), and
(viii) reconstruction loss L, of position embeddings. In case (v), the two modules of IRWE were
independently optimized. For case (vii), we used the average operation to replace the attention unit ROut(-)
(i.e., simply averaging the representations in £(*)). For case (viii), we replaced the contrastive statistics C in
with adjacency matrix A (i.e., reconstructing A instead of C when optimizing position embeddings).

We also used some induced statistics as baselines by directly feeding them to the downstream tasks with
logistic regression and K Means for classification and clustering. Concretely, we evaluated the quality of (ix)
AW statistics {3(v)} and (x) degree features {§(v)} to capture node identities. In contrast, we checked the
quality of (xi) global position encodings {m,(v)} and (xii) contrastive statistics C for node positions. In
case (xii), we derived representations with the same dimensionality as other embedding methods by applying
SVD to C.

As a demonstration, we report results of transductive embedding inference on PPI and USA (with 80% of
nodes sampled as the training set for classification) in Table 8] According to our results, Lreg—y is essential
for identity embedding learning, since there are significant quality declines for node identity clustering and
classification in case (iv). ROut(-) and L, are key components to capture node positions due to the significant
quality declines for node position classification and community detection in cases (vii) and (viii). In addition,
all the remaining components can further enhance the ability to capture node identities and positions. The
joint optimization of identity and position embeddings can also improve the quality of one another.

5.5 Parameter Analysis

We tested the effects of (i) RW length [, (ii) « in loss (13)), and (iii) temperature parameter 7 in loss (6]
Concretely, we set | € {4,5,---,9}, « € {0.1,0.5,1,5,10,50,100}, and 7 € {1,5,10,50,100, 500, 1000}.
Example parameter analysis results of the transductive embedding inference on PPI and USA (with 80% of
nodes sampled as the training set for classification) are illustrated in Fig. [7] and
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Figure 7: Parameter analysis w.r.t. [, o, and 7 on PPI in terms of Fl-scoret (node position classification)
and NCut] (node identity clustering).
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Figure 8: Parameter analysis w.r.t. [, o, and 7 on USA in terms of Fl-scoref (node identity classification)
and modularity? (community detection).

According to the parameter analysis results, the quality of both types of embeddings is not sensitive to the
settings of [. Compared with position embeddings, the quality of identity embeddings is more sensitive to
a (e.g., in terms of Fl-score of node classification on USA and NCut of node identity clustering on PPI).
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Table 9: Evaluation Results on Attributed Graphs for the Validation of Inconsistency of Attributes.

Cornell Texas ‘Washington Wisconsin
Modf (%) NCutl| [ Modt (%) NCutl] | Mod?t (%) NCut] | Modf (%) NCut]
node2vec | 56.93 3.18 45.99 3.10 44.94 3.59 54.73 2.97
struc2vec | -9.50 1.53 -11.37 1.17 -9.33 0.71 -8.94 1.34
att-emb -0.09 3.76 -0.01 3.75 -2.30 3.84 -3.54 3.75
[n2v|]att] | 50.80 3.38 35.26 3.12 44.05 3.50 54.02 3.13
[s2v]|att] -5.76 1.81 -12.77 1.33 -2.81 1.00 -9.58 1.35

Furthermore, the settings of 7 would significantly affect the quality of the two types of embeddings. The
recommended parameter settings of IRWE are given in the Appendix [C]

5.6 Verification of the Inconsistency between Graph Topology and Attributes

To demonstrate the possible inconsistency of graph attributes for identity and position embedding discussed
in Section we conducted additional evaluation experiments on four public attributed graphs (i.e., Cornell,
Texas, Washington, and Wisconsin) from the WebKHH dataset. For each graph, we first extracted the largest
connected component from its topology. After the pre-processing, we have (N, E, M, K) = (183,227,1703,5),
(183,279,1703,5), (215,365,1703,5), and (251,450,1703,5) for Cornell, Texas, Washington, and Wisconsin,
where N, E, and K are numbers of nodes, edges, and clusters; M denotes the dimensionality of node
attributes.

We then applied node2vec and struc2vec, which are typical position and identity embedding baselines as
described in Table[d] to the extracted topology of each graph, where we set embedding dimensionality d = 64.
Furthermore, we derived special attribute embeddings (denoted as att-emb) with the same dimensionality
by applying SVD to node attributes. In this setting, we have three baseline methods (e.g., node2vec,
struc2vec, and att-emb). To simulate the incorporation of attributes, we also concatenated att-emb with
node2vec and struc2vec, forming another two baselines denoted as [n2v]|att] and [s2v||att]. The unsupervised
community detection and node identity clustering (with metrics of modularity and NCut) were adopted as
the downstream tasks for position and identity embedding, respectively.

The evaluation results are depicted in Table EI, where att-emb outperforms neither (i) node2vec for community
detection nor (ii) struc2vec for node identity clustering; the concatenation of att-emb cannot further improve
the embedding quality of node2vec and struc2vec. The results imply that (i) attributes may fail to capture
both node positions and identities; (ii) the simple integration of attributes may even damage the quality of
position and identity embeddings.

6 Conclusion

In this paper, we considered unsupervised network embedding and explored the possibility of a unified
framework for the joint optimization and inductive inference of identity and position embeddings without
relying on the availability and aggregation of graph attributes. An IRWE method was proposed, which
combines multiple attention units with different choices of key, query, and value to handle RWs on graph
topology. In particular, we demonstrated that AW derived from RW and induced statistics can not only (i) be
features shared by all possible nodes and graphs to support inductive inference but also (ii) characterize node
identities to derive identity embeddings. Moreover, we also showed the intrinsic relation between the two
types of embeddings. Based on this relation, the derived identity embeddings can be used for the inductive
inference of position embeddings. Experiments on public datasets validated that IRWE can achieve superior
quality compared with various baselines for the transductive and inductive inference of identity and position
embeddings. We conclude this paper by discussing some future directions.

e In this study, we focused on network embedding where topology is the only available information
source without attributes, due to the complicated correlations between the two sources (Qin et al.,

Thttps://www.cs.cmu.edu/afs/cs/project /theo-20/www /data/
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2018; |Li et al., |2019; Wang et al., 2020; |Qin & Lei, 2021)) discussed in Section In our future work,
we intend to explore the adaptive incorporation of attributes. Concretely, when attributes carry
characteristics consistent with topology, one can fully utilize attribute information to enhance the
embedding quality. In contrast, when there is inconsistent noise in attributes, we need to adaptively
control the effect of attributes to avoid unexpected quality degradation.

o In addition to mapping each node to a low-dimensional representation (a.k.a. node-level embedding)
as defined in Section |3} network embedding also includes the representation learning of each single
graph (a.k.a. graph-level embedding). In our future research, we also plan to extend IRWE to
the graph-level embedding and evaluate the embedding quality for some graph-level downstream
tasks (e.g., graph classification). To analyze the relations of graph-level embeddings to identity and
position embeddings is also our next focus.

o As described in Section [£.3] the optimization of IRWE adopts the standard full-batch setting, where
we derive statistics or embeddings w.r.t. all the nodes V when computing the training losses. This
setting may not be scalable to graphs with large numbers of nodes. Inspired by existing studies of
scalable GNNs (Zhang et al., 2022; [Liu et al., [2023), we intend to explore a scalable optimization
strategy based on the mini-batch setting in our future research.
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Algorithm 6: RW Sampling Starting from a Node

Input: topology (V,£); target node v; RW length [; number of samples ng
Output: set of sampled RWs w)
W « ( //Initialize W)
for sample__count from 1 to ng do
vs <— v and w < (vs) //Initialize current RW w
while |w| < (I +1) do
randomly sample a node v; from v,’s neighbors
append v; to w
Vs < Ut

add w to W®

Algorithm 7: Transductive Inference

Input: RWs {W<“>,W§U)}, AW lookup table Q;, & statistics {5(v), 3(v), 74(v)} saved in model optimization;
inference topology (V, &)

Output: {ransductive embddings {¢(v)} & {y(v)} w.r.t. V

get {1(v)} based on {Q,5(v),d(v)} wrt. V

get {y(v)} based on {¢(v), 7y (v), m(j), W} wrt. V
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social role-aware information diffusion. In Proceedings of the 29th AAAI Conference on Artificial Intelli-
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A Detailed Algorithms

The RW sampling procedure starting from a node is summarized in Algorithm [0} which uniformly sample
the next node v; from the neighbors of each source node v; (i.e., line 5).

Algorithm 7| summarizes the transductive inference procedure of IRWE, where the RWs {W(“),W§v)}, AW
lookup table €, and statistics {5(v), d(v), 7y(v)} derived and saved during the model optimization are used
as the inputs. The transudcitve inference of identity embeddings {1)(v)} and position embeddings {v(v)}
only includes one feedforward propagation through the model (i.e., lines 1-2).

Procedures to get inductive AW statistics {s(v)}, high-order degree features {6(v)}, and global position
encodings {m,(v)}, which support the inductive inference for new nodes within a graph (i.e., Algorithm ,
are described in Algorithms|[8] [0} and[10] respectively. When deriving {s(v)}, we only compute the frequency
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Algorithm 8: Inductive Derivation of AW Statistics

Input: new target node v € V’; sampled RWs W(”); AW lookup table €; reduced on old topology W, €)
Output: inductive AW statistic s(v) w.r.t. v
it < |Qu| //Get size of reduced AW lookup table
s(v) + [0,0,---,0]™ //Initialize s(v)
for each w € W) do
map RW w to its corresponding AW w
if we Ql then
get the index j of AW w in reduced lookup table €
s(v); < s(v); +1 //Update s(v)

Algorithm 9: Inductive Derivation of Degree Feature

Input: new target node v € V’'; RW length [; one-hot degree encoding dimensionality e; sampled RWs w,
deg,;n, & deg,., in old topology (V,€)
Output: inductive degree feature 6(v) w.r.t. v
5(v) « [0,0,--- 0]+ Ve //Initialize degree feature §(v)
for each w € W do
for i from 0 to [ do
u < w'? //i-th node in current RW w
if u €V then
pa(u) < [0,---,0]¢//Initialize one-hot degree encoding
if deg(u) < deg,,;, then
| j+0
else if deg(u) > deg,,,, then

[ je(e—1)

else

| e | et |
pa(u); <= 1 //Update pa(u)
5(U)ie:(i+l)e — 5(U)ie:(i+l)e + Pd(u)

of AWs in the lookup table €; reduced on (V, £) (i.e., lines 5-7 of Algorithm rather than all AWs. Moreover,
we get {0(v)} based on the one-hot degree encoding truncated by the minimum and maximum degrees of the
training topology (V, &) (i.e., lines 7-12 of Algorithm [9) but not those of the inference topology (VUV',&’).
For m4(v), we compute truncated RW statistic 7(v) only w.r.t. previously observed nodes V (i.e., lines 4-6
of Algorithm rather than V' U V.

The inductive inference across graphs is summarized in Algorithm Concretely, we sample RWs
{w), W}U)} on each new graph (V”,£") (i.e., line 2). Since there are no shared nodes between the training
topology (V, &) and inference topology (V", &), we can only incrementally compute statistics {3(v),d(v)}

based on {Q,deg, ;. ,deg, . } derived from (V,€) (i.e., lines 3-4) but compute global position encodings
{mg(v)} from scratch (i.e., line 5).

B Proof of Proposition 1

For simplicity, we let z;; := v(v;)7T (v;)/7. To minimize the contrastive loss L., one can let its partial
derivative 0Lenr/2i; w.r.t. each edge (vi,v;) € £ to 0. Note that o(z) = 1/(1 4+ e %) and do(z)/dx =
o(z)[1 — o(x)]. Therefore, we have

0= 0Lcnr/2i5 = —pij(1 = 0(2i5)) + Qn;(1 — o(—2;)), (19)
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Algorithm 10: Inductive Derivation of Global Position Encoding

Input: new target node v € V’; sampled RWs W(”); old training node set V; random matrix ® &€ RIVIxd
Output: inductive global position encoding my(v) w.r.t. v
r(v) « [0,0,---,0]V! //Initialize RW stat r(v)
for each w € W) do
for each node v € w do
if v eV then
get index j of v in the training node set V
L r(v); < r(v); +1 //Update r(v)

g (v) <~ r(v)® //Derive mq4(v)

Algorithm 11: Inductive Inference across Graphs

Input: optimized model parameters {67, 6% }; new topology (V",£"); RW settings {l,ns,nr}; local position
encodings {m;(5)}; {€U, deg,in, degax } derived in model optimization on old topology (V, )

Output: inductive embeddings {¢(v)} & {v(v)} w.r.t. V”
for each node v € V" do

sample ng RWs W from v w.r.t. £ via Algorithm @

get AW statistics 5(v) w.r.t. {W® Q} via Algorithm

get degree feature §(v) w.r.t. (W™ duin, dmax} via Algorithm @

get global position encoding 7, (v) w.r.t. W via Algorithm

randomly select ny RWs W}w from W@

get {1(v)} based on {Q,5(v),d(v)} wrt. V”
get {v(v)} based on {1h(v), 7y (v), m(5), W} w.r.t. V"

which can be rearranged as
pijo(zij) — @njo(—zij) = pij — @n;. (20)

*o(x), we have

By applying o(—z) = e~

pijo(zij) — Qny - exp{—zij}o(zi;) = pij — Qn;

i —Qnjexpi—zi;}
= 1+:xjp?()?2”(}z J _{ o ]; o
1i+@n;—Qn; (rexp{—21,}) _
= = njl—&-e:;{—zj:f = = DPij — an 21
= (pij + Qnj)o(zi5) = pij ' 1)

= 0(2i5) = pis/ (pij + @nj)
= 1+ exp{—z;;} = (pi; + Qn;)/pi;
= exp{—zi;} = Qn;/pi

By taking the logarithm of both sides, we further have

Zij = hlpij - ln(Qn]) (22)

Let C € RVIXIVI be an auxiliary matrix with the same definition as that in Proposition 1. From the
perspective of matrix factorization, we can rewrite the aforementioned equation to another matrix form
I'T” /7 = C, which is equivalent to the reconstruction loss L.

C Detailed Experiment Settings

The parameter settings of IRWE for the transductive and inductive embedding inference are depicted in
Tables[10jand [L1} where d is the embedding dimensionality; e is the dimensionality of one-hot degree encoding
tfor the degree features {§(v)}; ng and n; are defined as the number of sampled RWs (i.e., ng := [W(*)|) and

number of RWs used to infer position embeddings (i.e., n; := \W}v) |) for each node v; Ay and A, are learning
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Table 10: Parameter Settings for Transductive Inference.

(d7 €, ng, TL[) ()"LZJ: )"Y) (m7 My, m"{) (lr Q, T)
PPI (256, 100, 1e3, 10) | (be-4,1e-3) | (2e3, 10, 1) | (7, 0.1, 5e2)
Wiki | (256, 100, 1e3, 10) | (le-3,1e-3) | (1e3, 5, 1) (7, 10, 1e3)
Blog (256, 100, 1e3, 10) | (5e-4,5e-4) | (3e3, 1, 20) (9, 10, 10)
USA (128, 100, 1e3, 20) | (le-3,5e-4) | (500, 10, 1) | (9, 10, 10)
Europe | (64, 100, 1e3, 20) (5e-4,5e-4) | (200, 1, 1) (9, 10, 10)
Brazil | (64, 32, 1e3, 20) (5e-4,5e-4) | (200, 1, 1) (9, 0.1, 1e2)

Table 11: Parameter Settings for Inductive Inference.

(d7 €, ng, ’I'L[) (A’l[H )‘W) (ma My, m"/) (l7 Q, T)
PPI (256, 100, 1e3, 10) | (5e-4,le-4) | (1e3, 20, 1) | (7, 10, 562)
Wiki (256, 100, 1e3, 10) | (le-3,5e-4) | (1le3, 1, 1) (7, 10, 5e2)
Blog (256, 100, 1e3, 10) | (5e-4,5e-4) | (1e3, 20, 5) (5, 10, 5)
USA (128, 100, 1e3, 10) | (5e-4,5e-4) | (500, 10, 1) (9, 10, 10)
Europe | (64, 100, 1e3, 10) (5e-4,5e-4) | (200, 1, 1) (9, 10, 10)
Brazil | (64, 32, 1e3, 10) (5e-4,5¢-4) | (200, 1, 1) (9, 0.1, 1e2)
PPIs (256, 100, 1e3, 10) | (5e-4,5e-4) | (1000, 5, 1) (9, 10, 50)

Table 12: Layer Configurations for Transductive Inference.

Tdentity Embedding Module

Position Embedding Module

Datasets | —grc-1 Decg () Rods (1) Ty | Regg () MLP in ReAtt() | (Leran: Ptre Frout
PPI 12128, t,d,t  d,128,6,02,t | 7;+1le,2048,r,1024,r,512,r,d,r | 64 d,512,t,le,t dyd,s,d,s,d,s,d,s (4, 64) 64
Wiki 12128,t,d,t  d,128,t,0%,t | 7;+1le,1024,r,512,r,d,r 64 d,512,t,le,t (4, 64) 64
Blog 12,128,t,d,t  d,128,6,0%,t | 7;+1e,1024,r,512,r,d,r 64 d,512,t,le,t (5, 64) 64
USA 12,100,t,d,t  d,100,6,02,t | 7;+1e,4096,r,2048,r,512,r,d,r | 32 d,le,t d,d,s,d,s,d,s,d,s (4, 32) 32
Europe 12.64,¢,d,t d,64,t,12 ¢ 7, +1e,4096,r,1024,r,256,r,d,r | 16 d,256,6,512,t,le,t | d,d,s,d,s (4, 16) 16
Brazil 12 64,t,d,t d,64,6,12 ¢ iy +1le,1024,r,512,r,128,r,d,x 16 d,128,t,le,t d,d,s,d,s (4, 16) 16
Table 13: Layer Configurations for Inductive Inference.
Datasects Identity Embedding Module Position Embedding Module
Ence (4) Decy () Reds () Ry Regy, () MLP in ReAtt(-) (Lyrans Ptran) hrout
PPI 12,128,t,d,t d,128,t,12 t ] +1le,1024,r,512,r,d,r 64 d,le,t d,d,s,d,s,d,s,d,s (4, 64) 64
Wiki 12,128,t,d,t  d,128,t,12,t | @;+le,1024,r,512,r,d,r | 64 d,512,t,le,t d,d,s,d,s,d,s,d,s (4, 64) 64
Blog 12,128,t,d,t  d,128,t,12,t | #;+le,1024,r,512,r,d,r | 64 d,t,512,t,le,t d,d,s,d,s,d,s,d,s (5, 64) 64
USA 12,100,t,d,t  d,100,t,12,t | #;+le,1024,r,512,r,d,x | 32 d,512,t,le,t d,d,s,d,s,d,s,d,s (4, 16) 16
Europe 12,64,t,d,t d,64,t,12 ¢ Aj+1e,1024,r,512,r,d,r | 16 d,256,t,512,t,le,t | d,d,s,d,s (4, 16) 16
Brazil 12,64,t,d,t d,64,t,12 ¢ Ay+le,512,r,128,r,d 16 d,256,t,le,t d,d,s,d,s (4, 16) 16
PPIs 12,128,t,d,t  d,128,t,12,t | 7j;+le,1024,r,512,r,d,r | 64 d,512,8,le,t d,d,s,d,s,d,s,d,s (6, 64) 64

rates to optimize identity and position embeddings; m is the number of iterations for model optimization;
in each iteration, we update identity and position embeddings m, and m. times; [ is the RW length; o and
T are hyper-parameters in the training losses.

Furthermore, Tables and give layer configurations for the transductive and inductive embedding in-
ference, where Ency(-) and Dec,(-) denote the AW encoder and decoder described in (2); Red,(-) is the
feature reduction encoder defined in (3); Reg, (-) represents the identity embedding regularization unit in
(5); ReAtt(-) is the attentive reweighting unit in (7); 7 is the reduced number of AWs (i.e., 7 = |Q]);
hap, Btran, and hpous represent the numbers of attention heads in (4), transformer encoder in (10), and
attentive readout function in (11); Liyan is defined as the number of transformer encoder layers; ’t’, ’s’,
and 'r’ denote the activation functions of Tanh, Sigmoid, and ReLLU, respectively. For the proposed IRWE
method, we recommend setting ! € {4,5,---,9}, « € {0.1,0.5,1, 5,10}, 7 € {1, 5, 10, 50, 100, 500, 1000}, and
my,m. € {1,5,10,20}.
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