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ABSTRACT

Aligning vision and language concepts at a finer level remains an essential topic
of multimodal large language models (MLLMs), particularly for tasks such as
referring and grounding. Existing methods, such as proxy encoding and geometry
encoding, incorporate additional syntax to encode spatial information, imposing
extra burdens when communicating between language and vision modules. In
this study, we propose ClawMachine, offering a new methodology that explicitly
notates each entity using token collectives—groups of visual tokens that collabo-
ratively represent higher-level semantics. A hybrid perception mechanism is also
explored to perceive and understand scenes from both discrete and continuous
spaces. Our method unifies the prompt and answer of visual referential tasks
without using additional syntax. By leveraging a joint vision-language vocabulary,
ClawMachine further integrates referring and grounding in an auto-regressive man-
ner, demonstrating great potential with scaled-up pre-training data. Experiments
show that ClawMachine achieves superior performance on scene-level and refer-
ential understanding tasks with higher efficiency. It also exhibits the potential to
integrate multi-source information for complex visual reasoning, which is beyond
the capability of many MLLMs. The model and data will be publicly available.

I have provided the 
claw machine’s box: 
<embed_2>

[x1,y1] [x2,y2]
… the claw machine

in the 
middle of … 

Please provide a detailed 
description for this region:

…

Please describe this 
region <embed_1>    
in details.

[x1,y1] [x2,y2]
Please describe this 
region                         
in details.

encode
to embeddings

decode 
to boxes

Here is the claw machine 
in the given image: 

A mom                           and 
her kid                is playing 
with it…

…

Visual referring：

Visual grounding:

location 
tokens 
or text

[x1,y1]

[x2,y2]

Proxy Encoding Geometry Encoding Token Collectives (ours)

Figure 1: A conceptual comparison between existing MLLMs and our ClawMachine in notating an
object in the image. ClawMachine does not use extra syntax, but directly embeds visual tokens to
the natural language, supporting fine-level visual understanding (e.g., referring and grounding) in a
native mechanism.

1 INTRODUCTION

Large language models (LLMs) (Devlin et al., 2018; Brown et al., 2020; OpenAI, 2023; Gao et al.,
2023; Chiang et al., 2023) have opened a new era of AI. To further unleash its potential, researchers
proposed MLLMs (Alayrac et al., 2022; Li et al., 2022; Liu et al., 2023b; Li et al., 2023a) for
visual understanding and investigated the multimodal dialogue task to unify visual perception tasks.
Recently, these tasks have been upgraded from image-level captioning or question answering to
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instance-level referring and grounding (Liu et al., 2023b; Peng et al., 2023; You et al., 2023; Ma
et al., 2024), urging the MLLMs to align vision and language at a finer (e.g., region or instance) level.
These referential tasks requires MLLMs understanding users’ intention to describe referred visual
entities and predict the position information of queried objects at a finer level.

Existing methods for referential dialogues can be conceptually categorized into two: proxy encoding
and geometry encoding. We summarize these works in Table 1 for comparison. Please refer to
Figure 1 for a conceptual demonstration. The proxy encoding methods introduce proxy token as
intermediates, which are processed by extra vision modules (e.g., RoIAlign (Zhang et al., 2023; Ma
et al., 2024), RegionCLIP (Chen et al., 2023a), SAM (Lai et al., 2023; Zhang et al., 2024; Rasheed
et al., 2023), and GroundingDINO (Tian et al., 2024)) to identify objects. For these methods, MLLMs’
visual grounding and referring abilities were trained separately, which brings difficulty to the joint
optimization, and imposes constraints on their generalization capacity. The geometry encoding
methods adopt an end-to-end solution by bounding objects with coordinate-like attributives. Early
geometry-encoding MLLMs, e.g., Kosmos-2 (Peng et al., 2023) and VisionLLM (Wang et al., 2023),
report concerns about drawback in language ability, as they introduced exotic location tokens to align
with, and the precision of grid-like data annotation was limited. Representative geometry-encoding
MLLMs, e.g., Florence-2 (Xiao et al., 2023), used plain text for location expression, yet requires
large-scale grounded data and detailed visual information during alignment training (Chen et al.,
2023c;b; Bai et al., 2023). Despite the referential understanding ability, we argue that both kinds of
approaches require the additional syntax for fine-level vision-language alignment. These MLLMs’
reliance on extensive instruction-tuning results in complex and burdensome training procedures, and
imposes significant constraints on their generalization capacity. Please refer to Appendix A.4 for
more discussion.

In this study, we propose ClawMachine1, an MLLM with simple-yet-effective design to achieve
referential understanding without extra syntax. ClawMachine is equipped with a new referential
method which notates visual entities explicitly using token collectives—groups of visual tokens that
collaboratively represent higher-level semantics. This avoids introducing proxy tokens or coordinates,
which facilitates not only performance but also efficiency. Besides, ClawMachine introduces a hybrid
perception mechanism, which simultaneously utilizes continuous and discrete visual information to
facilitate the training procedure. As a result, the visual referring and grounding tasks can be prompted
and answered in a unified form, i.e., a mixed token sequence using a joint vocabulary of vision and
language, and ClawMachine learns to fetch discrete tokens to propose a visual entity, in a way of
citing specific phrases like natural language.

We conduct extensive experiments to evaluate ClawMachine’s multimodal understanding ability.
Through a designed dual-training that fits our unified format, we feed the model to outperform
current models that consume much more than us, while having less hallucination on referred objects.
When scaling up the pre-training data using GRIT-20M (Peng et al., 2023), the model gains larger
improvement with minimal instruction tuning. Without additional codec, it demonstrates the ability
to describe and ground multiple objects within one inference, and shows potential on more complex
referential understanding tasks. This study reveals that, with proper design and adequate pre-training,
pure auto-regressive models can outperform those with large modules and/or using heavy referential
instruction-tuning. It is even one of the fastest MLLMs performing top-tier referential dialogues (see
Table 14 for details). We hope this study can equip MLLMs with a native ability and shed light on
unifying multiple modalities.

2 RELATED WORK

Multimodal large language model. The community is witnessing a trend towards unifying the
vision and language modalities using multimodal large language models (MLLMs) (Alayrac et al.,
2022; Li et al., 2023a; Liu et al., 2023b). Early endeavors like Flamingo adapted LLMs to visual
tasks by internal cross-attention design (Alayrac et al., 2022), while BLIP-2 (Li et al., 2023a)
introduced Q-former as an external block for vision-language alignment. Later works like LLaVA (Liu
et al., 2023b;a) applied effective projectors for alignment pre-training, providing a ViT-MLP-LLM
architecture for the community alongside the visual instruction-tuning method. Recently, a stream of

1The name ’ClawMachine’ comes from an analogy that our model fetches the visual tokens for interpretation,
just like a claw machine that grabs prizes and returns them to the player.
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Table 1: A detailed comparison with previous works. Grounded data refers to the instruction-tuning
data for referential tasks. [G] for geometry-encoding, [P] for proxy-encoding. *: SAM used for
segmenting scenes and mask decoding. † : DDETR used for object discovery.

Method Scene-Level Visual Perception Region-Level Representation Grounded
Encoder Image Tokens Data

GPT4RoI (Zhang et al., 2023) CLIP-H 256 [P] RoI Encoder -
Florence-2 (Xiao et al., 2023) DaViT-L – [G] Discrete bins 5B+
Shikra (Chen et al., 2023c) CLIP-L/14 256 [G] Text Coordinates 1M+
Ferret (You et al., 2023) CLIP-L/14+ 576 [P] Resampler, [G] Discrete bins 1M+
Qwen-VL (Bai et al., 2023) OpenCLIP-G (1.9B) 1024→256 [G] Text Coordinates 20M+
miniGPT-v2 (Chen et al., 2023b) EVA@448px (1.0B) 1024→256 [G] Text Coordinates 20M+
Groundhog (Zhang et al., 2024) CLIP/14+ & DINOv2 576+256 [P] Mask Extractor, SAM* 2.5M
GLaMM (Rasheed et al., 2023) CLIP-H/14 (0.6B) 256 [P] RoI Encoder, SAM* 6M+
Groma (Ma et al., 2024) DINOv2@448px 1024→256 [P] RoI Encoder, DDETR† 20M+

ClawMachine (ours) EVA-G/14 (1.0B) 256×2 Visual Token Collectives 700K

works (Kondratyuk et al., 2023; Lu et al., 2023) unified more modalities like video and audio into the
model’s vocabulary with advanced autoencoder designs (Yu et al., 2023), paving a promising path for
large multimodal models.

Referential notation. Referential notations are important for MLLMs to align text and image
modalities at a finer level. In methods that utilized proxy encoding (Zhang et al., 2023; Yuan et al.,
2024; Chen et al., 2023a; Rasheed et al., 2023), the model leverages the referential proxy as a signal for
agents and incorporated a specially-designed module to encode region-features. Powerful foundation
models like SAM (Kirillov et al., 2023) are also utilized to perform object discovery (Rasheed et al.,
2023; Zhang et al., 2024). When asked to ground visual objects, the model produces an intermediate
embedding supervised by detection or segmentation decoders (Lai et al., 2023; Tian et al., 2024).
Another research line applies the geometry encoding that utilizes discrete tokens to annotate the
boundary of instance and train the MLLM in an end-to-end manner, providing a unified method for
the model to recognize and generate instance positions (Chen et al., 2023c; Xuan et al., 2023; Peng
et al., 2023; You et al., 2023; Xiao et al., 2023).

Tokenization of vision. Aligning visual tokens within the language space has gained significant
attention in recent research. Using CLIP features of image patches, the Emu series (Sun et al.,
2023c;a) combined visual generation tasks with multimodal comprehension, while LaVIT (Jin et al.,
2023) introduced an extended visual vocabulary to simplify training objectives. More recently,
auto-regressive generation with directly quantized image patches (Team, 2024; Sun et al., 2024) has
sparked a new trend in the community. Although these early alignment methods are computationally
intensive to replicate, they provide valuable foundation models for experimentation. In this work, we
aim to further strengthen the spatial correlation within the multimodal embedding space.

3 METHODOLOGY

3.1 MODEL ARCHITECTURE

Recent MLLMs mostly adopt architectures inspired by LLaVA (Liu et al., 2023a) to comprehend
visual information. These models use a multi-layer perceptron to map image features encoded by
CLIP directly onto the hidden states (embedding space) of a LLM as visual prompts. This approach
enables the model to understand fine-grained visual information encoded by CLIP after training, but
experience difficulty to directly generate visual tokens. To address this limitation, recent studies (Jin
et al., 2023; Team, 2024) have expanded the model’s vocabulary by incorporating quantized visual
features as discrete tokens during training. Our approach takes advantages of both mechanisms,
which we term hybrid perception, aiming to equip the model with more flexible visual generation
capabilities while maintaining high perceptual accuracy.

To formulate the referential understanding tasks with unified notations, we utilize quantized patch
features (visual tokens) alongside the text tokens in MLLM’s vocabulary and use visual token
collectives to notate entities within the images. The overall architecture consists of four components,
namely, (1) a multimodal tokenizer with hybrid perception, (2) a vision-language mounting operation,

3
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𝑨𝑨:  Here is the person with <                 >:   

𝑸𝑸:  In the given image <        > , can you find the person with <     > ?

hybrid tokens

Multimodal Large Language Model

...... ... ...

... ... ...

...
match
&retrieve

Visual 
tokenizer

V-L mounting

...

𝑨𝑨:  Here is the…    

…  <tokens> ?

...

�𝑉𝑉𝑑𝑑𝑉𝑉𝑐𝑐

Next-Token predictionCLIP Features

extraction
Continuous feature:
Discrete visual token:
Language token:

: [𝐵𝐵,𝑁𝑁, dim𝑉𝑉]
MLP Embed

[𝐵𝐵,𝑁𝑁, dim𝐿𝐿]
Quantization

[𝐵𝐵,𝑁𝑁] [𝐵𝐵,𝑁𝑁, dim𝐿𝐿]: [𝐵𝐵,𝑁𝑁, dim𝑉𝑉]
Embed

[𝐵𝐵,𝑀𝑀, dim𝐿𝐿]: [𝐵𝐵,𝑀𝑀]

Figure 2: Framework of ClawMachine. When an image (or a region) is referred to, the corresponding
visual tokens are directly embedded to the natural language. ClawMachine performs next-token
prediction, and the output visual tokens are projected back to the image for grounding. B represents
batchsize, while dimV and dimL denotes the dimension of visual and language embeddings. Embed
denotes LLM’s embedding layer, and is demonstrated separately for intuitive explanation.

(3) a multimodal large language model for auto-regressive learning, and (4) region sampler to cluster
the generated visual tokens.

Multimodal tokenizer with hybrid perception. For the language part, given a sentence S, we use
LLaMA-2’s tokenizer (Touvron et al., 2023) to convert it to a language token sequence L = {li}Mi=1.
For the vision part, given an image I ∈ RH×W×C , the EVA-CLIP (Sun et al., 2023b) encoder is
employed to extract N = (W/P )× (H/P ) features from non-overlapping patches with patch size P .
We formulate two passes: the first one provides detailed visual information for scene understanding
and object recognition, with the patch features projected into language model’s embedding space
using a 2-layer MLP, resulting in Vc = {vi}Ni=1. The second one transforms the features into discrete
index, where the patch features are quantized in to discrete codes using LaVIT’s Vector-Quantization
layer (Jin et al., 2023), and gets V̄d = {v̄i}Ni=1. Both Vc and V̄d will be used as the visual prompt for
the MLLM. Please refer to Figure 2.

Vision-language (V-L) mounting. The key element to visual referring and grounding is the rep-
resentation of referential regions. To avoid extra syntax, we propose to use a mounting operation
to express it with token collectives. Such token collectives, despite of few outliers, mostly fall into
entities within the image. We map the bounding box as a rectangle to the image lattice and fetch the
visual tokens in V̄d with their center coordinates located within the rectangle. These tokens are sorted
according to their center coordinates with raster order to form the token collectives, and then inserted
to the dialogue correspondingly. The mounting operation can also support other types of referential
regions, e.g., a free-form mask.

Large language model for auto-regressive generation. With the above mechanism for tokenization
and mounting, the learning objectives of both visual referring and grounding are unified in an auto-
regressive form, so that the MLLM can learn more efficiently by predicting tokens using a simple
classification loss. In practice, we initialize the LLM from LaVIT-2-7B (Jin et al., 2023) (a model
based on LLaMA-2-7B). We provide a detailed discussion in Section 4.4 about the initialization and
comparison with common LLaMAs. L and V̄d get vectorized using LLM’s embedding layer, while
Vc is projected into the same language embedding space. Therefore, both Vc and V̄d function as the
visual prompt for the LLM. This hybrid perception mechanism has been evaluated to be effective for
multimodal understanding with unified vocabulary design.

Region sampler for visual grounding. The model is trained to interpret and generate visual tokens.
During inference, a simple Gaussian Mixture Model can suggest grounding boxes based on the
generated token collectives. Since the default linguistic sampling strategy, which decodes logits into
tokens, is not optimal for visual tokens, we propose an efficient region sampler that incorporates
object discovery priors. Details of this method can be found in Appendix A.5. This decoding strategy
uses the out-of-the-box region proposer, ensuring maximum utilization of the generated tokens
without causing information leakage or dispersion during training. In Section 4.1, we will discuss the
intermediate metrics and grounding performance in detail.
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3.2 DATA PREPARATION

Data preparation plays a crucial role in multimodal model research. Since the use of grounded data is
often unrestricted in current MLLMs, evaluating data efficiency and the effectiveness of design can
be challenging. During the training process, we made the following initial attempts.

The first model only utilize the object annotations from VG, and the RefCOCO series (including Ref-
COCO, RefCOCO+, RefCOCOg; RefCOCO/+/g for short). We denote this model as ClawMachine-
7B. The second model inherits exactly the same design but is pre-trained on 10 times larger materials
including GRIT-20M (Peng et al., 2023), a highly diverse and enriched text-image dataset with phrase-
level annotations. We denote this model as ClawMachineX-7B. The detailed data composition is
summarized in Appendix. A.1.

Table 2: A comparison of major dataset (>100k pairs) usage among popular models.

Method RefCOCO/+/g VG Flickr30K Object365 GRIT-20M Others

Shikra (Chen et al., 2023c) " " " % % VCR (Zellers et al., 2019)
GLaMM (Rasheed et al., 2023) " " " % % SA-1B (Kirillov et al., 2023)
Qwen-VL (Bai et al., 2023) " " % % " In-house Data
Ferret (You et al., 2023) " " " " % LVIS (Gupta et al., 2019)
Groundhog (Zhang et al., 2024) " " " " % VCR, GQA (Hudson & Manning, 2019)
Groma (Ma et al., 2024) " " " % " ShareGPT-4V-PT (Chen et al., 2023d)
ClawMachine (ours) " " % % X Pre-train ShareGPT-4V (Chen et al., 2023d)

In the pre-training stage, scene-level captioning data like LLaVA-Pretrain and ShareGPT-4V, region-
level captioning data from RefCOCOg and VG are utilized. For ClawMachineX, we transform
GRIT-20M to an image dataset with interleaved region-text captions. The format is described as
follows:

Hybrid image tokens: <boi><feats_c><eoi> <boi><feats_d><eoi>
A transformed caption example: <ref> Mother <boi><ref_tokens><eoi>
and <ref> the little daughter <boi><ref_tokens><eoi> in
<ref> hats <boi><ref_tokens><eoi> and...

In the instruction-tuning stage, we mainly train ClawMachine to answer two kinds of referential
questions, i.e., visual referring and grounding, and show that it generalizes to more complex scenarios.
The input and output of visual referring are curated into the following format, as

User: In the given image <boi><feats_c><eoi>
<boi><feats_d><eoi>, please provide a detailed description
for this <ref> region <boi><ref_tokens><eoi>.
Assistant: <A detailed description of the region>.

When the input is loaded, <boi><feats_c><eoi> will be substituted with Vc and
<boi><feats_d><eoi> substituted with V̄d. The <ref_tokens> will be substituted with
the token collectives extracted by V-L mounting. A trigger token <ref> is placed before the entity,
notifying the MLLM that visual tokens will follow. Two special tokens, <boi> and <eoi>, are
used to wrap these visual tokens. Similarly, the input and output of visual grounding are curated into
the following format:

User: In the given image <boi><feats_c><eoi>
<boi><feats_d><eoi>, can you find [object]?
Assistant: Here is <ref> [object] <boi><ref_tokens><eoi>.

where [object] can be substituted with any text description of the object. With the unified next-
token prediction objective, we can combine the curated datasets for referring and grounding and train
a single model for both tasks. We call it the dual training data and will show in Section 4.4 that it
benefits the model’s performance. Refer to Appendix. A.1 for more data samples.
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Table 3: Results on the visual referring task. ClawMachine demonstrates state-of-the-art perfor-
mance among recent MLLMs.

Model RefCOCOg Visual Genome

METEOR CIDEr METEOR CIDEr

GRiT (Wu et al., 2022) 15.2 71.6 17.1 142
Kosmos-2 (Peng et al., 2023) 14.1 62.3 - -
GPT4RoI (Zhang et al., 2023) - - 17.6 146.8
Shikra-7B (Chen et al., 2023c) 15.2 72.7 - -
GLaMM-7B (Rasheed et al., 2023) 16.2 105.0 19.0 163.9
Osprey-7B (Yuan et al., 2024) 16.6 108.3 - -
Groma-7B (Ma et al., 2024) 16.8 107.3 19.0 158.4

ClawMachine-7B (ours) 17.1 115.4 19.3 168.9
ClawMachineX-7B (ours) 17.4 118.4 19.5 169.7

3.3 IMPLEMENTATION

The training process is partitioned into two stages, supervised by a next-token prediction loss. Please
refer to Appendix A.2 for training configuration.

Stage 1: Alignment pre-training. We guide the model in performing basic captioning task at this
stage. The hybrid visual sequences are used. For ClawMachine-7B, a mixture of scene-level and
region-level captioning data is used. At the end of this stage, we obtain an MLLM that can generate
captions based on features of various scopes. For ClawMachineX-7B, extra 15M non-instruction-
tuning training data is used, and the MLLM can generate interleaved image-text token sequences.
The MLP and entire language model is trained while other components are frozen. Note that the
MLP projector is priorly initialized. See Section 4.4.

Stage 2: Instruction-tuning. We get the model accustomed to general VQA and referential dialogues
in this stage. We collect and curate visual instruction-tuning data from various sources for this stage.
The model’s referring and grounding ability is trained simultaneously with the dual curated data,
which is verified effective to improve the model’s grounding performance. The MLP and entire
language model is trained while other components are frozen. All the experimental results are tested
after this stage without task-specific fine-tuning.

4 EXPERIMENTS

4.1 REFERENTIAL COMPREHENSION

Visual Referring. We first evaluate ClawMachine on the visual referring task to as-
sess its ability of region-level understanding. The prompt for visual referring has the
form of Please provide a detailed description for this <ref> region
<ref_tokens>, where <ref_tokens> is replaced by the visual tokens within the target re-
gion as explained in the V-L mounting part. Table 3 presents our results on two established region
captioning benchmarks, RefCOCOg (Kazemzadeh et al., 2014) and Visual Genome (Krishna et al.,
2016). With scaled-up pre-training data, our model can better capture the token collective’s semantics.

Visual Grounding. Next, we study visual grounding, a.k.a. referring expression comprehension
(REC), the counterpart task to visual referring that requires the model to identify the location
of an object with language descriptions. By utilizing discrete visual tokens for image encoding,
ClawMachine can understand visual content like reading a paragraph. Consequently, cross-domain
grounding is transformed into a token retrieval task in the joint vision-language vocabulary. We
use In the given image, can you find [object] ? as the question. The results are
shown in Table 4.

We use the region sampler described in Section 3.1 to convert model’s output visual tokens into
bounding boxes required by visual grounding benchmarks. In this model, we have also used the dual
data composition policy (i.e., by including the training data curated for visual referring) to improve
the performance. The comparison of ClawMachine against existing MLLMs for visual grounding is

6
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Table 4: Results on the visual grounding (REC) task. We report accuracy with the IoU threshold
0.5. *: Groma interprets and selects pre-detected sequences instead of generating grounding tokens.
†: OFA, UniTAB and Florence-2 are generalist foundation models.

Model RefCOCO RefCOCO+ RefCOCOg Data
val test-A test-B val test-A test-B val test

OFA-L† (Wang et al., 2022a) 79.9 83.7 76.4 68.3 76.0 61.8 67.6 67.6 6M+
UniTAB† (Yang et al., 2022) 88.6 91.1 83.8 81.0 85.4 71.6 84.6 84.7 1.5M+
Florence-2† (Xiao et al., 2023) 93.4 95.3 92.0 88.3 92.9 83.6 91.2 91.7 5B+
Shikra-7B (Chen et al., 2023c) 87.0 90.6 80.2 81.6 87.4 72.1 82.3 82.2 1M+
MiniGPT-v2 (Chen et al., 2023b) 88.7 91.6 85.3 80.0 85.1 74.5 84.4 84.7 20M+
Qwen-VL-7B (Bai et al., 2023) 88.5 92.3 84.5 82.8 88.6 76.8 85.9 86.3 20M+
Ferret-7B (You et al., 2023) 87.5 91.3 82.5 80.8 87.4 73.1 83.9 84.8 1M+
Groma-7B* (Ma et al., 2024) 89.5 92.1 86.2 83.9 88.9 78.0 86.4 87.0 20M+

ClawMachine-7B (ours) 88.6 92.1 84.3 83.2 88.2 76.9 85.7 86.3 700K
ClawMachineX-7B (ours) 89.7 92.5 86.9 84.4 88.9 78.0 86.7 87.1 16M

Table 5: Results on LVIS-Ground benchmark.
ClawMachineX demonstrates superior capability for
grounding multiple objects at once.

Model AR@s AR@m AR@l AR

Shikra-7B (Chen et al., 2023c) 0.1 3.1 18.5 4.9
MiniGPT-v2 (Chen et al., 2023b) 0.3 8.0 41.1 11.4
Ferret-7B (You et al., 2023) 1.6 16.7 51.1 16.8
Groma-7B (Ma et al., 2024) 8.7 35.6 64.3 28.8

ClawMachineX-7B (ours) 20.5 43.1 69.2 36.7

Table 6: Evaluating intermediate results
using the three metrics in equation 1 on
RefCOCOg-val.

Training data precision recall IoU REC

Visual Genome 29.1 39.5 36.8 74.7
RefCOCO/+/g 26.2 42.3 37.0 70.1
+ Visual Genome 33.1 45.5 52.8 85.7
+ GRIT-20M 42.1 51.2 54.8 86.7
GRIT-20M 30.4 42.7 44.5 80.3

shown in Table 4. ClawMachine reports state-of-the art performance among the MLLMs that utilize
extensive training data or specifically designed architectures for visual grounding.

Additionally, with region-text interleaved GRIT-20M data during pre-training, ClawMachineX is
capable of locating multiple objects and provide a description within one inference, which most of
current MLLMs cannot perform. Following Groma (Ma et al., 2024), we conduct experiments with its
LVIS-Ground benchmark, which focuses on on testing the model’s ability to locate multiple, diverse,
and variably-sized objects. See Appendix A.7 for details. The results are summarized in Table 5.
ClawMachineX demonstrates superior ability with its native interleaved token generation ability, and
surpasses existing models especially on small objects. The lack of small objects in popular datasets
like RefCOCO/+/g is one important reason, besides, as discussed in Section 4.2, ClawMachine can
recognize visual concepts in quantized tokens, which provides extra convenience for fetching small
objects that occupy few patches in the image.

Quantitative evaluation of the token collectives. As the intermediate result of visual grounding,
the quality of generated tokens heavily impacts the accuracy of grounding. Initially, the MLLM
does not always generate complete visual tokens that cover the entire target. We considering several
token sets, where Gimage, Gpred, and Ggt denote the set of whole-image tokens, predicted tokens, and
ground-truth tokens, respectively. Note that the ground truth is extracted from the bounding box,
which may contain some background tokens. We then define four metrics for precision, recall, and
IoU:

precision = |Gpred ∩ Ggt| / |Gpred|
recall = |Gpred ∩ Ggt| / |Ggt|
IoU = |Gpred ∩ Ggt| / (|Gpred ∩ Gimage|+ |Ggt| − |Gpred ∩ Ggt|)

. (1)

The results of different ClawMachine variants are summarized in Table 6, revealing several important
insights. (1) The precision of retrieved tokens improves as the amount and diversity of training
data increases. (2) The recall of retrieved tokens is higher when the training data is from the same
domain (RefCOCO/+/g), but data from other domains (such as Visual Genome) helps to fill gaps.
This suggests that increasing the diversity of training data is an effective strategy. After scaling
with GRIT-20M, the quality of token collectives shows significant improvement. The visualization
results in Figure 8 further support this observation. As GRIT-20M supports the model in contrastively
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learning object representations and their features (the associated image tokens in this study), it leads
to improvements in IoU and precision. To further investigate the model’s performance with controlled
object size and IoU thresholds, we also made extended evaluations in Appendix A.3.

4.2 FINDINGS

ClawMachine learns visual concepts in quantized tokens. Figure 3 visualizes visual grounding
examples. One can see that the retrieved tokens are strongly correlated to the query. Delving into
the output, we find that ClawMachine learns to connect visual words in the joint vocabulary with
linguistic concepts, e.g., tennis ball is correlated with the 13635-th visual word and person
(in small scale) is correlated with the 14781-th visual word. Particularly, This has also been validated
in LVIS-Ground evaluations on small objects in Table 5. The basic understanding of individual visual
tokens can be extended to token collectives, which collaboratively represent higher-level semantics.
This makes it much easier for the MLLM to perform visual grounding: it only needs to fetch the
tokens that are most related to [object] from the image.

cat tv person

ID=14781

left birdkeyboard right red busvase book front cat

tennis ball: person:ID=13635

CD player cup curtain

Figure 3: ClawMachine generates visual tokens, projects them to the image lattice (denoted by stars),
and predicts the grounded box (denoted by rectangles). The top row shows the ability to ground
different objects within one image. The bottom row shows visual tokens with the same ID.

Token collectives alleviate referential hallucination. Referential dialogues place higher demands
on a model’s ability to recognize and localize objects. However, current referential visual instructions
can make MLLMs prone to hallucination, as many scenes and details are repeated across different
auto-generated datasets. To address this, we conducted additional experiments to evaluate the model’s
referential hallucination. Inspired by POPE (Li et al., 2023b), we curated a Ref-Hal test based on
GQA (Hudson & Manning, 2019), where the model is asked to verify answers based on referring
objects. Details of the curation and testing process are provided in Appendix A.8. The model can only
give correct answers if it truly understands the user’s referential intent. The results, summarized in
Table 8, show that ClawMachine exhibits significantly fewer hallucinations in object references under
the same non-tuning setting. Proxy-encoding models underperformed, despite some showing strong
results in POPE, which we attribute to their customized design for current tasks. Geometry-encoding
model Qwen-VL showed better overall performance, while Shikra lagged behind, likely due to its
multiple passes over datasets during training.

Complex visual comprehension. ClawMachine benefits from two-fold advantages: (i) it has a native
ability to perform visual referring and grounding so that a question and its answer can contain both
image and text elements, and (ii) it builds a clear relationship between visual and linguistic tokens
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Table 7: POPE adversarial result for object hallucination. Tokens indicate the image tokens used
for each image. *: Groundhog uses DINOv2 feature fusion, and traversed much more data.

Method Tokens Accuracy Precision Recall F1 score Yes(%)

LLaVA-7B (Liu et al., 2023b) 256 50.77 50.39 99.87 66.98 99.10
Shikra-7B (Chen et al., 2023c) 256 83.10 85.6 79.60 82.49 46.50
Ferret-13B (You et al., 2023) 576 82.36 83.60 80.53 82.00 48.18
Groundhog-7B* (Zhang et al., 2024) 576+256 86.33 85.93 86.63 86.28 49.60
ClawMachine-7B (ours) 256×2 85.36 86.39 82.87 84.59 48.10

Table 8: Results on our designed hallucination test with referred objects (Ref-Hal).

Method Referring Syntax Accuracy Precision Recall F1 score Yes(%)

Shikra-7B (Chen et al., 2023c) Text Coordinates 47.3 48.3 76.0 59.1 78.7
Qwen-VL-7B (Bai et al., 2023) Text Coordinates 61.5 58.3 81.0 67.8 69.5
Ferret-7B (You et al., 2023) RoI Features 56.8 54.9 76.0 63.8 69.2
GPT4RoI-7B (Zhang et al., 2023) RoI Features 44.0 45.7 63.4 53.1 69.4
Groma-7B (Ma et al., 2024) RoI Features 53.9 52.8 72.8 61.2 68.9
ClawMachine-7B (ours) Token Collectives 75.8 72.8 82.4 77.3 56.6

so that the same concept can be delivered using either image or text. Integrating these advantages
allows it to solve complex visual reasoning tasks. Figure 4 shows examples including: a. grounding
multiple objects at once. b. grounding-upon-referring, where the query to visual grounding contains
image-embedded tokens, and c. multi-object referring segmentation, where multiple sets of retrieved
tokens are converted into instance segmentation results. it also supports d. and e. free-form and f.
region-text interleaved VQA. These are beyond the capability of current methods within one model,
and shows ClawMachine’s potential towards complex and flexible referential dialogues.

Where is the person 
with                         in this 
image?

Call this logo                 brand A. 
Call this logo          brand M. 

Call this logo          brand T. 

What is the brand of the car in the 
image? Answer with brand A, M or T. 

Brand M.

In the image, where is the 
person and the rocky shore 
that he’s standing on?  

Here is the man and 
the rocky shore:

seg

sampler

Here is the man with 
a mask on his face:

box

sampler

In the image, can you 
find the way to follow 
the instruction of the 
sign?

Following the 
instruction, you 
shall turn right. 
Here is the way:

What is the object in 
<ref> this region

The object is a comic-style 
saber, used in the past by 
soldiers on horses.

In the image, can you find all the                    ?

There are three 
petals                       <                  >

<                  >
<                  >

on the top.

in the image? 
Describe its common 
usage.

…

a. b. c.

d. e. f.

Figure 4: ClawMachine can solve complex visual reasoning tasks. See the texts for explanations.

4.3 SCENE-LEVEL PERFORMANCE

In addition to region-level tasks, we further evaluate ClawMachine on conversational VQA benchmark
LLaVA Bench (Liu et al., 2023b), and model’s performance on object hallucination benchmark
POPE (Li et al., 2023b). The LLaVA Bench contains questions about conversations, detailed
descriptions and complex reasoning. As shown in Table 9, ClawMachine maintains competitive
image understanding and visual chatting abilities. Without high-resolution visual encoders and
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Table 9: Results on LLaVA-Bench (COCO).

Method Conv. Desc. Reas. Avg.

LLaVA-7B (Liu et al., 2023b) 85.4 68.3 92.1 81.9
Kosmos-2 (Peng et al., 2023) 71.7 63.4 74.9 70.0
Shikra-7B (Chen et al., 2023c) 80.6 70.7 88.1 79.9
Ferret-7B (You et al., 2023) 84.4 79.4 96.3 86.7
Groma-7B (Ma et al., 2024) 82.6 84.0 88.8 85.2
ClawMachine-7B (ours) 84.8 82.5 94.5 87.3

Table 10: Ablation on image feature settings.

Stage-1 Stage-2 Referring Grounding VQAv2

conti. conti. 16.8 73.1 78.4
conti. discr. 16.5 81.1 77.9
discr. discr. 14.2 84.3 72.1
discr. conti. 14.4 75.8 72.3
concat(conti., discr.) 17.1 85.7 78.9

task-specific fintuning, ClawMachine gains the highest average score comparing with other MLLMs
doing VQA tasks. We show the adversarial set’s results on POPE as a complement to the Ref-Hal
results. ClawMachine also demonstrates competitive results without data or feature augmentation.

4.4 DISCUSSION AND ABLATIVE STUDY

Initialization. In exploring recent MLLMs with a joint vision-language vocabulary Jin et al. (2023);
Team (2024), we base our model on LaVIT for several reasons: as an early endeavor towards
unified vision-language generation model, LaVIT provides us with an MLLM with extended vision
vocabulary and corresponding VQ model, utilizing large amount of data for text and image generation.
Notably, LaVIT uses the MLP projector and standalone visual tokenizer weights for multimodal
understanding, while has not been trained on COCO captioning or VQA datasets. So we excluded all
these weights to restore the MLLM for a fair initialization. Prior to pre-training, we retrained the
projector to facilitate an equitable comparison with other models on scene-level understanding. We
initialized the projector from scratch with learning rate of 1× 10−3, and used the CC-SBU-558k data
introduced in LLaVA for training. During this process, we disabled the quantization and only input
continuous patch embeddings Vc, while keeping the tokenizer and MLLM frozen.

Hybrid Perception Design. A straightforward choice is to use either continuous or discrete image
features. However, our findings reveal some interesting insights: As can be seen in Table 10, the
quantization loss of discrete image tokens negatively impacts the model’s visual perception. Despite
this, quantization is pivotal for visual grounding, as discrete tokens are easier to retrieve in our
next-token prediction framework. We conducted experiments by toggling between continuous and
discrete modes. The limitations of using separate modes are overcome by simultaneously utilize Vc

and V̄d. We attribute this improvement to the separate optimization of the embedding states for the
two signals-using MLP for Vc and LLM’s embedding layer for V̄d-which collectively enhances the
adaptation of the original CLIP features. The experiments are conducted under the default setting
with RefCOCO/+/g and VG data.

5 CONCLUSION

We present ClawMachine, a multimodal large language model designed to unify various fine-level
referential tasks. Central to ClawMachine is the approach of annotating visual entities with corre-
sponding tokens, eliminating the need for additional syntax. This method demonstrates the model’s
ability to grasp high-level semantics through token collectives. Furthermore, ClawMachine excels
in complex visual reasoning by seamlessly integrating visual and language tokens within the same
sequence. Our research indicates that this unified design, combined with effective pre-training,
enables pure auto-regressive models to outperform those with large modules and extensive referential
instruction tuning.

Limitation and future work. Vision data is rich in information, but quantizing visual features
often results in a loss of fine-grained details. We anticipate the development of more advanced
encoding mechanisms that minimize information loss when embedding visual data into the joint
vocabulary(Tschannen et al., 2023). Additionally, the probabilistic nature of large language models
can lead to unstable and incomplete outputs for visual tokens—for instance, failing to capture the
entire grounded target. We envision a unified learning procedure that integrates the LLM with the
visual encoder to address this challenge effectively.
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A APPENDIX

We provide some additional explanation and details in the appendix.

A.1 DATA COMPOSITION DETAILS

We provide data usage details in this section.

During pre-training, the data is transformed into a simple concatenation of visual signals and
corresponding description with no instruction-tuning style templates. For scene-level captioning, the
tokens of entire image are used, while only the cropped tokens from the V-L mounting operation are
employed for region-level captioning. Some images of GRIT-20M are no longer available from the
Internet, and we do a simple filtration by removing images that focus on celebrities and pure text
images, so the final size of available data of GRIT is about 15M.

During fine-tuning, we mix the general VQA datasets with referential dialogues. We only reserve
the COCO-VQA and GQA subset of LLaVA-mix665k, as the text-related subsets are of severe
hallucination and do not help with general understanding tasks (model performs better with cleaned
data on VQAv2 bench). Besides classical referential instructions, we collect some useful subsets from
existing and widely used datasets. Osprey makes short annotations from original RefCOCO datasets
more vivid and detailed. AS-V2 provides more flexible referring and grounding conversations, which
helps to interleave vision and language tokens. Specifically, scene-graph like data are utilized for
describing and grounding multiple objects at one inference with an aligned output style. The claimed
700K grounded data refers to the sum-up of {RefCOCO/+/g, Visual Genome, Osprey: detailed,
AS-V2: scene graph, AS-V2: conversation, and Chatterbox: CoQ}. Please see Table 11 for more
information.

Effectiveness of dual data. We study the impact of using different instruction tuning data in Stage
2, and evaluate the model’s visual grounding performance. We compare the contribution of the
plain data (the dialogue data without region-level questions, sourced from LLaVA-mix665k (Liu
et al., 2023a)) and dual data (the visual referring part), by only adding either of them apart from the
grounding data, and find that the latter brings about 1.7% gain in REC average score (although the
former is also useful in maintaining the model’s VQA ability). This validates that ClawMachine
can absorb the knowledge from various kinds of referential dialogues, which mainly owes to its
formulation that unifies referring and grounding into the next-token prediction task.

A.2 TRAINING DETAILS

We use the AdamW (Loshchilov & Hutter, 2019) optimizer with the cosine annealing scheduler (He
et al., 2019) to adjust the learning rate. The initial learning rate is set to 2× 10−5 and 1× 10−5 for
the two stages respectively with a warm-up ratio of 0.03. The global batch size remains constant
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Table 11: Data composition details.

Training Stage Data Description and Usage Image-Text Pairs

Pre-training

LLaVA-Pretrain (Liu et al., 2023b) Scene-Level Caption 558k
ShareGPT-4V (Chen et al., 2023d) Scene-Level Caption 100k
RefCOCO/+/g (Kazemzadeh et al., 2014) Region-Level Caption 287k
Visual Genome (Krishna et al., 2016) Region-Level Caption 247k
GRIT-20M (Peng et al., 2023) Interleaved Caption (for ClawMachineX) 15M (filtered)

Fine-tuning

LLaVA-mix665k (Liu et al., 2023b) General VQA 436k (filtered)
RefCOCO/+/g (Kazemzadeh et al., 2014) Visual Referring&Grounding 287k
Visual Genome (Krishna et al., 2016) Visual Referring&Grounding 247k
Osprey: Detailed (Yuan et al., 2024) Referring Details on RefCOCO 63k
AS-V2: Scene Graph (Wang et al., 2024) Multiple Grounding on RefCOCO 42k
AS-V2: Conversation (Wang et al., 2024) Refer&Ground convs. on RefCOCO 22k
Chatterbox: CoQ (Tian et al., 2024) Logical Chain of Grounding 40k

at 256. We freeze the tokenizer and train the projector and LLM in both stages. The training is
conducted on 8×NVIDIA A100 GPUs with 80GB memory. The FlashAttention-2 and DeepSpeed
libraries with zero2 are employed for efficient training. The input image size is set to 224× 224 with
a patch size P = 14, and the maximum sequence length in the MLLM is 2048. The codebook of the
VQ process is 16384, while the language tokenizer has 32000, resulting in the MLLM with 48384
vocabulary size. The training datasets are combined into a single dataloader using the V-L mounting
operation. The image-text pairs are randomly selected during training and are only traversed for one
epoch in each training stage. The training takes about 8 hours for each stage of ClawMachine-7B,
and the pre-training of ClawMachineX-7B takes about 3.5 days. We provide a configuration list
for all the components that are tuned. The tokenization layer of visual tokens is frozen throughout
the process, while the corresponding hidden state is trained within LLM’s embedding layer. The
Projector alignment is stated in Section 4.4 for a fair comparison. Note that our model’s training
strategy, which is addressed as visual instruction tuning (Liu et al., 2023b), is widely utilized by
current state-of-the-art multimodal language models.

Table 12: Training Configuration.

Training Stage MLP Projector LLM Data usage Strategy

Projector alignment Training Frozen CC-SBU-558k lr = 1× 10−3

Standard LLaVA-pretrain 1 epoch

Pre-training Training Training 1.2M/16M caption data lr = 2× 10−5

Denoted in Table 11 1 epoch

Fine-tuning Training Training 700k instruction-tuning data lr = 1× 10−5

Denoted in Table 11 1 epoch

A.3 FURTHER EVALUATION ON GROUNDING METRICS.

An initial exploration of size-based evaluation in LVIS-Ground is presented in Table 5, we conduct
further evaluation here with controlled IoU thresholds to highlight the model’s performance dif-
ferences under incremental data settings. We calculate the relative area S by multiplying object’s
relative w and h (between 0 and 1). To ensure the consistency with the REC metric, the x of Acc@x
here is calculated using the IoU of final grounding results and ground truth. All the results are
evaluated on RefCOCOg-val.

As shown in figure 5, pre-training on GRIT-20M led to consistent improvements in performance
across IoU scales, with particularly significant advantages at higher IoU thresholds. The model also
demonstrated enhanced detection capabilities for objects of varying sizes.

A.4 AN INTUITIVE EXPLANATION ABOUT REFERENTIAL COMPREHENSION.

For existing methods, the LLM learns to understand the reference expressed by newly introduced token
or embeddings. Specifically, for geometry-encoding methods, the grounding ability is represented by
its learning of discrete location token or numerical coordinates. This brings high demand on image’s
resolution and feature details for the alignment. As can been seen in the comparison Table 1, while
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RefCOCO+/g + Visual Genome + Visual Genome, GRIT-20M
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Figure 5: Model’s detailed grounding performance with controlled IoU thresholds and object sizes.
Note: small(23.6%): S ∈ (0, 0.08), medium(49.1%): S ∈ (0.08, 0.25), large(27.3%): S ∈ (0.25, 1)

the grounded data demand is high for pre-training, most geometry-encoding methods also employ
higher-resolution encoders to guarantee the perception details.

For proxy-encoding methods, the representation of referred objects is based on vision priors like
RoI embedding. However, while the embedding may be updated to align with the language space,
its relationship with the original vision features is not optimized. This makes the proxy embedding
task-specific and limits MLLM’s generalization capacity. Moreover, the grounding embedding
weaved by the hidden stated of last output tokens makes it technically hard to localize multiple
objects during inference, let alone the decoder-specific design on rare foundation models like SAM
and GroundingDINO. Groma tackles this issue by pre-detecting all objects in an image and guiding
the model to select the correct responses, although this increases the tuning complexity and latency.

ClawMachine enhances referential tasks by integrating language and vision more deeply within
an auto-regressive architecture. Using a joint vocabulary, it represents references through token
collectives, facilitating a stronger fusion of language and vision in the embedding space. This approach
helps align finer concepts and allows the model to learn high-level semantics across multiple visual
tokens, which has been roughly encoded by CLIP yet not utilized by existing MLLMs. Additionally,
this hybrid perception design promotes joint optimization, improving the overall performance in
referential comprehension tasks.

Location
Attr.

Proxy
Embeds

Geometry
encoding

Proxy
encoding

Token collectives
(ours)

Figure 6: A conceptual illustration about referential MLLMs. See text for explanation.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 REGION SAMPLER DESIGN

We explain how our grounding method works and provide some details for decoding visual tokens
into bounding boxes in this section.

Retrieving Tokens in Image. Let Gimage represent the group of image tokens, Gpred the group of
generated tokens. We get Gpred∩image = Gimage∩Gpred as the primary material for further processing.
For each element vi ∈ Gpred∩image, as its index in the visual tokenizer’s codebook is determined,
we can easily retrieve its original place with V̄d = {v̄i}Ni=1. As the tokenizer has limited vocabulary
and may not assign every patch of the image a different code, we firstly retrieve visual tokens that
appear only once in Gimage. Then for vi that appears more than once in Gimage, we scan all of its
possible origins and append the index that is nearest to the already picked tokens to minimize extra
noise. After this procedure, we can get a retrieval map for model’s output visual tokens, which just
looks like the stars on a canvas as we illustrated in Figure 9.

Region Sampler with Detection Priors. As the default linguistic
sampling strategy that decodes logits into tokens are not optimal for
visual tokens, we propose an efficient region sampler with object dis-
covery priors, which is similar to the modern beam search (Lemons
et al., 2022) algorithm utilized by LLMs:
First, a switchable region proposer is deployed for a primary object
detection. For a given image, the proposer provide prediction boxes
with a score higher than 0.3 by default, and we use them as the
region proposals. We do not give it any clue like class or description.
See Table 13 for our experiments. Hit-Rate refers to the chance that
the proposer can discover the object described by the dataset with
IoU > 0.5. Some annotations are quite difficult even for human
in RefCOCO series, and for the rest of the objects, the discovery
results are close.
Second, with the logits of generated token collectives, we conduct
a fuzzy search after the the retrieval. For tokens that do not have
explicit match in the image grid, their logits are decoded correspond-
ingly if the top-3 index fall into the region proposals’ lattice.

Where is the cup? Where is the person?

Figure 7: A figure that is diffi-
cult for proposers. As no pro-
posal is valid, ClawMachine
will output the convex box for
the decoded tokens.

Only the proposals that already have decoded tokens will be considered in the fuzzy search. If no
tokens have fell into the proposals’ lattice with overlap > 0.1, we skip the nomination process and
use a simple convex box for the decoded tokens as the result which is effective for small or hindered
objects.

Finally, for each proposed box, we initialize a 2D Gaussian distribution based on it. Suppose the
gaussian distribution’s variance shall be inversely proportional to box’s size, while the covariance
matrix of the distribution follows the shape of the rectangle. We use these pre-defined distributions
to construct a simple Gaussian Mixture Model (GMM), and predict the points’ intention. This will
result in a prediction label for each point that decides which distribution it belongs. After using the
prediction results and points’ density to score each box, we nominate the box with highest scores
as model’s prediction results. For multiple object detection, as each generated token collectives is
bounded with their object name in “<ref> object <boi> <ref_tokens> <eoi>”, this
process is executed sequentially with no overlap.

A Primary Latency Test. The efficiency of MLLMs has often been overlooked in recent referential
studies. However, we believe it remains a crucial indicator of a model’s capabilities. Geometry-
encoding methods typically employ an end-to-end training procedure, where processing detailed
visual tokens—often at higher resolutions—accounts for most of the inference time. In contrast,
proxy-encoding methods approach referential dialogues in an agent-like manner, utilizing LLMs to
weave embeddings while relying on large foundation models as peripheral modules for downstream
decoding. This coupling introduces higher latency during both training and inference.

In our approach, the proposer used in our region sampler also contributes to processing time during
inference. So we conducted an average latency comparison with the released versions of these models
(note that Groundhog is not yet released), as shown in Table 14. With the switchable proposer design,
ClawMachine offers users flexibility in choosing between precision and efficiency. The latency was
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Table 13: Ablation on Region Sampler’s design choice. The REC score is tested on RefCOCO-val
with ClawMachineX. Hit-Rate refers to the chance that the proposer can discover the object described
by the dataset with IoU > 0.5. NOTE: The previous best is 89.5 reported by Groma (ECCV’24),
which adopts a large DDETR-like detector pre-trained on SA-1B to extract all the objects in a scene,
taking more than 500ms for each round detection.

Proposer Hit-Rate (%) Latency (ms) REC score

Co-DETR(Swin-L) (Zong et al., 2022) 92.5 217 89.7
Co-DETR(R-50) (Zong et al., 2022) 92.1 165 89.1
YOLOX-X (Ge et al., 2021) 89.5 17 88.7

Table 14: A inference latency comparison with other models. The precision is set to bfloat16. Note
that our model does not incorporate any detection modules during training. The inference time of
ClawMachine and its X version keep the same. *: with Co-DETR or YOLOX-X as the proposer.

Model Image tokens Modules Referring (ms) Grounding (ms)

Ferret-7B 576 Spatial Resampler 378 431
GLaMM-7B 256 SAM 449 639
Groma-7B 576+256 DDETR 733 757
ClawMachine-7B 256×2 Region Sampler 309 577 / 377*

tested and averaged using the default evaluation scripts provided by the developers (where available),
or we used similar questions to those posed to ClawMachine.

In the image <image tokens> , can you find the boy flying a kite ?

RefCOCO/+/g +Visual Genome +GRIT-20M

In the image <image tokens> , can you find the cell phone?

RefCOCO/+/g +Visual Genome +GRIT-20M

Figure 8: The diversity of training data improves the accuracy of retrieved visual tokens.

A.6 ADDITIONAL ABLATION STUDY.

Model design ablation with same data. We added more ablation studies in Table 15 under the the
strict same pre-training and instruction-tuning datasets, i.e., same as used by ClawMachine-7B. We
removed the global LaVIT token in only continuous , and did ablation experiments by replacing
referring and grounding LAVIT tokens with text coordinates. Referring was tested on RefCOCOg
using the METEOR score and grounding on RefCOCO-val.

Encoder ablation. We compared model’s performance with different encoders in Table 16. We pick
EVA-CLIP as the image encoder for the following reasons: First, it is pre-trained with a mask image
modeling procedure, which wre validated enjoying perfect semantic re-construction on visual token
collectives. Even at the same size, visual encoders with MIM pretraining got better score(compare
EVA-L (EVA02) and CLIP-L). Second, the LAVIT’s vanilla quantization layer (a 2 layer-MLP with
a indexing in the codebook), which helps to get the index of visual tokens, is tuned to tokenize
EVA-CLIP features. We replace it with an ordinary ViT, and observe certain drop in grounding(REC)
benchmarks. This can also be attributed to under-training of the quantization layer. For comparison,
Shikra that uses CLIP-L as the encoder got 82.3 on REC score.
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Table 15: Ablation on Model design.

Encoder R&G syntax Referring Grounding VQAv2

Only Continuous text coordinates 14.9 81.0 78.4
Only Continuous token collectives 15.8 79.1 78.4
Hybrid text coordinates 14.9 81.1 78.6
Hybrid token collectives 17.1 88.6 78.9

Table 16: Ablation on Encoder design. REC score tested on RefCOCOg-val.

Encoder Precision IoU REC

EVA-CLIP 33.1 52.8 85.7
EVA-L/14 30.3 51.4 83.9
CLIP-H/14 31.4 51.9 84.4
CLIP-L/14 29.5 51.0 83.4

A.7 TESTING ON LVIS-GROUND

The LVIS-Ground benchmark introduced by Groma (Ma et al., 2024) focuses on grounding multiple
objects in the image. They randomly sample at most 5 images for each object category from the
LVIS (Gupta et al., 2019) validation set to construct LVIS-Ground. The AS-MANY-Protocol is
followed for evaluation: this protocol selects the top-k predicted boxes (where k is the number of
ground-truth boxes) and measures recall over all ground-truth boxes. For example, if there are 3 out
of 5 ground-truth boxes hit by the top-5 predicted boxes, the recall is 60%. More details can be seen
in the main manuscript paper.

In each inference of ClawMachine, it outputs a scene-graph like sentence describing all the instances
in the image with grounding token collectives. For multiple objects with a same category, it knows
to use <boi> * <eoi> to wrap up each objects’ predicted tokens, just like Kosmos-2 (Peng
et al., 2023) with GRIT uses the similar syntax to ground multiple objects. We first map all the
output grounding tokens into boxes using the region sampler. In the image, for each category in the
ground-truth, we calculate whether ClawMachine mentions it, and the corresponding boxes will be
used to calculate the recall. The average recall is calculated over 10 IoU thresholds (ranging from 0.5
to 0.95) as the primary metric on LVIS-Ground.

A.8 REF-HAL: EVALUATING REFERENTIAL HALLUCINATION

Inspired by POPE (Li et al., 2023b), we curate a simple Ref-Hal test dataset based on GQA (Hudson
& Manning, 2019), asking the model to make verification based on referring objects. Here is the
details about Ref-Hal:

Table 17: A simplified demonstration of GQA composition. The data types that do not exist in GQA
is denoted with gray cells. Only the types with checkmarks ✓are sampled.

Compare Logical Verify Query Choose
Category
Attribute ✓ × ✓ × ×
Relation ✓ × ×
Object × × × ×
Global

Our primary intention for Ref-Hal is to evaluate model’s hallucination on referred objects, while
avoid overlapping with existing benchmarks on complex referential understanding abilities. The
GQA serves as an ideal start point, as it focuses on forming strong bonds among objects in VG
images. We make an summary in Table 17. As shown, the composition of GQA can be roughly
categorized with two dimensions: semantic (vertical) and operation (horizontal). The logical, query,
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and choose operation is firstly excluded for the following reasons: logical relies on knowledge rather
than recognition of objects, and overlaps with verify on question styles; query has no referred objects
in the question; choose focus on the detailed attributes of the single object, which can be evaluated
with general visual referring benchmarks. verify-object is excluded, too, as it asks the model whether
something is in the image, much like the POPE for hallucination tests. The remaining three sets have
the following format:

Compare-Attribute: “Is the <obj_1> SAME <attr.> <obj_2>?” to verify the attributes of two referred
objects. Examples: Do the mouse and the curtain have the same color? Is the bag made of the same
material as the door frame?

Verify-Attribute: “Is the <obj> <attr.> adj.?” to verify certain attribute of the referred object. Example:
Does the shirt has green color? Are the bleachers that are not long made of wood?

Verify-Relation: “Is the <obj_1> <relation> <obj_2>?” to verify the relationship of two referred
objects. Example: Is the person wearing a hat? Is the car behind a motorcycle?

We extract 221, 334, and 445 Q&A pairs from GQA’s testdev-balanced set correspondingly (same as
the original ratio of these three types in the testdev-balanced set), and yes : no = 1 : 1. We utilize
GPT-4V to replace one object in half of the questions with another object that appears in the same
image, assuring that the answer is reversed (the replacement choice is random like POPE random set,
but not replacing it with something that is not in the image, which makes any reference invalid). Then,
we transform the object notations in the question with object in the referential style. After this
modification, the question “Is the car behind a motorcycle?” is transformed into “Is
the object-1[R1] behind a object-2[R2]?”. Where [Rn] is the referential notation.
As GQA do not explicitly annotate the objects with coordinates, this substitution used the original
ground-truth annotation of VG to ensure correspondence and precision.

With the curated Ref-Hal benchmark, we test model’s hallucination on referential objects. The
results are shown in Table 8. The model needs to recognize the referred object in the question
before answering: e.g., “object[0.113,0.224,0.355,0.998]” for geometry-encoding
models, “object[RoI embedding]” for proxy-encoding models, and “object[token
collectives]” for ClawMachine. The model only needs to answer yes or no, and the eval-
uation result is summarized in Table 8. For a fair comparison, ClawMachine is not trained on any
subsets of this benchmark.

A.9 MORE VISUALIZATION EXAMPLES

We provide more visualization examples of ClawMachine’s output in this part. As the resulted points
serve as a task-agnostic supervision intermediate for downstream tasks, we also use it as a prompt
for powerful pre-trained segmentation models (Kirillov et al., 2023). The points’ convex closure
can be regarded as a semantic segmentation with rough granularity, which is finely post-processed
by segmentation specialist models. We show some examples in Figure 9. However, using multiple
points as a weak supervision is of limited support from SAM and other segmentation models, related
segmenting works like LOST (Siméoni et al., 2021) and TokenCut (Wang et al., 2022b) are still under
development. We hope to address this problem with a sampler with finer granularity and free-form
support in the future.
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person vase ‘19’ surfboard

tennis racket knife couch behind

elephant on the left motorcycle behind left car horse on left

right suitcase man on right 
with back to us

left woman in 
purple

top right cup

pizza on the right

Figure 9: More visualization examples of ClawMachine. The bottom two rows show some segmenta-
tion results we get from SAM using points’ clustered center as the prompt.
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