
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LATENT SAFETY-CONSTRAINED POLICY APPROACH
FOR SAFE OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In safe offline reinforcement learning (RL), the objective is to develop a policy that
maximizes cumulative rewards while strictly adhering to safety constraints, utiliz-
ing only offline data. Traditional methods often face difficulties in balancing these
constraints, leading to either diminished performance or increased safety risks. We
address these issues with a novel approach that begins by learning a conservatively
safe policy through the use of Conditional Variational Autoencoders, which model
the latent safety constraints. Subsequently, we frame this as a Constrained Reward-
Return Maximization problem, wherein the policy aims to optimize rewards while
complying with the inferred latent safety constraints. This is achieved by training
an encoder with a reward-Advantage Weighted Regression objective within the
latent constraint space. Our methodology is supported by theoretical analysis,
including bounds on policy performance and sample complexity. Extensive empiri-
cal evaluation on benchmark datasets, including challenging autonomous driving
scenarios, demonstrates that our approach not only maintains safety compliance but
also excels in cumulative reward optimization, surpassing existing methods. Addi-
tional visualizations provide further insights into the effectiveness and underlying
mechanisms of our approach. The code is available here.

1 INTRODUCTION

Although Reinforcement learning (RL) is a popular approach for decision-making and control
applications across various domains, its deployment in industrial contexts is limited by safety concerns
during the training phase. In traditional online RL, agents learn optimal policies through trial and
error, interacting with their environments to maximize cumulative rewards. This process inherently
involves exploration, which can lead to the agent encountering unsafe states and/or taking unsafe
actions, posing substantial risks in industrial applications such as autonomous driving, robotics, and
manufacturing systems (Garcıa & Fernández, 2015; Gu et al., 2022; Moldovan & Abbeel, 2012; Shen
et al., 2014; Yang et al., 2020). The primary challenge lies in ensuring that the agent’s learning process
does not compromise safety, as failures during training can result in costly damages, operational
disruptions, or even endanger human lives (Achiam et al., 2017; Stooke et al., 2020). To address these
challenges, researchers have explored several approaches aimed at minimizing safety risks while
maintaining the efficacy of RL algorithms.

One effective method to mitigate safety risks associated with training an agent is offline RL. In this
paradigm, the focus shifts from active interaction with the environment to learning policies from a
static dataset. This dataset comprises trajectory rollouts generated by an arbitrary behavior policy or
multiple policies, collected beforehand. By leveraging this fixed dataset, offline RL eliminates the
need for real-time data collection, thereby significantly reducing the risk of actually encountering
unsafe states during the learning process. Training an agent with Offline RL, however, presents a
unique set of challenges, primarily due to the issue of distribution shift (Levine et al., 2020; Tarasov
et al., 2024; Fu et al., 2020). The static dataset may not fully represent the range of scenarios the
agent will encounter in the real world, leading to potential mismatches between the training data and
the learned policy. This discrepancy can result in suboptimal policy performance when deployed in
real-world settings. Despite these challenges, offline RL remains a powerful tool for safely training
RL agents, as it allows for policy evaluation and improvement without incurring the risks associated
with live interactions.

1

https://anonymous.4open.science/r/LSPC-Safe-Offline-RL-42DF/lspc_iql.py

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Another critical approach to mitigating safety risks in RL is safe RL. Unlike traditional RL, where the
primary objective is to maximize cumulative rewards, safe RL places a strong emphasis on producing
actions that adhere to predefined safety constraints (Xu et al., 2022b; Chow et al., 2018). This involves
integrating safety considerations directly into the RL framework, ensuring that the agent’s behavior
remains within acceptable safety bounds throughout the training and deployment phases. Safe RL
methods often formulate the problem as a Constrained Markov Decision Process (CMDP), where the
agent not only seeks to optimize its performance but also to satisfy safety constraints (Altman, 1998;
2021; Chow et al., 2018). This dual objective can be challenging to achieve, as it requires balancing
the exploration needed for learning with the strict adherence to safety requirements.

In safe offline RL, the agent is tasked with learning a policy exclusively from pre-collected data
while adhering to stringent safety constraints (Liu et al., 2023a; Le et al., 2019). It is common
practice—and often necessary—to constrain the policy such that it selects actions not only within the
support of the dataset but also in compliance with the safety constraints (Xu et al., 2022a). However,
solving this problem is inherently difficult due to the trade-offs involved in enforcing constraints.
Overly restrictive constraints can limit the agent’s ability to explore potentially rewarding actions,
leading to suboptimal policies that fail to optimize for cumulative rewards. On the other hand, overly
relaxed constraints may allow the selection of out-of-distribution (OOD) actions, increasing the risk
of violating safety constraints and leading to hazardous outcomes.

To address these challenges, we introduce Latent Safety-Prioritized Constraints (LSPC), a framework
that leverages Conditional Variational Autoencoders (CVAEs) to model the distribution of safety
constraints within a latent space. This allows the agent to operate within a learned safety-prioritized
boundary while maintaining sufficient flexibility for reward optimization. By incorporating implicit
Q-learning, our approach formulates the policy learning problem as a Constrained Reward-Return
Maximization task, where the agent seeks to maximize cumulative rewards while adhering to the
inferred safety constraints. This principled method ensures that the learned policy remains safe, even
in offline settings where exploration is not possible. Our empirical results on standard safe offline RL
benchmarks demonstrate that LSPC achieves superior performance compared to existing approaches,
balancing safety and reward return in a manner that is suitable for deployment in critical, high-stakes
environments. The key contributions of this paper are as follows:

• We propose LSPC, a novel framework to model safety constraints derived from the static
dataset in a tractable and imposable form, thereby facilitating their integration into the policy
learning process.

• We formulate the problem as Constrained Reward-Return Maximization, ensuring safety
compliance while maximizing cumulative rewards, supported by theoretical bounds on
policy performance and sample complexity.

• Through extensive empirical evaluations, we demonstrate that policies derived from LSPC
significantly outperform existing methods in both safety and reward optimization, providing
a robust solution for high-stakes environments.

2 PRELIMINARIES

2.1 SAFE OFFLINE RL

In Safe Reinforcement Learning (Safe RL) problems, the environment is defined as a Constrained
Markov Decision Process (CMDP), represented by the tupleM = (S,A,P, r, c, γ, ρ0). Here, S
represents the state space, A the action space, P : S ×A×S → [0, 1] the state transition probability
function, r : S ×A → R the reward function, c : S ×A → [0, Cm] the cost function associated with
constraint violations, γ the discount factor, and ρ0 the initial state distribution. Cm is the maximum
value for each immediate cost. We also assume that the maximum value of the immediate reward
is Rm. The cost function penalizes transitions that violate safety constraints, and the objective is to
ensure safety by keeping the cumulative cost under a predefined threshold, κ.

A trajectory τ = (s0, a0, r0, c0), (s1, a1, r1, c1), . . . , (sT , aT , rT , cT) represents a sequence of states,
actions, rewards, and costs over time. The discounted cumulative reward for a trajectory is defined
as R(τ) =

∑T
t=0 γ

tr(st, at), and the discounted cumulative cost is C(τ) =
∑T
t=0 γ

tc(st, at).
We then also define the stationary state-action distribution under the policy π as dπ(s, a) = (1 −
γ)

∑T
t=0 γ

tp(st = s, at = a) and the stationary state distribution under the policy π as dπ(s) =

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Illustration of the architecture and training objective of
proposed safe offline RL framework.

(b) Visual representation of action selection
within the latent safety-constrained space.

Figure 1: Overview of the Proposed Method: A safe offline RL framework that balances safety
and reward optimization. (a) The state-action pairs are encoded into a latent space by encoder α,
where the latent safety constraints are inferred. Decoder β then uses these constraints to generate
safe actions. Simultaneously, another encoder δ maximizes the reward signal to find actions that
optimize performance while adhering to safety constraints. The process balances between minimizing
the violation of safety constraints V πc and maximizing reward returns V πr . (b) Actions from the
latent space are subject to additional restriction to ensure they meet safety requirements before being
optimized for reward return. The Q-function Qr(s, a) represents the expected reward return for each
safe action for that state.

(1− γ)
∑T
t=0 γ

tp(st = s), where p signifies the probability. The goal in safe RL is to learn a policy
that maximizes the expected return in the CMDP while keeping the expected cost return below an
allowable threshold. Thus, the safe RL problem is mathematically defined as follows:

max
π

Eτ∼π[R(τ)], s.t.,Eτ∼π[C(τ)] ≤ κ (1)

Offline Reinforcement Learning is a variant of RL in which the learning process is confined to
a static dataset, eliminating any further interaction with the environment during training. The
agent learns the policy from a pre-collected dataset D := (s, a, s′, r, c), with both safe and unsafe
trajectories. The value functions for both reward and cost can be defined in a unified way V πh (s0) =

Eτ∼π[
∑T
t=0 γ

tht|st = s0], h ∈ {r, c}. Denote by πb the unknown behavior policy induced by the
dataset D. We can now formulate safe offline RL as an optimization problem within the framework
of a CMDP:

max
π

V πr (s), s.t., V πc (s) ≤ κ; DKL(π||πb) ≤ ε1, (2)

where πb governs the action distribution in the given dataset, and ε1 is a divergence tolerance
parameter. The function DKL(π||πb) measures the divergence between the learned policy π and
the behavior policy πb, typically using metrics such as Kullback-Leibler (KL) divergence or other
statistical distance measures. These constraints ensure that the learned policy π remains within the
safety limits defined by the cost threshold κ and does not deviate significantly from the behavior
policy πb, thereby mitigating the risks associated with out-of-distribution actions.

2.2 CONDITIONAL VARIATIONAL AUTOENCODER

A Conditional Variational Autoencoder (CVAE) is a generative model that extends the standard
Variational Autoencoder (VAE) by conditioning the generation process on additional information
(Doersch, 2016). Formally, the objective of the CVAE is to maximize the conditional likelihood
pθ(x|y) of the data x given the condition y. To achieve this, CVAE introduces a latent variable z and
optimizes the variational evidence lower bound (ELBO) on the conditional log-likelihood:

log p(x|y) ≥ Eq(z|x,y) [log p(x|z, y)]−DKL (q(z|x, y)∥p(z|y)) ,
where q(z|x, y) is the variational posterior, p(x|z, y) is the likelihood, and p(z|y) is the prior. The
KL divergence term DKL(q(z|x, y)∥p(z|y)) regularizes the learned posterior to be close to the prior.
During training, the CVAE jointly optimizes the encoder and decoder networks by minimizing the
negative ELBO, which balances the reconstruction error and the regularization term. This approach
allows the CVAE to generate new data samples (x) from the distribution of the dataset conditioned
on the variable y.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 IMPLICIT Q LEARNING

Offline Reinforcement Learning (RL) algorithms often address covariate distribution shift by em-
ploying various strategies, such as using regularization methods to constrain the policy and/or the
critic. In some cases, they avoid training the model outside the support of the distribution of the
dataset altogether. Implicit Q-learning (IQL) incorporates an additional state-value network to prevent
querying out-of-distribution actions during the training of the Q-network (Kostrikov et al., 2021b).
Notably, training IQL does not require sampling actions from a policy but can be performed solely
using actions from the dataset. The typical losses for IQL are as follows:

LQ(θ) = E(s,a,s′)∼D

[
(r + γVϕ(s

′)−Qθ(s, a))
2
]

(3)

LV (ϕ) = E(s,a)∼D
[
L2
ξ (Qθ(s, a)− Vϕ(s))

]
(4)

The IQL framework involves training a value network, denoted as Vϕ, in addition to the Q-network,
denoted as Qθ. The loss functions associated with training these critic networks are detailed in
Eqs. 3 and 4. State value network (Vϕ) is trained with expectile regression objective and uses an
asymmetric squared error loss function defined as L2

ξ(u) = |ξ − 1(u < 0)|u2, where ξ ∈ (0.5, 1.0).
With both Q and value networks in place, the policy can be trained or extracted using the advantage-
weighted regression (AWR) method (Kostrikov et al., 2021b; Peng et al., 2019). This method uses
the learned advantage function, which is derived from the Q and value networks, and is defined as
A(s, a) = Qθ(s, a)− Vϕ(s), to guide the policy training process effectively within the distributional
constraints of the dataset.

IQL in the context of offline RL is focused on learning reward-value from the data and using
reward-advantage weighted regression to extract a policy that predicts actions with higher expected
reward-return. A similar method can be used to learn the cost-value from the offline data. We use
the superscript c to denote the cost and define the cost-advantage of an action taken at state s as
Ac(s, a) = Qcψ(s, a)− V cη (s) . A similar asymmetric loss can be used to learn the cost-value of a
state to discourage the underestimation of Qcθ(s, a):

LcQ(ψ) = E(s,a,s′)∼D

[(
c+ γV cη (s

′)−Qcψ(s, a)
)2]

(5)

LcV (η) = E(s,a)∼D
[
L2
ξ

(
V cη (s)−Qcψ(s, a)

)]
(6)

3 METHODOLOGY

In this section, we detail the formulation of the proposed Latent Safety Prioritized Constraints (LSPC),
which we employ to formulate the constrained reward optimization problem. As depicted in figure
1, the framework consists of two key components: (1) the derivation of a conservatively safe policy
with a Conditional Variational Autoencoder (CVAE), and (2) the maximization of reward returns
subject to the safety constraints inferred within the latent space.

As we will see, the CVAE-based architecture encodes state-action pairs into a latent representation that
prioritizes adherence to safety constraints while being trained to reconstruct safe actions. Moreover, it
also serves as a parametric generative model to implicitly enforce the policy to output actions within
the support of the dataset. By selecting the action most likely in the dataset D, the generative model
helps to minimize errors in value (both cost and reward) approximation during policy evaluation,
which often arise in offline RL due to out-of-distribution (OOD) state-action pairs (Fujimoto et al.,
2019; Zhou et al., 2021). This obviates the need of explicit constraint on the divergence between the
learned policy (π) and behavior policy (πb).

Thus, the CVAE plays an important role in enforcing the two constraints outlined in Equation 2,
ensuring that the policy operates within the boundaries of safe behavior as defined within the dataset.
The latent space inferred through this training encapsulates these constraints in a more tractable form
derived solely from a static, cost-labeled dataset. For these reasons, the constraints imposed via the
latent space in our method are referred to as Latent Safety-Prioritized Constraints (LSPC). Below, we
derive two specific policies: LSPC-S, a conservative policy trained solely to predict actions within
these safety constraints, and LSPC-O, which is optimized to predict high reward-value actions while
still adhering to these constraints.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 LEARNING CONSERVATIVELY SAFE POLICY

Behavior Policy Modeling. To derive a safe policy πs(a|s) (the subscript s in πs is short for safe), we
start by employing a conditional variational autoencoder (CVAE) to model the underlying behavior
policy πb(a|s) in the dataset. The objective of the CVAE is to maximize the likelihood log πb(a | s)
by maximizing a variational lower bound formulated as:

max
α,β

log πb(a | s) ≥ max
α,β

Ez∼qα [log pβ(a | s, z)]−DKL [qα(z | s, a) ∥ p(z | s, a)] (7)

where z is the latent variable, α and β are the parameters of the encoder and the decoder, respectively.
A trained encoder qα(z | s, a) encodes the state-action pair to a probability distribution in the latent
space. A trained decoder pβ(a | s, z) provides a mapping from the latent space to the action space,
conditioned on the state. When the latent variable z takes on values that are likely under the prior
p(z | s, a), which is modeled as a standard normal distribution N (0, 1), the decoder pβ(a | s, z) is
expected to generate actions that align closely to the behavior policy distribution πb(a | s).
Safe Policy Derivation. We define a safe policy as one that minimizes the expected cumulative
discounted cost return over the course of interactions with the environment:

πs = argmin
π

Eπ[
T∑
t=0

γtc(st, at), at ∼ π(· | st)] (8)

In off-policy actor-critic methods, safe policy extraction can be achieved using advantage-weighted
regression (AWR). This approach reformulates the problem to maximize the expected log likelihood
of actions weighted by their advantage over the cost. The safe policy πs can be derived as follows:

πs = argmax
π

E(s,a)∼D
[
exp

(
λ
(
V cη (s)−Qcψ(s, a)

))
log π(a | s)

]
, (9)

where λ ∈ [0,∞) is a hyperparameter in AWR called inverse temperature. This formulation is
equivalent to maximizing the log likelihood (πb(a | s)) of an action given a state, with weights
assigned according to the advantage, thereby promoting actions that are expected to minimize
the cumulative cost. In the CVAE framework, parameters of the safe policy can be derived as
α∗, β∗ = argminα,β Lp,q(α, β), where

Lp,q(α, β) = E(s,a)∼D
[
− exp

(
λ
(
V cη (s)−Qcψ(s, a)

))
(Ez∼qα [log pβ(a | s, z)]
− DKL [qα(z | s, a) ∥ p(z | s, a)])] (10)

The CVAE is trained to reconstruct safe actions conditioned on given states and actions from the
static dataset, effectively capturing the distribution of a safe policy.

πs(a | s) =
∫
z

pβ(a | s, z)p(z | s, a) dz = Ep(z|s,a)[pβ(a | s, z)] (11)

For the values of z that have a high probability under the prior p(z | s, a), the decoder pβ(a | s, z) is
expected to generate actions with high likelihood under the policy distribution πs(a | s). Thus, in our
framework we define z as an LSPC constraint, whose distribution is modeled as a Gaussian with zero
mean and unit variance, ensuring that the sampled actions align with the safe policy distribution in
expectation. The latent safety constraint serves as a probabilistic embedding that make the safety
constraints present in the static dataset more tractable. When sampling z from the full prior N (0, 1),
we refer to the resulting policy as the CVAE policy, which uses the decoder to generate ‘safe’ actions
conditioned on the state. In practice, we restrict the sampling of z to a high-probability region of the
prior, leading to a safer policy due to this restriction. We refer to the resulting policy as LSPC-S, as it
prioritizes safety during execution.

3.2 CONSTRAINED REWARD-RETURN MAXIMIZATION

The objective of this constrained optimization problem is to solve for a policy π that selects action
with the maximum Qr value while also respecting the latent safety constraint.

π(s) = argmax
a

Qr(s, a), a ∼ pβ(· | s, z), z ∼ N (0, 1) (12)

To achieve this, we train an additional encoder µδ(z | s), which we refer to as latent safety encoder
policy conditioned on the state and it learns the distribution of safety embedding such that the
expected reward-return is maximized.

µ∗
δ(z | s) = argmax

µ
Qr(s, a), a ∼ pβ(· | s, z), z ∼ µ(· | s) (13)

Advantage Weighted Regression in Latent Space. To learn the reward-maximizing safety em-
beddings, we train the encoder µδ(z | s) using reward advantage-weighted regression (AWR). The

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

optimization objective is given by
Lµ(δ) = E(s,a)∼D

[
− exp

(
ζ
(
Qrθ(s, a)− V rϕ (s)

))
log pβ(a | s, z)

]
, z ∼ µδ(. | s) (14)

Here ζ is the inverse temperature hyperparameter for the above AWR. While this objective focuses
on maximizing the reward-return, it is equally essential to enforce the latent safety constraint to
certify policy safety. To ensure that the embeddings produced by the encoder µδ lie within the
high-probability regions of the latent safety space, we employ a tanh squashing function, which
restricts the outputs to the range (−ϵ, ϵ), ϵ > 0. The resulting policy, which we refer to as LSPC-O,
optimizes reward-return within the restricted latent safety constraints space. The LSPC-O policy is
parameterized by latent safety encoder policy parameter δ and CVAE decoder parameter β. During
the gradient step to train the latent safety encoder policy (µδ), the CVAE decoder parameter is kept
frozen, but the gradients are allowed to pass through.

Algorithm 1: LSPC Training
Initialize: ϕ, θ, η, ψ, α, β, δ
for each gradient step do

TD learning with IQL:
ϕ← ϕ− νϕ∇ϕLV (ϕ)
θ ← θ − νθ∇θLQ(θ)
η ← η − νη∇ηLcV (η)
ψ ← ψ − νψ∇ψLcQ(ψ)
Policy extraction with AWR:
{α, β} ← {α, β} − ναβ∇{α,β}Lp,q(α, β)
δ ← δ − νδ∇δLµ(δ)

An overview of the training process showing
each gradient step is provided in Algorithm 1.
It is important to note that the policy extraction
steps for both the CVAE policy and the latent
safety encoder policy do not affect the value
function training as defined in section 2.3, and
therefore the policy training can be done concur-
rently with the critics in Actor-Critic framework
or after temporal-difference (TD) training of the
critics. Detailed implementation specifics can
be found in Appendix A.3.

4 THEORETICAL ANALYSIS

We provide theoretical analysis for LSPC-O as the safe optimal policy is our target, while similar
techniques can be used for LSPC-S. In what follows, we begin by imposing assumptions regarding
the distances between various policies. These assumptions will allow us to derive performance
bounds and sample complexity guarantees for learned policies, ensuring both safety and reward
maximization. The metrics for evaluation are based on Eq. 2 such that we adopt V π

∗

r (ρ0)− V πr (ρ0)
and V πc (ρ0)− κ. In light of the definition for the stationary state-action distribution and the fact that
π∗ = argmaxπEτ∼π[

∑T
t=1 γ

tr(st, at)], we have π∗ = argmaxπE(s,a)∼dπ [r(s, a)]. This will assist
in the analysis presented later. All necessary proof is deferred to the Appendix A.1.

Assumption 1. Suppose that the policy π is optimized by Eq. 2 and that the safe policy πs is induced
by CVAE. We have DKL(π||πs) ≤ ε′1.

Assumption 2. Suppose that the policy π∗ is the optimal policy and that the safe policy πs is induced
by CVAE. We have DKL(πs||π∗) ≤ ε′2.

In Yao et al. (2024), the authors resorted to similar assumptions involving πb instead of πs (see
Appendix A.1.1 for detail) to ensure behavior regularization and establish constraint violation bound.
Immediately, we can obtain that the upper bounds for DKL(π||πb) and DKL(πb||π∗) are looser,
since intuitively, πs should be closer to π and π∗ than πb. One may argue that when we resort to πs in
the above assumptions, whether the behavior regularization can still be satisfied. This is affirmatively
true as πs is a safe reconstruction of πb with the generative property of the CVAE. The designed
loss also enables the appropriate latent safety embedding construction for training π. Alternatively,
some pre-processing can be done to D such that only the safe data samples are utilized to learn
the policy, as done in BC-Safe Liu et al. (2023a). This may be more conservative to guarantee the
safety constraint, but with the compromise of optimality, as an unsafe sample could lead to the higher
returns. Therefore, we select the first approach for training in our proposed pipeline. We next present
a lemma to show the error propagation.

Lemma 1. Suppose that the stationary state distributions for π and π∗ are defined as dπ(s) and
dπ

∗
(s). The following relationship holds

DTV (d
π(s)||dπ

∗
(s)) ≤ γ

1− γ
Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))], (15)

where DTV is the total variation distance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The proof of Lemma 1 follows similarly from Lemma 2 in Xu et al. (2020). This lemma quantifies
the relationship between the stationary state distribution discrepancy w.r.t. the policy distribution
discrepancy, which is critical to tighten the performance bound presented in the next.
Lemma 2. Define V πr (ρ0) := Es0∼ρ[V πr (s0)] given a policy π. Then, we have the following:

|V πr (ρ0)− V π
∗

r (ρ0)| ≤
2Rm

(1− γ)2
Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))]. (16)

Different from existing works Cen et al. (2024); Yao et al. (2024) where the authors bounded
DTV (d

π(s)||dπ∗
(s)) by DTV (d

πb(s)||dπ∗
(s)), thanks to Lemma 1, Lemma 2 states that the perfor-

mance gap now stems only from the policy distribution discrepancy between π and π∗ and eventually
decays if the number of samples in D is infinite in our sample complexity analysis. Thus, we next
upper bound Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))].
Lemma 3. Let Assumptions 1 and 2 hold. We have the following relationship:

Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))] ≤
√
ε′1/2 +

√
ε′2/2. (17)

Hence, the first main result to reveal the performance gap between any policy π optimized by Eq. 2
and the optimal one π∗ is as follows.
Theorem 1. Let Assumptions 1 and 2 hold. For the policy π optimized by Eq. 2 with the dataset D,
the performance gap between π and π∗ can be bounded as

V π
∗

r (ρ0)− V πr (ρ0) ≤
2Rm

(1− γ)2
(
√
ε′1/2 +

√
ε′2/2). (18)

Theorem 1 suggests that the performance gap is attributed to the policy distribution discrepancies.
This bound is the worst-case bound irrespective of the number of samples in D. However, based on
traditional supervised learning, more data (which requires a weak assumption) should reduce the
error such that π is closer to π∗. We will investigate this later and show it is indeed the case. In this
context, we analyze the constraint violation bound. Due to Eq. 2, the safety constraint is dictated by
the threshold value κ. Nevertheless, as the policy learning proceeds, such a constraint may or may
not be violated, particularly at the early phase of learning. We aim at deriving the similar worst-case
bound.
Theorem 2. Let Assumptions 1 and 2 hold. For the policy π optimized by Eq. 2 with the dataset D,
the constraint violation of π can be bounded as

V πc (ρ0)− κ ≤
2Cm

(1− γ)2
(
√
ε′1/2 +

√
ε′2/2). (19)

Remark 1. We notice that both Theorem 1 and Theorem 2 imply that the error bounds for the
reward and the cost incurred during learning are w.r.t 1

(1−γ)2 (
√
ε′1/2 +

√
ε′2/2), differing in a

constant. This intuitively makes sense as we have adopted the same IQL to train both critic networks.
The dependence on 1

(1−γ)2 is necessarily inevitable due to the error propagation from the policy
distribution discrepancy to the state distribution discrepancy, which has theoretically been justified
in Xu et al. (2020) and Schulman (2015). So far, thanks to Assumption 1 and Assumption 2, the
performance gap and the constraint violation are upper bounded. However, would increasing the
size of D reduce them? Particularly, when we have a sufficiently large amount of pre-collected data,
can this enforce V πc (s) ≤ κ to hold strictly? Inspired by the theory of empirical process Shorack &
Wellner (2009), we provide the answers to the above questions and the resulting sample complexity in
Appendix A.2.
Remark 2. Another remark is also provided in this context for the connection between the proposed
method and theoretical results. In LSPC, we leverage CVAE to reconstruct safe policies residing in
the offline dataset D, strategically ensuring that the further optimal solutions are safe. This justifies
Assumption 1 and Assumption 2 that provide new upper bounds for the distribution distances between
π and πs, and πs and π∗. Previously, instead of πs, it was the unknown behavior policy πb Yao
et al. (2024), which has less assurance of safety than πs and results in relatively looser bounds.
Moreover, in LSPC, we adopt the IQL and AWR for critic model updates and policy extraction, which
motivates us to use the value function as the metric to evaluate the proposed algorithm. As the policy
is learned via a static offline dataset, the performance gap and constraint violation are assessed
based on the stationary distributions, instead of a dynamic metric such as regret Zhong & Zhang
(2024). Theorem 1 and Theorem 2 suggest the performance gap and constraint violation during

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

learning are upper bounded by constants that are correlated with the new distribution distance bounds
induced by the safety policy πs. Additionally, as the policy evaluation and extraction steps are all
parametric with deep learning models, the number of data samples plays a central role in controlling
the performance, which has been a well-established fact in modern deep learning community. In
offline RL, this motivates the need to assess performance gap and constraint violations with respect
to the size of D. Thereby, Theorem 3 and Theorem 4 (In Appendix A.2) imply the decay rate with
respect to the size of D. Though the analysis can apply to related algorithms with some adaptation,
the constants in these results, particularly ε′1 and ε′2, are uniquely defined and thus the theoretical
conclusions are tailored to the proposed algorithm.

5 RESULTS AND DISCUSSIONS

Datasets and Metrics. This section presents a thorough evaluation of our method within the context
of safe offline reinforcement learning. Our evaluation uses the DSRL benchmark (Liu et al., 2023a),
focusing on normalized return and normalized cost to measure performance. The normalized reward
return is given by R = (Rπ −Rmin)/(Rmax −Rmin), where Rπ is the undiscounted total reward
accumulated in an episode, and Rmax and Rmin are constant for a task and represent the maximum
and minimum empirical reward return. Similarly, the normalized cost return is given by C = Cπ/κ,
where κ > 0 is the targeted cost threshold. The evaluation spans across tasks from Metadrive (Li et al.,
2022), Safety Gymnasium (Ji et al., 2023) and Bullet Safety Gym (Gronauer, 2022). More about
these tasks and benchmark can be found in appendix A.4 and Liu et al. (2023a). Following the DSRL
constraint variation evaluation, each method is evaluated on each dataset with three distinct target
cost thresholds and across three random seeds. Although our method is agnostic to cost threshold
variation, we adhere to the same evaluation criteria for consistency. A normalized cost return below
1 indicates adherence to safety requirements, with safety being the primary performance criterion.
The results in Table 1 use boldface to represent safe agents with normalized costs smaller than 1
and blue color to highlight safe agent(s) with the highest reward return in the dataset. These results
demonstrate how our methods not only adhere to safety constraints but also optimize rewards.

Table 1: Comparison of our methods with baselines across benchmark tasks. Bold indicates safety,
and blue denotes both safety and high performance.

Method BC-Safe CDT CPQ FISOR LSPC-S LSPC-O
Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

Metadrive:
EasySparse 0.11 0.21 0.17 0.23 -0.06 0.07 0.38 0.15 0.62 0.06 0.71 0.46
EasyMean 0.04 0.29 0.45 0.54 -0.07 0.07 0.38 0.08 0.62 0.04 0.69 0.26
EasyDense 0.11 0.14 0.32 0.62 -0.06 0.03 0.36 0.08 0.55 0.06 0.68 0.37

MediumSparse 0 0.33 0.30 0.87 1.10 -0.08 0.07 0.42 0.07 0.96 0.32 0.94 0.12
MediumMean 0.31 0.21 0.45 0.75 -0.08 0.05 0.39 0.02 0.85 0.43 0.94 0.11
MediumDense 0.24 0.17 0.88 2.41 -0.07 0.07 0.49 0.12 0.93 0.07 0.93 0.01

HardSparse 0.17 3.25 0.25 0.41 -0.05 0.06 0.30 0.00 0.50 0.24 0.54 0.47
HardMean 0.13 0.40 0.33 0.97 -0.05 0.06 0.26 0.09 0.51 0.21 0.53 0.57
HardDense 0.15 0.22 0.08 0.21 -0.04 0.08 0.30 0.10 0.47 0.08 0.50 0.23

Average 0.18 0.58 0.42 0.80 -0.06 0.06 0.36 0.08 0.67 0.17 0.72 0.29
Safety Gym:
CarButton1 0.07 0.85 0.21 1.6 0.42 9.66 -0.02 0.04 -0.02 0.14 -0.01 0.11
CarButton2 -0.01 0.63 0.13 1.58 0.37 12.51 0.01 0.09 -0.09 0.21 -0.12 0.39
CarGoal1 0.24 0.28 0.66 1.21 0.79 1.42 0.49 0.12 0.22 0.23 0.31 0.40
CarGoal2 0.14 0.51 0.48 1.25 0.65 3.75 0.06 0.05 0.13 0.44 0.19 0.42
CarPush1 0.14 0.33 0.31 0.4 -0.03 0.95 0.28 0.04 0.18 0.32 0.18 0.33
CarPush2 0.05 0.45 0.19 1.3 0.24 4.25 0.14 0.13 0.02 0.34 0.05 0.62

SwimmerVel 0.51 1.07 0.66 0.96 0.13 2.66 -0.04 0.00 0.50 0.08 0.44 0.14
HopperVel 0.36 0.67 0.63 0.61 0.14 2.11 0.17 0.32 0.26 0.39 0.69 0.00

HalfCheetahVel 0.88 0.54 1.0 0.01 0.29 0.74 0.89 0.00 0.79 0.01 0.97 0.10
Walker2dVel 0.79 0.04 0.78 0.06 0.04 0.21 0.38 0.36 0.56 1.28 0.76 0.02

AntVel 0.98 0.29 0.98 0.39 -1.01 0.0 0.89 0.00 0.95 0.07 0.98 0.45
Average 0.38 0.51 0.55 0.85 0.19 3.48 0.30 0.11 0.32 0.32 0.40 0.27

Bullet Safety Gym:
BallRun 0.27 1.46 0.39 1.16 0.22 1.27 0.18 0.00 0.08 0.00 0.14 0.00
CarRun 0.94 0.22 0.99 0.65 0.95 1.79 0.73 0.04 0.72 0.00 0.97 0.13

DroneRun 0.28 0.74 0.63 0.79 0.33 3.52 0.30 0.16 0.54 0.00 0.57 0.00
AntRun 0.65 1.09 0.72 0.91 0.03 0.02 0.45 0.00 0.29 0.04 0.44 0.45

BallCircle 0.52 0.65 0.77 1.07 0.64 0.76 0.34 0.00 0.27 0.28 0.47 0.01
CarCircle 0.5 0.84 0.75 0.95 0.71 0.33 0.40 0.03 0.35 0.00 0.72 0.04

DroneCircle 0.56 0.57 0.60 0.98 -0.22 1.28 0.48 0.00 0.16 0.00 0.58 0.60
AntCircle 0.40 0.96 0.54 1.78 0.00 0.00 0.20 0.00 0.13 0.02 0.45 0.40
Average 0.52 0.82 0.68 1.04 0.33 1.12 0.39 0.03 0.32 0.04 0.54 0.20

Discussion on Empirical Results. In the comparative analysis presented in Table 1, our proposed
method, LSPC-O, demonstrates a significant performance improvement over existing baselines.
Among these, FISOR demonstrates consistency in upholding safety even under strict cost thresholds,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

as it imposes hard constraints in the RL problem formulation. However, this approach leads to
excessively conservative policies, significantly limiting reward-return performance. Another method
CDT conditions the policy on target reward and cost returns. In practice, this method is often
unreliable because it is challenging to satisfy both conditions simultaneously. Although the authors
suggest improvements, our empirical results show frequent safety violations, especially under smaller
cost thresholds. Additionally, interpreting results across different prompt conditions is difficult,
making prompt selection a non-trivial task in CDT implementation. BC-Safe applies behavior cloning
to a safe subset of the dataset, but it lacks consistent safety and offers no empirical guarantees. Its
primary limitations are the need for sufficient quantity of ‘safe’ data and retraining with the filtered
data when the cost threshold is changed. Despite being agnostic to the reward labels in the dataset,
this method often outperforms FISOR and CDT in performance, as evident in the table 1.

Our method effectively addresses the limitations observed in these baselines. Unlike SafeBC, we
employ weighted regression to derive a safe policy, which theoretically only relies on a much weaker
prerequisite on the explicit presence of the safe data points (Assumption 6), while also ensuring
policy improvement using the reward-labels. Unlike CDT, our method disentangles safety and
reward objectives, providing reliable safety guarantees across different tasks and cost thresholds.
Additionally, we derive a safe policy in our methodology that can be utilized in safety-critical
operations, where constraint satisfaction is prioritized over reward maximization. Finally, compared
to FISOR, the conservativeness in our methods can be controlled by adjusting the degree of restriction
in the latent safety constraint space, yielding better reward performance while maintaining safety.

0.0 0.5 1.0
Training Step 1e6

0

500

1000

Re
wa

rd
 R

et
ur

n

0.0 0.5 1.0
Training Step 1e6

0

100

200

Co
st

 R
et

ur
n

(a) Pybullet Car Run

0.0 0.5 1.0
Training Step 1e6

0

200

400

Re
wa

rd
 R

et
ur

n

0.0 0.5 1.0
Training Step 1e6

0

50

100

Co
st

 R
et

ur
n BC-Safe

CPQ
FISOR
LSPC-S
LSPC-O

(b) Metadrive Easy Sparse

Figure 2: Training progress illustrating how the reward return and cost return evolve over the course
of training, highlighting the agent’s accumulated reward and adherence to safety constraints.

The graphs in Figure 2 illustrate the evolution of both reward return and cost return as training
progresses, comparing how various algorithms perform in adhering to safety constraints while
optimizing for reward across two tasks: Pybullet Car Run and Metadrive Easy Sparse. Our method,
LSPC-S, demonstrates a conservative approach with a strong emphasis on safety, while LSPC-O
achieves a favorable balance between reward maximization and cost minimization, consistently
outperforming baseline methods. This is particularly evident in its lower average episode costs
as training progresses. In contrast, FISOR fails to outperform even the conservative LSPC-S in
both tasks. Behavior Cloning with safe trajectories (BC-Safe) performs reasonably well in the
Car Run task, but shows poor performance in Metadrive Easy Sparse, struggling with both reward
accumulation and safety adherence. CPQ achieves a higher reward in Car Run, though at the cost of
increased episode costs near the end of training. However, in the Metadrive task, CPQ’s performance
is trivially safe, with near-zero reward accumulation.

Figure 3 illustrates how the learned policies operate in the action space for the Pybullet Car Run and
Metadrive Easy Sparse tasks. The plots on the left show kernel density estimates for three policies:
(1) the CVAE policy, (2) the safe policy after applying Latent Safety Prioritized Constraints (LSPC),
and (3) the optimal policy within the restricted action space defined by LSPC. The right plots display
scatter plots of actions sampled from the CVAE policy, convex hull estimates of actions sampled
from the safe policy, and the optimal action predicted by LSPC-O, the reward-optimized policy. The
color map represents the reward values Qr(s, a) of the sampled actions for the given state. This
representation underscores the ability of our method to prioritize safety while maximizing reward, as
the policy concentrates on regions of high Qr within the restricted latent space.
6 RELATED WORKS

Offline RL has demonstrated success in domains such as robotics, healthcare, and recommendation
systems (Tarasov et al., 2024; Prudencio et al., 2023; Lange et al., 2012). However, the absence of
online interactions can lead to out-of-distribution (OOD) actions that overestimate the value function

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1.0 0.5 0.01.0

0.5

0.0

0.5

1.0

St
ee

rin
g

An
gl

e

1.0 0.5 0.0
Qr

216

218

220

222

224

Velocity

(a) Pybullet Car Run

0.00 0.01 0.02
0.25

0.00

0.25

0.50

0.75

1.00

Th
ro

ttl
e

LSPC-O
LSPC-S
CVAE

0.00 0.01 0.02

Qr

46

47

Steering Angle

(b) Metadrive Easy Sparse

Figure 3: Action-space distributions for (a) Pybullet Car Run and (b) Metadrive Easy Sparse. Kernel
density estimates (left) and convex hulls within the scatter plot (right) visualize the unconstrained
CVAE policy, the constrained safe policy (LSPC-S), and the optimal policy (LSPC-O) identified by
the latent safety encoder.

due to unseen data (Levine et al., 2020). Solutions include value function regularization (Kumar et al.,
2020; 2019; Kostrikov et al., 2021a), policy constraints to stay near the behavior policy (Fujimoto &
Gu, 2021; Wu et al., 2019; Fujimoto et al., 2019), and avoidance of OOD actions’ evaluations (Chen
et al., 2021; Kostrikov et al., 2021b; Janner et al., 2021). Generative models like CVAE (Fujimoto
et al., 2019; Zhou et al., 2021) and diffusion-based methods (Janner et al., 2022; Wang et al., 2022)
have also been applied to sample actions in the latent space, reducing OOD occurrences.

Safe Offline RL aims to ensure safety within offline RL by incorporating techniques that balance
policy improvement and safety constraints (Liu et al., 2023a). Methods such as COptiDICE (Lee
et al., 2022) and OASIS (Yao et al., 2024) extend distribution shaping (Lee et al., 2021) to constrained
RL settings. Lagrangian-based approaches like CPQ (Xu et al., 2022a), BCQ-Lag, and BEAR-Lag
(Liu et al., 2023a) integrate safe policy learning within offline RL methods like CQL (Kumar et al.,
2020), BCQ (Fujimoto et al., 2019) and BEAR (Kumar et al., 2019). Other approaches, such as
VOCE (Guan et al., 2024), use probabilistic inference with non-parametric variational distributions
(similar to Liu et al. (2022)), while models like CDT (Liu et al., 2023b) and Saformer (Zhang et al.,
2023) leverage decision-transformer (Chen et al., 2021) frameworks for cost-prompted sequence
modeling. Other generative model-based baselines in safe offline RL include CPQ, which uses a
CVAE for behavior policy modeling, and FISOR (Zheng et al., 2024), which employs a diffusion
model (Ho et al., 2020) as an actor, trained to select actions based on feasible region identification.

7 CONCLUSIONS

In this work, we introduced the Latent Safety-Prioritized Constraints (LSPC) framework for safe
offline reinforcement learning, addressing the critical challenge of balancing reward maximization
with stringent safety constraints. By leveraging Conditional Variational Autoencoders to model
the latent safety constraints, we enable a principled approach to enforce safety while optimizing
cumulative rewards within the constraint space. Our method offers a robust solution that avoids
the pitfalls of overly restrictive or loose constraints, leading to policies that are both safe and high-
performing. Theoretical analysis of policy performance illustrates that the reconstructed safety
policy from the unknown behavior policy shrinks the performance gap induced by the value function.
The additional sample complexity analysis also reveals the decay rate of the gap w.r.t. the number
of samples. Extensive empirical evaluations demonstrate that LSPC-O consistently outperforms
existing/recent methods on challenging benchmarks.

Although our proposed methods demonstrate strong theoretical backing and empirical performance,
a key limitation may lie in determining how restrictive the latent space for the optimal policy search
should be (controlled by ϵ). Future work could focus on deriving theoretical bounds that establish a
relationship between this restrictiveness and the cost value, providing both theoretical insights and
practical guidelines. From an application perspective, transferring learned policies to real-world
robotic tasks via sim2real or few-shot fine-tuning is a promising avenue. Additionally, exploring
safety prioritization dynamics in multi-agent cooperative or adversarial settings offers another exciting
direction for both theory and practice.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Eitan Altman. Constrained markov decision processes with total cost criteria: Lagrangian approach
and dual linear program. Mathematical methods of operations research, 48:387–417, 1998.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Zhepeng Cen, Zuxin Liu, Zitong Wang, Yihang Yao, Henry Lam, and Ding Zhao. Learning from
sparse offline datasets via conservative density estimation. arXiv preprint arXiv:2401.08819, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria. Journal of Machine Learning Research, 18
(167):1–51, 2018.

Miklós Csörgő, Barbara Szyszkowicz, and Qiying Wu. Donsker’s theorem for self-normalized partial
sums processes. The Annals of Probability, 31(3):1228–1240, 2003.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Sara A Geer. Empirical Processes in M-estimation, volume 6. Cambridge university press, 2000.

Sven Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning. 2022.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

Jiayi Guan, Guang Chen, Jiaming Ji, Long Yang, Zhijun Li, et al. Voce: Variational optimization with
conservative estimation for offline safe reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Aria HasanzadeZonuzy, Archana Bura, Dileep Kalathil, and Srinivas Shakkottai. Learning with safety
constraints: Sample complexity of reinforcement learning for constrained mdps. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 7667–7674, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yifan
Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learning
benchmark. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning, pp.
5774–5783. PMLR, 2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021b.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pp. 45–73. Springer, 2012.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Interna-
tional Conference on Machine Learning, pp. 3703–3712. PMLR, 2019.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In International Conference
on Machine Learning, pp. 6120–6130. PMLR, 2021.

Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,
and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary distribution
correction estimation. arXiv preprint arXiv:2204.08957, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of
model-based offline reinforcement learning. The Annals of Statistics, 52(1):233–260, 2024.

Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
Composing diverse driving scenarios for generalizable reinforcement learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Steven Wu, Bo Li, and Ding Zhao. Constrained
variational policy optimization for safe reinforcement learning. In International Conference on
Machine Learning, pp. 13644–13668. PMLR, 2022.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wenhao
Yu, Tingnan Zhang, Jie Tan, et al. Datasets and benchmarks for offline safe reinforcement learning.
arXiv preprint arXiv:2306.09303, 2023a.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao. Con-
strained decision transformer for offline safe reinforcement learning. In International Conference
on Machine Learning, pp. 21611–21630. PMLR, 2023b.

Shuangge Ma and Michael R Kosorok. Robust semiparametric m-estimation and the weighted
bootstrap. Journal of Multivariate Analysis, 96(1):190–217, 2005.

Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in markov decision processes. arXiv
preprint arXiv:1205.4810, 2012.

Thanh Nguyen-Tang, Sunil Gupta, Hung Tran-The, and Svetha Venkatesh. Sample complexity of
offline reinforcement learning with deep relu networks. arXiv preprint arXiv:2103.06671, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline
reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

Yun Shen, Michael J Tobia, Tobias Sommer, and Klaus Obermayer. Risk-sensitive reinforcement
learning. Neural computation, 26(7):1298–1328, 2014.

Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning with
near-optimal sample complexity. Journal of Machine Learning Research, 25(200):1–91, 2024.

Galen R Shorack and Jon A Wellner. Empirical processes with applications to statistics. SIAM,
2009.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid
lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143. PMLR,
2020.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
Research-oriented deep offline reinforcement learning library. Advances in Neural Information
Processing Systems, 36, 2024.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 8753–8760, 2022a.

Mengdi Xu, Zuxin Liu, Peide Huang, Wenhao Ding, Zhepeng Cen, Bo Li, and Ding Zhao. Trustworthy
reinforcement learning against intrinsic vulnerabilities: Robustness, safety, and generalizability.
arXiv preprint arXiv:2209.08025, 2022b.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. Advances in
Neural Information Processing Systems, 33:15737–15749, 2020.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

Yihang Yao, Zhepeng Cen, Wenhao Ding, Haohong Lin, Shiqi Liu, Tingnan Zhang, Wenhao Yu, and
Ding Zhao. Oasis: Conditional distribution shaping for offline safe reinforcement learning. arXiv
preprint arXiv:2407.14653, 2024.

Qin Zhang, Linrui Zhang, Haoran Xu, Li Shen, Bowen Wang, Yongzhe Chang, Xueqian Wang,
Bo Yuan, and Dacheng Tao. Saformer: A conditional sequence modeling approach to offline safe
reinforcement learning. arXiv preprint arXiv:2301.12203, 2023.

Yinan Zheng, Jianxiong Li, Dongjie Yu, Yujie Yang, Shengbo Eben Li, Xianyuan Zhan, and Jingjing
Liu. Safe offline reinforcement learning with feasibility-guided diffusion model. arXiv preprint
arXiv:2401.10700, 2024.

Han Zhong and Tong Zhang. A theoretical analysis of optimistic proximal policy optimization in
linear markov decision processes. Advances in Neural Information Processing Systems, 36, 2024.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. In Conference on Robot Learning, pp. 1719–1735. PMLR, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL ANALYSIS

In this section, we provide additional analysis and numerical results to support or validate our
proposed algorithm. In what follows, we provide the missing proof for the main theoretical results.

A.1.1 AUXILIARY ASSUMPTIONS

We present the following assumptions for completeness and illustration, though we will not use them
for characterizing the main results.

Assumption 3. There exists a constant ε1 > 0 such that for the policy π optimized by Eq. 2 and the
behavior policy πb, they satisfy the following relationship

DKL(π||πb) ≤ ε1. (20)

Assumption 4. There exists a constant ε2 > 0 such that for the optimal policy π∗ and the behavior
policy πb, they satisfy the following relationship

DKL(πb||π∗) ≤ ε2. (21)

Assumption 3 retains the behavior regularization such that the distribution shift will not be significant.
While Assumption 4 secures a region where π is a valid policy. Due to the non-asymptotic manner, π∗

may not be practically achievable. However, such an optimal policy should not be far away from πb.
Otherwise, the distribution drift will degrade the model performance. These two assumptions have
been used in a recent work Yao et al. (2024) to dictate the performance gap. Due to the intermediate
safe policy πs we introduce in this work, the performance gap should be narrowed. Since intuitively,
πs should be closer to π and π∗ than πb.

A.1.2 MISSING PROOFS IN SECTION 4

For completeness, we restate all lemmas and theorems in this context.

Lemma 2 Define V πr (ρ0) := Es0∼ρ[V πr (s0)] given a policy π. Then, we have the following
relationship:

|V πr (ρ0)− V π
∗

r (ρ0)| ≤
2Rm

(1− γ)2
Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))]. (22)

Proof. In light of the stationary state-action distribution, the following relationship is obtained

|V πr (ρ0)− V π
∗

r (ρ0)| =
1

1− γ
|E(s,a)∼dπ(s,a)[r(s, a)]− E(s,a)∼dπ∗ (s,a)[r(s, a)]|

≤ Rm
1− γ

∑
(s,a)

|dπ(s, a)− dπ
∗
(s, a)|

=
2Rm
1− γ

DTV (d
π(s, a)||dπ

∗
(s, a))

≤ 2Rm
1− γ

(DTV (d
π(s, a)||dπ

∗
(s) · π(·|s)) +DTV (d

π∗
(s) · π(·|s)||dπ

∗
(s, a)))

=
2Rm
1− γ

DTV (d
π(s)||dπ

∗
(s)) +

2Rm
1− γ

Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))]

≤ 2Rm
(1− γ)2

Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))].

(23)
The first inequality is due to the maximum immediate reward. The second inequality follows from
the Triangle inequality. The last inequality is based on Lemma 1. This completes the proof.

Lemma 3 Let Assumptions 1 and 2 hold. We have the following relationship:

Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))] ≤
√
ε′1
2

+

√
ε′2
2
. (24)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. Based on the Triangle inequality, the following is attained
DTV (π(·|s)||π∗(·|s)) ≤ DTV (π(·|s)||πs(·|s)) +DTV (πs(·|s)||π∗(·|s)). (25)

Thus,
Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))]
≤ Es∼dπ∗ (s)[DTV (π(·|s)||πs(·|s))] + Es∼dπ∗ (s)[DTV (πs(·|s)||π∗(·|s))]

≤ Es∼dπ∗ (s)[
√
DKL(π(·|s)||πs(·|s))/2] + Es∼dπ∗ (s)[

√
DKL(πs(·|s)||π∗(·|s))/2]

≤
√

Es∼dπ∗ (s)[DKL(π(·|s)||πs(·|s))]/2 +
√

Es∼dπ∗ (s)[DKL(πs(·|s)||π∗(·|s))]/2

≤
√
ε′1
2

+

√
ε′2
2
.

(26)

The second inequality follows from the Pinsker’s inequality and the third is based on the Jensen’s
inequality. This completes the proof.

Theorem 1 Let Assumptions 1 and 2 hold. For the policy π optimized by Eq. 2 with the dataset D,
the performance gap between π and π∗ can be bounded as

V π
∗

r (ρ0)− V πr (ρ0) ≤
2Rm

(1− γ)2
(

√
ε′1
2

+

√
ε′2
2
). (27)

Proof. The conclusion is immediately obtained by combining the conclusions from Lemma 2 and
Lemma 3.

To derive the constraint violation bound, we first need to establish a similar conclusion as in Lemma 2
based on the cost value functions V πc (ρ0) and V π

∗

c (ρ0).

Lemma 4. Define V πc (ρ0) := Es0∼ρ0 [V πc (s0)] given a policy π. Then, we have the following
relationship:

|V πc (ρ0)− V π
∗

c (ρ0)| ≤
2Cm

(1− γ)2
Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))]. (28)

Proof. The proof follows similarly from that in Lemma 2.

Theorem 2 Let Assumptions 1 and 2 hold. For the policy π optimized by Eq. 2 with the dataset D,
the constraint violation of π can be bounded as

V πc (ρ0)− κ ≤
2Cm

(1− γ)2
(

√
ε′1
2

+

√
ε′2
2
). (29)

Proof. According to Assumption 1 and Assumption 2, combining the conclusion from Lemma 4, we
have

|V πr (ρ0)− V π
∗

r (ρ0)| ≤
2Cm

(1− γ)2
(

√
ε′1
2

+

√
ε′2
2
) (30)

Combining the above inequality with the fact that the optimal policy is constraint satisfactory, i.e.,
V π

∗

c (ρ0) ≤ κ, yields the desirable result.

A.2 ANALYSIS FOR DECAY RATE AND SAMPLE COMPLEXITY

Recalling the following relationship and applying the importance sampling to it, we have:

|V πr (ρ0)− V π
∗

r (ρ0)| ≤
2Rm

(1− γ)2
Es∼dπ∗ (s)[DTV (π(·|s)||π∗(·|s))]

=
2Rm

(1− γ)2
Es∼dπb (s)[

dπ
∗
(s)

dπb(s)
DTV (π(·|s)||π∗(·|s))]

≤ 2Rm
(1− γ)2

Es∼dπb (s)[DTV (π(·|s)||π∗(·|s))].

(31)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The last inequality follows from Es∼dπb (s)[
dπ

∗
(s)

dπb (s)] = 1. The reason why we use πb instead of πs
has two folds. First, the action of π is not sampled from actions induced by πs as the extra encoder
block in the pipeline also takes input directly from D. Second, directly using dπs(s) will yield a
relationship about how the performance gap varies along with the size of a dataset only comprising
safe samples. However, this is not practically feasible since D can contain samples generated by both
safe and unsafe policies. Next, we will derive how Es∼dπb (s)[DTV (π(·|s)||π∗(·|s))] evolves with the
size of D. With the Pinsker’s inequality, DTV (·||·) can be converted to DKL(·||·). Hence, to achieve
the best performance V π

∗

r (ρ0), it is equivalent to minimizing Es∼dπb (s)[DKL(π(·|s)||π∗(·|s))] by
using D. Suppose that the size of D is N and that the learned policy is parameterized by w ∈ Rn,
such that the following minimization problem can be obtained:

minw∈Rn

1

N

N∑
i=1

DKL(πw(·|si)||π∗(·|si)). (32)

Next, we start with the an assumption for the function of KL-divergence.
Assumption 5. Suppose that the learned policy optimized by Eq. 2 is parameterized by w ∈ Rn
and that its parameter space is denoted by W ⊂ Rn. Let vw(s) = DKL(πw(·|s)||π∗(·|s)). The
function class F := {vw(·) : S → R|w ∈ W} is a Donsker class such that it satisfies Donsker’s
theorem Csörgő et al. (2003). Additionally, its variance V(vw(s)|s ∼ dπb(s)) is assumed to be
bounded above for all w ∈ W .

This assumption is key to obtain the rate of how policy distribution discrepancy between πw and π∗

decays when the size of D increases. It is a common assumption when considering training with
finite data samples in an empirical process Ma & Kosorok (2005); Geer (2000).

In general, the offline dataset D should include samples produced by the safe and unsafe policies.
However, unfortunately, in many existing works, there is no discussion on how good the data quality
is, as it will influence the model learning. Denote by Ds and Du the safe and unsafe data subsets in
D and Ns and Nu the corresponding sizes. We now conduct a thought experiment in this context to
motivate the following assumption. In a scenario, if 0 < Ns/N ≪ 0.01, which means the number of
safe samples are quite small, one may argue how the agent would learn the optimal policy from such
a dataset D, while ensuring the safety constraint. Ideally, since we resort to the advantage weighted
regression in our work, in an asymptotic manner with infinitely many iterations, i.e., T → ∞ (or
a more practical sense, a sufficiently large number of iterations), we should attain π∗ even when
Ns = 1. Certainly, if Ns = 0, then the learning would fail since there is no safe policy to be induced
from D, regardless of what T is. Thus, the above discussion essentially results in a more difficult
challenge between the time complexity and the sample complexity, which can be a key future work
of interest. In this work, we pay only attention to the sample complexity such that the following
assumption should be imposed on the dataset D.
Assumption 6. Consider a pre-collected dataset D such that its safe data subset Ds ̸= ∅. Denoting
by Ns the size of Ds, the ratio Ns/N > 0.

Though in Assumption 6 we need D to include at least some safe data samples, we don’t really
require a specific number due to the proposed method. Compared to BCSafe Liu et al. (2023a), which
is only trained with safe trajectories that satisfy the constraints, Assumption 6 is much weaker and
more practically feasible. Thus, we arrive at the following main result.
Theorem 3. Let Assumptions 5 and 6 hold. Define V πr (ρ0) := Es0∼ρ0 [V πr (s0)] given a policy π.
For the policy πw optimized by Eq. 32 with a dataset D consisting of N samples, the performance
gap satisfies the following relationship

V π
∗

r (ρ0)− V πw
r (ρ0) ≤ O

(
1

N0.25+υ

)
, (33)

for any υ > 0, when N →∞.

Proof. By Pinsker’s inequality and Jensen’s inequality, we have the following relationship

Es∼dπb (s)[DTV (π(·|s)||π∗(·|s))] ≤
√
Es∼dπb (s)[DKL(πs(·|s)||π∗(·|s))]/2. (34)

Based on the traditional supervised learning, it suffices to solve the empirical risk minimization
as shown in Eq. 32 so as to minimize Es∼dπb (s)[DKL(πs(·|s)||π∗(·|s))] in the upper bound. By
Assumption 5, the distribution function induced by the state distribution dπb(s) is Es∼dπb (s)[vw(s)].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Similarly, its empirical distribution function is 1
N

∑N
i=1 vw(si). Hence, based on Donsker’s theorem,

we can acquire
√
N(Es∼dπb (s)[vw(s)]−

1

N

N∑
i=1

vw(si)) ∼ N (0,V(vw(s)|s ∼ dπb(s))) (35)

which tells us that the centered and scaled version of 1
N

∑N
i=1 vw(si) converges in distribution to a

normal distribution with mean 0 and bounded variance V(vw(s)|s ∼ dπb(s)). Immediately, we have
√
N(Es∼dπb (s)[vw(s)]−

1

N

N∑
i=1

vw(si))
N→∞−−−−→ 0, in probability. (36)

With this in hand, multiplying Eq. 34 by N0.25 can be rewritten as
N0.25Es∼dπb (s)[DTV (π(·|s)||π∗(·|s))]

≤ N0.25
√
Es∼dπb (s)[DKL(πs(·|s)||π∗(·|s))]/2

= N0.25
√
Es∼dπb (s)[vw(s)]/2

= N0.25

√√√√1

2

(
Es∼dπb (s)[vw(s)]−

1

N

N∑
i=1

vw(si)

)

=

√√√√1

2
N0.5

(
Es∼dπb (s)[vw(s)]−

1

N

N∑
i=1

vw(si)

)
N→∞−−−−→ 0, in probability.

(37)

Thus, the above equation implies that Es∼dπb (s)[DTV (π(·|s)||π∗(·|s))] should decay in a rate

O
(

1
N0.25+υ

)
for any υ > 0, when N approaches∞, which completes the proof.

In Cen et al. (2024), they also arrived at the similar conclusion, but the performance gap is still dictated
by the state distribution discrepancy between dπb(s) and dπ

∗
(s). This means their performance gap

is reduced when the size ofD expands, but cannot reach to 0. Instead, Our work has further reduced it
to 0 by converting the state distribution discrepancy to policy distribution discrepancy, given sufficient
time. When applying the similar techniques to the cost value function, we have the following result.

Theorem 4. Let Assumptions 5 and 6 hold. Define V πc (ρ0) := Es0∼ρ0 [V πc (s0)] given a policy π. For
the policy πw optimized by Eq. 32 with a dataset D consisting of N samples, the constraint violation
bound satisfies the following relationship

V πc (ρ0)− κ ≤ O
(

1

N0.25+υ

)
, (38)

for any υ > 0.

Proof. The proof can be obtained by combining the proof from Theorem 2 and Theorem 3.

Surprisingly, when N → ∞, V πc (ρ0) ≤ κ, which ensures the safety constraint. This delivers us a
useful insight that when N is sufficiently large, the cost constraint violation will be significantly
small, even neglected.

Sample Complexity. If we set an accuracy threshold for both performance gap and constraint
violation bound as χ for any arbitrarily small constant χ > 0, then roughly the size of D satisfies
N = O(1

χ4), which suggests that the sample complexity is much larger than that in HasanzadeZonuzy
et al. (2021). This is attributed to the offline manner, while in their case, distribution drift is not an
issue. Our result also resembles the claim in Theorem 2 from Xu et al. (2022a). We remark on the
sample complexity obtained in this context that it is the worst case sample complexity as the positive
constant υ can be any value. Practically speaking, it falls into the range of [0, 0.25] as suggested by
existing works Nguyen-Tang et al. (2021); Li et al. (2024); HasanzadeZonuzy et al. (2021); Shi &
Chi (2024). Our analysis on the sample complexity facilitates the theoretical understanding of safe
offline reinforcement learning and offers useful insights for more efficient future algorithm design.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 ALGORITHM AND IMPLEMENTATION DETAILS

In this section, we outline the algorithmic framework and provide implementation details for our
method, focusing on the practical aspects. Our methods build upon the CORL (Tarasov et al.,
2024) implementation for Implicit Q-Learning (IQL), with the codebase inspired by the OSRL
(Liu et al., 2023a) style. The training process involves sampling a batch B from the replay buffer
containing offline data during each gradient step. The expectations described in the methodology are
approximated either by computing means over this batch or by using a Monte Carlo approximation.

We employ two Q-value networks, denoted as Qθ1(s, a) and Qθ2(s, a), to improve training stability
and mitigate overestimation of Q-values. The value function Vϕ(s) is trained using the minimum of
the two Q-networks, following a Double Q-Learning approach.

The reward value function Vϕ(s) is trained using the following asymmetric L2 loss function:

LV (ϕ) =
1

|B|
∑

(s,a)∈B

[
L2
ξ

(
min
i=1,2

Qθ̂i(s, a)− Vϕ(s)
)]

(39)

Both Q-networks are updated simultaneously using the following loss function:

LQ(θ1, θ2) =
1

|B|
∑
i=1,2

∑
(s,a,s′)∈B

[
(r + γVϕ(s

′)−Qθi(s, a))
2
]

(40)

Similarly, we use two q-value networks for cost and use the maximum of this ensemble. The cost
critic networks are updated with the following loss functions:

LcV (η) =
1

|B|
∑

(s,a)∈B

[
L2
ξ

(
V cη (s)− max

i=1,2
Qc
ψ̂i
(s, a)

)]
(41)

LcQ(ψ1, ψ2) =
1

|B|
∑
i=1,2

∑
(s,a,s′)∈B

[(
c+ γV cη (s

′)−Qcψi
(s, a)

)2]
(42)

The loss function used for the CVAE policy is approximated as:

Lp,q(α, β) =
−1
|B|

∑
(s,a)∈B

wc(s, a) (log pβ(a | s, z)−DKL [qα(z | s, a) ∥ p(z | s, a)]) , (43)

where z ∼ qα is the latent variable and wc(s, a) = exp
(
λ
(
V cϕ (s)−Qcθ(s, a)

))
is the weight

given to the behavior cloning loss, common in policy extraction methods like advantage-weighted
regression. This method assigns greater weight to the state-action pairs with cost value (Qcθ(s, a))
smaller than the cost value associated with that state (V cϕ (s)), allowing the policy to selectively
imitate safer actions from the dataset. To further motivate the CVAE to learn the distribution of
safe state-action and reconstruct safe actions, particularly in metadrive, we assign wc(s, a) = 0 for
transitions with either cost values greater than a threshold of 0.02. Other hyperparameters used in our
methods are discussed in the section that follows.

Finally, we use a reward-advantage weighted regression loss to train the latent safety encoder policy
to predict reward-maximizing embeddings in the latent space:

Lµ(δ) =
−1
|B|

∑
(s,a)∈B

[
exp

(
ζ
(
Qrθ(s, a)− V rϕ (s)

))
log pβ(a | s, z)

]
, z ∼ µδ(. | s) (44)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2: Learning LSPC Policies
1 Input: Dataset D and hyperparameters including learning rates ν, soft update rate T and others
2 Initialize: Network parameters ϕ, θ1, θ2, η, ψ1, ψ2, α, β, δ
3 for N Gradient Steps do
4 Sample a batch B of transitions (s, a, r, c, s′) from D
5 Use equation 39 to update the parameters of the reward value function:

ϕ← ϕ− νϕ∇ϕLV (ϕ)
6 Use equation 40 to update the parameters of the reward q-value functions:

{θ1, θ2} ← {θ1, θ2} − νθ∇{θ1,θ2}LQ(θ1, θ2)
7 Use equation 41 to update the parameters of the cost value function:

η ← η − νη∇ηLcV (η)
8 Use equation 42 to update the parameters of the cost q-value functions:

{ψ1, ψ2} ← {ψ1, ψ2} − νψ∇{ψ1,ψ2}LcQ(ψ1, ψ2)

9 Use equation 43 to update the parameters of the CVAE encoder and decoder:
{α, β} ← {α, β} − ναβ∇{α,β}Lp,q(α, β)

10 Use equation 44 to update the parameters of the latent safety encoder:
δ ← δ − νδ∇δLµ(δ)

11 Update the parameters of the target q functions:
θ̂1 ← (1− T)θ̂1 + T θ̂1, θ̂2 ← (1− T)θ̂2 + T θ̂2
ψ̂1 ← (1− T)ψ̂1 + T ψ̂1, T ψ2 ← (1− T)ψ̂2 + T ψ̂2

12 Return: Trained network parameters ϕ, θ1, θ2, η, ψ1, ψ2, α, β, δ

A.3.1 HYPERPARAMETERS AND TUNING

To facilitate understanding and analysis of hyperparameter effects, we classify them into three broad
categories: IQL critic learning hyperparameters, AWR policy extraction hyperparameters, and those
specific to our method, LSPC. The IQL and AWR hyperparameters are kept consistent across all
experiments in this study. These common hyperparameters are listed in Table 2.

Table 2: Common Hyperparameters for IQL and AWR

Hyperparameter Value
Batch size (|B|) 1024
Discount factor (γ) 0.99
Soft update rate for Q-networks (T) 0.005
Inverse temperature for reward 2.0
Inverse temperature for cost 2.0
Learning rates for all parameters 3× 10−4

Asymmetric L2 loss coefficient (ξ) 0.7
Max exp advantage weight (both cost and reward) 200.0

For the LSPC-specific hyperparameters, the values are chosen to balance the performance and safety
constraints while trying to minimize the need for extensive tuning. The KL divergence coefficient in
VAE loss functions regularizes the latent space by encouraging the learned distribution to approximate
a prior distribution, balancing reconstruction accuracy with structured latent representations for
effective data generation. We set this to 0.5 in all of our experiments. The dimension of the latent
safety space is fixed to 32, the general idea being that the space should be of sufficient capacity
to capture the safety-wise distribution of the state-action in the dataset. The degree of restriction
that constrains the policy to operate within the high-likelihood region of the latent safety space is
set to 0.25 for LSPC-S. Generally, the same restriction value of 0.25 works for LSPC-O as well.
However, for BulletSafety environments (except AntRun), this restriction is relaxed to 0.6 to enhance
performance against baselines, given the upperhand our method has in managing cost returns. While
we strive for consistent hyperparameters across tasks, the diversity of the benchmark tasks, with each
using different simulators, dynamics, and objectives, might require some adjustments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6 0.8 1.0
Restriction Hyperparameter

60

70

80

90

No
rm

al
ize

d
Re

wa
rd

 R
et

ur
n LSPC-O

LSPC-S
CVAE Policy

0.2 0.4 0.6 0.8 1.0
Restriction Hyperparameter

0

10

20

30

40

50

60

Co
st

 R
et

ur
n

LSPC-O
LSPC-S
CVAE Policy
Cost Thresholds

Figure 4: Effect of variation of the latent space restriction hyperparameter while evaluating in
Metadrive Easy Sparse environment. The red dashed horizontal lines represent the cost thresholds
suggested by Liu et al. (2023a) for this environment.

Figure 4 illustrates the impact of varying the restriction hyperparameter for both LSPC-S and
LSPC-O. As the latent safety restriction is increased, the reward performance of LSPC-O improves
progressively relative to LSPC-S and CVAE Policy. This is because the latent safety encoder policy
in LSPC-O can explore a larger region within the latent space to find reward-maximizing actions.
However, this improved performance comes with a trade-off, i.e., higher cost returns. The figure
demonstrates how different settings of the restriction hyperparameter yield different LSPC-O policies,
each safe under certain cost thresholds used in our experiments.

A.3.2 ABLATION

Ablation studies are critical for evaluating the influence of individual components of a model on its
overall performance. While the main text primarily focuses on presenting the core contributions of
our Latent Safety-Constrained Policy (LSPC) framework, this section provides a detailed exploration
of specific ablation studies to address the impact of hyperparameters, architectural design choices,
and loss functions on performance and safety adherence.

Role Reversal of CVAE and Safety Encoder. In this experiment, we investigated the impact of
reversing the roles of the CVAE (α, β) and safety encoder (δ) in the LSPC framework. Specifically, in
this configuration (referred to as Converse LSPC-O), the CVAE is trained to maximize rewards while
the encoder minimizes costs within the inferred latent space. The architecture is detailed in figure
5a, and the training is conducted for 300k timesteps in the HalfCheetah-velocity environment with
varying levels of restriction (ϵ) in the latent space. The respective training curves are in figure 5b.

(a) Converse LSPC Architecture (b) Converse LSPC-O on HalfCheetah-Velocity

Figure 5: Ablation study on role reversal of CVAE and Safety Encoder

With low ϵ (high restriction), the encoder (δ) struggled to learn an effective cost-reducing policy. As
ϵ increased, some decrease in costs was achieved; however, this came at the expense of lower reward
returns. While we can further loosen the restriction to get safer policies, very loose restrictions may
cause out-of-distribution (OOD) action generation issues. A general concern in CVAE frameworks
is that utilizing latent space samples too far from the mean might cause the decoder to generate
out-of-distribution (OOD) samples, as the density of training samples decreases further from the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

mean. This highlights the necessity of designing a latent space representation that satisfies both the
in-distribution requirement and safety constraints, as addressed in the original LSPC framework. By
carefully structuring the roles of the CVAE and safety encoder, the original framework ensures that
the inferred latent space boundaries contain safe and in-distribution samples. Moreover, the original
framework always maintains a conservative policy (LSPC-S) learned during the training of LSPC-O
as a backup. This ablation study underscores the importance of these architectural design choices in
balancing performance and safety.

Inverse Temperature Hyperparameter in LSPC-S. In AWR, the inverse temperature hyperpa-
rameter λ dictates the trade-off between behavior regularization and value function optimization. For
LSPC-S, a lower λ indicates a higher degree of behavior cloning, while a larger λ places sharper
weight on samples with better cost advantages. To evaluate the impact of this parameter on both
reward performance and safety adherence, we trained LSPC-S with λ values of 1, 2, and 4 in the
CarRun and BallCircle environments.

(a) Pybullet Car Run (b) Pybullet Ball Circle

Figure 6: Ablation study on the effect of inverse temperature hyperparameter (λ) in LSPC-S

In the training logs presented in figure 6, it can be observed that safety adherence is consistently
maintained by LSPC-S across all tested λ values. However, higher λ values typically results
in restricted reward-wise performance. This effect is particularly pronounced in the BallCircle
environment, where lower λ values, such as λ = 1, enable LSPC-S to achieve significantly higher
reward returns compared to λ = 2 and λ = 4.

(a) Ball Circle (Variation in λ) (b) Ball Circle (Variation in ξ)

Figure 7: Ablation study on how the effect of variation in λ and ξ translate to LSPC-O

These findings raise an important question about how the varying reward returns and consistent
safety adherence in LSPC-S translate to LSPC-O. Our results indicate that when the CVAE (or
LSPC-S) is trained with smaller λ values, the reward performance of LSPC-O improves. However,
this improvement comes with an increased cost returns, potentially leading to unsafe policies as
depicted in figure 7a. While LSPC-S with lower λ effectively balances reward and cost returns, the
encoder in LSPC-O, trained to further maximize rewards, can exacerbate safety risks. This highlights
the critical trade-off between performance and safety optimization when selecting λ in the LSPC
framework.

Asymmetric Loss in IQL. In this experiment, we analyze the dependence of our method on the
asymmetric loss function of IQL, particularly for cost management and safety adherence. As listed in
A.3.1, we use a coefficient of ξ = 0.7 in the asymmetric loss function used for expectile regression in
Implicit Q-Learning (IQL) on our LSPC framework. In LSPC-S, this is intended to discourage the
underestimation of cost Q-values. Here, we compare the results against ξ = 0.5, which leads to a
symmetric Mean Squared Error (MSE) loss, equivalent to SARSA-style policy evaluation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Pybullet Car Run (b) Pybullet Ball Circle

Figure 8: Ablation study on the effect of IQL expectile loss coefficient (ξ) in LSPC-S

As can be observed in figure 8, using the symmetric loss in LSPC-S led to improved reward-wise
performance compared to the asymmetric loss (conservative cost estimation), with both ξ values
resulting in policies that adhere to the safety requirements. However, for LSPC-O, where an additional
encoder is trained to optimize rewards further, the symmetric loss resulted in higher cost returns,
indicating chances of safety compromises. These findings depicted in figure 7b highlight a critical
trade-off, similar to the ablation with λ: while less conservative policies with symmetric loss can
achieve better rewards, they may translate to increased safety risks in LSPC-O.

A.3.3 SAFETY AND PERFORMANCE TRADE-OFFS IN LSPC-S AND LSPC-O

The CVAE in the LSPC framework is trained using a cost-advantage weighted ELBO loss, aiming
to minimize the cost value function V πc . By sampling actions from high-probability regions in the
CVAE latent space, LSPC-S rerpesents a conservative policy that effectively mitigates the risk of
out-of-distribution (OOD) actions and generates safe actions. While LSPC-O similarly samples
from this restricted latent space and is theoretically expected to maintain equivalent safety, it may
introduce some trade-offs in safety by optimizing for reward-maximizing latent variables rather
than random latent samples. These trade-offs in safety can often be attributed to the latent safety
encoder in LSPC-O exploiting inaccuracies in the action mappings (from the CVAE decoder) to
maximize rewards, potentially leading to OOD or unsafe actions. For example, as seen in the ablation
study, while LSPC-S ensures safety even under less restrictive hyperparameters, LSPC-O, due to its
reward-seeking objective, can exhibit a higher cost-return, often leading to disproportionately higher
costs.

Despite these trade-offs, the flexibility of our framework allows for the adjustment of safety require-
ments via a tunable restriction hyperparameter. A higher restriction (lower ϵ) ensures that samples
are drawn from regions closer to the mean of the latent distribution prior (which means stricter LSPC
constraint). In addition, when ϵ is smaller, the encoder in LSPC-O is also forced to operate within
a smaller region, resulting in a more restrictive policy. This flexibility in tuning ϵ according to the
safety requirements allows the framework to adapt to different safety conditions for a given task,
while still optimizing for rewards within those constraints, whether loose or stringent.

A.3.4 TRAINING TIME OF THE EXPERIMENTS

The device used for reporting the training times in this section is a Dell Alienware Aurora R12 system
with an 11th gen Intel Core i7 processor, 32 GB DDR4, and an NVIDIA GeForce RTX 3070 8GB
GPU. All experiments were run on a CUDA device.

LSPC training requires approximately 3.5 hours for 1 million training steps, achieving a rate of around
90 training iterations per second. It is important to note that this reported training time incorporates the
training of both LSPC-S and LSPC-O components of our framework. This training time performance
is comparable to CPQ under similar conditions and training steps. Behavior Cloning (BC), being
more straightforward, is faster, requiring about 35 minutes for 1 million timesteps at 490 training
steps per second. CDT training for 100k timesteps takes approximately 3.5 hours, running at about 8
iterations per second.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.3.5 COMPARISON WITH CPQ

CPQ (Xu et al., 2022a) also employs a CVAE and is referenced multiple times in this paper. Here, we
highlight the key differences between our proposed method and CPQ across the following dimensions.

Value Learning. CPQ utilizes a cost-sensitive version of CQL (Kumar et al., 2020), which max-
imizes the cost value for out-of-distribution (OOD) actions while using only constraint-safe and
in-distribution-safe samples to learn the reward Q-function. In contrast, our method does not use the
constraint-penalized Bellman operator like CPQ. Instead, we adopt IQL for temporal-difference (TD)
learning of both reward and cost values, employing standard Bellman updates to ensure simplicity
and stability.

Policy Extraction. CPQ applies the off-policy deterministic policy gradient method for policy
extraction. Our approach, however, employs Advantage Weighted Regression (AWR), where the actor
is updated via weighted behavior cloning. This ensures alignment of the policy with the behavior
distribution, promoting stability in offline RL settings. Specifically, we train cost-AWR to optimize
the CVAE policy and reward-AWR to optimize an additional encoder.

CVAE Usage. While both CPQ and our framework incorporate a CVAE, their purposes diverge
significantly. CPQ uses the CVAE to detect and penalize OOD actions as high-cost during Q-learning.
However, this approach can distort the value function, thereby hindering generalizability and safety
adherence, as observed in our experiments and noted in prior works such as DSRL (Liu et al., 2023a)
and FISOR (Zheng et al., 2024). By contrast, our method employs the CVAE as a policy model
that expressively represents safety constraints in the latent space, rather than as an OOD detection
mechanism.

A.4 BENCHMARK DETAILS AND ADDITIONAL BASELINES

For empirical evaluation of our proposed methods, we use the standard Datasets for Safe Reinforce-
ment Learning (DSRL) benchmarking suite 1 introduced by Liu et al. (2023a). The authors present a
comprehensive set of datasets designed to facilitate the development and evaluation of offline safe
reinforcement learning algorithms across standard safe RL tasks. This suite includes D4RL-styled (Fu
et al., 2020) datasets and robust baseline implementations for offline safe RL, aiding in both training
and deployment phases. For baselines, we use the official implementation 2 and hyperparameters
for FISOR, as provided by the authors, along with their published results (Zheng et al., 2024). For
all other baselines, we rely on the OSRL’s official implementation, hyperparameters, and results
as reported in the corresponding whitepaper Liu et al. (2023a). OSRL implementations as well as
hyperparameter configuration can be found here 3.

(a) Metadrive (b) Bullet Safety (c) Safety Gym

Figure 9: Example images from the simulation environments used in the experiments

For evaluation and comparison against the baselines, we use the metrics suggested by the DSRL
whitepaper. We use the normalized reward return Rnormalized, calculated as:

Rnormalized =
Rπ − rmin(M)

rmax(M)− rmin(M)
,

1https://github.com/liuzuxin/DSRL
2https://github.com/ZhengYinan-AIR/FISOR
3https://github.com/liuzuxin/OSRL

23

https://github.com/liuzuxin/DSRL
https://github.com/ZhengYinan-AIR/FISOR
https://github.com/liuzuxin/OSRL

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where rmax(M) and rmin(M) are the task-specific maximum and minimum empirical returns, respec-
tively. Additionally, we use the normalized cost return Cnormalized, defined as:

Cnormalized =
Cπ + ς

κ+ ς
,

where κ is the target cost threshold and ς is a small constant to avoid division by zero. These
metrics ensure consistent comparisons across safe RL tasks. Following the DSRL constraint variation
evaluation, each method is evaluated on each dataset with three distinct target cost thresholds and
across three random seeds. DSRL evaluation uses the average of the normalized reward and cost
to better characterize performance under varying conditions; this is particularly relevant for the
Lagrange-based algorithms that depend on the cost threshold. The cost threshold values used in
DSRL evaluation are set at [10, 20, 40] for MetaDrive and Bullet Safety Gym environments, and
[20, 40, 80] for Safety Gymnasium environments. The same criteria are applied in our evaluation
tables the normalized cost threshold is set to 1. Bold letters in the evaluation table represent safe
agents whose normalized cost is smaller than 1, while blue and bold indicate the safe agent with the
highest reward. Additionally, if a safer agent is present within a -0.05 normalized return, that agent is
also highlighted in blue and bold.

A.4.1 METADRIVE

MetaDrive 4 is a self-driving simulator developed using the Panda3D engine, designed to simulate
realistic driving environments with complex road structures and dynamic traffic conditions. The
autonomous driving tasks in MetaDrive evaluate safety through three primary criteria: (i) collisions,
(ii) off-road driving, and (iii) speeding violations. There are nine distinct offline learning tasks, each
named in the format {Road}{Vehicle}. The Road category features three difficulty levels for self-
driving cars: easy, medium, and hard. The Vehicle category includes four levels of surrounding traffic:
sparse, medium, and dense. The stochastic nature of the environment is introduced through the random
initialization of traffic patterns and map layouts, providing a challenging and varied benchmark for
assessing the performance and safety of reinforcement learning algorithms in autonomous driving
scenarios (Li et al., 2022; Liu et al., 2023a). Table 6 summarizes the different configuration and map
types used in the different evaluation environments that we use within the MetaDrive self-driving
simulator.

Table 3: MetaDrive Performance Metrics

Method BC BC-Safe CDT BCQ-Lag BEAR-Lag CPQ COptiDICE FISOR LSPC-S LSPC-O
Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

easysparse 0.17 1.54 0.11 0.21 0.17 0.23 0.78 5.01 0.11 0.86 -0.06 0.07 0.96 5.44 0.38 0.15 0.62 0.06 0.71 0.46
easymean 0.43 2.82 0.04 0.29 0.45 0.54 0.71 3.44 0.08 0.86 -0.07 0.07 0.66 3.97 0.38 0.08 0.62 0.04 0.69 0.26
easydense 0.27 1.94 0.11 0.14 0.32 0.62 0.26 0.47 0.02 0.41 -0.06 0.03 0.5 2.54 0.36 0.08 0.55 0.06 0.68 0.37

mediumsparse 0.83 3.34 0.33 0.30 0.87 1.10 0.44 1.16 -0.03 0.17 -0.08 0.07 0.71 2.41 0.42 0.07 0.96 0.32 0.94 0.12
mediummean 0.77 2.53 0.31 0.21 0.45 0.75 0.78 1.53 0.00 0.34 -0.08 0.05 0.76 2.05 0.39 0.02 0.85 0.43 0.94 0.11
mediumdense 0.45 1.47 0.24 0.17 0.88 2.41 0.58 1.89 0.01 0.28 -0.07 0.07 0.69 2.24 0.49 0.12 0.93 0.07 0.93 0.01

hardsparse 0.42 1.80 0.17 3.25 0.25 0.41 0.50 1.02 0.01 0.16 -0.05 0.06 0.37 2.05 0.30 0.00 0.50 0.24 0.54 0.47
hardmean 0.20 1.77 0.13 0.40 0.33 0.97 0.47 2.56 0.00 0.21 -0.05 0.06 0.32 2.47 0.26 0.09 0.51 0.21 0.53 0.57
harddense 0.20 1.33 0.15 0.22 0.08 0.21 0.35 1.40 0.02 0.26 -0.04 0.08 0.24 1.68 0.30 0.10 0.47 0.08 0.50 0.23
Average 0.42 2.06 0.18 0.58 0.42 0.80 0.54 2.05 0.02 0.39 -0.06 0.06 0.58 2.77 0.36 0.08 0.67 0.17 0.72 0.29

A.4.2 SAFETY GYMNASIUM

Safety Gymnasium 5 is a collection of environments based on the MuJoCo physics simulator, designed
to offer a variety of tasks with adjustable safety constraints and challenges, enabling different levels
of difficulty (Ji et al., 2023). We assess the car agent on Button, Goal, and Push tasks, where the
numbered suffixes (1 and 2) indicate the difficulty levels. Additionally, Safety Gymnasium includes
a subset of Safe Velocity tasks that impose velocity constraints on agents, extending the standard
GymMuJoCo locomotion tasks to incorporate safety considerations. We evaluate the methods on
Swimmer, Hopper, HalfCheetah, Walker2D, and Ant for the velocity tasks.

A.4.3 BULLET SAFETY GYM

Bullet Safety Gym 6 is a suite of environments built on the PyBullet physics simulator, designed
similarly to Safety Gymnasium but with shorter time horizons and more agents. Unlike Safety

4https://github.com/metadriverse/metadrive
5https://github.com/PKU-Alignment/safety-gymnasium
6https://github.com/SvenGronauer/Bullet-Safety-Gym

24

https://github.com/metadriverse/metadrive
https://github.com/PKU-Alignment/safety-gymnasium
https://github.com/SvenGronauer/Bullet-Safety-Gym

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 4: Safety Gym Performance Metrics

Method BC BC-Safe CDT BCQ-Lag BEAR-Lag CPQ COptiDICE FISOR LSPC-S LSPC-O
Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

CarButton1 0.03 1.38 0.07 0.85 0.21 1.6 0.04 1.63 0.18 2.72 0.42 9.66 -0.08 1.68 -0.02 0.04 -0.02 0.14 -0.01 0.11
CarButton2 -0.13 1.24 -0.01 0.63 0.13 1.58 0.06 2.13 -0.01 2.29 0.37 12.51 -0.07 1.59 0.01 0.09 -0.09 0.21 -0.12 0.39
CarGoal1 0.39 0.33 0.24 0.28 0.66 1.21 0.47 0.78 0.61 1.13 0.79 1.42 0.35 0.54 0.49 0.12 0.22 0.23 0.31 0.40
CarGoal2 0.23 1.05 0.14 0.51 0.48 1.25 0.3 1.44 0.28 1.01 0.65 3.75 0.25 0.91 0.06 0.05 0.13 0.44 0.19 0.42
CarPush1 0.22 0.36 0.14 0.33 0.31 0.4 0.23 0.43 0.21 0.54 -0.03 0.95 0.23 0.5 0.28 0.04 0.18 0.32 0.18 0.33
CarPush2 0.14 0.9 0.05 0.45 0.19 1.3 0.15 1.38 0.1 1.2 0.24 4.25 0.09 1.07 0.14 0.13 0.02 0.34 0.05 0.62

SwimmerVel 0.49 4.72 0.51 1.07 0.66 0.96 0.48 6.58 0.3 2.33 0.13 2.66 0.63 7.58 -0.04 0.00 0.50 0.08 0.44 0.14
HopperVel 0.65 6.39 0.36 0.67 0.63 0.61 0.78 5.02 0.34 5.86 0.14 2.11 0.13 1.51 0.17 0.32 0.26 0.39 0.69 0.00

HalfCheetahVel 0.97 13.1 0.88 0.54 1.0 0.01 1.05 18.21 0.98 6.58 0.29 0.74 0.65 0.00 0.89 0.00 0.79 0.01 0.97 0.10
Walker2dVel 0.79 3.88 0.79 0.04 0.78 0.06 0.79 0.17 0.86 3.1 0.04 0.21 0.12 0.74 0.38 0.36 0.56 1.28 0.76 0.02

AntVel 0.98 3.72 0.98 0.29 0.98 0.39 1.02 4.15 -1.01 0.0 -1.01 0.0 1.0 3.28 0.89 0.00 0.95 0.07 0.98 0.45
Average 0.43 3.37 0.38 0.51 0.55 0.85 0.49 3.81 0.26 2.43 0.19 3.48 0.30 1.76 0.30 0.11 0.32 0.32 0.40 0.27

Gymnasium, which features longer time horizons with shorter simulation steps, Bullet Safety Gym
employs shorter time horizons, which may facilitate faster training (Gronauer, 2022). The suite
includes four distinct agent types: Ball, Car, Drone, and Ant, as well as two task types: Circle and
Run. The tasks are named in the format {Agent}{Task}.

Table 5: Bullet Safety Gym Performance Metrics

Method BC BC-Safe CDT BCQ-Lag BEAR-Lag CPQ COptiDICE FISOR LSPC-S LSPC-O
Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

BallRun 0.6 5.08 0.27 1.46 0.39 1.16 0.76 3.91 -0.47 5.03 0.22 1.27 0.59 3.52 0.18 0.00 0.08 0.00 0.14 0.00
CarRun 0.97 0.33 0.94 0.22 0.99 0.65 0.94 0.15 0.68 7.78 0.95 1.79 0.87 0.0 0.73 0.04 0.72 0.00 0.97 0.13

DroneRun 0.24 2.13 0.28 0.74 0.63 0.79 0.72 5.54 0.42 2.47 0.33 3.52 0.67 4.15 0.30 0.16 0.54 0.00 0.57 0.00
AntRun 0.72 2.93 0.65 1.09 0.72 0.91 0.76 5.11 0.15 0.73 0.03 0.02 0.61 0.94 0.45 0.00 0.29 0.04 0.44 0.45

BallCircle 0.74 4.71 0.52 0.65 0.77 1.07 0.69 2.36 0.86 3.09 0.64 0.76 0.70 2.61 0.34 0.00 0.27 0.28 0.47 0.01
CarCircle 0.58 3.74 0.5 0.84 0.75 0.95 0.63 1.89 0.74 2.18 0.71 0.33 0.49 3.14 0.40 0.03 0.35 0.00 0.72 0.04

DroneCircle 0.72 3.03 0.56 0.57 0.63 0.98 0.8 3.07 0.78 3.68 -0.22 1.28 0.26 1.02 0.48 0.00 0.16 0.00 0.58 0.60
AntCircle 0.58 4.90 0.40 0.96 0.54 1.78 0.58 2.87 0.65 5.48 0.00 0.00 0.17 5.04 0.20 0.00 0.13 0.02 0.45 0.40
Average 0.64 3.36 0.52 0.82 0.68 1.04 0.74 3.11 0.48 3.8 0.33 1.12 0.55 2.55 0.39 0.03 0.04 0.04 0.54 0.20

A.5 COMPOSITION AND SAFETY PROFILES OF THE DATASETS

(a) Ball Circle (b) Ball Run

(c) Car Circle (d) Car Run

Figure 10: Distribution of the trajectories in the dataset based on cost return and reward return

Almost all of the datasets used in our evaluations include both safe and unsafe trajectories. The safety
compliance of policies during evaluation is assessed based on their adherence to the undiscounted
cost-return threshold established in our experiments, consistent with standard benchmarks. The red
dashed lines in figure 10 indicate these thresholds.

The figures in 10a - 10d include scatter plots showing the reward return versus cost return for
trajectories across four representative datasets, including those used in the ablation study. Each point
corresponds to a single trajectory/episode. Additionally, the frequency distributions of cost returns
for these datasets are provided in the right, highlighting that many trajectories exceed the safety
threshold, often with unsafe trajectories outnumbering safe ones. These visualizations illustrate the
datasets’ composition and demonstrate the robustness of LSPC in learning policies that maintain
safety compliance despite mixed safety profiles.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

SC
S

XS
T

TR
O

Figure 11: Block sequence and corresponding map samples in the Metadrive Simulator

Table 6: Metadrive Environment Configurations

Environment Traffic Density Block Length Block Sequence Horizon Lane Width Lane Count
EasySparse 0.1 3 SCS 1000 3.5 3
EasyMean 0.15 3 SCS 1000 3.5 3
EasyDense 0.2 3 SCS 1000 3.5 3

MediumSparse 0.1 3 XST 1000 3.5 3
MediumMean 0.15 3 XST 1000 3.5 3
MediumDense 0.2 3 XST 1000 3.5 3

HardSparse 0.1 3 TRO 1000 3.5 3
HardMean 0.15 3 TRO 1000 3.5 3
HardDense 0.2 3 TRO 1000 3.5 3

A.6 METADRIVE TRANSFER EXPERIMENT

For rigorous evaluation of the proposed methods in varying scenarios, a set of nine distinct environ-
ments with different configurations is employed in this study. These environments are categorized
into three difficulty levels: Easy, Medium, and Hard. Each difficulty level includes three variations
based on traffic density: Sparse, Mean, and Dense. Each environment is characterized by specific
parameters, including the start seed, traffic density, block length, block sequence, simulation horizon,
lane width, and lane count. The block sequences selected correspond to the difficulty of the driving
task: SCS (Straight-Curve-Straight) for easy levels, XST (Intersection-Straight-TInterection) for
medium levels, and TRO (TInterection-OutRamp-Roundabout) for hard levels. The configuration
is summarized in table 6 and the example maps corresponding to each block sequence type are
illustrated in figure 11.

In the transfer experiment, we aim to test the generalization capability of offline RL algorithms by
training agents in one environment configuration and then transferring them to a different configu-
ration without retraining. Specifically, we focus on agents trained in two extreme scenarios: Easy
Sparse and Hard Dense. We then evaluate their zero-shot transfer performance across a range of
other configurations. This setup enables us to assess how effectively the agents can adapt to new

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

EasySparse EasyMean EasyDense
0

20

40

60

80

MediumSparse MediumMean MediumDense
0

20

40

60

80

100
LSPC-O Rewards
LSPC-S Rewards
LSPC-O Costs
LSPC-S Costs

HardSparse HardMean HardDense
0

10

20

30

40

50

60

(a) Agent Trained in Easy Sparse

EasySparse EasyMean EasyDense
0

20

40

60

80

MediumSparse MediumMean MediumDense
0

20

40

60

80

100

HardSparse HardMean HardDense
0

10

20

30

40

50

60

(b) Agent Trained in Hard Dense

Figure 12: Zero-shot transfer performance of agents trained in the Easy Sparse and Hard Dense
scenarios when evaluated in various other settings. The unhatched bars represent the average
normalized reward return, while the hatched bars indicate the average cost return, evaluated across 20
episodes. The dashed lines represent the different cost threshold used in this paper and in prior works.

environments without additional training, providing insights into the robustness and flexibility of the
learned policies.

The results of this experiment are illustrated in figure 12. In the figure, unhatched bars represent
the average normalized reward return, while hatched bars indicate the average cost return, both
evaluated over 20 episodes. The dashed lines correspond to the different cost thresholds used in
this study as well as the DSRL (Liu et al., 2023a). Notably, the agent trained in the Hard Dense
scenario exhibited improved reward performance when transferred to easier and sparser tasks, even
surpassing its own performance in the Hard Dense environment. This outcome is likely due to the
agent’s exposure to more challenging data during training, which enhanced its adaptability to simpler
settings—a result that is not always commonly observed in transfer learning scenarios. In contrast,
the agent trained in the Easy Sparse environment experienced a performance drop when transferred
to denser and more complex tasks, with the decline being more pronounced in medium difficulty
scenarios than in the hardest ones. Despite these variations in reward performance, both agents
consistently maintained safety across all cost threshold levels, demonstrating robust safety across all
difficulty and density configurations. This consistency aligns with the core principle of our method,
Latent Safety-Prioritized Constraints (LSPC), which ensures that the policy maximizes rewards while
adhering to safety constraints within the latent space.

27

	Introduction
	Preliminaries
	Safe Offline RL
	Conditional Variational Autoencoder
	Implicit Q Learning

	Methodology
	Learning Conservatively Safe Policy
	Constrained Reward-Return Maximization

	Theoretical Analysis
	Results and Discussions
	Related Works
	Conclusions
	Appendix
	Additional Analysis
	Auxiliary Assumptions
	Missing Proofs in Section 4

	Analysis for Decay Rate and Sample Complexity
	Algorithm and Implementation Details
	Hyperparameters and Tuning
	Ablation
	Safety and Performance Trade-offs in LSPC-S and LSPC-O
	Training time of the experiments
	Comparison with CPQ

	Benchmark Details and Additional Baselines
	Metadrive
	Safety Gymnasium
	Bullet Safety Gym

	Composition and Safety Profiles of the Datasets
	Metadrive Transfer Experiment

