
Under review as a conference paper at ICLR 2022

SYNTHESISING AUDIO ADVERSARIAL EXAMPLES FOR
AUTOMATIC SPEECH RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial examples in automatic speech recognition (ASR) are naturally
sounded by humans yet capable of fooling well trained ASR models to tran-
scribe incorrectly. Existing audio adversarial examples are typically constructed
by adding constrained perturbations on benign audio inputs. Such attacks are
therefore generated with an audio dependent assumption. For the first time, we
propose the Speech Synthesising based Attack (SSA), a novel threat model that
constructs audio adversarial examples entirely from scratch, i.e., without depend-
ing on any existing audio) to fool cutting-edge ASR models. To this end, we in-
troduce a conditional variational auto-encoder (CVAE) as the speech synthesiser.
Meanwhile, an adaptive sign gradient descent algorithm is proposed to solve the
adversarial audio synthesis task. Experiments on three datasets (i.e., Audio Mnist,
Common Voice, and Librispeech) show that our method could synthesise audio
adversarial examples that are naturally sounded but misleading the start-of-the-
art ASR models. The project webpage containing generated audio demos is at
https://sites.google.com/view/ssa-asr/home.

1 INTRODUCTION

Deep neural network (DNN) based models have documented many success stories in various do-
mains, such as reinforcement learning (Silver et al., 2017), image classification (Deng et al., 2009),
and automatic speech recognition (ASR) (Chan et al., 2016). However, DNN models are found to be
vulnerable to adversarial attacks (Goodfellow et al., 2015), viz., the slightly perturbed input would
cause severe errors or performance drops of well trained DNN models. This paper mainly focuses
on the ASR domain, where many voice assistant systems could be hijacked or controlled by the
audio adversarial examples constructed by an attacker.

To investigate the threat of audio adversarial examples, many different approaches (Carlini & Wag-
ner, 2018; Yuan et al., 2018; Yang et al., 2019; Qin et al., 2019) have been developed. In general,
existing approaches assume that the semantics (for human beings) of adversarial audio can be pre-
served as long as the distance between the adversarial audio and the benign audio is restricted prop-
erly. In particular, a shared design principle is to add constrained adversarial perturbations (i.e., as
imperceptible as possible) on benign audios yet with the goal of fooling ASR models significantly.
For instance, Qin et al. (2019) introduced a psychoacoustic rule of auditory masking to only add
perturbation on a benign audio where the noise is hard to be heard. Therefore, existing approaches
can be deemed as audio dependent attack (ADA), viz., the audio adversarial examples have to be
constructed depending on some benign audios as shown in Figure 1 (a). However, in real cases, the
human speaker and/or the benign audio may not be available or accessible. Moreover, ADA relies
on an imperceptible perturbation principle, viz., the added perturbation must be restricted enough to
avoid being perceived by human beings.

In contrast, this paper proposes the audio independent attack (AIA) as shown in Figure 1 (b) that
sheds light on a more general principle of adversarial attacks, viz., any audio that deceives ASR
models yet fails to deceive human beings would cause security issues in speech recognition. Alter-
natively stated, an adversarial audio does not have to be constructed based on an existing benign
audio as ADA does. Our AIA thus enables a novel threat model that constructs audio adversarial
examples completely from scratch instead of adding perturbations on existing benign audios. Par-
ticularly, mounted on recent advances in neural speech synthesis (Tan et al., 2021), we can directly
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Figure 1: Audio dependent attack versus audio independent attack.

synthesise the adversarial audio that conserves the desired semantic content but deceives the ASR
model to predict incorrect or even targeted transcriptions.
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Figure 2: The general structure of SSA.

With this goal in mind, we propose the Speech
Synthesising based Attack (SSA) as shown in
Figure 2, where a conditional variational au-
toencoder CVAE is incorporated to synthesise
audio waveform x that is connected to an ASR
model thereafter. The basic philosophy of SSA
is: the audio style vector z in CVAE controls
the pitches and rhythms of synthesised wave-
forms that may cause the ASR model to tran-
scribe incorrectly or even as a target; thus some
particular synthesised waveforms would be-
come adversarial examples. In particular, fol-
lowing (Kim et al., 2021), we first train CVAE
by adopting a variational inference augmented
with normalizing flows and an adversarial train-
ing process, so as to synthesise natural sound-
ing audios. Once the CVAE is well trained,
given a sequence of conditional text that repre-
sents the ground truth audio semantics, we can
optimize z to get a particular z∗ that can de-
ceive an advanced ASR model through a reg-
ularized connectionist temporal classification loss. In this regard, we formulate the adversarial
example synthesising task as a gradient sign based optimization problem. More importantly, to
solve the optimization efficiently, we design an adaptive learning rate decay based on the annealing
mechanism, which can automatically adjust the step size during optimization. Our contributions are
summarized as:

• For the first time, we propose an audio independent adversarial attack as a novel threat model in
ASR, which constructs adversarial example completely from scratch without depending on any
existing speaker/audio. This sheds light on a more general principle of adversarial attacks, viz.,
any audio that deceives ASR models yet fails to deceive human beings would cause security issues
in speech recognition.

• We develop SSA that adopts CVAE as the speech synthesiser. To efficiently synthesise audio
adversarial examples, we establish an adaptive sign gradient descent algorithm via designing an
annealing mechanism inspired learning rate decay.

• Extensive experiments across three datasets (i.e., Audio Mnist (Becker et al., 2018), Common
Voice (Ardila et al., 2019), and Librispeech (Panayotov et al., 2015)) based on DeepSpeech model
(Amodei et al., 2016) show that our SSA can effectively generate audio adversarial examples.

2 RELATED WORK

In ASR adversarial attacks, Carlini & Wagner (2018) were among the first ones to showcase that
slight perturbations on audio can easily fool a start-of-the-art ASR model to transcribe the perturbed
audio into any target sentence. Later on, Yuan et al. (2018) demonstrated that such adversarial audio
perturbation can be embedded into a song. Yang et al. (2019) analyzed that the temporal dependency
could promote the discriminative power against adversarial examples in ASR. Moreover, Khare et al.
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(2019) and Taori et al. (2019) found that similar audio adversarial perturbations could be generated
using black-box optimization algorithms (e.g., genetic algorithm (Mitchell, 1998)). To generate
the audio adversarial examples faster and improve the attack efficiency, Liu et al. (2020) proposed
to adaptively rectify the weights of audio perturbations on different positions. To make the audio
perturbation more imperceptible, Qin et al. (2019) introduced a psychoacoustic principle of auditory
masking to smartly add perturbations on frames where noises are hard to be perceived. Xie et al.
(2021) utilized generative adversarial network (GAN) to generate adversarial examples on speech
domain, where GAN is to learn the distribution of predefined adversarial perturbations. Thus the
adversarial examples are still generated depending on the benign audios.

In summary, previous adversarial attacks on ASR are audio-dependent, viz., the audio adversarial
examples must be generated based on corresponding benign audios. Although there are studies, e.g.,
(Song et al., 2018; Wang et al., 2019), on generating adversarial examples from scratch, but most
of them focus on the image domain. Carlini & Wagner (2018) studied an audio attack that starts
from non-speech (e.g., a piece of classic music), while existing audios are stilled required to mount
perturbations on. Roy et al. (2018) and Zhang et al. (2017) proposed to modulate voice commands
on ultrasonic carriers (e.g., frequency > 20 kHz) to achieve inaudibility, where the scenario is an
adversary that stands on the road and silently controls the voice command assistant systems. This
therefore is different from our scope of generating natural sounding adversarial audios. To the best
our knowledge, our work is the first attempt to generate audio adversarial examples from scratch
without utilizing benign audios in ASR.

3 BACKGROUND

Automatic Speech Recognition (ASR). In this paper, we focus on the speech-to-text tasks that are
based on neural ASR models. Following previous studies (Esmaeilpour et al., 2021; Liu et al.,
2020; Yakura & Sakuma, 2019; Carlini & Wagner, 2018), we stick our attacks on the Deep-
Speech (Amodei et al., 2016), a state-of-the-art ASR model based on Connectionist Temporal Clas-
sification (CTC) method (Graves et al., 2006). DeepSpeech uses CTC as the input aduios and the
corresponding transcriptions are unaligned, viz., the exact position of each word in the audio sample
is unknown. To enable efficient supervised training, a transcription is first enumerated to obtain all
alignments. Hence, the CTC loss is minimized to maximize the probabilities over all alignments.

CTC Loss. Let X be the audio input domain and Y be the text output domain with dimension |Y|.
The ASR model is donoted as F : XN → YN ·|Y|, which takes a N frames x ∈ X as input and
outputs a probability distribution F(x) over the output domain. Given y as a phrase (i.e., a sequence
of characters), we define a token sequence π being reducible to y if the two operations, namely,
removing sequentially duplicated tokens, and deleting all blank tokens on π could produce y. We
further denote π as an alignment of y if π can be reduced to y and the length of π equals to the
length of prediction F(x). Let Φ(y) be the alignment set obtained from targeted transcription y
using dynamic programming (Graves et al., 2006). Accordingly, the CTC loss can be formulated as,

Lctc(x, y) = −log
[∑

π∈Φ(y)

∏N

i
F(x)iπi

]
, (1)

whereF(x)iπi
is the probability of the token πi on the ith frame. To get the transcription in inference,

a decoder D (e.g., greedy decoding or beam search decoding) is required. Thereby, if an ASR
model is well trained, the transcription would satisfy y = D(F(x)) = f(x), where f(·) is a merged
denotation of F and D.

White-Box Assumption. Following most of previous studies, we use the similar white-box assump-
tion, viz., the parameter and structure of ASR model is known. Investigating the black-box attack is
another direction. Moreover, there are many ways (Oh et al., 2019; Zanella-Beguelin et al., 2021;
Qin et al., 2019) to convert a black-box model to a white-box one.

Targeted Attack. Compared with the untargeted attack that only maximizes the word error rate
(WER), the targeted attack is a more challenging task since it requires not only the audio perturbation
imperceptible, but also the adversarial audio being transcribed to a specified target phrase. Our
main focus is on the targeted scenario. Without specification, the adversarial example in following
sections refers to the targeted one.
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Speech Synthesise (End-To-End Text-To-Speech). Text-to-speech (TTS) model synthesises wave-
forms given text phrases as semantic contents. For efficiently synthesising adversarial audios in our
SSA, we turn to the end-to-end TTS model that could easily utilize modern parallel processors for
faster synthesis speed. In particular, we utilize a conditional variational autoencoder (Kim et al.,
2021) based TTS model to generate natural sounding audios, which is explained in Section 4.2.

4 METHODS

4.1 PROBLEM SETTINGS

Given a well trained ASR model f(·), the objective of adversarial attack is to construct an audio
waveform x ∈ X that is naturally sounded yet able to deceive f(·) in predicting incorrect/targeted
transcriptions. Suppose o : X → Y is an oracle that takes an audio waveform x as input and
outputs the ground truth transcription yo = o(x), where Y is the set of all text transcriptions under
consideration. Moreover, compared to the untargeted attack that only introduces spelling errors, we
focus on the more challenging targeted attack, viz., f(x) = y where y ∈ Y is the expected target
transcription by an attacker.

In previous studies, the adversarial audio x is constructed by adding perturbation δ on a benign audio
xo, viz., x = xo + δ; thus being dependent on xo. Mounted on these notations, we give a formal
definition of the previous audio dependent attack as follows.
Definition 1 (Audio Dependent Attack - ADA). Given a benign audio xo and its oracle transcription
yo = o(xo), the corresponding adversarial example can be defined as any audio x, viz., x ∈ Aδ

∆
=

{xo + δ ∈ X |∃δ,M(δ) ≤ ϵ︸ ︷︷ ︸∩ o(xo + δ) = yo = o(xo)︸ ︷︷ ︸∩ f(xo + δ) = yt︸ ︷︷ ︸∩ f(xo) ̸= yt︸ ︷︷ ︸∩ yo ̸= yt︸ ︷︷ ︸},
where M(·) is a distance measurement (e.g., matrix norm); ϵ is a small positive constant; and yt
indicates the targeted transcription of an attacker.

From Definition 1 the adversarial audio x is directly built on a benign audio xo. Moreover, to
guarantee x being acoustically realistic or natural, the efforts mainly focus on forcing M(δ) ≤ ϵ
with the goal of restricting x to be close to xo. However, in some cases, the benign audio xo may not
be available. For instance, an attacker want to deceive a voice commander when no human speaking
happens nearby. Moreover, ADA relies on an imperceptible perturbation principle, viz., the added
perturbation δ must be small enough to avoid being percepted by human beings. In contrast, a more
general scenario would be audio independent attack that is defined as follows.
Definition 2 (Audio Independent Attack - AIA). Given a conditional text (i.e., yo),
an audio independent adversarial example can be any element from Aa

∆
= {x ∈

X | o(x) = yo︸ ︷︷ ︸∩ f(x) = yt︸ ︷︷ ︸∩ yo ̸= yt︸ ︷︷ ︸}, where o(x) = yo indicates that the synthesised audio x cor-

rectly conveys its semantic content yo; and f(x) = yt means the ASR model f(·) is successfully
fooled to output the targeted transcription yt.

Such AIA sheds light on a more general principle of adversarial attacks, viz., any audio that deceives
ASR models yet fails to deceive humans would cause security issues in speech recognition. In other
words, the adversarial audios are not necessarily constructed via adding perturbations. Instead, they
can be directly synthesized with the goal of preserving the desired semantic content (i.e. o(x) = yo),
while simultaneously deceiving the ASR model to predict incorrect or even targeted transcriptions
(i.e. f(x) = yt). This motivates us to leverage the powerful generative model in TTS area to
construct such adversarial audio x. Next, we will introduce the speech synthesising based attack.

4.2 SPEECH SYNTHESISING BASED ATTACK

The overall structure of the speech synthesis based attack (SSA) is depicted in Figure 2.

Conditional Variational Autoencoder based Speech Synthesis. The key for synthesising natural
sounding adversarial audio is to model the TTS mapping. In practice, we can select different types of
TTS models (Tan et al., 2021) to generate natural sounding audios. We choose the recent conditional
variational autoencoder (CVAE) based TTS model (Kim et al., 2021) due to its rich variety in audio
generation, viz., a text input can be spoken in multiple ways with different pitches and rhythms.
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Algorithm 1: SSA Algorithm
Input: yo – the ground truth text; yt – the target for attack; G(·) – the generative model for speech

synthesise; F(·) – the ASR model; α0 – the initial learning rate; dα – the learning rate decay ratio;
λ – the weight of Lreg(z); Im – the maximum iteration number; Dls(·) – Levenshtein distance.

1 Initialization: audio style vector z ∼ N (0,1); the patience p = 0; record best loss L∗ = +∞;
2 for i ∈ N+ ∩ i < Im do
3 Calculate the SSA loss Lssa(z, yo, yt) in Eq. (3);
4 if Lssa(z, yo, yt) <= L∗ then
5 L∗ = Lssa(z, yo, yt), p = 0

6 else
7 p← p+ 1

8 if p >= pm then
9 α← dα · α, p = 0

10 Do back-propogation to get ∂Lssa(z,yo,yt)
∂z

and update z following Eq. (5);
11 if Dls(f(G(z, yo)), yt) == 0 then
12 Return the successful audio adversarial example x∗ = G(z, yo)

13 Return the current best audio adversarial example x = G(z, yo)

This accordingly enlarges the sample space, and enhances the possibility of constructing successful
adversarial examples. In specific, such CVAE based TTS model (Kim et al., 2021) is based on three
components: 1) a conditional VAE formulation; 2) an alignment estimation derived from variational
inference; 3) an adversarial training for improving the synthesis quality. The architecture of the
CVAE model in inference is shown in Figure 2, where the corresponding training loss and settings
can refer to (Kim et al., 2021).

In particular, given a conditional text ctext = yo (where yo conveys the ground truth semantic
content), the TTS model aims to build the mapping G(·), viz.,

x = G(z, ctext), z ∼ N (0,1), (2)

where z is a normally distributed vector that controls the audio styles with different pitches and
rhythms. Therefore, with different z, there are different ways to speak the content in ctext. This
aligns to the fact, viz., even human beings always pronounce same words differently from time
to time. Note that the audio x generated by CVAE model G(·) in (Kim et al., 2021) has been
tested to be natural sounding using the mean opinion score obtained from Amazon Mechanical Turk
(www.mturk.com). The following goal thus becomes figuring out a particular z that can fool an
ASR model F(·).
Speech Synthesising based Attack (SSA) Formulation. We focus on the targeted attack, viz.,
deceiving the ASR modelF(·) to predict a target phrase yt. Given the speech synthesiser G(z, ctext)
in Eq. (2), our SSA is formulated as finding a particular z∗ during synthesising audio x that can
enable the targeted attack. To this end, a loss function Lssa is designed to construct natural sounding
yet fooling enough x. Accordingly, the optimization of z can be defined as

z∗ = argmin
z
Lssa(z, yo, yt) = argmin

z
Lctc(G(z, yo), yt) + λLreg(z), (3)

where yo is the phrase that the CVAE model wants to synthesise; yt is the targeted phrase that the
ASR model is fooled to predict; and Lreg(z) is the regularization loss controlled by λ. To be
specific, Lreg(z) is designed to boost the generated audio to be naturally sounded. Based on (Kim
et al., 2021), z is sampled from a normal distribution. To preserve this property, we design it as:

Lreg(z) = ϕ(µ(z)) + ϕ(δ(z)− 1), (4)

where ϕ(·) is an absolute value function; µ(z) and δ(z) are the mean and variance of z, respectively.
To detemine whether the generated audio x = G(z, yo) can enable a successful targeted attack (i.e.,
f(x) == yt), we involve the Levenshtein distance (Yujian & Bo, 2007). During the optimization of
Lssa(z, yo, yt), if Dls(f(G(z, yo)), yt) = 0, the targeted attack is successful.

Adaptive Sign Gradient Descent. To solve the optimization problem in Eq. (3), we propose an
adaptive sign gradient descent algorithm whereby an adaptive learning rate decay mechanism is
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designed in the sign gradient descent optimization. Typically, the sign gradient descent is frequently
adopted in adversarial attack algorithms, e.g., fast gradient sign method (Goodfellow et al., 2015)
and projected gradient descent (Madry et al., 2018). Moreover, Balles & Hennig (2018) theoretically
proved the benefits of using gradient sign as the optimization direction. In our SSA, the sign gradient
descent based optimization is given by,

z ← z + α
∂Lssa(z, yo, yt)

∂z
, (5)

where α is the learning rate, which significantly impacts the convergence of the SSA optimization.
Inspired by the heuristics of annealing (Bertsimas & Tsitsiklis, 1993), we carefully design an adap-
tive learning rate decay mechanism as below.
Definition 3 (Annealing based adaptive learning rate decay). For every pm steps where the attack
loss Lssa(z, yo, yt) has no improvement, the learning rate α will decay as α := dα · α, where
dα ∈ [0, 1] is the decay ratio.

Definition 3 tells that if a specific α gets stuck for particular pm steps with regard to Lssa(·), α
should decay to perform a more local search. The overall process of SSA is shown in Algorithm 1.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENT SETTINGS

Datasets. In our experiments1, we use three datasets, i.e., Audio Mnist (Becker et al., 2018), Com-
mon Voice (Ardila et al., 2019), and Librispeech (Panayotov et al., 2015). However, different from
previous studies using both the waveform and text label, we only utilize the text information due to
the audio independent property of our SSA. In particular, the Audio Mnist contains the text digits
(i.e., from “ZERO” to ”NINE”). When building the targeted attack pairs, we choose one text digit
(e.g.,“ZERO”) as yo and enumerate the rest digits (i.e., from “ONE” to “NINE”) as its attack target
yt. For Common Voice and Librispeech, we randomly sample 1000 text labels first. Those sampled
texts are filtered and clustered based on their text length. Thereafter, 100 texts are sampled out from
the filtered 1000 samples as the candidates of conditional text yo. The corresponding target text yt is
sampled from their matching clusters. The length comparison between yo and yt on the two datasets
are shown in Figures (10-11) in the appendix, where we notice that yo and yt are aligned with a
similar length. More analysis can refer to appendix 7.1. Our constructed datasets2 are released to
benefit future research on speech synthesise/generative model related attacks.

Model Settings. In our SSA paradigm, the CVAE model and DeepSpeech are utilized as speech
synthesiser and speech recogniser, respectively. The CVAE model follows the setting of VITS (Kim
et al., 2021) during inference. In particular, we utilize the CVAE model trained on VCTK dataset
(Veaux et al., 2017), which can be obtained from VITS3. The standard deviation of the input noise
for the stochastic duration predictor is set to be 0, thus making it a deterministic one. In addition,
a scaling factor for z is applied. The DeepSpeech model follows the Pytorch implementation in the
adversarial robustness toolbox (Nicolae et al., 2018).

Evaluation Metrics. Two evaluation metrics, i.e., the word error rate (WER) and success rate (SR),
are adopted under the targeted attack setting. In particular, they are defined as,

WER =
S +D + I

Nw
, SR =

Ns

Na
(6)

where S,D and I indicate the number of subsitutions, deletions and insertions of words respectively;
Nw is the total number of words; Ns is the number of successful adversarial example (i.e., f(x) =
yt); and Na is the total number of audios synthesised. Note that SR is same as the sentence-level
accuracy that is used in previous studies (Qin et al., 2019). In general, larger values of WER and SR
indicate a stronger attack algorithm.

SSA Optimization Settings. The learning rate α decays in updating z as highlighted in Definition
3 and Algorithm 1. In particular, α0 (i.e., initialization of learning rate) is searched in the range of

1Our code will be released upon acceptance.
2
https://drive.google.com/file/d/1EHXRlWrlMXr6qu8WYtjt8-pRzw-VfCau/view?usp=sharing

3
https://github.com/jaywalnut310/vits
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Table 1: Targeted results of SSA on the three datasets and comparisons with baselines.
Attack algorithms WER (%) SR (%)

B
as

el
in

es

DeepSpeech (No Attack) 7.55 NA
C&W (Carlini & Wagner, 2018) 78.94± 2.01 30.74± 3.16
Y&S (Yakura & Sakuma, 2019) 80.28± 3.14 35.49± 0.28
GAA (Taori et al., 2019) 65.80± 2.55 48.35± 3.38
MOOA (Khare et al., 2019) 68.06± 2.71 47.01± 1.42
Metamorph (Chen et al., 2020) 72.48± 1.06 45.84± 4.71
CIPMA (Esmaeilpour et al., 2021) 88.19± 3.15 21.69± 3.09

SS
A

SSA-Audio Mnist 100.00± 0.00 100.00± 0.00
SSA-Common Voice 106.27± 18.03 96.00± 8.00
SSA-Librispeech 100.71± 13.21 83.19± 16.33
SSA-Average (Common Voice & Librispeech) 103.49± 16.05 89.60± 14.37

Table 2: The MOS comparison between original and SSA synthesised audios.
Type of audios MOS
Before attack (original synthesised audios) 4.09± 0.10
After attack (SSA synthesised audios) 3.39± 0.29

[0.01, 0.09] stepped by 0.01; the patience pm ranges from 50 to 400 stepped by 50; the learning rate
decay ratio dα is searched in {0, 5, 0.6, 0.7}; moreover, the regularization weight λ is searched in
{0, 50, 100, 150, 200}. The maximum iteration number Im is 8000, where any case without finding
a successful attack within Im budget is deemed as failed.

5.2 TARGETED ATTACK PERFORMANCE

We first show that our proposed SSA is capable of efficiently constructing audio adversarial exam-
ples, viz., significantly outperforming existing baselines in Table 1. In particular, the baselines in-
clude DeepSpeech4, C&W attack (Carlini & Wagner, 2018), Y&S attack (Yakura & Sakuma, 2019),
GAA attack (Taori et al., 2019), MOOA attach (Khare et al., 2019), Metamorph attack (Chen et al.,
2020), and CIPMA attack (Esmaeilpour et al., 2021). The results from the baselines are reported
in (Esmaeilpour et al., 2021), which are averaged results over Common Voice and Librispeech. Our
SSA is evaluated on three datasets (i.e., Audio Mnist, Common Voice, and Librispeech), where an
averaged result over Common Voice and Librispeech is calculated for a fair comparison. All the
results of our SSAs are based on targeted attack settings.

In general, we can see that our SSA achieves remarkably better performance on both WER and SR.
Specifically, (1) SSA-Average achieves 103.49% and 89.60% regarding WER and SR, respectively,
which outperforms the best results obtained by CIPMA on WER (i.e. 88.19%) and GAA on SR
(i.e. 48.35%); (2) both SSA-Common Voice and SSA-Librispeech dramatically outperform the best
results obtained from the baselines as well. Especially for SSA-Common Voice, both of its WER (i.e.
106.27%) and SR (i.e. 96.00%) are the best across all comparisons; (3) SSA-Librispeech behaves
worse than SSA-Common Voice with regards to WER and SR, which is mainly attributed to the
difference of conditional text lengths between the two datasets; and (4) our proposed SSA realizes
100% w.r.t. both WER and SR on Audio Mnist, which can serve as a strong baseline for future study
on the audio adversarial attack. We suggest the reader to listen to our synthesised adversarial audios
that are available at our webpage5.

5.3 QUALITY EVALUATION OF SYNTHESISED AUDIOS

Although the regularization loss Lreg(z) in our SSA is designed to force our synthesised audios
to be independently and identically distributed w.r.t. the audio generated in VITS [1], we still find
some synthesised audios not natural sounding enough. Therefore, we further evaluate the quality
of synthesised adversarial audios by mean opinion score (MOS) tests. Specifically, we invited 20
participants to rate on 50 sample pairs, where each sample pair includes an original synthesised
audio by CVAE and its corresponding synthesised adversarial audio optimized by our SSA. Each
participant will listen to these 100 audio samples that are randomly shuffled. The naturalness rating

4
https://github.com/Picovoice/speech-to-text-benchmark#mozilla-deepspeech

5
https://sites.google.com/view/ssa-asr/home
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Figure 3: The results of SR with different α0 and pm on Audio Mnist.
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Figure 4: The results of SR with different α0 and pm on Common Voice.

score is scaled from 1 to 5. The MOS results are shown in Table 2, where we can observe a slightly
worse MOS score of our SSA synthesised audios (i.e., 3.39 ± 0.29) compared with that of original
synthesised ones (i.e., 4.09 ± 0.10). This again indicates that there exists distortions in the synthe-
sised audios by SSA. However, we further note that the difference of MOS scores between the two
types of synthesised audios is not significant, which indicates that the distortions are still subjec-
tively acceptable. Future works can focus on how to eliminate such distortions in the adversarial
audio generation, such as redesigning the regularization loss Lreg(z) in Eq (3).

5.4 HYPERPARAMETER ANALYSIS ON THE ADAPTIVE SIGN GRADIENT DECENT

In the adaptive sign gradient decent, the initial learning rate α0 and the patience pm are two important
hyperparameters. Their impacts regarding SR on Audio Mnist and Common Voice datasets are
displayed in Figure 3 and 4, respectively. Moreover, we also analyze their impacts on Common
Voice w.r.t. WER. Several interesting findings are noted as below.

Analysis on SR. (1) Generally, the SR first climbs up as α0 increases and then keeps stable with
further increase of α0. For instance, a stable SR is achieve with α = 0.03 on Audio Mnist. Similar
trends are also held with pm. (2) On both Audio Mnist and Common Voice, pm needs to be set as
a mild value (e.g., pm ∈ {300, 350}) in order to obtain a promising SR. This indicates that if the
learning rate α decays too fast, the sign gradient descent optimization in Algorithm 1 may get stuck.
(3) Compared the results in Figures (3-4), the SR from Common Voice is usually smaller than that
from Audio Mnist even with the same settings on α0 and pm. This is mainly because the audio
synthesised in Common Voice is clearly longer than that from Audio Mnist.
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Figure 5: WER with different α0 and pm on Common Voice.

Analysis on WER. Fig-
ure 5 shows the WER with
different settings of α0 and
pm. As a whole, the WER
first goes up with the in-
creasing of both parame-
ters, while becomes less
sensitive as they continue
to increase. For exam-
ple, comparing across dif-
ferent lines (i.e., with dif-
ferent α0), we can only ob-
serve a slight change on WER with α0 ≥ 0.04. This leads to a similar conclusion with the analysis
on SR, viz., proper settings of α0 and pm can easily synthesise harmful adversarial audios via SSA.
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Figure 6: Convergence analyses on selected representative cases on Common Voice.
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Figure 7: The comparison on waveforms between the audio dependent attack and our SSA.

5.5 CONVERGENCE ANALYSIS

One natural question is, given a particular setting on α0 and pm, how does the process of adaptive
sign gradient descent look like? We choose the best setting according to the results in Figure 4, viz.,
α0 = 0.06 and pm = 400, and select six representative evaluated cases to show the convergence of
the CTC loss, Levenshtein distance on Common Voice in Figures 6(a-b), respectively. In addition,
to assist the analysis, the correspond text length comparison and learning rate decays are provided
in Figures 6(c-d). Due to space limitation, the overall convergence process across 100 samples
related to CTC loss and Levenshtein distance and learning rate decays are respectively shown in
Figures (12-14) in the appendix. Some interesting observations are noted as follows.

First, from Figure 6(a) and Figure 12, we can see that the CTC loss of most cases quickly converges
to a small value close to 0. The convergence speed is especially fast at the beginning of the opti-
mization. Such a phenomenon is also observed in other studies (Amodei et al., 2016) related to CTC
loss based training. Second, in Figure 6(b), the Levenshtein distance on most cases except case 1
converges to 0, indicating a successful targeted attack. Third, on some cases, e.g., case 1 in Fig-
ure 6(a), although the convergence curve does not stop before reaching the maximum iteration step
8000, it can be deemed as an approximately successful attack as reflected by the small CTC loss in
Figure 6(a) and Levenshtein distance in Figure 6(b). Fourth, the additional text length comparison
in Figure 6(c) shows that the text length generally reflects the difficulty of generating a successful
attack, viz., a longer text usually requires more iterations in both CTC loss and Levenshtein distance
convergences. Lastly, the learning rate dynamics in Figure 6(d) also showcase that for a harder prob-
lem (i.e., with a larger text length), the learning rate decays more times to exploit a solution close to
a successful attack. More results and analyses can refer to Appendix 7.2.
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5.6 WAVEFORM PATTERN ANALYSIS

To showcase that our SSA is a more general attack compared with audio dependent attacks, we fur-
ther analyse the waveform pattern of both attacks as shown in Figure 7. In particular, Figure 7(a)
and (b) respectively depict the original audio and the corresponding adversarially perturbed audio,
where we can easily observe that the attacked audio needs to be restricted to only add minor pertur-
bations. In contrast, the adversarial audio constructed by our SSA as shown in Figure 7(c) is free of
such restriction, viz., the waveform can be significantly different. In sum, our SSA can be deemed
as an audio independent attack, which brings in more threat to ASR models in the wild. Further
analyses towards the audio style vector z before and after attack of SSA are shown in Appendix 7.3.
In addition, we also evaluate the tranferability of the adversarial audios w.r.t another ASR model
(i.e., ESPnet (Watanabe et al., 2018)) as shown in Appendix 7.4.

6 CONCLUSION

This paper investigates the audio adversarial attack for ASR models. Existing attack algorithms are
based on an audio dependent assumption, viz., adding constrained perturbations on benign audio
inputs. In contrast, we propose SSA, a novel threat model that constructs audio adversarial exam-
ples entirely from scratch, viz, without depending on any existing audio to fool cutting-edge ASR
models. To this end, we propose to use a conditional variational auto-encoder (CVAE) as the speech
synthesiser. Accordingly, the adversarial audio synthesising task is formulated as an optimization
problem via searching in the hidden space of CVAE. Meanwhile, an adaptive sign gradient descent
algorithm is further devised to solve the SSA optimization problem. Experiments on three datasets
show that our proposed SSA can synthesise audios that are naturally sounded but deceive start-of-
the-art ASR models. In our experiments, we also find that some synthesised adversarial audios do
not sound as natural as those without any manipulation on z, which thus needs future efforts to
enhance the quality of adversarial audio synthesis.
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7 APPENDIX

7.1 DATASET ANALYSIS

Figure 9 shows the length distribution of 1000 samples on Common Voice and Librispeech. Note
that, to better sample the adversarial attack target, we filter out data points that have too small
counts. From the selected 1000 samples, we generate our targeted attack dataset, viz., matching a
target that has a similar length with the conditional text. Figures (10-11) illustrate the comparison
of the text length between conditional text yo and target text yt on Common Voice and Librispeech,
respectively. In general, the length of yo and yt are similar. Moreover, in both datasets, the text
length has a huge variance, e.g., case 3 versus 30 in Librispeech. Compared Common Voice to
Librispeech, the length of many cases on Librispeech is much larger than the maximum length (i.e.,
100) on Common Voice.

7.2 ADDITIONAL ANALYSIS ON THE CONVERGENCE OF CTC LOSS AND LEVENSHTEIN
DISTANCE AND LEARNING RATE DECAY

The CTC loss convergence processes across the 100 samples on Common Voice are shown in Fig-
ure 12. Moreover, we further analyse the convergence of Levenshtein distance Dls(·) (Khare et al.,
2019) in Figure 13, in order to depict how does our proposed SSA succeeds. Note that the Lev-
enshtein distance is calculated as Dls(f(G(z, yo)), yt), which indicates the distance between the
transcription on the current synthesised audio x and the target transcription yt. We also analyse the
dynamics of α in Figure 14.

From Figure 12, we can see that the CTC loss of most cases quickly converges to a value close to 0.
The corresponding Levenshtein distance in Figure 13 exactly converges to 0 on these cases, suggest-
ing successful attacks on most cases. For the cases that do not stop the optimization before reaching
the maximum iteration step 8000, both the CTC loss and Levenshtein distance end with small val-
ues, which can be deemed as approximately successful attacks based on the related studies (Zhang
et al., 2020) on adversarial attack in natural language processing. From Figure 14, generally dif-
ferent cases have their own learning rate schedule. On most cases, the learning rate needs to decay
for at least 2 times. Only on some particular cases (e.g., case 2), directly using the initialized α
without decay can find a successful adversarial example. This implies that our designed adaptive
sign gradient descent algorithm enables the learning rate α to dynamically change according to the
optimized loss.

7.3 ANALYSES ON THE AUDIO STYLE VECTOR z

We further compare the original audio style vector z (i.e., sampled from the normal speech synthesis)
and the adversarial z (i.e., optimized by our SSA loss) on three cases as shown in Figure 8. For better
visualization, we only plot partial of vector z. For instance, z is reshaped from a (192× 231) matrix
with dimension determined by the conditional text in Figure 2, while we only plot (2 × 231) of
them as shown in Figure 8 (a). In general, Figure 8 shows that the original z and adversarial z
are significantly different. Namely, although both original and adversarial z fluctuate around the
mean 0 and share a comparable variance, their specific values for each dimension are quite different.
This indicates that our SSA has more flexibility of searching for a successful attack. In contrast,
the optimization space of previous audio dependent attacks is restricted around the original audio
waveform by a norm bound as shown in Figure 7 (b).

7.4 ANALYSES OF ATTACK TRANSFER

Our SSA is designed to be ASR model dependent. In specific, the adversarial audios are synthesized
based on Deep Speech. Therefore, as expected, these adversarial examples should pose limited threat
to other ASR models. To validate such a hypothesis, we mount the successfully synthesised audio
attacks on ESPnet (Watanabe et al., 2018) (i.e., an attention-based encoder-decoder network). In
doing so, we randomly sample 30 successfully synthesised attacks (i.e., based on Deep Speech),
input them to the ESPnet and calculate the levenstein distance (LD) with respect to the target text,
where LD = 0 indicates a successful targeted attack. Results show that the success rate and LD of
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Table 3: The human speech recognition evaluations on the original and SSA synthesised audios.

Type of audios Human Translation WER
Before attack (original synthesised audios) 18.52± 7.46%
After attack (SSA synthesised audios) 22.30± 5.05%

these transferred attacks on ESPnet are 0% and 40.97 ± 15.34, respectively. This suggests that the
adversarial audios generated by SSA are hardly transferable to a different ASR model.

7.5 HUMAN SPEECH RECOGNITION (SR) EVALUATION

The human speech recognition (SR) evaluation has been conducted. Specifically, we invite 5 partic-
ipants to listen to 50 sample pairs, where each sample pair includes an original synthesised audio by
CVAE and its corresponding synthesised adversarial audio optimized by our SSA. Each participant
then writes down the corresponding translation text. The WER is calculated between the human
translation and ground truth text. The averaged WER from the human evaluation is shown in Table
3, which indicates that the human translation performance is only slightly impacted compared to the
original synthesised audios.
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Figure 8: Comparison of z from the normal speech synthesis and the one optimized by our SSA
loss.
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Figure 9: The length distribution of 1000 samples on Common Voice and Librispeech
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Figure 11: The length comparison between condition text yo and target text yt on Librispeech
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Figure 12: The CTC loss convergence of SSA on Common Voice.
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Figure 13: The Levenshtein distance convergence of SSA on Common Voice.
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Figure 14: The learning rate decay of SSA on Common Voice.
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