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Abstract

Causal structure learning methods are vital for unveiling causal relationships embedded1

into observed data. However, the state of the art suffers a major limitation: it assumes2

that causal interactions occur only at the frequency at which data is observed. To address3

this limitation, this paper proposes a method that allows structural learning of linear causal4

relationships occurring at different time scales. Specifically, we explicitly take into account5

instantaneous and lagged inter-relations between multiple time series, represented at differ-6

ent scales, hinging on wavelet transform. We cast the problem as the learning of a multiscale7

causal graph having sparse structure and dagness constraints, enforcing causality through8

directed and acyclic topology. To solve the resulting (non-convex) formulation, we propose9

an algorithm termed MS-CASTLE, which exhibits consistent performance across differ-10

ent noise distributions and wavelet choices. We also propose a single-scale version of our11

algorithm, SS-CASTLE, which outperforms existing methods in computational efficiency,12

performance, and robustness on synthetic data. Finally, we apply the proposed approach to13

learn the multiscale causal structure of the risk of 15 global equity markets, during covid-1914

pandemic, illustrating the importance of multiscale analysis to reveal useful interactions at15

different time resolutions. Financial investors can leverage our approach to manage risk16

within equity portfolios from a causal perspective, tailored to their investment horizon.17

1 Introduction18

The study of causal relationships plays a fundamental role in our understanding of complex systems. However,19

learning causal relationships is a challenging task, and often is not even possible to directly act on the systems20

of interest (e.g., social networks) because of ethics, feasibility, or cost issues. Thus, the ability to unravel21

causal structures from the observed data, also known as causal structure learning, is an attractive technology22

that has received growing attention in the last years, also thanks to the ever-increasing volume of available23

data, see e.g., (Pearl, 2009; Peters et al., 2017b; Glymour et al., 2019; Schölkopf et al., 2021). In the24

literature, several works hinged on directed acyclic graphs (DAGs) to represent causal dependencies (i.e.,25

directed edges) between the constituents (e.g., nodes) of the considered system (Vowels et al., 2022). Indeed,26

the acyclicity requirement represents a necessary condition in order to set causes apart from effects; a result27

that cannot be accomplished in the presence of feedback loops among the nodes. In case the nodes of the28

DAG are associated with time series observations, the dependencies represented by the DAG refer to causal29

interactions occurring between the values of the time series within the same timestamp and across different30

time stamps. The formers are called instantaneous, whereas the latters, since we can only observe causal31

interactions coming from the past, are named lagged.32

Related works. Causal structure learning algorithms can be classified in accordance with the approach33

used to infer the associated DAG. In particular, we can identify three main different classes: (i) constraint-34

based approaches, which run conditional independence tests to validate the presence of an edge between two35

variables (Spirtes et al., 2000; Huang et al., 2020); (ii) score-based methods, which measure the goodness36

of fit of graphs according to a given criterion and then use search procedures to explore the solution space37

(Heckerman et al., 1995; Chickering, 2002; Huang et al., 2018); (iii) functional methods, which model a38

variable in terms of a function of its parents (Shimizu et al., 2006; Hoyer et al., 2008; Hyvärinen et al.,39

2010; Peters et al., 2014; Bühlmann et al., 2014). Furthermore, a recent important contribution came by40

1



Under review as submission to TMLR

reformulating the problem of learning a DAG using a suitable continuous non-convex penalty (Zheng et al.,41

2018; 2020). This enabled the usage of gradient-based methods (Yu et al., 2019; Lachapelle et al., 2020; Ng42

et al., 2020) and reinforcement learning (Zhu et al., 2020) in causal discovery problems.43

Whenever we deal with causal inference for time series analysis, we need to take into account time ordering44

as well. Considering linear models, this leads to the formulation of the structural vector autoregressive45

model (SVARM) (Kilian & Lütkepohl, 2017), which can be thought of a combination of a structural equation46

model (SEM) (Peters et al., 2017a) and a vector autoregressive model (VAR) (Sims, 1980). To estimate47

the SVARM parameters, a stream of research assumes the exogenous noise to be non-normally distributed48

(Hyvärinen et al., 2010; Moneta et al., 2013). This allows us to apply independent component analysis (ICA)49

to infer the causal structure from observations (Hyvarinen, 1999). Then, leveraging non-convex optimization,50

DYNOTEARS showed promising results in the task of causal structure learning for time series (Pamfil et al.,51

2020). From the optimization point of view, the alternating direction method of multipliers (ADMM) (Boyd52

et al., 2011) is also exploited in several works for causal structural learning, see, e.g., (Ng & Zhang, 2022;53

Yang et al., 2022; Harada & Fujisawa, 2021). As detailed in Section 3, also the method proposed in this54

paper will hinge on ADMM but, differently from Ng & Zhang (2022) and Yang et al. (2022), we leverage a55

modified ADMM algorithm that exploits a linearization of the non-convex dagness function introduced by56

Zheng et al. (2018). In Harada & Fujisawa (2021), ADMM applies to a linearly-constrained problem having57

a different objective function. Also, differently from our method, the approach in Harada & Fujisawa (2021)58

is viable only if the latent noise is assumed to be non-Gaussian.59

Regardless of the assumed causal model, all previous works suffer a major limitation, that is, they only60

assume generative processes where instantaneous and lagged interactions occur at the time resolution corre-61

sponding to the observational task. However, the introduction of a multiscale causal model able to localize62

causal interaction in both time and frequency, and to provide information regarding the underlying causal63

mechanism driving the interactions, is of paramount importance since the multiscale property represents a64

key feature of complex systems, as shown in Calvet & Fisher (2001); Kwapień & Drożdż (2012). Consider65

for example fMRI data regarding different brain regions of interest (ROIs) collected at timestamps t · ∆t,66

with ∆t being the time interval between two consecutive samples. The aforementioned limitation translates67

into the inability of studying the system at hand by means of a causal model in which the causal mechanism68

determining the interactions between ROIs are allowed to occur over time resolutions coarser than ∆t, while69

it is known that the connectivity between ROIs varies over different time scales, also depending on the state70

of the brain (Jacobs et al., 2007; Ciuciu et al., 2014; Ide et al., 2017). Other examples can be found in other71

application domains (Besserve et al., 2010; Gong et al., 2015; Runge et al., 2019a), and in general there is72

no prior knowledge about the time scales at which important causal relations occur.73

Noteworthy, researchers active in the neuroscience field have proposed different methods to analyze the74

functional connectivity between brain areas from a causal perspective in the frequency domain (Kaminski75

& Blinowska, 1991; Guo et al., 2008). All these methods are variations of the well-known Granger causality76

(Granger, 1969), and relate to its frequency domain formulation obtained from the spectral decomposition77

of the VAR process (Geweke, 1982; 1984). While these methods offer valuable insights into potential causal78

relationships between signals from spectral analysis, they cannot be considered causal models and do not79

provide a description of the mechanism of the underlying causal processes driving the interactions, as our80

model does. The same holds for alternative approaches developed to assess directional connectivity between81

brain signals in the frequency domain by analyzing the distribution of phase differences across different82

frequency components (Nolte et al., 2008; Stam & van Straaten, 2012).83

The interest in a multiscale analysis of dependences among time series emerges also from other application84

domains. In particular, wavelet analysis, together with network analysis, has been already employed in85

the study of financial risk contagion (Loh, 2013; Khalfaoui et al., 2015; Wang et al., 2017). More recently,86

the integration of machine learning methods and multiscale representations has been proven to provide87

significant advancements in biological and behavioral sciences, as reported in Alber et al. (2019) and Peng88

et al. (2021). Recently, D’Acunto et al. (2022) proposed a probabilistic generative model and an inference89

method for multiscale DAGs. In contrast to that work, our methodology (i) relies on wavelet transform,90

generalizing the SVAR model to the time-frequency domain, (ii) enables learning of multiscale relationships91

across different time lags while making no assumptions on the causal ordering at each scale, and (iii) has92
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a lower computational cost, thus allowing analysis of networks with a larger number of nodes. For these93

reasons, we consider the method in D’Acunto et al. (2022) incomparable to our algorithm. Overall, the94

combination of multiscale representation with causal learning is still an open problem and this motivates the95

proposed work.96

Contributions. In this paper, we overcome the limitation of previous approaches by proposing a linear97

causal inference algorithm based on a multiscale representation, able to capture the most relevant causal98

dependencies across multiple time scales and time lags. Specifically, we start formulating an optimization99

problem aimed at learning a multiscale causal graph from data, while taking into account sparsity and100

enforcing causality through directed and acyclic topology. Then, as reported in Section 3, we exploit a101

customized version of linearized ADMM (useful to copy with the non-convexity of the problem at hand),102

thus deriving the proposed Multiscale-Causal Structure Learning (MS-CASTLE) algorithm. As a particular103

case, MS-CASTLE includes a single time scale version, which we term Single-scale-Causal Structure Learning104

(SS-CASTLE), to learn causal connections at the frequency of observed data.105

To summarize, the paper has three main contributions:106

• Multiscale structure learning. Firstly, we propose a multiscale causal inference algorithm that allows107

the extraction of causal links at different time scales, without requiring any prior knowledge of the scale108

where causal relations are most effective. We evaluate the performance of MS-CASTLE from synthetic109

data generated according to a multiscale causal structure. The results of our empirical assessment,110

illustrated in Section 4.3, suggest that MS-CASTLE is suitable for both Gaussian and non-Gaussian111

settings, and that is robust to different choices of the wavelet family used to decompose the input time112

series.113

• Application to financial markets. Secondly, we showcase the application of our proposals on real-114

world financial time series in Section 5. Specifically, we apply MS-CASTLE to learn the causal dynamics115

of risk contagion among 15 global equity markets during covid-19 pandemic, from January 2, 2020116

to April 30, 2021, and we compare the resulting graphs with those retrieved by single-scale causal117

learning methods. Our analysis shows that MS-CASTLE provides richer information regarding the118

causal structure of the system that cannot be understood by looking only at the estimated single-119

scale causal graph. In particular, our findings suggest that: i) causal connections are characterized120

by positive weights and are denser at mid-term time resolution (scales 3 and 4, i.e., 8-16 and 16-121

32 days, respectively); ii) the strongest connections are lagged and they appear at scales 3 and 4;122

iii) the markets injecting the majority of risk into the network are Brazil, Canada and Italy. Further123

discussions concerning the obtained results and the richness of information gained through the multiscale124

causal analysis are given in Section 5.4. Our analysis of financial time series provides novel results125

at both methodological as well as application levels with respect to the stream of research known as126

Econophysics (Mantegna & Stanley, 1999). At the methodological level, we propose a multiscale machine127

learning causal model that, differently from existing work (Billio et al., 2012), allows us to analyse both128

instantaneous and lagged causal interactions at distinct time scales. At the application level, we apply129

MS-CASTLE to learn the causal dynamics of risk contagion among 15 global equity markets during130

covid-19 pandemic, rather than focusing on financial institutions.131

• Single-scale structure learning. Finally, we compare the single-scale version of our algorithm, i.e.,132

SS-CASTLE, with several baselines (Pamfil et al., 2020; Runge, 2020; Hyvärinen et al., 2010; Hyvarinen,133

1999; Shimizu et al., 2011) on synthetic data (Sections 4.1 and 4.2). We consider different settings to134

study the robustness of the performances along (i) the number of available observations, (ii) the size135

of the network, (iii) the distribution of the exogenous noise used to generate data. Our empirical136

assessment shows that SS-CASTLE compares favorably with all other single-scale baselines, while also137

sensibly reducing the computational cost.138

Notation. We denote by N0 the set of natural numbers including zero. We indicate with [X], X ∈ N, the139

range of the numbers from 1 to X and with [X]0 that from 0 to X. We denote scalars by lowercase letters140

x, vectors by lowercase bold letters x, and matrices with uppercase bold letters X. Finally, we denote with141

∥ · ∥F the Frobenius norm of a matrix, with Tr(·) its trace, and ◦ represents the Hadamard product.142
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Figure 1: a Example of SSCG with N = 3 and maximum lag order L = 2; b Example of MSCG with N = 3,
D = 3 time scales and maximum lag order L = 2.

2 Problem formulation143

Let us consider a data set Y ∈ RT ×N composed by N time series of length T = 2D, for some D ∈ N. Let
yi[t] be the value assumed by the i-th time series at time t, and let Pi,l denote the set of parents (in the DAG
representation) of yi[t], with lag l ∈ N0. In the single-scale causal structure learning problem for time series,
we are interested in understanding whether the considered time series admits a functional representation in
which yi[t] depends on a set of parent variables, up to a finite lag L:

yi[t] = f i (Pi,L, . . . ,Pi,0, ϵi[t]) , i ∈ [N ], (1)

where ϵi[t] represents either additive noise, statistically independent of the i-th time series, or a possible144

model mismatch, occurring at time t. It is worth noticing that the set of parents Pi,l can vary with l. To145

distinguish causes from effects, the system of Equations (1) must admit a representation based on a DAG.146

As far as lagged interactions are concerned, since we cannot observe causal effects from present to past, Pi,l147

may contain yi[t − l], with l > 0. In other words, time ordering provides lagged causal connections with148

implicit causal direction. However, when we look at instantaneous interactions, if we represent each Pi,0 over149

a graph, then the overall graph must be acyclic, otherwise it would be impossible to define the direction of150

the causal relation.151

By limiting our attention to linear dependencies, the causal inference model (1) can be expressed as:

y[t] =
L∑

l=0
y[t− l]Wl + ϵ[t], (2)

which coincides with the so called SVARM. In Equation (2), y[t] := (y1[t], . . . , yN [t]) ∈ R1×N is the row152

vector containing the values assumed by N time series, at time t; whereas Wl ∈ RN×N , with l ∈ [L]0153

and L being the maximum lag, is the matrix representing the causal relation at lag l, so that wl
ij ̸= 0 if154

yi[t − l] ∈ Pj,l. In particular, W0 represents instantaneous interactions and its structure is such that, if155

we map the coefficients of W0 over the edges of a graph of size N , the resulting graph is acyclic. Finally,156

ϵ[t] ∈ R1×N represents a random disturbance or model mismatch at time t. Equation (2) is said to be157

structural since it allows us to express variables (effects) as linear functions of other exogenous variables158

(causes), considering instantaneous as well as lagged relations, also referred to as intra- and inter-layer159

connections, respectively. As an example, Figure 1a shows the single-scale causal graph (SSCG) associated160

with Equation (2), in case of N = 3 and L = 2. In Figure 1a, the subscript represents the node index while161

the time lag is given within the square brackets. Notably, the graph represents causal interactions from the162

past to the present, with instantaneous effects at time t avoiding cycles.163
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2.1 Multiscale Causal Inference Model Based on Stationary Wavelet Transform164

The model represented in Equation (2) and sketched in Figure 1a, although very well known and applied, is
however limited because it implicitly assumes that the time scale at which important dependencies show up
is that associated with the observation task. As discussed in Section 1, causal dependencies might occur at
different time scales. Hence, an intriguing and underexplored research problem involves the scenario where
the observed variable yi[t] in Equation (1) can be represented by a multiscale functional decomposition. This
means that yi[t] may be decomposed into contributions yd

i [t], with d ∈ [D], each having a representation in
the form described in Equation (1) and related to a certain frequency band. Mathematically, by defining
Pd

i,l as the parent set of yi[t] at the d-th time scale, we can express yi[t] as

yi[t] =
D∑

d=1
f i,d

(
Pd

i,L, . . . ,Pd
i,0, ϵi,d[t]

)
, (3)

where ϵi,d[t] represents an exogenous noise associated with the d-th time scale. Thus, in the case of linear165

multiscale causal dependencies, it would be beneficial to enhance the SVARM with a multiscale modeling166

approach.167

The first question to tackle is how to obtain useful multiscale representations for modeling causal relationships168

that exist in the time and frequency domains. To this aim, among the various existing data transformations,169

we have chosen the wavelet transform. There are several reasons underlying this choice. First and foremost,170

this transformation, when equipped with an orthogonal filter family, allows the decomposition of input171

signals without loss of information. This is a key feature that enables a perfect reconstruction of the signal,172

in accordance with Equation (3). This property is closely related to the energy preservation guaranteed by173

this transform, which preserves the original interpretation of the signal as it does not amplify or suppress174

different characteristics of the signal’s power.175

As a second motivation, the wavelet transform allows the localization of a signal in both the time and176

frequency domains. This is because the filters used by this transform have compact support, meaning177

they are nonzero only over a finite interval. Therefore, the values of the obtained representations will178

depend on the information contained in respective time intervals determined by the filter used. The time-179

frequency localization, which distinguishes the wavelet from the Fourier transform, is essential for our work180

as Equation (3) assumes interactions that might occur at different time scales and with different time lags.181

Lastly, the wavelet transform is a non-parametric transformation. This final characteristic makes it applicable182

to a wide category of signals, as the transform does not assume any specific functional form of the signal to183

be processed, nor does it rely on particular distributional assumptions.184

Hence, to develop our multiscale causal inference model, we apply a wavelet decomposition to the observed185

data set Y. In the sequel, we provide only the essential information about the framework; more details186

are given in 6. Each row y[t] of the data set represents a sample collected at the timestamp t · ∆t, where187

∆t is the time interval between consecutive samples. The wavelet decomposition of level D − 1 transforms188

each time series yi into D − 1 vectors of wavelet coefficients and an additional vector of scaling coefficients.189

The d-th wavelet coefficients vector corresponds to the variations of yi at time scale 2d−1 ·∆t, representing190

the frequency band [1/2d+1, 1/2d]. These wavelet coefficients vectors capture the input signal variations191

over time scales ranging from ∆t to 2D−2 ·∆t, corresponding to frequencies from 1/2D to 1/2. The scaling192

coefficients vector contains information about variations over the scale 2D−1 and coarser scales, representing193

frequencies slower than 1/2D. Our notation assigns the finest scale (d = 1) and the coarsest scale (d = D)194

accordingly.195

While the proposed model is flexible and can accommodate various types of wavelet decomposition (Percival196

& Mofjeld, 1997), our study found that the stationary wavelet transform (SWT) (Nason & Silverman, 1995)197

has the best performance for the learning task. In our notation, yd[t] ∈ RN represents the SWT at time t198

and scale d for the N time series, where d ∈ [D] and D corresponds to the scaling coefficient. The SWT199

provides non-decimated detail coefficients yd[t] at each scale, offering a translation invariant representation.200

This property is advantageous as it captures relevant information without considering the position of the201

analysis time window. In addition to the motivations above, to preserve both odd and even decimations at202
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each decomposition level and avoid unnecessary redundancies, we consider orthogonal filter families within203

the SWT framework. This choice ensures that the time series yd
i [t] associated with different time scales are204

orthogonal. Furthermore, due to the orthogonality property and as previously discussed, the energy of the205

input signal is conserved by the transform and distributed across the scales (Percival & Walden, 2000).206

Collecting D different scale details into a single vector ỹ[t] := [yD[t], yD−1[t], . . . , y1[t]] and stacking these
row vectors for t ∈ [T ] on side of each other, we build an augmented data set Ỹ ∈ RT ×N̄ with N̄ = DN .
In this matrix, the row vector at timestamp t contains the t-th detail values of scale d for all N input
signals, indexed as (D − d) · N + 1, . . . , (D − d + 1) · N . Then, we build the block diagonal matrix W̃l :=
block[WD

l , WD−1
l , . . . , W1

l ] of size N̄ × N̄ . Each d-th block Wd
l in W̃l represents the causal interactions

wd,l
ij occurring at scale d with lag l ∈ [L]0, where wd,l

ij ̸= 0 if and only if yd
i [t− l] ∈ Pd

j,l. Here, Pd
j,l represents

the parent set for time series yj at lag l and scale d, which can vary across both graph layers and pages.
Then, the resulting multiscale causal inference models reads as:

ỹ[t] =
L∑

l=0
ỹ[t− l] W̃l + ϵ̃[t], (4)

where ϵ̃[t] ∈ R1×N̄ denotes the additive noise term. In the proposed model, the matrix W̃0 must satisfy the207

acyclicity requirement to set causes apart from effects.208

A pictorial example is given in Figure 1b, which depicts a multiscale causal graph (MSCG) for N = 3 time209

series, D = 3 time scales, and maximum lag L = 2. Each layer in the graph corresponds to a specific210

time lag, while different pages represent different time scales. In the notation used in Figure 1b, the node211

superscript denotes the scale index (page of the graph), and the subscript indicates the node index. The212

time lag is indicated within square brackets. Within each page, we observe both inter-layer and intra-layer213

directed edges, where the latter, similar to the SSCG case, does not form cycles. However, variables may214

exhibit different interactions at each time resolution. Therefore, when considering interactions across pages,215

reverse causal relationships between variables can be observed, as shown by the blue and orange arcs in216

Figure 1b. Additionally, due to the use of an orthogonal wavelet family, there are no arcs between pages.217

Thus, Figure 1b represents a multiscale DAG that incorporates both instantaneous and lagged linear causal218

relations at different time scales. Each page of the graph is an SSCG at a specific time resolution.219

2.2 Optimization Problem Statement220

The multiscale causal inference problem aims at learning the matrices W̃l, l ∈ [L]0, in Equation (4) from
data. To ensure the acyclicity of the estimated MSCG, the inferred matrices of causal effects W̃l must
entail a DAG. However, learning DAGs from observational data is a combinatorial problem and, without
any restrictive assumption, it has been shown to be NP-hard (Chickering et al., 2004). In our case, since
we cannot observe edges coming from the present to the past, lagged causal relationships encompassed in
the matrices W̃l (with l > 0) are acyclic by definition. Therefore, the main issue concerns the inference
of the matrix W̃0 representing instantaneous causal effects. To handle the acyclicity of W̃0, similarly to
DYNOTEARS (Pamfil et al., 2020), we exploit the dagness matrix function h(M) : RN×N → R proposed
by Zheng et al. (2018), who proved that a matrix W̃0 of size N̄ × N̄ can be represented as a DAG if and
only if

h(W̃0) = Tr
(

eW̃0◦W̃0
)
− N̄ = 0. (5)

Using this function as a penalty term, we are now able to formulate the learning task as a continuous, albeit
non-convex, optimization problem. To this aim, let us introduce the matrix Ȳ := [Ỹ0, Ỹ1, . . . , ỸL] ∈ RT ×V

(with V = N̄(L + 1)) containing the matrices of l-shifted observations Ỹl ∈ RT ×N̄ . Similarly, we build
W̄ := [W̃0T

, W̃1T

, . . . , W̃LT ]T ∈ RV ×N̄ . For convenience, let us indicate with B̄ the set of matrices having
the same structure as W̄, i.e., made up of stacked block diagonal matrices. Then, the proposed multiscale
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causal structure learning problem can be mathematically cast as:

min
W̄∈B̄

f(W̄) + λ||W̄||1

subject to h(W̃0) = Tr
(

eW̃0◦W̃0
)
− N̄ = 0,

(6)

where
f(W̄) = 1

2

∥∥∥Ỹ− ȲW̄
∥∥∥2

F
.

The ℓ1 norm penalty is used in Problem (6) to enforce sparsity of the aggregated causal matrix W̄, with a221

tunable parameter λ > 0. Here, differently from already proposed ICA-based estimation procedures (Hyväri-222

nen et al., 2010; Moneta et al., 2013), the matrices of causal coefficients are learnt simultaneously. Despite223

the convexity of the objective function, Problem (6) is non-convex due to the presence of the acyclicity224

constraint h(W̃0) = 0. In the next section, we derive an efficient method to solve Problem (6).225

3 The MS-CASTLE Algorithm226

To find a local solution of Problem (6) or, more precisely, a point that satisfy the Karush-Kuhn-Tucker
(KKT) conditions, we exploit the computational efficiency of ADMM (Boyd et al., 2011). To this aim, we
recast Problem (6) in the following equivalent manner, introducing the auxiliary matrix Z ∈ RV ×N̄ , and
obtaining

min
W̄∈B̄

f(W̄) + λ||Z||1

subject to h(W̃0) = Tr
(

eW̃0◦W̃0
)
− N̄ = 0,

W̄− Z = 0V ×N̄ .

(7)

Let us now denote by w̄ = vec(W̄) ∈ RV N̄ , and z = vec(Z) ∈ RV N̄ . Then, following the scaled ADMM227

approach (Boyd et al., 2011), and letting α and β be the Lagrange multipliers associated with the equality228

constraints of Problem (7), we introduce the following augmented lagrangian (AUL) function:229

Lρ

(
W̄, z, α, β

)
= f(W̄) + αh

(
W̃0

)
+ λ||z||1 + ρ

2g(w̄, z, β), (8)

where g(w̄, z, β) = ρ

2∥w̄ − z + β∥2
2 −

ρ

2∥β∥
2, and ρ > 0 is a tunable positive coefficient. The ADMM

algorithm proceeds by iteratively minimizing the AUL function with respect to the primal variables W̄, z,
while maximizing it with respect to the dual variables α and β, looking for saddle points of the AUL. However,
while the AUL function is strongly convex w.r.t. z, and naturally concave w.r.t. α and β, it is non-convex
w.r.t. W̄, due to the presence of the non-convex dagness function h

(
W̃0

)
in Equation (8). To handle this

non-convexity issue, following the idea of linearized ADMM methods (Yang & Yuan, 2013; Goldfarb et al.,
2013), we substitute the non-convex dagness function h

(
W̃0

)
in the AUL with its linearization around the

current value W̃0
k assumed at each iteration k, i.e.,

h
(

W̃0; W̃0
k

)
= h

(
W̃0

k

)
+ Tr

(
G(W̃0

k)T (W̃0 − W̃0
k)

)
, (9)

where G(W̃0) represents the matrix-gradient of function h
(

W̃0
)

. Then, substituting Equation (9) into

h
(

W̃0
)

, we obtain the following approximated AUL:

Lρ

(
W̄, z, α, β; W̃0

)
= f(W̄) + αh

(
W̃0; W̃0

k

)
+ λ||z||1 + ρ

2g(w̄, z, β), (10)

which is now strongly convex w.r.t. W̃0, while preserving the first-order optimality conditions of the AUL
in Equation (8) around the current approximation point W̃0

k. As a result, any point satisfying the Karush-
Kuhn-Tucker (KKT) conditions using the approximated AUL in Equation (10), satisfies also the KKT

7



Under review as submission to TMLR

Algorithm 1 MS-CASTLE
1: procedure MS-CASTLE(Y, L, λ, ρ, γ, r, t, γmax, maxiter)
2: Ỹ← Apply SWT to Y
3: Ȳ← [Ỹ0, Ỹ1, . . . , ỸL]
4: Initialize W̄, Z, α, β
5: while k < maxiter & hk > t do
6: Find W̄k+1 solving Problem (11a)
7: hk+1 ← h

(
W̄k+1

)
8: if hk+1/hk > r then
9: γ ← 10 · γ ▷ γ ∈ (0, γmax)

10: zk+1 ← S(λ/ρ) (w̄k+1 + βk) ▷ Soft-thresholding
11: αk+1 ← αk + γ · hk+1
12: βk+1 ← βk + w̄k+1 − zk+1

13: return W̄

conditions of the original Problem (7). Hinging on this fact, we now apply ADMM to the approximated
AUL in Equation (10). Then, letting W̃0

k, zk, αk, and βk be the current guesses of the primal and dual
variables at time k, we obtain the following set of recursions:

W̄k+1 = arg min
W̄∈B̄

f(W̄) + αkTr
(

G(W̃0
k)T W̃0

)
+ ρ

2 ||w̄− zk + βk||22 (11a)

zk+1 = arg min
z

λ||z||1 + ρ

2 ||w̄k+1 − z + βk||22 (11b)

αk+1 = αk + γ h
(

W̃0
k+1

)
(11c)

βk+1 = βk + w̄k+1 − zk+1 (11d)

The first step in Procedure (11) is the minimization of a strongly convex quadratic function, subject to
structure constraints W̄ ∈ B̄, i.e., simple linear constraints on the elements of W̄. We perform this mini-
mization using the L-BFGS-B algorithm (Byrd et al., 1995), i.e., a variation of the Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno method that handles box constraints. The second step in Procedure (11)
can instead be computed in closed form as (Boyd et al., 2011)

zk+1 = S(λ/ρ) (w̄k+1 + βk) , (12)

where Sδ(x) = sign(x) ·max(x− δ, 0) is the element-wise soft-thresholding function, used to enforce sparsity230

of the causal matrix representations. The third step in Procedure (11) performs a gradient ascent step231

to maximize the function in Equation (10) with respect to α, using a (possibly time-varying) step-size γ.232

Similar arguments then hold for the fourth step of Procedure (11). All the steps are then summarized in233

Algorithm 1, which we term as MS-CASTLE.234

Remark: Algorithm 1 can be easily customized to solve Equation (2), where we simply ignore the multires-235

olution analysis. With regards to Algorithm 1, it simply means to skip line 2. This leads to the aforemen-236

tioned SS-CASTLE algorithm, which applies to a particular sub-case of Problem (6), in which we have: (i)237

Ỹ = Y; (ii) Ȳ := [Y0, Y1, . . . , YL] ∈ RT ×N(L+1); (iii) W̄ := [W0T

, W1T

, . . . , WLT ]T ∈ RN(L+1)×N , where238

Wl ∈ RN×N are the matrices of causal coefficients of Equation (2).239

Initialization. Regarding the initialization of W̄ and Z, they must be initialized in order to satisfy the240

primal feasibility conditions of Problem (6), i.e, to satisfy the two constraints. A possible choice is to set241

them equal to zero. Regarding the dual variables of the augmented Lagrangian in Equation (8), α and β,242

since they concern equality constraints, they do not need to satisfy any specific condition. Thus, they might243

be initialized to zero as well.244

AUL parameters. The hyper-parameters ρ and γ represent the augmented Lagrangian penalty parameters245

that can be viewed as the equivalent of dual-ascent step sizes in ADMM procedure. Larger values of these246

8
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step sizes result in greater penalties for constraints’ violations (i.e., primal feasibility). In our case, as in247

Zheng et al. (2018), the increase in γ is a practical way to manage the violation of the acyclicity constraint.248

Consequently, it determines the speed of convergence of the proposed algorithm.249

Computational cost per iteration. Let us consider w.l.o.g. the single-scale case. In fact, by considering250

only the active parameters to optimize, the cost of the multiscale case is simply D times that of the single-251

scale. To solve Equation (11a), we apply L-BFGS-B to an objective function that has a cost of O(N2)252

operations when T ≈ N and L ≪ N . In fact: (i) f(W̄) requires the computation of the product ȲW̄253

(which costs O(N2)), plus TN subtractions and the calculation of the squared Frobenius norm (which costs254

O(TN)); (ii) Tr
(

G(W̃0
k)T W̃0

)
requires O(N2) operations to calculate the product and O(N2) operations255

for the trace; (iii) ||w̄− zk + βk||22 requires O(N2) additions and subtractions plus O(N2) operations for the256

squared ℓ2-norm. To solve Equation (11b), we apply the element-wise soft-thresholding operator to a vector257

of size N2(L + 1). Therefore, the cost is O(N2) operations. To solve Equation (11c), we need to compute258

the dagness function of an N ×N matrix, which has a cost of O(N3) (Zheng et al., 2018). Finally, solving259

Equation (11d) costs O(N2) operations.260

In the next section, we illustrate the performance of MS-CASTLE and SS-CASTLE, comparing them with261

alternative methods available in the literature.262

4 Numerical Results263

In this section, we start showing the advantages of SS-CASTLE (i.e., the customization of the proposed264

MS-CASTLE method to temporal causal structure analysis) over existing alternative methods in solving265

Equation (2). More specifically, Section 4.1 shows that, when compared to DYNOTEARS (Pamfil et al.,266

2020), which aims to solve the same optimization problem, SS-CASTLE benefits from the linearization267

procedure described above to reduce the computational cost of each iteration while preserving performance.268

In addition, Section 4.2 illustrates how SS-CASTLE outperforms non-gradient-based methods, e.g., VAR-269

ICALiNGAM, VAR-DirectLiNGAM (Hyvärinen et al., 2010), and PCMCI+ (Runge, 2020), when we sample270

ϵ[t] from a p-generalized normal distribution, with p ∈ {1, 1.5, 2, 2.5, 100}. Here, we evaluate the behavior of271

SS-CASTLE along the size of the network N and the number of samples T as well. Finally, in Section 4.3272

we assess the performance of MS-CASTLE on multiscale synthetic data. Also in this case, we test the273

performance of our method along N , T , and in both Gaussian and non-Gaussian settings. In addition,274

we study how different choices of (i) wavelets and of (ii) λ hyper-parameter affect the performance of MS-275

CASTLE.276

4.1 Comparison with DYNOTEARS277

When reduced to the single-scale temporal version, Problem (6) corresponds to Problem (5) in Pamfil et al.278

(2020), where the ℓ1 regularization parameters for lagged and instantaneous causal relations are set to be279

equal. However, unlike the DYNOTEARS algorithm proposed by Pamfil et al. (2020), which solves the280

optimization problem using augmented Lagrangian and relies on the solution scheme proposed by Zheng281

et al. (2018) to handle non-smooth terms, SS-CASTLE provides a solution by leveraging linearized ADMM.282

Specifically, from a theoretical point of view, considering the analysis of computational cost per iteration of283

our method reported in Section 3, we have that SS-CASTLE reduces the computational cost of DYNOTEARS284

in two ways. Firstly, the linearization of the dagness function lowers the computational cost required to285

update W̄. In fact, in our case, the calculation of the objective function requires O(N2) operations, compared286

to the O(N3) required by DYNOTEARS. Secondly, to impose regularization on the ℓ1 norm of causal287

coefficients, SS-CASTLE leverages the element-wise soft-thresholding operator. In contrast, similar to Zheng288

et al. (2018), DYNOTEARS uses the splitting trick, writing W̄ = W̄+ − W̄−, where W̄+ ≥ 0 and W̄− ≥ 0289

(having the same dimensions as W̄), thus doubling the number of parameters to be estimated. In the290

following sections, we further expand the comparison between SS-CASTLE and DYNOTEARS. We test the291

two methods over synthetic data, so that the ground truth is known. Our goal is to compare empirically the292

computational time needed to the two alternative methods to estimate the causal matrices in Equation (2)293

with similar accuracy.294
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Figure 2: Number of iterations (left) and computational time (right) to solve Equation (2) shown by
DYNOTEARS (purple) and SS-CASTLE (pink).

4.1.1 Data Generation295

We generate synthetic data according to Equation (2). Specifically, we set L = 1 and we assume that296

each ϵi[t] ∼ N
(
0, σ2

i

)
with σ2

i ∈ [1, 2]. Moreover, we set the number of samples T = 1000 and we pick297

N ∈ {10, 30, 50, 100}. For each of the four possible values of the number of nodes, we simulated 100 data sets.298

Regarding the causal matrices, we generate them by adopting the same procedure illustrated by Hyvärinen299

et al. (2010). To manage the level of the sparsity of W0 and W1, we introduce the parameter s ∈ (0, 1).300

The latter is used as a parameter of a Bernoulli distribution, more precisely B(1 − s), which controls the301

number of nonzero coefficients of the causal matrices. As the number of nodes N grows, we increase the302

sparsity of the causal structure. More specifically, the combinations (N, s) used in the experiments below303

are {(10, .80), (30, .85), (50, .90), (100, .95)}.304

4.1.2 Results305

Figure 2 displays the number of iterations (left) and computational time (right) needed to solve Equation (2),306

as a function of the number of nodes, by DYNOTEARS (purple) and SS-CASTLE (pink), respectively. On307

the left of Figure 2, we report a swarm plot in which, given a certain number of nodes, each point represents308

the number of iterations required by each algorithm to retrieve the solution. In accordance with the data309

generating process described above, for each value of N we have 100 points per algorithm. Therefore, given310

a certain value of N and a specific number of iterations n, the number of points reported in horizontal311

represents the number of data set (composed by N time series) in which the algorithm required n iterations312

to solve the problem.313

On the right of Figure 2, we provide a violin plot that depicts, for each value of N , the histogram of314

the computational time (measured in seconds) needed by each algorithm to solve the problem. Moreover,315

dashed lines within the histogram represent quartiles. From Figure 2 (left), we see that, even though SS-316

CASTLE needs more iterations to converge, SS-CASTLE significantly reduces the overall computational time317

to converge. Furthermore, we also observe that the larger the network size, the greater the gain. Hence,318

in accordance with the theoretical insights highlighted above, we conclude that SS-CASTLE decreases the319

computational cost associated with each iteration while preserving performance (see Appendix B).320

4.2 Comparison with Non-gradient based Methods321

We compared the performance of SS-CASTLE with two major linear non-Gaussian methods, namely VAR-322

ICALiNGAM and VAR-DirectLiNGAM, as well as a constraint-based method called PCMCI+ on synthetic323

datasets. More in detail, the former two models rely upon the assumption of non-Gaussianity of ϵ[t] in324

Equation (2). VAR-ICALiNGAM belongs to the family of ICA-based methods: first it fits a VAR model325

to recover lagged causal interactions and then it employs FastICA (Hyvarinen, 1999) on VAR residuals to326

uncover instantaneous relationships. In the past, several ICA-based algorithms have been developed. How-327

ever, as shown in Moneta et al. (2020), previous models are equivalent in terms of performance. Regarding328

VAR-DirectLiNGAM, it was proposed in order to solve the possible convergence issues of ICA-based meth-329

ods (Himberg et al., 2004) and it is guaranteed to retrieve the right solution of the problem if the model330

assumptions are satisfied and the sample size is very large. Concerning PCMCI+, it represents an improved331
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version of PCMCI (Runge et al., 2019b), and is able to deal with both linear/nonlinear lagged and instanta-332

neous causal relationships under the common assumption of causal sufficiency, faithfulness, and the Markov333

condition (Peters et al., 2017b). In the experiments below, in order to fit the aforementioned models, we use334

the lingam and Tigramite Python packages1 made available by the authors.335

4.2.1 Data Generation336

We generated synthetic data by using Equation (2), in which we set L = 1. Moreover, we conducted an337

extensive simulation study in order to assess the robustness of all the methods in different settings. In338

particular, we varied the features of the generated data sets as follows. Firstly, we use different data set339

sizes, T ∈ {100, 500, 1000}. By varying the number of samples, we can inspect the sensitivity with respect340

to the data set size of the tested algorithms. The latter aspect is relevant in several fields, especially when341

the system at a hand shows non-stationarity. For instance, this is the case in finance, where practitioners342

usually deal with a small number of historical observations due to the continuous evolution of financial343

markets. Secondly, we vary the network size, N ∈ {10, 30, 50}. Concerning the level of sparsity and the344

generation of the causal matrices, we adopt the same methodology described in Section 4.1.1. Last but not345

least, we sample ϵ[t] from a p-generalized normal distribution, with p ∈ {1, 1.5, 2, 2.5, 100}. The p-generalized346

normal distribution is defined as follows (Kalke & Richter, 2013).347

Definition 4.1 (p-generalized normal distribution). Let us consider x ∈ R, p ∈ R+. Therefore, the p-
generalized normal distribution has density function equal to

fp(x) = p1−1/p

2Γ (1/p) exp
[
−|x|

p

p

]
, (13)

where Γ is the gamma function.348

The parameter p determines the rate of decay of Equation (13). More in detail: (i) p = 1 corresponds to a349

Laplace distribution; (ii) p = 1.5 is the super-Gaussian case; (iii) for p = 2 we get the normal distribution; (iv)350

p = 2.5 is the sub-Gaussian case; (v) for p = 100 we obtain approximately a uniform distribution. Therefore,351

as p diverges from 2, the non-normality of ϵ[t] is enhanced. For each combination of the parameters, we352

generate 100 data sets.353

4.2.2 Results354
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Figure 3: Comparison with the baseline methods in the estimation of the causal matrices W0 (top) and W1

(bottom). Each subfigure depicts box plots for the F1-score when a (N, T ) ∈ {30} × {100, 500, 1000} and b
(N, T ) ∈ {10, 30, 50} × {1000}.

Before testing SS-CASTLE on the generated data, we fine-tune the sparsity strength λ onto separate data355

sets generated according to the procedure explained above. More precisely, we let λ assume values in the set356

1The packages are available at https://github.com/cdt15/lingam and https://github.com/jakobrunge/tigramite.
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{.001, .005, .01, .05, .1, .5} and, for each combination (T, N, p)i, we chose the best value according to F1-score357

and SHD (structural Hamming distance). Please, refer to Appendix B for the definition of these metrics.358

Specifically, we first compute two rankings of λ values. In the first ranking, we sort the values of λ according359

to F1-score in descending order (the higher, the better). In the second, we sort the values according to SHD360

in ascending order (the lower, the better). At this point, for each λ we sum the positions obtained in the361

two rankings, and we pick the λ showing the lowest value. Due to the needed computational time, for the362

case N = 50 we restrict the possible values of λ to {.01, .05, .1, .5}. The latter restriction does not impact363

the analysis since our objective is not to find the optimal value of the hyper-parameter, but rather to set the364

latter in a data-driven manner. The chosen values for λ are given in Appendix D.365

Sensitivity to data set size. Figure 3a depicts the performance comparison in the learning of W0 (top)366

and W1 (bottom). For readability, we provide only the results in case of N = 30 nodes. Results are367

qualitatively equivalent in the other two cases. As we can see from Figure 3a, SS-CASTLE outperforms368

VAR-DirecLiNGAM, VAR-ICALiNGAM, and PCMCI+ in term of F1-score. In addition, Appendix E369

provides results for SHD metric. Concerning the learning of W0, even though VAR-DirectLiNGAM shows370

a slightly better performance than VAR-ICALiNGAM in case of strongly non-Gaussian settings (p = 1 and371

p = 100) and larger data sets (T = 500 and T = 1000), it tends to suffer more when the non-Gaussianity372

assumption becomes violated and a lower number of samples is available. The latter behaviour is consistent373

with DirectLiNGAM model assumptions. Regarding PCMCI+, its performance does not vary along p,374

consistently with its formulation. However, it tends to underperform the rest of the tested methods. In375

accordance with the problem formulation (see Section 3), SS-CASTLE does not show any dependence on p,376

and requires a smaller number of data to converge towards a more accurate solution.377

Regarding the matrix of lagged causal effects W1, differently from the considered non-Gaussian methods,378

SS-CASTLE contemporaneously estimates inter and intra-layer connections. In addition, we see that all379

models tend to be more accurate in retrieving the lagged interactions. Please notice that, given the time380

ordering, W1 is acyclic by definition. Therefore, all entries could be different from zero. This means that in381

case of N = 30 and s = 0.85, on average we have 135 nonzero coefficients.382

Sensitivity to network size. Figure 3b shows the comparison of models performance in the estimation383

of the causal relationships along N . For readability, we provide only the results for the case T = 1000. The384

results are qualitatively equivalent in the remaining two cases. In addition, Appendix E provides results385

for SHD metric. Looking at the case of instantaneous interactions (top row), at a first glance we notice386

the higher error variance in the box plots related to F1-score, when N = 10, across all models. However,387

even though F1-score is a normalized metric, this is an effect of the small number of instantaneous causal388

connections. Indeed, in case of N = 10 and s = .80, on average the ground truth W0 has only 9 entries389

different from zero. As a consequence, a single mistake weighs more. Overall, from Figure 3b, we can see390

how SS-CASTLE outperforms the other methods. Moreover, we do not appreciate a decrease in performance391

when the number of nodes increases. In addition, SS-CASTLE proves to be robust to changes in the value392

of p.393

Regarding lagged causal connections (bottom row), the models tend to perform better than in the case of394

instantaneous relations. We underline that, in case of N = 10, we do not observe the same error variance395

as above. Indeed, with the same level of sparsity s, on average W1 has approximately twice as many396

non-zero entries than W0. Overall, we notice that baseline algorithms tend to suffer when the number of397

nodes increases. Furthermore, our results show that VAR-ICALiNGAM tends to be more robust than VAR-398

DirectLiNGAM as the non-Gaussianity assumption turns out to be violated. Also in this case, SS-CASTLE399

does not show any decrease in performance while varying p. In addition, it achieves high performance in400

case of larger networks as well.401

4.3 Performance of MS-CASTLE on Synthetic Data402

Here we provide the empirical assessment of MS-CASTLE. Analogously to the previous section, we evaluate403

the performance of our method when varying the network size, the data set size, and the distribution of the404

random disturbances. In addition, we are interested in understanding how the choice of a wavelet in the405

decomposition phase affects the performance of MS-CASTLE. Therefore, we compare different versions of406
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MS-CASTLE. First, we consider the case in which MS-CASTLE receives as input the perfect decomposition407

of the time series, i.e., ỹ[t] used in the data generation process. This case represents an upper bound for our408

method, as there are no errors induced by the wavelet transform. We refer to this version as MS-CASTLE409

opt. dec.. Next, we consider the case in which MS-CASTLE uses the same wavelet used in the generative410

process, namely Daubechies with a filter of length 10 (MS-CASTLE swt db5 ). We then test two other411

versions in which we use a different wavelet (but belonging to the same family) than the one used in the412

generative process, namely Daubechies with filters of length 6 (MS-CASTLE swt db3 ) and 14 (MS-CASTLE413

swt db7 ). Finally, we include two additional orthogonal wavelets belonging to different families, the symlet414

with filter of length 10 (MS-CASTLE swt sym5 ) and the coiflet with filter of length 12 (MS-CASTLE swt415

coif2 ).416

Lastly, we examine the impact of the λ hyper-parameter choice on MS-CASTLE performance. Additionally,417

we present a methodological approach tailored for scenarios where additional data sets are unavailable for418

fine-tuning λ.419

4.3.1 Data Generation420

We generate multiscale observable data Y ∈ RT ×N determined by an underlying multiscale causal structure421

according to the proposed model in Equation (3) and Equation (4). First, we sample an i.i.d. noise ϵ[t] ∈ RN
422

from a p-generalized normal distribution. Next, w.l.o.g. we decompose ϵ[t] with a DWT using as wavelet423

Daubechies with filter length 10 and considering D = 4, thus obtaining ϵ̃[t] in Equation (4). Hence, we424

generate ỹ[t] by imposing a multiscale causal structure containing both lagged (L = 1) and instantaneous425

interactions on four different frequency bands (see Appendix F). Finally, we obtain y[t] by summing the426

contributions from the time scales, in accordance with Equation (3) and in general with the synthesis427

capability associated with the wavelet transform (Percival & Mofjeld, 1997).428

In the experiments, we perform the following analysis: (i) we study the sensitivity to the size of the graph429

we vary N ∈ {5, 10, 30}; (ii) we assess possible dependencies on the number of samples we vary T ∈430

{128, 512, 8192}; finally (iii) we deal with the Gaussian p = 2 and non-Gaussian p = 1 cases. For each of431

these settings, we simulate 20 data sets.432

4.3.2 Results433
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Figure 4: Comparison of different versions of MS-CASTLE in terms of F1-score, obtained in the experimental
settings described above. Subplots on the top refer to the Gaussian setting, whereas those on the bottom
to the non-Gaussian one. Subplots on the left refer to the case N = 5, those on the center to N = 10, and
those on the right to N = 30. Dashed lines represent the inter-quartile range.
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Figure 4 depicts the F1-score obtained by the considered versions of MS-CASTLE on the settings described434

above. The values of λ used in the experiments are given in Appendix D, while Appendix G provides other435

results concerning the SHD. Overall, MS-CASTLE achieves the best performance when it receives as input436

ỹ[t] used in the generative process (perfect decomposition of the observed time series). Furthermore, for437

the same network size N , the F1 score improves as the number of samples T increases. In contrast, we do438

not notice any dependence of MS-CASTLE on either the number of time series N or the noise distribution439

(Gaussian vs. non-Gaussian setting). In addition, the results show that the performance of MS-CASTLE is440

robust to the choice of wavelet used to decompose the input time series.441
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Figure 5: Behaviour of F1-score along the considered values of λ, obtained in the experimental settings
described above. Subplots on the top refer to the Gaussian setting, whereas those on the bottom to the
non-Gaussian one. Subplots on the left refer to the case T = 128, those on the center to T = 512, and those
on the right to T = 8192. Dashed lines represent the inter-quartile range, while colors refer to different
values of N .

Sensitivity to λ hyper-parameter. Figure 5 shows the behaviour of the F1-score along the regularization442

parameter λ, obtained in the experimental settings described above. For readability reasons, here we show443

only the results concerning MS-CASTLE swt db5. The plots concerning the rest of the tested models are444

given in Appendix G. Results show that in case T ∈ {128, 512}, adding a sparsity regularization associated445

with a λ > 10−4 effectively improves the F1-score of the model. Conversely, if T is large, there is no benefit in446

increasing the regularization strength. Obviously, when the value of λ becomes too large, the regularization447

term in the objective function of Problem (6) dominates the first term, i.e., the fitting loss, leading to worse448

performance.449

Network of highly persistent edges. When dealing with synthetic data, it is possible to fine-tune the
value of λ due to additional data set availability and knowledge of the ground truth. However, in real-world
scenarios this is not possible, hence a procedure to choose the value of λ is needed. In particular, due to
non-convexity of Problem (6), MS-CASTLE can generally converge to stationary points that, possibly, can
be different from each other for diverse values of the sparsity-inducing parameter λ. Thus, to reduce this
ambiguity, in our analysis we look for solutions of the MSCG that are as persistent as possible with respect
to different values of λ. To this aim, we first choose a suitable range for the previous hyper-parameter,
looking at the regularization to fitting loss ratio, i.e., the quotient of the division between the second and
the first term of the objective function of Problem (6). Once the range of λ is identified, we define the
persistence of a causal relation at a threshold c̄ as follows. Let us indicate with r the vector constituted by
the regularization to fitting ratios rk corresponding to the chosen k values of λ. In addition, consider wk

ij as

14
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the causal coefficient from node i to j estimated for λ = λk. Then, the persistence of the causal coefficient is

pij =

∑
k 1|wk

ij
|>c̄ · rk∑

k rk
, (14)

where 1|wk
ij

|>c̄ is equal to 1 iff |wk
ij | > c̄, and zero otherwise. Equation (14) assigns a higher persistence450

value to arcs that are present in causal structures estimated from Problem (6) for multiple values of λ. Also,451

from Equation (14), it holds pij ∈ [0, 1]. However, the formula does not provide any guarantee regarding452

the stability of the sign of the causal relation. Indeed, it only considers the presence of an arc and not the453

value (and therefore the sign) of the causal coefficient associated with the arc. Thus, here we define as highly454

persistent only those edges, with pij > 0.95, which show a stable sign of the corresponding causal coefficient455

for all values of λ.456

10−3

10−2

10−1

100

G
au

ss
ia

n
ca

se

T = 128 T = 512 T = 8192

10−3 10−110−4 10−2

λ

10−3

10−2

10−1

100

no
n-

G
au

ss
ia

n
ca

se

10−3 10−110−4 10−2

λ
10−3 10−110−4 10−2

λ

5

10

30

Figure 6: Behaviour of regularization to fitting loss (on a logarithmic scale) along the considered values of
λ, obtained in the experimental settings described above. Subplots on the top refer to the Gaussian setting,
whereas those on the bottom to the non-Gaussian one. Subplots on the left refer to the case T = 128, those
on the center to T = 512, and those on the right to T = 8192.

According to the procedure above, we must choose a proper range for λ. Let us consider the non-Gaussian457

setting above with (N, T ) = (10, 128), which is also relevant for the financial case study discussed in Sec-458

tion 5. Figure 6 shows the behaviour of regularization to fitting loss (on a logarithmic scale for readability459

reasons) along the considered values of λ, obtained in the experimental settings described above. Look-460

ing at Figure 5, we see that the more performing values of λ are 0.05 and 0.1. In particular, as depicted461

in Figure 6, these values fall within the range [0.1, 1] of the regularization to fitting loss ratio. Hence,462

we consider values of λ associated with regularization to fitting ratio falling into the latter range, i.e.,463

λ ∈ {0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15}. Then, we retrieve the network of highly persistent464

edges using c̄ = 0.1.465

Figure 7 depicts the comparison in terms of F1-score and false positive rate (FPR) between the MSCG466

obtained by using the best λ among the considered, and the MSCG of highly persistent edges. Looking at467

the boxplot on the left, we see that the network of highly persistent edges underperforms in terms of F1-score.468

Nevertheless, the boxplot on the right shows that the latter network leads to a much greater reduction of469

the FPR, thus providing a more robust estimate.470

5 Causal Structure Analysis of Financial Markets471

In this section, we apply the proposed technique to infer the causal structure of financial markets. We472

consider data concerning 15 global equity markets at daily frequency. To focus on covid-19 pandemic period,473
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Figure 7: Comparison in terms of F1-score (left) and false positive rate (right) between the MSCG learned
by using MS-CASTLE swt db5 provided with the best value of λ and the MSCG of highly persistent edges.
The results refer to the non-Gaussian setting, where N = 10 and T = 128.

we restrict our attention to observations from January 2020, the 2nd to April 2021, the 30th. In our analysis,474

we deal with the following markets: All Ordinaries Index (AOR, Australia), Hang Seng Index (HSI, Hong475

Kong), Nikkei 225 Index (NKX, Japan), Shanghai Composite Index (SHC, Shanghai), Straits Times Index476

(STI, Singapore), TAIEX Index (TWSE, Taiwan), DAX Index (DAX, Germany), FTSE MIB Index (FMIB,477

Italy), IBEX Index (IBEX, Spain), CAC 40 Index (CAC, France), FTSE 100 Index (UKX, UK), RTS Index478

(RTS, Russia), Bovespa Index (BVP, Brazil), Nasdaq Composite Index (NDQ, US), S&P/TSX Composite479

Index (TSX, Canada). In particular, we analyze the series of markets risk, as measured by conditional480

volatility. Hence, the time series of conditional volatility represent our input data set Y. Information481

concerning data source and pre-processing is given in Appendix H.482
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Figure 8: Behaviour of regularization to fitting loss ratio along λ for SS-CASTLE (left) and MS-CASTLE
(right), where the x axis is given in log scale.

Methodological approach. As previously noted, owing to the non-convex nature of Problem (6), both483

SS-CASTLE and MS-CASTLE can converge to stationary points that may potentially differ from each other484

across various settings of the sparsity-inducing parameter λ. Consequently, in our analysis, we seek solutions485

for SSCG and MSCG that exhibit a high degree of persistence across diverse λ values in order to mitigate486

this uncertainty. To achieve this goal, we employ the methodological approach introduced in Section 4.3.2,487

which proves particularly valuable when no additional data sets are available to guide the selection of the488

value of λ. Figure 8 shows the behavior of the regularization to fitting loss ratio with respect to λ, considering489

both SS-CASTLE (left) and MS-CASTLE (right). As a meaningful range, we select the values that return490

a ratio from 0.1 to 1. In this way, we track the change in causal connections when the sparsity-inducing491

regularization term becomes as important as the model fitting term. This choice is also due to the fact that492

conditional volatility series are non-Gaussian and that N2 ≈ T , similarly to the setting (N, T ) = (10, 128)493

analyzed in Section 4.3.2. Then, from Figure 8, we select (i) λ ∈ [0.004, 0.04] for SS-CASTLE; and (ii)494
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λ ∈ [0.003, 0.03] for MS-CASTLE. For each interval, we pick 10 values for λ, and we retrieve the networks495

of highly persistent edges having pij > 0.95, which show a stable sign of the corresponding causal coefficient496

for all values of λ. These edges constitute the causal structures illustrated in the sequel.497

498

5.1 Preliminary Discussion499

Before proceeding, let us consider again the causal graphs depicted in Figure 1. Analyzing the data set500

Y with SS-CASTLE entails, first and foremost, representing the values of conditional volatility series on a501

network without edges. Each node of the graph is associated with the value of the i-th risk series, where502

i ∈ [N ], taken on a specific day t ∈ [T ]. The application of SS-CASTLE will yield the SSCG, in which503

causal edges will convey interactions occurring on a daily basis, possibly with different time lags. However,504

by examining the system solely in the time domain, we won’t be able to discern whether causal interactions505

stem from short, medium, or long-term dynamics.506

Consider, for example, balance sheet data of listed companies that belong to the stock indices taken into507

account in our analysis. These data are considered in several asset pricing models, such as those proposed508

by Fama & French (1993); Carhart (1997); Fama & French (2015), which describe the equity market using509

linear models. On one hand, events like earnings releases, news about company performance, and other510

firm-specific factors can lead to rapid changes in the short term, causing increased volatility in the related511

index. On the other hand, fundamental aspects of a company, such as earnings growth and financial ratios512

(which are also influenced by macroeconomic conditions), can influence stock prices over longer periods,513

contributing to valuation trends and implying slower dynamics that evolve at lower frequencies.514

In contrast to SS-CASTLE, MS-CASTLE naturally allows us to discriminate between short, medium, and515

long-term interactions through its multiscale analysis using wavelet transform. In this case, the dataset Y516

will be represented on a network without edges, where the number of nodes is D ·N ·T , with D representing517

the number of temporal resolutions considered. For example, with reference to the finest time scale d = 1,518

the value of a node on this graph page will be associated with variations between two consecutive days t− 1519

and t in the i-th conditional volatility series. This will provide insights into short-term dynamics occurring520

on a daily temporal resolution. Conversely, on the graph page associated with the time scale d = 3, the value521

of a node will be linked to medium-term variations between two successive weeks (precisely 4 business days)522

in the i-th conditional volatility series. Consequently, the causal relationships within the MSCG learned by523

MS-CASTLE represent causal connections at different time resolutions and time lags.524

The analysis presented in the sequel pertains to a very specific time period marked by the outbreak and525

subsequent spread of covid-19, in which it seems natural to expect multiscale causal relationships. Thus, the526

application of MS-CASTLE seems more appropriate to gain richer insights concerning the dynamics under-527

lying the system at hand. In particular, short-scale causal interactions will be associated with dependencies528

between short-term volatility of indices, possibly due to news regarding the contagion or the introduction of529

new restrictions aimed at containing the spread of the virus. In contrast, medium to long-term causal rela-530

tionships will intercept dependencies between the riskiness of equity markets tied to pandemic effects, such531

as worsening macroeconomic conditions or the impact of mobility restrictions on industrial sectors related532

to energy (e.g., natural gas and crude oil), material extraction, transportation, and vehicle production.533

5.2 Single-scale Causal Analysis534

To compare single and multiscale approaches, we estimate the causal matrices in both Equations (2) and (4)535

by using SS-CASTLE and MS-CASTLE, respectively. Here, we focus on learning causal graphs from time536

series using the aforementioned SS-CASTLE method. Figure 9a shows the signed causal matrix made up of537

persistent coefficients, where for readability reasons we only report the case of c̄ = 0.05. Additional results538

are provided in Appendix I.539

In particular, in the matrix shown in Figure 9a the rows represent the parents (sorted according to the540

timestamp), whereas the columns refer to the caused nodes. In this case, based on BIC criterion, we set L = 1.541

The upper block of the matrix in Figure 9a concerns lagged causal interactions, while the lower one is related542
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Figure 9: Highly persistent causal matrices for the a single-scale and b multiscale case where c̄ = 0.05. Red
entries represent positive coefficients, whereas blue ones are negative.

to instantaneous causal effects. In our study we observe that arcs associated with negative causal relations543

get a weight lower than 0.1 (in module); whereas, most of surviving edges correspond to autoregressive544

causal effects (see also Appendix I). In addition, we find denser causal connections among European and545

Asia-Pacific countries. Overall, from the single-scale analysis, we cannot find nodes representing major risk546

drivers within the network, i.e., the considered equity markets show a similar number of outgoing arcs (i.e.,547

out-degree).548

5.3 Multiscale Causal Analysis549

We now focus on multiscale causal analysis, where we analyze the first four temporal resolutions, in accor-550

dance with the length of our data set, i.e., T = 336 observations (see Section 3). As shown by the results551

in Figure 4, the performance of MS-CASTLE turns out to be robust to different choices of the wavelet.552

Nevertheless, we consciously select the filter. In general, as shown by Gençay et al. (2010), the choice of553

the wavelet depends on the length of data, the complexity of the spectral density function, and most impor-554

tantly the underlying features of data. Hence, similarly to Ren et al. (2021) and references therein, we use555

Daubechies least asymmetric wavelet with a filter length equal to 8 (db4). Indeed, the reasonable length of556

this wavelet enhances smoothness (reducing boundary effects in the wavelet coefficients) and allows to deal557

with even more dynamic spectral density functions. In addition, in this context (and more generally when558

dealing with financial time series), asymmetric filters are useful to capture stylized features of data and deal559

with skewed distributions. Here, for instance, the usage of an asymmetric filter is useful to capture rapid560

increases in market volatility that are followed by gradual declines.561

Figure 9b illustrates the highly persistent multiscale causal matrices obtained using the proposed MS-562

CASTLE method, for the same value of c̄ analyzed above. Additional results are provided in Appendix563

I. For the sake of readability, we show separately the diagonal blocks of W̄ corresponding to different scales,564

i.e., the only elements of W̄ that can be different from zero in Equation (4) (since no interaction among scales565

actually takes place). From Figure 9b, we first notice that causal representations at different scales show a566

diverse level of sparsity and, furthermore, persistent causal relations assume only positive values. More in567

details, causal interactions are denser at mid-term scales (i.e., 3 and 4, which correspond to 8-16 and 16-32568

days, respectively). On the contrary, causal effects turn out to be not persistent at scale 1, which represents569

a time resolution of 2-4 days. In summary, we found that: (i) the strongest persistent connections appear at570

scale 3 and 4; (ii) the majority is lagged; and (iii) the most instantaneous relations are associated to weights571

lower than 0.05 (in module) (see also Appendix I). In addition, we noticed the following behaviors: i) apart572

from Australia, Asia-Pacific countries are isolated for c̄ > 0.05; ii) the markets that drive the risk within573

the network are Brazil, Canada and Italy. The latter finding can be understood by looking at the number574
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of nonzero entries per market across columns, representing the out-degree of each node. More in detail, the575

impacts of Brazil and Canada spread across all geographical areas, while Italy mainly drives the risk within576

the Eurozone. Finally, from Figure 9b, we can notice how US displays persistent lagged connections.577

5.4 Comparison Between Temporal and Multiscale Analysis578

The results presented in Sections 5.2 and 5.3 illustrate that, in case of complex systems such as financial579

markets, temporal and multiscale analysis might lead to very different conclusions. First of all, the inferred580

SSCG indicates a persistent causal structure at daily frequency, where the strongest connections are autore-581

gressive lagged causal relations. On the contrary, empowered by information concerning the variation of the582

original signal at different scales, the MSCG shows that causal structures persist at mid-term scales (i.e., 3583

and 4), while at short-term scale causal connections are absent. Thus, we can conclude that, in our case, the584

mere application of a multiscale-agnostic model leads to a noisy estimate of the causal structure, in which585

many of the relationships do not persist when decomposing the signal into different temporal resolutions.586

Drawing from the preceding discussion in Section 5, this suggests that within the studied time frame, causal587

relationships among global equity markets are intertwined with the effect of the pandemic and the prevail-588

ing macroeconomic uncertainty. Also, in MSCG we do not observe negative causal coefficients as in case589

of SSCG, which are somehow difficult to justify during the considered period, since they indicate that an590

increase (decrease) in the volatility of a certain equity market causes a decrease (increase) in that of another591

market.592

Finally, and most importantly, multiscale causal analysis allows us to identify the major risk drivers within593

the network of equity markets during covid-19 pandemic, i.e., Brazil, Canada and Italy. Interestingly, the594

US stock market, shows only an impact on Australia, together with an autoregressive effect. In particular,595

the importance of Canada within the network of stock markets has been underlined by (Ren et al., 2021)596

as well, who conducted a study in terms of partial correlation networks. However, since we deal with597

causation, our result has stronger implications with respect to the aforementioned work. With regards to598

Brazil, we see that the corresponding stock index shows the highest volatility (see Appendix H), and that599

its strongest connections (greater than 0.1) are within the American area (see Appendix I). We interpret600

these findings in the context of Canada and Brazil being significant commodity exporters. The pandemic-601

induced shifts in commodity prices have reverberated through their economies and, consequently, their equity602

markets. These repercussions can extend to other equity markets, particularly those with robust trade603

connections. For instance, Canada and the United States have historically demonstrated extensive economic604

interdependencies, underscored by numerous Canadian firms being cross-listed on U.S. stock exchanges. In605

a similar vein, Brazil’s role as a prominent exporter of agricultural products and machinery to the United606

States further underscores the potential impact on cross-border equity dynamics. Last, but not least, Italy607

has a high impact within the European area. This nation was among the hardest hit by the pandemic,608

particularly during its early stages, within Europe. Its key trade relationships encompass a range of sectors,609

including food, machinery, and vehicles, with major partners like Germany and France.610

6 Conclusions and Future Research Directions611

In this paper we have proposed a novel method to estimate the structure of linear causal relationships612

at different time scales. By relying upon wavelet transform and non-convex optimization, MS-CASTLE613

takes explicitly into consideration behaviors of the system at hand spanning at diverse time resolutions.614

Differently from existing causal inference methods, MS-CASTLE looks for linear causal relationships among615

variations of input signals within multiple frequency bands, and across different time lags. We illustrate that616

the multiscale-agnostic version of MS-CASTLE, named SS-CASTLE, improves in terms of computational617

efficiency, performance and robustness over the state of the art. In addition, experiments on synthetic data618

show that the performance of MS-CASTLE increases with samples availability and is robust to the network619

size, the noise distribution, and the choice of the wavelets.620

The study of the risk of 15 global equity markets, during covid-19 pandemic, shows that MS-CASTLE is621

able to provide useful information about the scales at which causal interactions occur (mid-term scales) and622

to identify major risk drivers within the system (Brazil, Canada and Italy). We highlight that the obtained623
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results must be framed in the period of the coronavirus outbreak. Our choice was conscious: given the624

nonstationary nature of financial markets (Schmitt et al., 2013), we focused on a narrow period dominated625

by the pandemic emergency. Thus, the use of different time windows may lead to the estimation of a626

different multiscale causal structure. This observation highlights the need to work on the development of627

causal inference algorithms capable of handling both the multiscale nature of the analyzed system and the628

nonstationarity of the underlying causal structure (D’Acunto et al., 2021). In this context, the application of629

Gaussian processes to model the time dependence of the causal structure has led to some advances (Huang630

et al., 2015).631

In addition, the proposed model considers only linear causal relationships: generalisation to nonlinear inter-632

actions represents further future work. Here, kernel methods (Shen et al., 2016) and more recently non-linear633

ICA (Monti et al., 2020) has been used to tackle the estimation task. However, previous works only refer634

to the single-scale case. Also, in this work we did not consider possible inter-scale cause-effect mechanisms.635

However, we do not exclude that behaviors of signals at higher frequencies may impact those at lower fre-636

quencies and vice versa. So, investigating the existence of such causal relationships represents an interesting637

future research direction. Additionally, it would be useful to improve our method for managing multiscale638

non-stationary causal dynamics. Indeed, it is common in different application domains, such as finance,639

neuroscience, and climatology, to deal with data featured by non-stationarity.640

Regards the identifiability, since in the single-scale case Equation (4) coincides with Equation (2), the results641

achieved for the SVARM holds. Specifically, the causal structure is identifiable in the case of non-Gaussian642

noise (Shimizu et al., 2011), Gaussian noise with equal or known variances (Peters & Bühlmann, 2014; Loh643

& Bühlmann, 2014), and Gaussian noise with unknown, homogeneous, and heterogeneous variances (Park644

& Kim, 2020). In the multiscale case, due to the independence of the frequency bands, if we further assume645

that the underlying contribution coming from different time scales in Equation (4) are observable, also the646

multiscale causal graph is identifiable in all previous cases. However, this is a strong assumption that does647

not hold in reality. Furthermore, also the possible presence of serial correlation in the noise decomposition648

hinders the identifiability of a multiscale causal model. Hence, since we did not establish any identifiability649

result in the case of unobservable contributions and multiscale noise with serial correlation, we plan to650

investigate this intriguing point in future work.651

Related to the identifiability issue, the guarantee of recovering the underlying causal structure provided by652

least-squares-based methods relates to assumptions on the noise variances (Theorems 7 and 9 in Loh &653

Bühlmann, 2014). As recently highlighted by Ng et al. (2023), data standardization facilitates the violation654

of such assumptions. Hence, in the case of standardized data the proposed methods (and more generally655

least-squares-based methods) do not have any guarantee of recovering the true causal structure.656

Finally, the results of the case study show how MS-CASTLE can be used to support portfolio risk manage-657

ment. Indeed, depending on their investment horizon, investors could use the proposed methodology to make658

risk-aware decisions regarding their portfolios, from a causal perspective and without any prior assumption659

about the scale of analysis.660
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853

Appendix A The Wavelet Transform854

The discrete wavelet transform (DWT, Percival & Mofjeld, 1997) is a mathematical technique that projects855

a time series onto a set of orthonormal basis functions, known as wavelets. This projection results in a series856

of wavelet coefficients that capture the information from the time series across different frequencies and time857

intervals.858

Unlike the discrete Fourier transform (DFT), which uses sine and cosine functions for data projection and859

yields coefficients that are not time-varying, the DWT benefits from time resolution by employing basis860

functions having compact support, i.e., function oscillating over a brief time interval.861

As an example, consider the Haar wavelet, having filter h = ( 1√
2 ,− 1√

2 ) of length 2. It is straightforward to862

see that this filter (i) has zero-sum
∑

k hk = 0; (ii) has unit energy hhT = 1, and (iii) is orthogonal to its863

even shifts
∑

k hkhk+2n, n ∈ Z, n ̸= 0.864

These properties are very important since ensure that (i) the wavelet coefficients identify changes in the865

data; (ii) the transformation preserves the input signal variance without neither adding nor suppressing866

information; and (iii) the DWT enables the analysis of the signal at multiple time resolution by decomposing867

it on orthonormal basis functions.868

Associated with the decomposition filter, there is the scaling filter g = ( 1√
2 ,− 1√

2 ), that similarly to h869

preserves data variance and is orthonormal. However, if h can be thought of as a local differentiating870

operator, g can be interpreted as a local averaging operator.871

The DWT applies h and g in a series of filtering and downsampling operations to the input time series having872

a dyadic length T = 2D, with D ∈ N. These operations yield D wavelet coefficients, effectively decomposing873

the original time series into components living in both time and frequency domains.874

The two filters h and g are also known as high-pass and low-pass filters. This is due to the fact that their875

transfer functions, i.e., their DFT, favor high and low frequencies, respectively. For instance, h keeps high876

frequencies and suppresses low frequencies. Hence, by being applied together, h and g decompose the input877

time series in high and low frequencies representations, preserving all its content.878

In order to understand the filtering and downsampling operations, let us consider the sequence s = (1, 2, 3, 4)
of length T = 4 and the aforementioned Haar wavelet. As a first step, the filtering operation is applied.
Specifically, starting from s, we obtain the vector of wavelet coefficients at scale d = 1 by convolving
(with non-overlapping windows) h with s, b1 = (b1

1, b1
2) = (− 1√

2 ,− 1√
2 ), where b1

1 = 1√
2 · 1 −

1√
2 · 2 and

b1
2 = 1√

2 · 3−
1√
2 · 4. At this point, we apply the downsampling operation by convolving in the same way g

with s, obtaining the first vector of scaling coefficients, c1 = (c1
1, c1

2) = ( 3√
2 , 5√

2 ). We proceed in the same
way for the subsequent scale level d = 2. These two operations can be compactly described by the following
formulas:

bd
t =

K−1∑
k=0

hkcd−1
2t+1−k mod T ; cd

t =
K−1∑
k=0

gkcd−1
2t+1−k mod T ;

where c0 = s and t ∈
[

T
2d − 1

]
0.879

It is easy to see from the previous example that DWT is sensitive to the origin, i.e., a shift in s would880

lead to different wavelet coefficients. Moreover, a question arises as to whether exclusively focusing on even881

differences might overlook certain patterns within the data. Starting from the DWT, the stationary wavelet882

transform (SWT, Nason & Silverman, 1995) builds on the basic observation that, in some cases, it is useful883

to retain both odd and even differences at each scale. In addition, in contrast to DWT, SWT is not origin-884

sensitive, i.e., translation invariant, and avoids to decimate the input signal at each scale, i.e., to halve the885

length its length at each iteration. We refer the interested reader to Chapter 2.9 in Nason (2008) for further886

details.887
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Appendix B Comparison with DYNOTEARS888

Figure 10 depicts the swarm plot concerning the number of edges and the SHD (structural Hamming distance)889

of the estimated matrices of causal coefficients. The latter metric indicates the number of modifications890

needed to retrieve the ground truth from the estimated causal graph (the lower, the better). First, we891

observe that both models converge to causal networks of similar size. In addition, by looking at SHD, we892

notice that dagness function linearization does not cause a worsening in estimation accuracy.893
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Figure 10: Swarm plots regarding the number of edges (left) and SHD (right) of the estimated causal
matrices.
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Figure 11: Swarm plots regarding the building blocks of SHD (from the left: extra, missing and reverse edges
wrt the ground truth) associated with the estimated causal matrices W0 (a) and W1 (b). Please notice that
in case of lagged causal interactions, we cannot observe reverse edges.

The comparison in terms of accuracy between DYNOTEARS and SS-CASTLE is further detailed below.894

In particular, Figure 11 shows the contribution of extra, missing and reverse edges to the SHD. More895

precisely:896
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• extra edges are estimated edges not encompassed in the causal graph skeleton;897

• missing edges are causal connections present in the ground truth that have not been retrieved, neither898

with a wrong direction;899

• reverse edges are those connection estimated with a wrong direction.900

Please, refer to Appendix B for a detailed definition of the considered metrics. We observe that the number901

of missing edges is by far the most dominant component (especially in case of larger networks). Overall,902

the models perform similarly across the three components. It is worth noticing that, since W1 is acyclic by903

definition, we cannot have reverse edges.904

Appendix C Metrics905

We evaluate the learned causal graphs in terms of F1-score and structural Hamming distance (SHD), com-906

puted from the adjacency matrices of the learned causal graphs. Let us consider907

• the condition positives (p) as the number of edges present in the ground truth;908

• the condition negatives (n) as the number of arcs that are not in the ground truth;909

• the number of estimated edges (nnz);910

• the true positives (tp) as the number of estimated edges present in the ground truth and having the911

correct direction;912

• the reversed (r) as the number of learned edges present in the ground truth but with the opposite913

direction;914

• the false positives (fp) as the number of learned extra edges that are not in the undirected skeleton of915

the ground truth;916

• the missing edges (e) as the number of edges of the skeleton of the learned graph that are extra from917

the skeleton of the ground truth;918

• the extra edges (m) as the number of edges of the skeleton of the learned graph that are missing from919

the skeleton of the ground truth.920

At this point, define the false discovery rate as fdr = (r + fp)/nnz, the true positive rate as tpr = tp/p,921

and the false positive rate fpr = (r + fp)/n. Hence, the F1-score is equal to 2 · (1−fdr)tpr
1−fdr+tpr and the SHD is922

equal to r + m + e.923

In practical terms, to compute the previous metrics we proceed as follows. Starting from the estimated W̄,924

we remove the zero off-diagonal blocks that come into play when we build the block-diagonal matrices W̃l
925

(see Section 2.1). In this way, we consider only those Wd
l blocks that can contain entries different from zero,926

corresponding to arcs in the causal graph. At the end of this step, we end up with a reshaped version of927

W̄, having size RD×(L+1)×N×N . Then, we transform the latter 4-dimensional tensor in a logic one, where928

an entry is equal to 1 iff it corresponds to a nonzero entry in the original tensor, and 0 otherwise. In this929

way, we retain only the structural information, that can be interpreted as the multiscale counterpart of the930

adjacency. We repeat the same steps for the ground truth.931

Then, it is possible to count the quantities listed above, needed for the computation of the F1-score and932

SHD, by cycling over the time scales and time lags.933
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Appendix D Hyper-parameters934

Table 1 provides the chosen values for λ during the experimental assessment of SS-CASTLE. In addition,935

Table 2 shows the values of λ used in the experimental assessment of MS-CASTLE. In our experiments, we936

considered λ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}.937

λ
Nodes p T=100 T=500 T=1000

10

1.0 0.50 0.10 0.10
1.5 0.10 0.05 0.05
2.0 0.50 0.10 0.10
2.5 0.10 0.05 0.01

100.0 0.10 0.05 0.01

30

1.0 0.50 0.10 0.10
1.5 0.10 0.05 0.05
2.0 0.50 0.10 0.10
2.5 0.10 0.05 0.01

100.0 0.10 0.05 0.01

50

1.0 0.50 0.10 0.10
1.5 0.50 0.05 0.05
2.0 0.50 0.10 0.10
2.5 0.10 0.05 0.05

100.0 0.10 0.05 0.01

Table 1: Selected values for λ for each of the considered parameters combinations (T, N, p)i.
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λ
Nodes p Transform T=128 T=512 T=8192

5

1.0

None 0.0100 0.0050 0.0050
swt-db3 0.0500 0.0100 0.0100
swt-db5 0.0500 0.0100 0.0100
swt-db7 0.0500 0.0100 0.0100

swt-sym5 0.0500 0.0050 0.0100
swt-coif2 0.0500 0.0050 0.0100

2.0

None 0.0050 0.0050 0.0010
swt-db3 0.0050 0.0010 0.0010
swt-db5 0.0050 0.0010 0.0001
swt-db7 0.0050 0.0010 0.0005

swt-sym5 0.0050 0.0010 0.0001
swt-coif2 0.0050 0.0010 0.001

10

1.0

None 0.0500 0.0100 0.0050
swt-db3 0.0500 0.0100 0.0100
swt-db5 0.0500 0.0500 0.0100
swt-db7 0.0500 0.0500 0.0100

swt-sym5 0.0500 0.0500 0.0100
swt-coif2 0.0500 0.0100 0.0100

2.0

None 0.0050 0.0010 0.0010
swt-db3 0.0100 0.0050 0.0010
swt-db5 0.0100 0.0050 0.0010
swt-db7 0.0100 0.0050 0.0010

swt-sym5 0.0100 0.0050 0.0005
swt-coif2 0.0100 0.0050 0.0010

30

1.0

None 0.1000 0.0100 0.010
swt-db3 0.0500 0.0500 0.0100
swt-db5 0.0500 0.0500 0.0100
swt-db7 0.0500 0.0500 0.0500

swt-sym5 0.0500 0.0500 0.0100
swt-coif2 0.0500 0.0500 0.0100

2.0

None 0.0500 0.0050 0.0005
swt-db3 0.0100 0.0050 0.0005
swt-db5 0.0100 0.0050 0.0010
swt-db7 0.0100 0.0050 0.0010

swt-sym5 0.0100 0.0050 0.0010
swt-coif2 0.0100 0.0050 0.0005

Table 2: Selected values for λ for the tested versions of MS-CASTLE, as indicated by the column Transform.
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Appendix E Additional Comparison with Non-gradient-based Methods938

Sensitivity to data set size.939

Figure 12 provides additional details concerning the structural mistakes made by the models. In particular,940

we provide the comparison with VAR-DirectLiNGAM, VAR-ICALiNGAM, and PCMCI+ in terms of SHD,941

and its building blocks, i.e., extra, missing and reverse edges. Overall, SS-CASTLE outperforms the baselines942

also in terms of the considered structural metrics. Looking at the instantaneous causal interactions (top943

rows), we notice how non-Gaussian methods tend to estimate a greater number of extra and reverse edges,944

even when T = 1000. Conversely, PCMCI+ exhibits a low number of extra and reverse edges, making it945

competitive with the proposed method. With regards to missing edges, all the models but PCMCI+ tend946

to perform similarly as T grows. Indeed, we observe that the main driver in PCMCI+ estimation error is947

the number of missing edges, which remain high across all the considered settings. Furthermore, the results948

show that non-Gaussian methods display a dependence on the value of p. In order to better interpret the949

values of SHD, consider that in case N = 30 and s = .85, on average only 65 entries of W0 are different950

from zero due to the acyclicity requirement.951

Concerning lagged causal interactions (bottom rows), we see that the non-Gaussian methods are prone to952

return solutions characterized by a large number of extra edges. Furthermore, as is the case with instanta-953

neous relations, the primary factor determining the SHD shown by PCMCI+ is the number of missing edges.954

Regarding SS-CASTLE, the number of missing edges turns out to be the major contributor to SHD in case955

of small data sets (T = 100). With the increase of T , extra and missing edges start to contribute similarly956

to the aforementioned structural metric.957

Sensitivity to network size.958

Figure 13 provides further information regarding the estimated structure when we vary the network size.959

Also in this case we see that SS-CASTLE outperforms the considered baselines. Concerning the learning960

of the matrix of instantaneous relations, we see that non-Gaussian methods are prone to estimate a greater961

number of extra and reverse edges. As for PCMCI+, the major driver in SHD is the number of missing962

edges. Specifically, the values shown by the latter method are the worst. With regards SS-CASTLE, the963

main component of SHD is the number of missing edges. As far as the learning of the matrix of lagged964

causal interactions, the results show that, even though the non-Gaussian methods and SS-CASTLE display965

a similar number of missing arcs, overall SS-CASTLE is more robust to extra edges. Finally, in the case of966

PCMCI+, the number of missing edges remains the primary source of error.967

Appendix F Multiscale Causal Structure968

The multiscale causal structure determining the data generated for the experimental assessment of MS-969

CASTLE consists of 4 different time scales. In addition to instantaneous causal interactions, to test also the970

performance of MS-CASTLE in the presence of lagged interactions, we set the autoregressive lag L = 1, for971

each time scale.972

In detail, over the first time scale W1
0 has entries [W1

0]i,i+1 = 0.6 and zero elsewhere, i ∈ [N − 1]; W1
1 has973

entries (i) [W1
1]i,i = −0.6, with i ∈ [N ], (ii) [W1

1]j,j+1 = 0.3, with j ∈ [N − 1], (iii) [W1
1]k+1,k = 0.3, with974

k ∈ [N − 1], and (iv) zero elsewhere.975

At the second scale W2
0 has entries [W2

0]i+2,i = −0.5, with i ∈ [N−2], and zero elsewhere; W2
1 has entries (i)976

[W2
1]i,i = −0.5, with i ∈ [N ], (ii) [W2

1]j,j+2 = 0.4, with j ∈ [N −2], (iii) [W2
1]k+2,k = −0.4, with k ∈ [N −2],977

and (iv) zero elsewhere.978

Over the third and fourth scale we set W3
1 with entries (i) [W3

1]i,i = 0.5, with i ∈ [N ], (ii) [W3
1]j,j+1 = −0.4,979

with j ∈ [N − 1], (iii) [W3
1]k+1,k = 0.4, with k ∈ [N − 1], and (iv) zero elsewhere; W4

1 with entries (i)980

[W4
1]i,i = −0.7, with i ∈ [N ], and zero elsewhere.981

Finally, in our experiments, we consider N ∈ {5, 10, 30}.982
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Figure 12: Comparison with the baseline methods in the estimation of the causal matrices W0 (top) and W1

(bottom) in terms of a SHD, and its building blocks, i.e., b extra edges, c missing edges, and d reverse edges.
Each subfigure depicts the case when N = 30 and the number of time series N varies in {100, 500, 1000}.

32



Under review as submission to TMLR

0

5

10

15

S
H

D
,

L
ag

:
0

N = 10

VAR-DirectLiNGAM

VAR-ICALiNGAM

PCMCI+

SS-CASTLE

0

50

100
N = 30

0

100

200
N = 50

1.0 1.5 2.0 2.5 100.0
p

0

10

20

S
H

D
,

L
ag

:
1

1.0 1.5 2.0 2.5 100.0
p

0

50

100

150

1.0 1.5 2.0 2.5 100.0
p

0

100

200

300

(a) SHD.

0

2

4

6

E
xt

ra
,

L
ag

:
0

N = 10

VAR-DirectLiNGAM

VAR-ICALiNGAM

PCMCI+

SS-CASTLE

0

20

40

60

N = 30

0

50

100

N = 50

1.0 1.5 2.0 2.5 100.0
p

0

5

10

15

E
xt

ra
,

L
ag

:
1

1.0 1.5 2.0 2.5 100.0
p

0

50

100

1.0 1.5 2.0 2.5 100.0
p

0

100

200

(b) Extra edges.

0.0

2.5

5.0

7.5

M
is

si
ng

,
L

ag
:

0

N = 10

VAR-DirectLiNGAM

VAR-ICALiNGAM

PCMCI+

SS-CASTLE

0

20

40

60

N = 30

0

50

100

N = 50

1.0 1.5 2.0 2.5 100.0
p

0.0

2.5

5.0

7.5

M
is

si
ng

,
L

ag
:

1

1.0 1.5 2.0 2.5 100.0
p

0

20

40

60

1.0 1.5 2.0 2.5 100.0
p

0

50

100

(c) Missing edges.

0.0

2.5

5.0

7.5

R
ev

er
se

,
L

ag
:

0

N = 10

0

10

20

30

N = 30

0

20

40

60
N = 50

1.0 1.5 2.0 2.5 100.0
p

−0.05

0.00

0.05

R
ev

er
se

,
L

ag
:

1

1.0 1.5 2.0 2.5 100.0
p

−0.05

0.00

0.05

1.0 1.5 2.0 2.5 100.0
p

−0.05

0.00

0.05

VAR-DirectLiNGAM

VAR-ICALiNGAM

PCMCI+

SS-CASTLE

(d) Reverse edges.

Figure 13: Comparison with the baseline methods in the estimation of the causal matrices W0 (top) and
W1 (bottom) in terms of a SHD, and its building blocks, i.e., b extra edges, c missing edges, and d reverse
edges. Each subfigure depicts the case when T = 1000 and the number of time series N varies in {10, 30, 50}.
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Appendix G MS-CASTLE: Additional Results on Synthetic Data983
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Figure 14: Comparison of different versions of MS-CASTLE in terms of normalized SHD (i.e., SHD divided
by the number of edges in the ground truth), obtained in the experimental settings described in Section 4.3.1.
Subplots on the top refer to the Gaussian setting, whereas those on the bottom to the non-Gaussian one.
Subplots on the left refer to the case N = 5, those on the center to N = 10, and those on the right to
N = 30. Dashed lines represent the inter-quartile range.
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Figure 15: Behaviour of F1-score along the considered values of λ, obtained in the experimental settings
described in Section 4.3.1. Subplots on the top refer to the Gaussian setting, whereas those on the bottom
to the non-Gaussian one. Subplots on the left refer to the case T = 128, those on the center to T = 512,
and those on the right to T = 8192. Dashed lines represent the inter-quartile range, while colors refer to
different values of N .
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Appendix H Financial Data984
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Figure 16: Behavior of equity markets during the considered period. All indexes are rebased to 100.

We consider data concerning 15 global equity markets at daily frequency. To focus on covid-19 pandemic985

period, we restrict our attention to observations from January 2020, the 2nd to April 2021, the 30th. In our986

analysis, we deal with the following markets: All Ordinaries Index (AOR, Australia), Hang Seng Index (HSI,987

Hong Kong), Nikkei 225 Index (NKX, Japan), Shanghai Composite Index (SHC, Shanghai), Straits Times988

Index (STI, Singapore), TAIEX Index (TWSE, Taiwan), DAX Index (DAX, Germany), FTSE MIB Index989

(FMIB, Italy), IBEX Index (IBEX, Spain), CAC 40 Index (CAC, France), FTSE 100 Index (UKX, UK),990

RTS Index (RTS, Russia), Bovespa Index (BVP, Brazil), Nasdaq Composite Index (NDQ, US), S&P/TSX991

Composite Index (TSX, Canada). The data has been downloaded from Stooq2. Figure 16 depicts the992

behavior of the indexes during the considered time window. In particular, the indexes plummet during the993

first months of 2020 and, subsequently, they show a second downturn during October 2020. In addition,994

Table 3 provides summary statistics. Overall, according to risk adjusted return3, Sortino ratio4 and average995

compounded return to max drawdown ratio (ACR/MDD), TWSE and NDQ outperform the rest of the996

indexes. Moreover, we see that annualized average compounded returns largely vary across the considered997

instruments: while IBEX and UKX are the worst performing, TWSE and NDQ are the most profitable.998

Furthermore, all indexes show a high level of volatility. Among the others, BVP and RTS are the most999

volatile indexes. Last but not least, all indexes suffer heavy losses during the analysed period, as shown by1000

max drawdown metric (MDD). Interestingly, SHC shows the lowest value.1001

To get the series of markets risk, as measured by conditional volatility, we model the logarithmic returns of1002

indexes by means of GARCH models (Bollerslev, 1986). We use the latter econometric technique to measure1003

systemic risk of equity markets while capturing stylized facts of equity returns, such as volatility clustering1004

(i.e., large (small) swings in stock prices tend to group together), heteroscedasticity (i.e., time-dependent1005

variance) and fat-tailedness (i.e., kurtosis greater than 3). With regards to GARCH parameters, we select1006

the best combination according to lowest value of BIC criterion (Schwarz, 1978).1007

2The website is reachable at https://stooq.pl/.
3The risk adjusted return is a performance metric, defined as average compounded return to volatility ratio.
4Sortino ratio evaluates risk adjusted performance of a financial instrument discounting for its downside standard deviation.
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AOR HSI NKX SHC STI TWSE DAX FMIB IBEX CAC UKX RTS BVP NDQ TSX
Avg Comp. Ret. (%) 3.57 2.12 15.79 8.40 -1.30 28.29 10.08 1.15 -9.33 1.88 -7.43 -5.60 2.15 31.41 7.76
Volatility (%) 25.94 22.32 23.65 19.26 21.07 19.74 29.25 31.12 30.36 28.79 26.24 36.12 39.69 32.46 29.00
Risk Adj. Ret. (%) 0.14 0.10 0.67 0.44 -0.06 1.43 0.34 0.04 -0.31 0.07 -0.28 -0.16 0.05 0.97 0.27
Sortino (%) 0.18 0.13 0.99 0.60 -0.08 2.03 0.47 0.05 -0.41 0.09 -0.37 -0.20 0.07 1.34 0.35
MDD (%) 37.09 25.33 31.27 14.62 31.93 28.72 38.78 41.54 39.43 38.56 34.93 49.46 46.82 30.12 37.43
ACR/MDD 0.10 0.08 0.50 0.57 -0.04 0.98 0.26 0.03 -0.24 0.05 -0.21 -0.11 0.05 1.04 0.21
Skew -1.10 -0.37 0.27 -0.76 -0.44 -0.54 -0.63 -2.26 -1.05 -0.96 -0.80 -1.02 -1.04 -0.69 -1.01
Kurtosis 7.37 1.87 5.01 6.49 7.22 5.40 10.27 20.19 11.14 9.49 8.94 7.01 11.32 7.35 18.77
1st %-ile (%) -6.16 -4.18 -4.47 -3.60 -4.63 -3.94 -5.00 -5.21 -4.69 -5.38 -4.03 -7.12 -9.37 -5.16 -6.76
5th %-ile (%) -2.33 -2.28 -2.16 -1.86 -1.75 -1.80 -3.38 -2.81 -2.95 -3.00 -2.79 -3.35 -3.21 -3.12 -2.12
Min -9.52 -5.56 -6.08 -7.72 -7.35 -5.83 -12.24 -16.92 -14.06 -12.28 -10.87 -13.02 -14.78 -12.32 -12.34
Max 6.56 5.05 8.04 5.71 6.07 6.37 10.98 8.93 8.57 8.39 9.05 9.23 13.91 9.35 11.96

Table 3: Summary statistics of equity markets at daily frequency. Average compounded return, volatility,
risk adjusted return, and Sortino Ratio are annualised.

37



Under review as submission to TMLR

Appendix I Additional Results Concerning the Causal Analysis of the Risk of Global1008

Equity Markets1009
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Figure 17: Highly persistent causal matrices (top) and corresponding SSCGs (bottom) for three different
values of c̄. Red entries in the causal matrices represent positive coefficients, whereas blue ones are negative.
With regards to the SSGS, green nodes are American stock indexes, pink the European ones, and purple the
Asian.
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(b) c̄ = 0.05
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(c) c̄ = 0.1

Figure 18: Highly persistent multiscale causal matrix for three different values of c̄. Red entries in the causal
matrices represent positive coefficients, whereas blue ones are negative.
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(c) c̄ = 0.1

Figure 19: Highly persistent MSCG for three different values of c̄. With regards to the SSGS, green nodes
are American stock indexes, pink the European ones, and purple the Asian.
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