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Abstract The Adam optimizer remains one of the most widely used optimizers in deep learning, and

effectively tuning its hyperparameters is key to optimizing performance. However, tuning

can be tedious and costly. Freeze-thaw Bayesian Optimization (BO) is a recent promis-

ing approach for low-budget hyperparameter tuning, but is limited by generic surrogates

without prior knowledge of how hyperparameters affect learning. We propose Adam-PFN,
a new surrogate model for Freeze-thaw BO of Adam’s hyperparameters, pre-trained on

learning curves from TaskSet, together with a new learning curve augmentation method,

CDF-augment, which artificially increases the number of available training examples. Our

approach improves both learning curve extrapolation and accelerates hyperparameter opti-

mization on TaskSet evaluation tasks, with strong performance on out-of-distribution (OOD)

tasks.

1 Introduction
Hyperparameter Optimization (HPO) can be costly and time-consuming, especially in the age

of LLMs. Although Bayesian Optimization (BO) is a sample-efficient alternative, it still requires

training a model in full to get a new evaluation point for the BO loop.

Freeze-thaw BO (FT-BO) (Swersky et al., 2014) is a more efficient alternative that allocates

resources to the most prominent configurations one step (e.g., one epoch) at a time. Additionally,

rather than disregarding a configuration, FT-BO keeps it frozen in memory and can decide whether

to thaw that configuration or start a new one.

Recently, Rakotoarison et al., 2024 introduced ifBO, a new, state-of-the-art framework for FT-BO.

It consists of FT-PFN, a PFN (Müller et al., 2022) based surrogate that performs Bayesian learning

curve extrapolation, trained on synthetic hyperparameter (HP) configurations and learning curve

combinations. However, ifBO attempts to fit every HPO case with one surrogate model.

Our work introduces a drop-in replacement surrogate model for ifBO, Adam-PFN, specialized
to tune the HPs of the Adam optimizer (Kingma and Ba, 2015). We also introduce a learning

curve augmentation method that allows us to train on real data from TaskSet (Metz et al., 2020), a

collection of learning curves optimized using Adam, instead of sampling them from a synthetic

prior.

2 Adam-PFN

2.1 Real Data: TaskSet
TaskSet offers a collection of 1162 learning curves on a variety of tasks, including language modeling

on words, subwords, and characters with RNNs, text classification with RNNs, CNNs trained on

image data, and MLPs, all optimized with Adam. Each task contains the learning curves of the same

1000 randomly sampled HP configurations, including the learning rate, 𝛽1, 𝛽2, 𝜖 , two parameters

that control 𝐿1 and 𝐿2 regularization, and two parameters that control the learning rate decay

schedule. All hyperparameter values are uniformly sampled on a log scale. Table 2 in Appendix A

gives a more detailed overview of the hyperparameters’ lower and upper bounds.
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Figure 1: (a) A selection of learning curves from TaskSet, the color of each curve is based on the

learning rate value. (b) The same set of learning curves augmented with CDF-augment.

CDF-augment non-linearly transformed "task hardness" by making the task easier.

2.2 Augmentation Method: CDF-augment

To generate an even more diverse training set, we introduce CDF-augment, a local learning curve

augmentation method that uses the cumulative distribution function (CDF) of the Beta distribution.

To augment a learning curve, we first sample Beta’s mode 𝜇 uniformly in [0, 1] and concentration

𝜅 uniformly in [2, 5], and calculate the CDF. We then forward-propagate the learning curve 𝑦

through the CDF as follows

𝑦′ = 𝐹𝐵𝑒𝑡𝑎 (𝑦; 𝜇, 𝜅) (1)

Using this augmentation, we increase the learning curve diversity by non-linearly transforming

task-hardness. Due to the nature of the CDF, the rank (ordering) of learning curves is preserved.

Figure 1 shows the result of applying CDF-augment on a set of learning curves.

2.3 Surrogate Model Training

Our surrogate model is a PFN, trained on augmented data from real learning curves of the Adam

optimizer, similar to the data it will encounter in practice. PFNs are based on the transformer

architecture (Vaswani et al., 2017), and leverage in-context learning to perform Bayesian learning

curve extrapolation in a single forward pass.

We follow the same training pipeline for our surrogate model as FT-PFN, the only difference is

that we do not sample the learning curves with and their HP configurations from a synthetic prior,

rather, we train on real curves from TaskSet, which we augment using CDF-augment. We include

more implementation details in Appendix B.

Starting with a set of learning curves randomly sampled from 878 tasks and 1000 HP configu-

rations per task, we augment and then split each curve into context and query points. We train

our model to extrapolate the performance of a curve at a query point, given the context and HP

configuration. More details on the training tasks can be found in Appendix C.

3 Experiments

3.1 Evaluation Procedure

Our evaluation set consists of 12 NLP tasks from TaskSet, which were not used during training and

are also used in prior work (Kadra et al., 2023), (Wistuba et al., 2022), (Rakotoarison et al., 2024). A

list of the evaluation tasks is included in Appendix D.

To evaluate the quality and runtime complexity of predictions, we compare our approach

against DyHPO (Wistuba et al., 2022), DPL (Kadra et al., 2023), FT-PFN (Rakotoarison et al., 2024), and

a Uniform Predictor that outputs a uniform distribution over the [0, 1] range for Log-likelihood

and a constant value of 0.5 for MSE.
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Algorithm Context 400 Context 1000 Context 1600

LL MSE Time LL MSE Time LL MSE Time

Adam-PFN (CDF) 5.326 0.00054 0.697 5.422 0.00046 2.151 5.441 0.00043 4.014

Adam-PFN (Mixup) 4.916 0.00080 0.677 4.986 0.00067 2.131 5.022 0.00061 3.972

Adam-PFN (No aug.) 4.947 0.00062 0.671 5.042 0.00054 2.090 5.066 0.00052 3.993

FT-PFN 3.440 0.00184 0.693 3.473 0.00171 2.103 3.443 0.00164 4.017

DPL -29.752 0.00191 17.790 -22.192 0.00175 38.855 -16.154 0.00164 63.748

DyHPO -0.494 0.00336 25.662 -0.397 0.00317 113.217 -0.383 0.00317 264.284

Uniform -6.908 0.22881 N/A -6.908 0.22852 0.000 -6.908 0.22896 N/A

Table 1: Comparison of Adam-PFN(CDF), Adam-PFN(Mixup), and Adam-PFN (No Aug.) against the

baselines for different context sizes. Values are the median across the evaluation tasks.

We also evaluated the HPO performance of our surrogate as part of ifBO by replacing FT-PFN
while keeping the proposed acquisition function. For HPO performance, we additionally compare

against HyperBand (Li, Jamieson, DeSalvo, et al., 2018), ASHA (Li, Jamieson, Rostamizadeh, et al.,

2020), Freeze-thaw with GPs (Swersky et al., 2014), and Random Search (Bergstra and Bengio,

2012). We include additional details on the baselines and discuss how they relate to our work in

Appendix E.

We also included two variants of Adam-PFN, "No Aug" and "Mixup". Adam-PFN (No aug.) was

trained on the initial TaskSet tasks, without any learning curve augmentation, while Adam-PFN
(Mixup) was trained using the recently introduced Mixup learning curve augmentation method

(Lee et al., 2024). Further details on Mixup are included in Appendix F.

3.2 Learning Curve Extrapolation Results

Table 1 presents the learning curve extrapolation results. Adam-PFN (CDF) outperforms all other

baselines, both in terms of Log-likelihood (LL) and MSE. As expected, the inference time of all PFN

approaches is significantly lower than that of DPL and DyHPO, since they are trained offline.

3.3 HPO Results

Figure 2 shows the aggregated normalized regret and the average rank of each algorithm. Adam-PFN
(CDF) outperforms all baselines both in terms of normalized regret and average rank. The other

two alternatives, Adam-PFN (Mixup) and Adam-PFN (No. aug), perform similarly well. All variants

are also sample-efficient, achieving the same normalized regret at approximately epoch 150, as

FT-PFN does at approximately epoch 750.

3.4 Evaluation In The Wild: Out-Of-Distribution Tasks

We also evaluated the HPO performance of all Adam-PFN variants on some real-world tasks from

the publicly available PyTorch Examples
1
repository. We compare our approach with FT-PFN,

HyperBand, ASHA, and Random Search.

The results are presented in Figure 3. Focusing on subfigure (b), which shows the average

ranks, we observe that Adam-PFN (CDF) is the best-performing alternative early on, on average. As

the budget increases, FT-PFN catches up and eventually surpasses our model. An approach that

warm-starts the HPO process with Adam-PFN and then switches to FT-PFN might be optimal for

these tasks, but we leave that as future work. We include more details and results in Appendix G.

4 Limitations & Future Work

Our preliminary results highlight the importance of specialization and the use of prior knowledge

when it comes to HPO. Despite that, we acknowledge that our surrogate model is trained and tested

1
https://github.com/pytorch/examples
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Figure 2: HPO results of normalized regret and average rank of Adam-PFN (CDF) against the baselines.
The results are the mean across the 12 evaluation tasks for 5 random seeds.
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Figure 3: HPO results of normalized regret and average rank of Adam-PFN (CDF) against the baselines
on OOD tasks. The results are the mean across tasks for 5 random seeds.

on a fixed search space with a pre-defined number of HPs. Tuning different sets of HPs needs to

be further explored. One possible approach would be to set unused HPs to default values during

training and testing.

Unlike Mixup, we only consider augmentations in learning curve space. While we explored HP

augmentation, we surprisingly found that augmenting in the parameter space hurts performance,

whereas Mixup’s results improve when we remove HP augmentation (refer to Appendix H). We

believe that our results could be further improved with the introduction of a new HP augmentation

method.

Finally, especially based on the results on OOD tasks, we believe it is worth exploring how our

prior could be mixed with that of FT-PFN. One possibility would be to train a model from scratch

with a prior that is a mixture of the two. Another would be to fine-tune FT-PFN on learning curves

from our prior.
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A TaskSet Hyperparameter Bounds

Table 2 provides the sampling bounds for TaskSet hyperparameters. We normalize all hyperparam-

eters to lie on the [0, 1] range using those bounds before we feed them to the model for training

and inference.

HP Log Lower Bound Upper Bound

Learning Rate ✓ 1𝑒−8 10

𝛽1
2 ✓ 1𝑒−4 1

𝛽2
2 ✓ 1𝑒−6 1

Linear Decay ✓ 1𝑒−7 0.0001

Expon. Decay ✓ 1𝑒−6 0.001

𝜖 ✓ 1𝑒−10 1000

ℓ1 ✓ 1𝑒−8 1

ℓ2 ✓ 1𝑒−8 1

Table 2: Sampling strategies for TaskSet Hyperparameters.

B Adam-PFN Implementation Details

Following Rakotoarison et al., 2024, we used a transformer (Vaswani et al., 2017) with 6 layers and

4 attention heads, an embedding size of 512, and a hidden size of 1024. During training, we used

a batch size of 25 and the Adam (Kingma and Ba, 2015) optimizer with an initial learning rate of

0.0001. We scheduled the learning rate using cosine annealing (Loshchilov and Hutter, 2017) with a

linear warm-up schedule for the first 200 epochs. We train on a total of 2.0M learning curves. A list

of the sampled tasks we used during training is presented in Appendix C.

C List of TaskSet Training Tasks

TaskSet provides both hand-designed tasks designed by experts, and sampled tasks, where the

task parameters such as dataset, network architecture, activation functions, etc., are randomly

sampled. There are far more sampled tasks in TaskSet, since they are easier to create. In our work,

we exclusively train on sampled tasks. This was a design decision to highlight the fact that the

learning curves we use during training do not have to come from carefully curated tasks. Instead,

randomly sampling a task’s parameters and optimizing it for a number of epochs suffices.

To facilitate reproducibility, we provide a detailed list of each task we used during training.

• word_rnn_language_model_family seeds: 0, 1, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23,
24, 25, 26, 29, 30, 31, 33, 34, 37, 39, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 57, 58, 59, 61, 63, 64,

65, 66, 67, 69, 72, 73, 74, 76, 78, 81, 82, 84, 85, 86, 87, 88, 89, 91, 93, 94, 97, 98, 99

• char_rnn_language_model_family seeds: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79,

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99

• conv_fc_family seeds: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,

87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99

2𝛽1 and 𝛽2 are parametrized as 1 − 𝑥 and then sampled.
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• conv_pooling_family seeds: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,

86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99

• losg_tasks_family seeds: 0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61,

62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93,

94, 95, 97, 98, 99

• maf_family seeds: 3, 5, 7, 14, 17, 20, 23, 27, 40, 41, 44, 46, 47, 48, 60, 61, 64, 66, 68, 69, 70, 76, 78,
83, 84, 89, 94

• mlp_ae_family seeds: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53,

54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,

83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99

• mlp_family seeds: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,

54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82,

83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99

• mlp_vae_family seeds: 1, 3, 4, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 30, 32, 33, 34, 35, 36,
37, 41, 42, 45, 50, 52, 54, 56, 57, 59, 60, 61, 62, 66, 67, 69, 71, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87,

90, 92, 94, 97

• nvp_family seeds: 5, 7, 14, 19, 27, 28, 32, 35, 36, 42, 47, 49, 55, 65, 70, 73, 74, 77, 88, 89, 92, 93, 95
• quadratic_family seeds: 0, 1, 5, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 21, 23, 24, 25, 28, 31, 32, 34, 35,
36, 38, 42, 43, 44, 48, 53, 62, 63, 64, 66, 68, 69, 70, 72, 73, 75, 78, 81, 82, 83, 85, 89, 91, 93, 97

• rnn_text_classification_family seeds: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78,

79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99

D List of TaskSet Evaluation Tasks

We evaluated our pipeline on the following 12 text classification tasks, which are also used in prior

work (Rakotoarison et al., 2024), (Wistuba et al., 2022), (Kadra et al., 2023):

• FixedTextRNNClassification_imdb_patch128_LSTM128_avg_bs64

• FixedTextRNNClassification_imdb_patch128_LSTM128_bs64

• FixedTextRNNClassification_imdb_patch128_LSTM128_embed128_bs64

• FixedTextRNNClassification_imdb_patch32_GRU128_bs128

• FixedTextRNNClassification_imdb_patch32_GRU64_avg_bs128

• FixedTextRNNClassification_imdb_patch32_IRNN64_relu_avg_bs128

• FixedTextRNNClassification_imdb_patch32_IRNN64_relu_last_bs128

• FixedTextRNNClassification_imdb_patch32_LSTM128_E128_bs128

• FixedTextRNNClassification_imdb_patch32_LSTM128_bs128

• FixedTextRNNClassification_imdb_patch32_VRNN128_tanh_bs128

• FixedTextRNNClassification_imdb_patch32_VRNN64_relu_avg_bs128

• FixedTextRNNClassification_imdb_patch32_VRNN64_tanh_avg_bs128
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E Baselines

DyHPO (Wistuba et al., 2022) includes a learned deep kernel GP as the surrogate model, com-

bined with a generalization of the Expected Improvement (EI) acquisition function for a multi-

fidelity setup. The candidate configuration suggested by the acquisition function is evaluated

only for a number of fidelity steps. During evaluation we used the NePS (Stoll et al., 2024)

framework implementation provided by Rakotoarison et al., 2024, which follows the imple-

mentation details and code by Wistuba et al., 2022 from their publicly available repository at

https://github.com/machinelearningnuremberg/DyHPO.

DPL (Kadra et al., 2023) is a framework that performs Bayesian Optimization with learning

curve extrapolation under the assumption that learning curves follow power law functions.

Using an ensemble of neural networks as a surrogate model, and Expected Improvement (EI)

at the maximum budget as the acquisition function, the candidate configurations are again

trained for a number of epochs before the next BO iteration. During evaluation, we used the

NePS framework implementation provided by Rakotoarison et al., 2024, which follows the im-

plementation details and code by Kadra et al., 2023 from their publicly available repository at

https://github.com/machinelearningnuremberg/DPL.

FT-PFN is the surrogate model introduced by Rakotoarison et al., 2024, it is a PFN (Müller et al.,

2022) that performs Bayesian learning curve extrapolation, trained on synthetic datasets created

by 4 weighted basis functions with additive Gaussian noise. During evaluation, we used the

implementation suggested by Rakotoarison et al., 2024 and their publicly available surrogate model

at https://github.com/automl/ifBO.

Uniform Predictor is a simple baseline that outputs a uniform distribution over the [0, 1] range

for the log-likelihood and a constant value of 0.5 for the MSE point estimate.

Freeze-Thaw with GPs (Swersky et al., 2014) Freeze-Thaw using GPs as the surrogate model.

During evaluation, we follow the same implementation used by Rakotoarison et al., 2024.

Hyperband (Li, Jamieson, DeSalvo, et al., 2018) is a Multi-fidelity algorithm which uses different

Successive Halving (Jamieson and Talwalkar, 2016) brackets with different definitions of lower

fidelity per bracket. During evaluation, we used the default NePS implementation with 𝜂 = 3, which

leads to 3 Succesive Halving brackets. The minimum budget was set to 1 and the maximum to 50.

The cutoff fidelities for the first SH bracket were [1, 5, 16, 50].

ASHA (Li, Jamieson, Rostamizadeh, et al., 2020) the asynchronous version of Successive Halving.

During evaluation, we used the default NePS implementation, which uses 𝜂 = 3. The minimum

budget was set to 1, and the maximum to 50.

Random Search (Bergstra and Bengio, 2012) an uninformed global optimization algorithm that

samples hyperparameter configurations uniformly at random. During evaluation, we used the

default NePS implementation. We allowed a total number of 1000 optimization steps, corresponding

to 20 full random search evaluations in TaskSet tasks.

F CMBO & Mixup

CMBO (Lee et al., 2024) is a recently introduced FT-BO framework to which our work is closely

related. CMBO is a Cost-Sensitive Multi-fidelity BO framework that introduces a new utility function,

aiming to balance a user-specific tradeoff between the expected performance improvement gain

during an HPO run, and the computational resources cost needed to achieve that gain.

Similar to Rakotoarison et al., 2024, CMBO uses a PFN surrogate model, but unlike ifBO, the
surrogate is trained on tasks from TaskSet, using Mixup, a learning curve augmentation method

based on Mixup for images (Zhang et al., 2018).
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CMBO differs from ifBO in several important ways. Unlike ifBO, the surrogate model in CMBO is
meta-learned using augmented learning curves from real tasks. A second key difference lies in the

stopping criterion. CMBO uses a user-defined utility function to determine whether to continue the

optimization, whereas ifBO runs until the full optimization budget is exhausted. Lastly, CMBO is not
yet publicly available.

Our approach also differs from CMBO in several ways. Our surrogate is trained on augmented

curves from 878 tasks, compared to only 21 used in CMBO. We evaluated our model on both hand-

designed NLP tasks and real-world tasks. Additionally, we investigate an alternative to Mixup

that does not include the HP augmentation component (see also Appendix H). Lastly, CMBO is a
new FT-BO framework, while our work builds upon the pre-existing open source ifBO and offers a

drop-in replacement for its surrogate model.

For completeness, this appendix section describes Mixup, though more details can be found in

the original paper by Lee et al., 2024
3
.

Mixup consists of two discrete augmentation steps. The first step involves augmenting the

same hyperparameter configurations across tasks, and the second step involves augmenting across

hyperparameter configurations within the same task.

Assume𝑀 tasks and 𝐿𝐶𝑚 a vector of learning curve - hyperparameter configuration combina-

tions for task𝑚 ∈ 𝑀 ,

𝐿𝐶𝑚 = [𝐿𝐶𝑚,1, 𝐿𝐶𝑚,2, 𝐿𝐶𝑚,3, ..., 𝐿𝐶𝑚,𝑛] (2)

During task mixup, Lee et al., 2024 sample a scalar value uniformly at random 𝜆1 ∼ 𝑈𝑛𝑖 𝑓 (0, 1)
and perform learning curve augmentation as follows:

𝐿𝐶′
𝑚 = 𝜆1𝐿𝐶𝑚 + (1 − 𝜆1)𝐿𝐶𝑚′ for all𝑚,𝑚′ ∈ 𝑀 (3)

This step produces a new learning curve for each hyperparameter configuration as a linear

interpolation between the learning curves of tasks𝑚 and𝑚′
.

The second step involves mixing hyperparameter configurations and learning curves within

the same task. Assume we have 𝑁 hyperparameter configuration - learning curve pairs denoted as

(𝑥,𝑦) per task. During hyperparameter mixup, Lee et al., 2024 sample a scalar value uniformly at

random 𝜆2 ∼ 𝑈𝑛𝑖 𝑓 (0, 1) and perform the augmentation as follows:

(𝑥 ′′, 𝑦′′) = 𝜆2(𝑥,𝑦) + (1 − 𝜆2) (𝑥 ′, 𝑦′) (4)

Figure 4 shows the result of applying Mixup on the same set of learning curves as Figure 1. Due

to the linear interpolation nature of Mixup, the resulting learning curves are smoother than the

original, with some information, especially of the oscillating high learning curves, being phased

out.

G Out-of-Distribution Results Per Task

We considered the following tasks:

• Language Translation: This task trains a transformer to perform language translation from

German to English.

• Word Language Model: This task trains a neural network for language modeling by learning to

predict the next word in a sequence. We evaluated two variants of this task, one using LSTMs

(Hochreiter and Schmidhuber, 1997) and one using a transformer.

• Sequence Predictor: This task uses an LSTM to predict future values of sine wave signals.

3
All the equations in this section are from Lee et al., 2024
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Figure 4: (a) A selection of learning curves from TaskSet, the color of each curve is based on the

learning rate value of the configuration. (b) The same set of learning curves after we apply

Mixup learning curve augmentation.

• GCN: This task uses a Graph Convolutional Network (Kipf and Welling, 2017) to perform node

classification on the Cora dataset.

0 200 400 600 800 1000

Total epochs spent

10−6

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

re
gr

et

Language Translation 8P

0 200 400 600 800 1000

Total epochs spent

0

1

2

3

4

5

6

7

R
an

k
Language Translation 8P

0 200 400 600 800 1000

Total epochs spent

10−5

10−4

10−3

10−2

10−1

N
or

m
al

iz
ed

re
gr

et

Word Language Model (Transformer) 8P

0 200 400 600 800 1000

Total epochs spent

0

1

2

3

4

5

6

7

R
an

k

Word Language Model (Transformer) 8P

Adam-PFN (CDF)
Adam-PFN (Mixup)

Adam-PFN (No aug.)
FT-PFN (ifBO)

Hyperband ASHA Random Search

Figure 5: HPO results on real-world tasks.
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Figure 6: HPO results on real-world tasks.

H Augmenting the HPs
Mixup augments both learning curves and HP configurations, so we also extended CDF-augment

to support HP augmentation. Specifically, we transformed HP configurations using the cumulative

distribution function (CDF) of the Beta distribution, similar to Equation 1.
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𝑥 ′ = 𝐹𝐵𝑒𝑡𝑎 (𝑥 ; 𝜇, 𝜅) (5)

To avoid extreme augmentation inHP space, we sample the concentration parameter𝜅 uniformly

from the [2, 3] range, instead of [2, 5] that we used for learning curve augmentation.

To further isolate the effect of HP augmentation in Mixup, we performed an additional ablation

study, in which we disabled the HP component and applied only Equation 3. The learning curve

extrapolation performance of these Adam-PFN variants is reported in Table 3 for different context

sizes.

Overall, the results indicate that HP augmentation negatively impacts performance. For the

TaskSet-8P evaluation tasks (see Table 3), the surrogate model performs worse when trained with HP

augmentation for context sizes of 400 and 1000. The model performs equally well with the surrogate

trained only with learning curve augmentation for a context size of 1600. HP augmentation also

appears to hurt the performance of Mixup, since the results improved when we applied only task

mixup.

TaskSet-8P

Algorithm Context 400 Context 1000 Context 1600

LL MSE LL MSE LL MSE

CDF (w/ HP) 5.309 0.00055 5.408 0.00047 5.441 0.00043
Mixup (w/ HP) 4.916 0.00080 4.986 0.00067 5.022 0.00061

CDF 5.326 0.00054 5.422 0.00046 5.441 0.00043
Mixup (w/o HP) 5.296 0.00062 5.374 0.00051 5.409 0.00046

No Aug. 4.947 0.00062 5.042 0.00054 5.066 0.00052

Table 3: Learning Curve extrapolation results for different augmentation methods. "w/o HP" indicates

models trained without hyperparameter augmentation. "No Aug." is trained without any

augmentation.

We were somewhat cautious about these results, as the models may have overfitted to the HP

configurations present on TaskSet, and thus may not be able to generalize to unseen configurations.

To force the models to generalize during evaluation, we performed an additional experiment where

we randomly withheld 400 HP configurations during surrogate model training and evaluated the

performance exclusively on this held-out set for the evaluation tasks. The results are shown in

Table 4.

The results show that the models without HP configuration (CDF and Mixup (w/o HP)) were able
to generalize to unseen HP configurations and also outperform their counterparts. Only learning

curve augmentation seems to introduce enough variability in the data, and even though the trans-

former is trained on the same 600 HP configurations, it learns a sufficiently robust representation

of the space, which allows generalization on previously unseen HPs.
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TaskSet-8P (400 Leave-Out)

Algorithm Context 400 Context 1000 Context 1600

LL MSE LL MSE LL MSE

CDF (w/ HP) 5.258 0.00054 5.380 0.00045 5.418 0.00043

CDF 5.329 0.00051 5.418 0.00042 5.458 0.00039
Mixup (w/ HP) 4.850 0.00089 4.983 0.00078 5.035 0.00075

Mixup (w/o HP) 5.264 0.00053 5.357 0.00047 5.385 0.00044

Table 4: Learning Curve extrapolation results for Adam-PFN variants with andwithout hyperparameter

augmentation on 400 leave-out configurations.
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