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ABSTRACT

Diffusion models have established new state of the art in a multitude of computer
vision tasks, including image restoration. Diffusion-based inverse problem solvers
generate reconstructions of exceptional visual quality from heavily corrupted mea-
surements. However, in what is widely known as the perception-distortion trade-
off, the price of perceptually appealing reconstructions is often paid in declined
distortion metrics, such as PSNR. Distortion metrics measure faithfulness to the
observation, a crucial requirement in inverse problems. In this work, we propose
a novel framework for inverse problem solving, namely we assume that the obser-
vation comes from a stochastic degradation process that gradually degrades and
noises the original clean image. We learn to reverse the degradation process in
order to recover the clean image. Our technique maintains consistency with the
original measurement throughout the reverse process, and allows for great flexi-
bility in trading off perceptual quality for improved distortion metrics and sam-
pling speedup via early-stopping. We demonstrate the efficiency of our method
on different high-resolution datasets and inverse problems, achieving great im-
provements over other state-of-the-art diffusion-based methods with respect to
both perceptual and distortion metrics.

1 INTRODUCTION
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Figure 1: Overview of our method: measurement acquisition is modeled as a gradual degradation
and noising of an underlying clean ground truth signal via a Stochastic Degradation Process. We
reconstruct the clean image from noisy measurements by learning to reverse the degradation process.
Our technique allows for obtaining a variety of reconstructions with different perceptual quality-
distortion trade-offs, all in a single reverse diffusion sampling trajectory.

Diffusion models (DMs) are powerful generative models capable of synthesizing samples of ex-
ceptional quality by reversing a diffusion process that gradually corrupts a clean image by adding
Gaussian noise. DMs have been explored from two perspectives: Denoising Diffusion Probabilistic
Models (DDPM) Sohl-Dickstein et al. (2015); Ho et al. (2020) and Score-Based Models Song &
Ermon (2020a;b), which have been unified under a general framework of Stochastic Differential
Equations (SDEs) Song et al. (2020). DMs have established new state of the art in image genera-
tion Dhariwal & Nichol (2021); Saharia et al. (2022); Ramesh et al. (2022); Rombach et al. (2022),
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audio Kong et al. (2020) and video synthesis Ho et al. (2022). Recently, there has been a push to
broaden the notion of Gaussian diffusion, such as extension to other noise distributions Deasy et al.
(2021); Nachmani et al. (2021); Okhotin et al. (2023). In the context of image generation, there has
been work to generalize the corruption process, such as blur diffusion Lee et al. (2022); Hoogeboom
& Salimans (2022), inverse heat dissipation Rissanen et al. (2022) and arbitrary linear corruptions
Daras et al. (2022) with Bansal et al. (2022) questioning the necessity of stochasticity in the gener-
ative process all together. However, designing the diffusion process specifically for inverse problem
solving has not been extensively explored yet.

In inverse problems, one wishes to recover a signal x from a noisy observation y = A(x) + z
where A is typically non-invertible. The unconditional score function learned by DMs has been
successfully leveraged to solve inverse problems without any task-specific training Kadkhodaie &
Simoncelli (2021); Jalal et al. (2021); Saharia et al. (2021) resulting in reconstructions with excep-
tional perceptual quality. However, these methods underperform in distortion metrics, such as PSNR
and SSIM Chung et al. (2022a) due to the so called perception-distortion trade-off Blau & Michaeli
(2018). Authors in Delbracio & Milanfar (2023) observe that in their framework, the total number of
restoration steps controls the perception-distortion trade-off, with less steps yielding results closer to
the minimum distortion estimate. Similar observation is made in Whang et al. (2022) in the context
of blind image deblurring, where authors additionally propose to average multiple reconstructions
for improved distortion metrics. Authors in Kawar et al. (2022a) report that, the amount of noise
injected at each timestep controls the trade-off between reconstruction error and image quality.

Beyond image quality, a key requirement imposed on reconstructions is data consistency, that is
faithfulness to the original observation. In the context of diffusion-based solvers, different methods
have been proposed to enforce consistency between the generated image and the corresponding
observations. These methods include alternating between a step of unconditional update and a step
of projection Song et al. (2021b); Chung & Ye (2022); Chung et al. (2022c) or other correction
techniques Chung et al. (2022a;b) to guide the diffusion process towards data consistency. Another
line of work proposes diffusion in the spectral space of the forward operator, achieving high quality
reconstructions, however requires costly singular value decomposition Kawar et al. (2021; 2022a;b).
Song et al. (2023) uses pseudo-inverse guidance to incorporate the model into the reconstruction
process. All of these methods utilize a pre-trained score function learned for a standard diffusion
process that simply adds Gaussian noise to clean images. Recently, there has been some work on
extending Gaussian diffusion by incorporating the image degradation into the score-model training
procedure. A recent example is Welker et al. (2022) proposing adding an additional drift term to
the forward SDE that pulls the iterates towards the corrupted measurement and demonstrates high
quality reconstructions for JPEG compression artifact removal. A blending parametrization Heitz
et al. (2023); Delbracio & Milanfar (2023) has been proposed that defines the forward process as
convex combinations between the clean image and corrupted observation. Liu et al. (2023) leverages
Schrödinger bridges for image restoration, a nonlinear extension of score-based models defined
between degraded and clean image distributions. Even though these methods utilize degraded-clean
image pairs for training, they don’t explicitly leverage the forward operator for score-model training.

In this paper, we propose a novel framework for solving inverse problems using a generalized notion
of diffusion that mimics the corruption process that produced the observation. We call our method
Dirac: Denoising and Incremental Reconstruction with Assured data-Consistency. As the forward
model and noising process are directly incorporated into the framework, our method maintains data
consistency throughout the reverse diffusion process, without any additional steps such as projec-
tions. Furthermore, we make the key observation that details are gradually added to the posterior
mean estimates during the sampling process. This property imbues our method with great flexibility:
by leveraging early-stopping we can freely trade off perceptual quality for better distortion metrics
and sampling speedup or vice versa. We provide theoretical analysis on the accuracy and limitations
of our method that are well-supported by empirical results. Our numerical experiments demonstrate
state-of-the-art results in terms of both perceptual and distortion metrics with fast sampling.

2 BACKGROUND

Diffusion models – DMs are generative models based on a corruption process that gradually trans-
forms a clean image distribution q0 into a known prior distribution which is tractable, but contains
no information of data. The corruption level, or severity as we refer to it in this paper, is indexed
by time t and increases from t = 0 (clean images) to t = 1 (pure noise). The typical corrup-
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tion process consists of adding Gaussian noise of increasing magnitude to clean images, that is
qt(xt|x0) ∼ N (x0, σ

2
t I), where x0 ∼ q0 is a clean image, and xt is the corrupted image at time t.

By learning to reverse the corruption process, one can generate samples from q0 by sampling from
a simple noise distribution and running the learned reverse diffusion process from t = 1 to t = 0.

DMs have been explored along two seemingly different trajectories. Score-Based Models Song &
Ermon (2020a;b) attempt to learn the gradient of the log likelihood and use Langevin dynamics
for sampling, whereas DDPM Sohl-Dickstein et al. (2015); Ho et al. (2020) adopts a variational
inference interpretation. More recently, a unified framework based on SDEs Song et al. (2020) has
been proposed. Namely, both Score-Based Models and DDPM can be expressed via a Forward SDE
in the form dx = f(x, t)dt+g(t)dw with different choices of f and g. Here w denotes the standard
Wiener process. This SDE is reversible Anderson (1982), and the Reverse SDE can be written as

dx = [f(x, t)− g2(t)∇x log qt(x)]dt+ g(t)dw̄, (1)
where w̄ is the standard Wiener process, where time flows in the reverse direction. The true score
∇x log qt(x) is approximated by a neural network sθ(xt, t) from the tractable conditional distribu-
tion qt(xt|x0) by minimizing

Et∼U [0,1],(x0,xt)

[
w(t) ∥sθ(xt, t)−∇xt

qt(xt|x0)∥2
]
, (2)

where (x0,xt) ∼ q0(x0)qt(xt|x0) and w(t) is a weighting function.

Diffusion Models for Inverse problems – Our goal is to solve a noisy inverse problem
ỹ = A(x0) + z, z ∼ N (0, σ2I), (3)

with ỹ,x0 ∈ Rn and A : Rn → Rn. That is, we are interested in solving a reconstruction
problem, where we observe a measurement ỹ that is known to be produced by applying a non-
invertible mapping A to a ground truth signal x0 and is corrupted by additive noise z. We refer
to A as the degradation, and A(x0) as a degraded signal. Our goal is to recover x0 as faithfully
as possible, which can be thought of as generating samples from the posterior distribution q(x0|ỹ).
Diffusion models have emerged as useful priors enabling sampling from the posterior based on (1).
Using Bayes rule, the score of the posterior can be written as ∇x log qt(x|ỹ) = ∇x log qt(x) +
∇x log qt(ỹ|x), where the first term can be approximated using score-matching as in (2). On the
other hand, the second term cannot be expressed in closed-form in general, and therefore a flurry of
activity emerged recently to circumvent computing the likelihood directly.

3 METHOD

In this work, we propose a novel perspective on solving ill-posed inverse problems, where the for-
ward model is known. In particular, we assume that our noisy observation ỹ results from a process
that gradually applies more and more severe degradations to an underlying clean signal.

3.1 DEGRADATION SEVERITY

To define severity more rigorously, we appeal to the intuition that given two noiseless, degraded
signals y and y+ of a clean signal x0, then y+ is corrupted by a more severe degradation than y, if
y contains all the information necessary to find y+ without knowing x0.
Definition 3.1 (Severity of degradations). A mappingA+ : Rn → Rn is a more severe degradation
thanA : Rn → Rn if there exists a surjective mapping GA→A+

: Image(A)→ Image(A+). That
is,

A+(x0) = GA→A+
(A(x0)) ∀x0 ∈ dom(A).

We call GA→A+
the forward degradation transition function from A to A+.

Take image inpainting as an example (Fig. 2) and let At denote a masking operator that sets pixels
to 0 within a centered box, where the box side length is l(t) = t ·W , where W is the image width
and t ∈ [0, 1]. Assume that we have an observation yt′ = At′(x0) which is a degradation of a
clean image x0 where a small center square with side length l(t′) is masked out. Given yt′ , without
having access to the complete clean image, we can find any other masked version of x0 where a box
with at least side length l(t′) is masked out. Therefore every other masking operatorAt′′ , t

′ < t′′ is
a more severe degradation than At′ . The forward degradation transition function GAt′→At′′ in this
case is simply At′′ . We also note here, that the reverse degradation transition function HAt′′→At′

that recoversAt′(x0) from a more severe degradationAt′′(x0) for any x0 does not exist in general.
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x0 yt′ = At′(x0) Gt′→t′′
can be determined
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1

Figure 2: Severity of degradations: We can always find a more degraded image yt′′ from a less
degraded version of the same clean image yt′ via the forward degradation transition function Gt′→t′′ ,
but not vice versa.

3.2 DETERMINISTIC AND STOCHASTIC DEGRADATION PROCESSES

Using this novel notion of degradation severity, we can define a deterministic degradation process
that gradually removes information from the clean signal via more and more severe degradations.

Definition 3.2 (Deterministic degradation process). A deterministic degradation process is a differ-
entiable mapping A : [0, 1]× Rn → Rn that has the following properties:

1. Diminishing severity: A(0,x) = x

2. Monotonically degrading: ∀t′ ∈ [0, 1) and t′′ ∈ (t′, 1]A(t′′, ·) is a more severe degradation
than A(t′, ·).

We use the shorthand A(t, ·) = At(·) and GAt′→At′′ = Gt′→t′′ for the underlying forward degra-
dation transition functions for all t′ < t′′. Our deterministic degradation process starts from a
clean signal x0 at time t = 0 and applies degradations with increasing severity over time. If we
choose A(1, ·) = 0, then all information in the original signal is destroyed over the degradation
process. One can sample easily from the forward process, that is the process that evolves forward
in time, starting from a clean image x0 at t = 0. A sample from time t can be computed directly as
yt = At(x0).

In order to account for measurement noise, one can combine the deterministic degradation process
with a stochastic noising process that gradually adds Gaussian noise to the degraded measurements.

Definition 3.3 (Stochastic degradation process (SDP)). yt = At(x0) + zt, zt ∼ N (0, σ2
t I) is a

stochastic degradation process if At is a deterministic degradation process, t ∈ [0, 1], and x0 ∼
q0(x0) is a sample from the clean data distribution. We denote the distribution of yt as qt(yt) ∼
N (At(x0), σ

2
t I).

A key contribution of our work is looking at a noisy, degraded signal as a sample from the forward
process of an underlying SDP, and considering the reconstruction problem as running the reverse
process of the SDP backwards in time in order to recover the clean sample. Our formulation in-
terpolates between degraded and clean image distributions through a severity parametrization that
requires an analytical form of A(·). An alternative approach Delbracio & Milanfar (2023); Heitz
et al. (2023) is to parametrize intermediate distributions as convex combinations of corresponding
pairs of noisy and clean samples as yt = tỹ + (1 − t)x0, t ∈ [0, 1], also referred to as blending
Heitz et al. (2023). In our framework, this formulation can be thought of as a deterministic degrada-
tion processAt(x0; ỹ) = tỹ+(1− t)x0 conditioned on ỹ. However, as the underlying degradation
operator is not leveraged in this formulation, we cannot develop theoretical guarantees on data con-
sistency of the reconstruction. Moreover, we observe improved noise robustness using the proposed
SDP formulation. For a more detailed comparison we refer the reader to Appendix G.

3.3 SDP AS A STOCHASTIC DIFFERENTIAL EQUATION

We can formulate the evolution of our degraded and noisy measurements yt as an SDE:

dyt = Ȧt(x0)dt+

√
d
dt

σ2
t dw. (4)

This is an example of an Itô-SDE, and for a fixed x0 the above process is reversible, where the
reverse diffusion process is given by

dyt =

(
Ȧt(x0)dt−

(
d
dt

σ2
t

)
∇yt log qt(yt)

)
dt+

√
d
dt

σ2
t dw̄. (5)
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One would solve the above SDE by discretizing it (for example Euler-Maruyama), approximating
differentials with finite differences:

yt−∆t = yt +At−∆t(x0)−At(x0)︸ ︷︷ ︸
incremental reconstruction

− (σ2
t−∆t

− σ2
t )∇yt

log qt(yt)︸ ︷︷ ︸
denoising

+
√

σ2
t − σ2

t−∆t
z, (6)

where z ∼ N (0, I). The update in (6) lends itself to an interesting interpretation. One can look at it
as the combination of a small, incremental reconstruction and denoising steps. In particular, assume
that yt = At(x0) + zt and let

R(t,∆t;x0) := At−∆t(x0)−At(x0). (7)

Then, the first term yt+R(t,∆t;x0) = At−∆t(x0)+zt will reverse a ∆t step of the deterministic
degradation process, equivalent in effect to the reverse degradation transition function Ht→t−∆t.
The second term is analogous to a denoising step in standard diffusion, where a slightly less noisy
version of the image is predicted. However, before we can simulate the reverse SDE in (6) to recover
x0, we face two obstacles. First, we do not know the score of qt(yt). This is commonly tackled by
learning a noise-conditioned score network that matches log qt(yt|x0) which we can easily compute.
We are also going to follow this path. Second, we do not know At−∆t(x0) and At(x0) for the
incremental reconstruction step, since x0 is unknown to us when reversing the degradation process.

3.4 DENOISING - LEARNING A SCORE NETWORK

To run the reverse SDE, we need the score of the noisy, degraded distribution∇yt log qt(yt), which
is intractable. However, we can use the denoising score matching framework to approximate the
score. In particular, instead of the true score, we can easily compute the score for the conditional
distribution, when the clean image x0 is given as ∇yt log qt(yt|x0) =

At(x0)−yt

σ2
t

. During training,
we have access to clean images x0 and can generate any degraded, noisy image yt using our SDP
formulation yt = At(x0) + zt. Thus, we learn an estimator of the conditional score function
sθ(yt, t) by minimizing

Lt(θ) = E(x0,yt)

[∥∥∥∥sθ(yt, t)−
At(x0)− yt

σ2
t

∥∥∥∥2
]
, (8)

where (x0,yt) ∼ q0(x0)qt(yt|x0). One can show that the well-known result of Vincent (2011)
applies to our SDP formulation, and thus by minimizing the objective in (8), we can learn the score
∇yt

log qt(yt) (see details in Appendix A.1).

We parameterize the score network as

sθ(yt, t) =
At(Φθ(yt, t))− yt

σ2
t

, (9)

that is given a noisy and degraded image as input,the model predicts the underlying clean image x0.
Other parametrizations are also possible, such as predicting zt or (equivalently) predicting At(x0).
However, as pointed out in Daras et al. (2022), this might lead to learning the image distribution only
locally, around degraded images. Furthermore, in order to estimate the incremental reconstruction
R(t,∆t;x0), we not only need to estimate At(x0), but other functions of x0, and thus estimating
x0 directly gives us more flexibility. Rewriting (8) with the new parametrization leads to

L(θ) = Et,(x0,yt)

[
w(t) ∥At(Φθ(yt, t))−At(x0)∥2

]
, (10)

where t ∼ U [0, 1], (x0,yt) ∼ q0(x0)qt(yt|x0) and typical choices in the diffusion literature for the
weights w(t) are 1 or 1/σ2

t . Intuitively, the neural network receives a noisy, degraded image, along
with the degradation severity, and outputs a prediction x̂0(yt) = Φθ(yt, t) such that the degraded
ground truth At(x0) and the degraded prediction At(x̂0(yt)) are consistent.

3.5 INCREMENTAL RECONSTRUCTIONS

Given an estimator of the score, we still need to approximateR(t,∆t;x0) in order to run the reverse
SDE in (6). That is we have to estimate how the degraded image changes if we slightly decrease the
degradation severity. As we parameterize our score network in (9) to learn a representation of the
clean image manifold directly, we can estimate the incremental reconstruction term as

R̂(t,∆t;yt) = At−∆t(Φθ(yt, t))−At(Φθ(yt, t)). (11)
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One may consider this a look-ahead method, since we use yt with degradation severity t to predict
a less severe degradation of the clean image ”ahead” in the reverse process. This becomes more
obvious when we note, that our score network already learns to predict At(x0) given yt due to
the training loss in (10). However, even if we learn the true score perfectly via (10), there is no
guarantee that At−∆t(x0) ≈ At−∆t(Φθ(yt, t)). The following result provides an upper bound on
the approximation error.

Theorem 3.4. Let R̂(t,∆t;yt) from (11) denote our estimate of the incremental reconstruction,
where Φθ(yt, t) is trained on the loss in (10). Let R∗(t,∆t;yt) = E[R(t,∆t;x0)|yt] denote
the MMSE estimator of R(t,∆t;x0). Assume, that the degradation process is smooth such that
∥At(x) − At(x

′)∥ ≤ L
(t)
x ∥x − x′∥, ∀x,x′ ∈ Rn and ∥At(x) − At′(x)∥ ≤ Lt|t − t′|, ∀t, t′ ∈

[0, 1], ∀x ∈ Rn. Further assume that the clean images have bounded entries x0[i] ≤ B, ∀i ∈
(1, 2, ..., n) and that the error in our score network is bounded by ∥sθ(yt, t) − ∇yt log qt(yt)∥ ≤
ϵt
σ2
t
, ∀t ∈ [0, 1]. Then,

∥R̂(t,∆t;yt)−R∗(t,∆t;yt)∥ ≤ (L(t)
x + L(t−∆t)

x )︸ ︷︷ ︸
degr. smoothness

√
nB︸ ︷︷ ︸

data

+ 2Lt︸︷︷︸
scheduling

∆t︸︷︷︸
algorithm

+ 2ϵt︸︷︷︸
optimization

.

The first term in the upper bound suggests that smoother degradations are easier to reconstruct
accurately. The second term indicates two crucial points: (1) sharp variations in the degradation
with respect to time leads to potentially large estimation error and (2) the error can be controlled
by choosing a small enough step size in the reverse process. Scheduling of the degradation over
time is a design parameter, and Theorem 3.4 suggests that sharp changes with respect to t should
be avoided. Finally, the error grows with less accurate score estimation, however with large enough
network capacity, this term can be driven close to 0.

The main contributor to the error in Theorem 3.4 stems from the fact that consistency under less
severe degradations, that is At−∆t(Φθ(yt, t)) ≈ At−∆t(x0), is not enforced by the loss in (10).
To this end, we propose a novel loss function, the incremental reconstruction loss, that combines
learning to denoise and reconstruct simultaneously:

LIR(∆t,θ) = Et,(x0,yt)

[
w(t) ∥Aτ (Φθ(yt, t))−Aτ (x0)∥2

]
, (12)

where τ = max(t −∆t, 0), t ∼ U [0, 1], (x0,yt) ∼ q0(x0)qt(yt|x0). It is clear, that minimizing
this loss directly improves our estimate of the incremental reconstruction in (11). We find that if
Φθ has large enough capacity, minimizing the incremental reconstruction loss in (12) also implies
minimizing (10), and thus the true score is learned (denoising is achieved). Furthermore, we show
that (12) is an upper bound to (10) (Appendix A.3). By minimizing (12), the model learns not only
to denoise, but also to perform small, incremental reconstructions of the degraded image such that
At−∆t(Φθ(yt, t)) ≈ At−∆t(x0). There is however a trade-off between incremental reconstruction
performance and learning the score: we are optimizing an upper bound to (10) and thus it is possible
that the score estimation is less accurate. We expect incremental reconstruction loss to work best in
scenarios where the degradation may change rapidly with respect to t and hence a network trained
to estimate At(x0) from yt may become inaccurate when predicting At−∆t(x0) from yt.

3.6 DATA CONSISTENCY

Data consistency is a crucial requirement on generated images when solving inverse problems. That
is, we want to obtain reconstructions that are consistent with our original measurement under the
degradation model. More formally, we define data consistency as follows in our framework.

Definition 3.5 (Data consistency). Given a deterministic degradation processAt(·), two degradation
severities τ ∈ [0, 1] and τ+ ∈ [τ, 1] and corresponding degraded images yτ ∈ Rn and yτ+ ∈ Rn,
yτ+ is data consistent with yτ under At(·) if ∃x0 ∈ X0 such that Aτ (x0) = yτ and Aτ+(x0) =

yτ+ , where X0 denotes the clean image manifold. We use the notation yτ+
d.c.∼ yτ .

Simply put, two degraded images are data consistent, if there is a clean image which may explain
both under the deterministic degradation process. As our proposed technique is directly trained to re-
verse a degradation process, enforcement of data consistency is built-in without applying additional
steps, such as projection. The following theorem guarantees that in the ideal case, data consistency
is maintained in each iteration of the reconstruction algorithm. Proof is provided in Appendix A.4.
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Figure 3: Perception-distortion trade-off on CelebA-HQ deblurring: distortion metrics initially im-
prove, peak fairly early in the reverse process, then gradually deteriorate, while perceptual metrics
improve. We plot the mean of 30 trajectories (±std shaded) starting from the same measurement.

Theorem 3.6 (Data consistency over iterations). Assume that we run the updates in (6) with
sθ(yt, t) = ∇yt

log qt(yt), ∀t ∈ [0, 1] and R̂(t,∆t;yt) = R(t,∆t;x0), x0 ∈ X0. If we start
from a noisy degraded observation ỹ = A1(x0) + z1, x0 ∈ X0, z1 ∼ N (0, σ2

1I) and run the
updates in (6) for τ = 1, 1−∆t, ...,∆t, 0, then

E[ỹ] d.c.∼ E[yτ ], ∀τ ∈ [1, 1−∆t, ...,∆t, 0]. (13)

3.7 PERCEPTION-DISTORTION TRADE-OFF

Diffusion models generate synthetic images of exceptional quality, almost indistinguishable from
real images to the human eye. This perceptual image quality is typically evaluated on features ex-
tracted by a pre-trained neural network, resulting in metrics such as Learned Perceptual Image Patch
Similarity (LPIPS)Zhang et al. (2018) or Fréchet Inception Distance (FID)Heusel et al. (2017). In
image restoration however, we are often interested in image distortion metrics that reflect faithful-
ness to the original image, such as Peak Signal to Noise Ratio (PSNR) or Structural Similarity Index
Measure (SSIM) when evaluating the quality of reconstructions. Interestingly, distortion and per-
ceptual quality are fundamentally at odds with each other, as shown in the seminal work of Blau
& Michaeli (2018). As diffusion models tend to favor high perceptual quality, it is often at the
detriment of distortion metrics Chung et al. (2022a).

As shown in Figure 3, we empirically observe that in the reverse process of Dirac, the quality of
reconstructions with respect to distortion metrics initially improves, peaks fairly early in the reverse
process, then gradually deteriorates. Simultaneously, perceptual metrics such as LPIPS demonstrate
stable improvement for most of the reverse process. More intuitively, the algorithm first finds a rough
reconstruction that is consistent with the measurement, but lacks fine details. This reconstruction
is optimal with respect to distortion metrics, but visually overly smooth and blurry. Consecutively,
image details progressively emerge during the rest of the reverse process, resulting in improving
perceptual quality at the cost of deteriorating distortion metrics. Therefore, our method provides
an additional layer of flexibility: by early-stopping the reverse process, we can trade-off perceptual
quality for better distortion metrics. Adjusting the early-stopping parameter tstop allows us to obtain
distortion- and perception-optimized reconstructions depending on our requirements.

3.8 DEGRADATION SCHEDULING

In order to deploy our method, we need to define how the degradation changes with respect to sever-
ity t following the properties specified in Definition 3.3. That is, we have to determine how to inter-
polate between the identity mappingA0(x) = x for t = 0 and the most severe degradationA1(·) for
t = 1. Theorem 3.4 suggests that sharp changes in the degradation function with respect to t should
be avoided, however we propose a more principled method of scheduling. In particular, we use a
greedy algorithm to select a set of degraded distributions, such that the maximum distance between
them is minimized. We define the distance between distributions as Ex0∼X0

[M(Ai(x0),Aj(x0))],
whereM is a pairwise image dissimilarity metric. Details can be found in Appendix D.

4 EXPERIMENTS

Experimental setup – We evaluate our method on CelebA-HQ (256×256) Karras et al. (2018) and
ImageNet (256 × 256) Deng et al. (2009). For competing methods that require a score model, we
use pre-trained SDE-VP models. For Dirac, we train models from scratch using the NCSN++Song
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Figure 4: Left: Data consistency in FFHQ inpainting. ϵdc := ∥ỹ −A1(x̂0(yt))∥2 measures how
consistent is the clean image estimate with the measurement. We expect ϵdc to approach the noise
floor σ2

1 = 0.0025 in case of perfect data consistency. We plot ϵ̄dc the mean over the validation set.
Dirac maintains data consistency throughout the reverse process. Center: Data consistency is not
always achieved with DPS. Right: Number of reverse diffusion steps vs. perceptual quality.

Deblurring Inpainting
Method PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓) PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓)
Dirac-PO (ours) 26.67 0.7418 0.2716 53.36 25.41 0.7595 0.2611 39.43
Dirac-DO (ours) 28.47 0.8054 0.2972 69.15 26.98 0.8435 0.2234 51.87
DPS Chung et al. (2022a) 25.56 0.6878 0.3008 65.68 21.06 0.7238 0.2899 57.92
DDRM Kawar et al. (2022a) 27.21 0.7671 0.2849 65.84 25.62 0.8132 0.2313 54.37
SwinIR Liang et al. (2021) 28.53 0.8070 0.3048 72.93 24.46 0.8134 0.2660 59.94
PnP-ADMM Chan et al. (2016) 27.02 0.7596 0.3973 74.17 12.27 0.6205 0.4471 192.36
ADMM-TV 26.03 0.7323 0.4126 89.93 11.73 0.5618 0.5042 264.62

Deblurring Inpainting
Method PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓) PSNR(↑) SSIM(↑) LPIPS(↓) FID(↓)
Dirac-PO (ours) 24.68 0.6582 0.3302 53.91 26.36 0.8087 0.2079 34.33
Dirac-DO (ours) 25.76 0.7085 0.3705 83.23 28.92 0.8958 0.1676 38.25
DPS Chung et al. (2022a) 21.51 0.5163 0.4235 52.60 22.71 0.8026 0.1986 34.55
DDRM Kawar et al. (2022a) 24.53 0.6676 0.3917 61.06 25.92 0.8347 0.2138 33.71
PnP-ADMM Chan et al. (2016) 25.02 0.6722 0.4565 98.72 18.14 0.7901 0.2709 101.25
ADMM-TV 24.31 0.6441 0.4578 88.26 17.60 0.7229 0.3157 120.22

Table 1: Experimental results on the FFHQ (top) and ImageNet (bottom) test splits.

et al. (2020) architecture. As the pre-trained score-models for competing methods have been trained
on the full CelebA-HQ dataset, we test all methods for fair comparison on the first 1k images of the
FFHQ Karras et al. (2019) dataset. For ImageNet experiments, we sample 1 image from each class
from the official validation split to create disjoint validation and test sets of 1k images each. We
only train our model on the train split of ImageNet.

We investigate two degradation processes of very different properties: Gaussian blur and inpainting.
In all cases, Gaussian noise with σ1 = 0.05 is added to the measurements in the [0, 1] range. We use
standard geometric noise scheduling with σmax = 0.05 and σmin = 0.01 in the SDP. For Gaussian
blur, we use a kernel size of 61, with standard deviation of wmax = 3. We vary the standard
deviation of the kernel between wmax(strongest) and 0.3 (weakest) to parameterize the severity of
Gaussian blur in the degradation process, and use the scheduling method described in Appendix

D to specify At. For inpainting, we generate a smooth mask in the form
(
1− f(x;wt)

maxx f(x;wt)

)k

,
where f(x;wt) denotes the density of a zero-mean isotropic Gaussian with standard deviation wt

that controls the size of the mask and k = 4 for sharper transition. We set w1 = 50 for CelebA-
HQ/FFHQ inpainting and 30 for ImageNet inpainting.

We compare our method against DDRM Kawar et al. (2022a), a well-established diffusion-based lin-
ear inverse problem solver; DPS Chung et al. (2022a), a recent, state-of-the-art diffusion technique
for noisy inverse problems; SwinIR Liang et al. (2021), a state-of-the-art transformer-based super-
vised image restoration model; PnP-ADMM Chan et al. (2016), a reliable traditional solver with
learned denoiser; and ADMM-TV, a classical optimization technique. To evaluate performance, we
use PSNR and SSIM as distortion metrics and LPIPS and FID as perceptual quality metrics.

Deblurring – We train our model on LIR(∆t = 0,θ), as we observed no significant difference in
using other incremental reconstruction losses, due to the smoothness of the degradation. We show
results on our perception-optimized (PO) reconstructions, tuned for best LPIPS and our distortion-
optimized (DO) reconstructions, tuned for best PSNR on a separate validation set via early-stopping
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Figure 5: Visual comparison of reconstructions: Gaussian blur (left) and inpainting (right).
at the PSNR-peak (see Fig. 3). Our results, summarized in Table 1 (left side), demonstrate superior
performance compared with other diffusion methods in terms of both distortion and perceptual met-
rics. Our DO model closely matches the distortion quality of SwinIR, a strong non-diffusion baseline
known to outperform other diffusion solvers in terms of distortion metrics Chung et al. (2022a). Vi-
sual comparison in Figure 5 (left) reveals that DDRM produces reliable reconstructions, similar to
our DO images, but they often lack detail. In contrast, DPS produces detailed images, similar to our
PO reconstructions, but often with hallucinated details inconsistent with the measurement.

Inpainting – We train our model on LIR(∆t = 1,θ), as we see improvement in reconstruction
quality as ∆t is increased. We hypothesize that this is due to sharp changes in the inpainting oper-
ator with respect to t, which can be mitigated by the incremental reconstruction loss according to
Theorem 3.4. Ablations on the effect of ∆t in the incremental reconstruction loss can be found in
Appendix I. We tuned models to optimize FID, as it is more suitable than pairwise image metrics to
evaluate generated image content. Our results in Table 1 (right side) shows best performance in most
metrics, followed by DDRM. Fig. 5 (right) shows, that our method generates high quality images
even when limited context is available.

Data consistency – Consistency between reconstructions and the measurement is crucial in inverse
problem solving. Our proposed method has the additional benefit of maintaining data consistency
throughout the reverse process, as shown in Theorem 3.6 in the ideal case, however we empirically
validate this claim. Figure 4 (left) shows the evolution of ϵdc := ∥ỹ−A1(x̂0(yt))∥2, where x̂0(yt)
is the clean image estimate at time t (Φθ(yt, t) for our method). Since ỹ = A1(x0)+σ2

1 , we expect
ϵdc to approach σ2

1 in case of perfect data consistency. We observe that our method, without apply-
ing guidance, stays close to the noise floor throughout the reverse process, while other techniques
approach data consistency only close to t = 1. In case of DPS, we observe that data consistency is
not always satisfied (see Figure 4, center), as DPS only guides the iterates towards data consistency,
but does not directly enforce it. As our technique reverses an SDP, our intermediate reconstructions
are always interpretable as degradations of varying severity of the same underlying image. This
property allows us to early-stop the reconstruction and still obtain consistent reconstructions.

Sampling speed – Dirac requires low number of reverse diffusion steps for high quality reconstruc-
tions leading to fast sampling. Figure 4 (right) compares the perceptual quality at different number
of reverse diffusion steps for diffusion-based inverse problem solvers. Our method typically requires
20− 100 steps for optimal perceptual quality, and shows the most favorable scaling in the low-NFE
regime. Due to early-stopping we can trade-off perceptual quality for better distortion metrics and
even further sampling speed-up. We obtain acceptable results even with one-shot reconstruction.

5 CONCLUSIONS AND LIMITATIONS
We propose a novel framework for solving inverse problems by reversing a stochastic degradation
process. Our solver can flexibly trade off perceptual image quality for more traditional distortion
metrics and sampling speedup. Moreover, we show both theoretically and empirically that our
method maintains consistency with the measurement throughout the reverse process. Dirac pro-
duces reconstructions of exceptional quality in terms of both perceptual and distortion-based met-
rics, surpassing comparable state-of-the-art methods on multiple high-resolution datasets and image
restoration tasks. The main limitation of our method is that a model needs to be trained from scratch
for each inverse problem, whereas other diffusion-based solvers leverage pretrained score networks.
Incorporating pretrained models into our framework is an interesting direction for future work.
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APPENDIX

A PROOFS

A.1 DENOISING SCORE-MATCHING GUARANTEE

Just as in standard diffusion, we approximate the score of the noisy, degraded data distribution
∇ytqt(yt) by matching the score of the tractable conditional distribution ∇ytqt(yt|x0) via mini-
mizing the loss in (10). For standard Score-Based Models withAt = I, the seminal work of Vincent
(2011) guarantees that the true score is learned by denoising score-matching. More recently, Daras
et al. (2022) points out that this result holds for a wide range of corruption processes, with the tech-
nical condition that the SDP assigns non-zero probability to all yt for any given clean image x0.
This condition is satisfied by adding Gaussian noise. For the sake of completeness, we include the
theorem from Daras et al. (2022) updated with the notation from this paper.
Theorem A.1. Let q0 and qt be two distributions in Rn. Assume that all conditional distributions,
qt(yt|x0), are supported and differentiable in Rn. Let:

J1(θ) =
1

2
Eyt∼qt

[
∥sθ(yt, t)−∇yt

log qt(yt)∥2
]
, (14)

J2(θ) =
1

2
E(x0,yt)∼q0(x0)qt(yt|x0)

[
∥sθ(yt, t)−∇yt

log qt(yt|x0)∥2
]
. (15)

Then, there is a universal constant C (that does not depend on θ) such that: J1(θ) = J2(θ) + C.

The proof, that follows the calculations of Vincent (2011), can be found in Appendix A.1. of Daras
et al. (2022). This result implies that by minimizing the denoising score-matching objective in (15),
the objective in (14) is also minimized, thus the true score is learned via matching the tractable
conditional distribution qt(yt|x0) governing SDPs.

A.2 THEOREM 3.4.

Assumption A.2 (Lipschitzness of degradation). Assume that ∥At(x) − At(y)∥ ≤ L
(t)
x ∥x −

y∥, ∀x,y ∈ Rn, ∀t ∈ [0, 1] and ∥At′(x)−At′′(x)∥ ≤ Lt|t′ − t′′|, ∀x ∈ Rn, ∀t′, t′′ ∈ [0, 1].
Assumption A.3 (Bounded signals). Assume that each entry of clean signals x0 are bounded as
x0[i] ≤ B, ∀i ∈ (1, 2, ..., n).
Lemma A.4. Assume yt = At(x0) + zt with x0 ∼ q0(x0) and zt ∼ N (0, σ2

t I) and that As-
sumption A.2 holds. Then, the Jensen gap is upper bounded as ∥E[At′(x0)|yt]−At′(E[x0|yt])∥ ≤
L
(t′)
x
√
nB, ∀t, t′ ∈ [0, 1].

Proof.

∥E[At′(x0)|yt]−At′(E[x0|yt])∥
(1)
≤

∫
∥At′(x0)−At′(E[x0|yt])∥ p(x0|yt)dx0

(2)
≤

√∫
∥At′(x0)−At′(E[x0|yt])∥2 p(x0|yt)dx0

≤ L(t′)
x

√∫
∥x0 − E[x0|yt]∥2 p(x0|yt)dx0

(3)
≤ L(t′)

x

√∫
∥x0∥2 p(x0|yt)dx0

≤ L(t′)
x

√∫
nB2p(x0|yt)dx0 = L(t′)

x

√
nB

Here (1) and (2) hold due to Jensen’s inequality, and in (3) we use the fact that E[x0|yt] is the
minimum mean-squared error (MMSE) estimator of x0, thus we can replace it with 0 to get an
upper bound.
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Theorem. 3.4 Let R̂(t,∆t;yt) = At−∆t(Φθ(yt, t)) − At(Φθ(yt, t)) denote our estimate of the
incremental reconstruction, where Φθ(yt, t) is trained on the loss in (13). Let R∗(t,∆t;yt) =
E[R(t,∆t;x0)|yt] denote the MMSE estimator of R(t,∆t;x0). If Assumptions A.3 and A.2 hold
and the error in our score network is bounded by ∥sθ(yt, t) − ∇yt

log qt(yt)∥ ≤ ϵt
σ2
t
, ∀t ∈ [0, 1],

then
∥R̂(t,∆t;yt)−R∗(t,∆t;yt)∥ ≤ (L(t)

x + L(t−∆t)
x )

√
nB + 2Lt∆t+ 2ϵt.

Proof. First, we note that due to Tweedie’s formula,

E[At(x0)|yt] = yt + σ2
t∇yt

log qt(yt).

Since we parameterized our score model as

sθ(yt, t) =
At(Φθ(yt, t))− yt

σ2
t

,

the assumption that ∥sθ(yt, t)−∇yt
log qt(yt)∥ ≤ ϵt

σ2
t

, is equivalent to

∥At(Φθ(yt, t))− E[At(x0)|yt]∥ ≤ ϵt. (16)

By applying the triangle inequality repeatedly, and applying Lemma A.4 and (16)∥∥∥R̂(t,∆t;yt)−R∗(t,∆t;yt)
∥∥∥

= ∥(At−∆t(Φθ(yt, t))−At(Φθ(yt, t)))− (E[At−∆t(x0)|yt]− E[At(x0)|yt])∥
≤ ∥At−∆t(Φθ(yt, t))− E[At−∆t(x0)|yt]∥+ ∥At(Φθ(yt, t))− E[At(x0)|yt]∥
≤ ∥At−∆t(Φθ(yt, t))−At−∆t(E[x0|yt]) +At−∆t(E[x0|yt])− E[At−∆t(x0)|yt]∥+ ϵt

≤ ∥At−∆t(Φθ(yt, t))−At−∆t(E[x0|yt])∥+ L(t−∆t)
x

√
nB + ϵt

≤ ∥At−∆t(Φθ(yt, t))−At(Φθ(yt, t))∥+ ∥At(Φθ(yt, t))−At(E[x0|yt])∥
+ ∥At(E[x0|yt])−At−∆t(E[x0|yt])∥+ L(t−∆t)

x

√
nB + ϵt

≤ ∥At(Φθ(yt, t))−At(E[x0|yt])∥+ 2Lt∆t+ L(t−∆t)
x

√
nB + ϵt

≤ ∥At(Φθ(yt, t))− E[At(x0)|yt]∥+ ∥E[At(x0)|yt]−At(E[x0|yt])∥
+ 2Lt∆t+ L(t−∆t)

x

√
nB + ϵt

≤ 2Lt∆t+ (L(t−∆t)
x + L(t)

x )
√
nB + 2ϵt.

We note that the appearance of Lt in the upper bound provides a possible explanation why masking
diffusion models are significantly worse in image generation than models relying on blurring, as
observed in Daras et al. (2022). Masking leads to sharp jumps in pixel values at the border of the
inpainting mask, thus Lt can be arbitrarily large. This can be compensated to a certain degree by
choosing a very small ∆t (very large number of sampling steps), which has also been observed in
Daras et al. (2022).

A.3 INCREMENTAL RECONSTRUCTION LOSS GUARANTEE

Assumption A.5. The forward degradation transition function Gt′→t′′ for any t′, t′′ ∈ [0, 1], t′ < t′′

is Lipschitz continuous: ∥Gt′→t′′(x) − Gt′→t′′(y)∥ ≤ LG(t
′, t′′)∥x − y∥, ∀t′, t′′ ∈ [0, 1], t′ <

t′′, ∀x,y ∈ Rn.

This is a very natural assumption, as we don’t expect the distance between two images after applying
a degradation to grow arbitrarily large.
Proposition A.6. If the model Φθ(yt, t) has large enough capacity, such that LIR(∆t,θ) = 0 is
achieved, then sθ(yt, t) = ∇yt log qt(yt), ∀t ∈ [0, 1]. Otherwise, if Assumption A.5 holds, then we
have

L(θ) ≤ max
t∈[0,1]

(LG(τ, t))LIR(∆t,θ). (17)
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Proof. We denote τ = max(0, t−∆t). First, if LIR(∆t,θ) = 0, then

Aτ (Φθ(yt, t)) = Aτ (x0)

for all (x0,yt) such that qt(x0,yt) > 0. Applying the forward degradation transition function to
both sides yields

Gτ→t(Aτ (Φθ(yt, t))) = Gτ→t(Aτ (x0)),

which is equivalent to
At(Φθ(yt, t)) = At(x0).

This in turn means that L(θ) = 0 and thus due to Theorem A.1 the score is learned.

In the more general case,

L(θ) = Et,(x0,yt)

[
wt ∥At(Φθ(yt, t))−At(x0)∥2

]
= Et,(x0,yt)

[
wt ∥Gτ→t(Aτ (Φθ(yt, t)))− Gτ→t(Aτ (x0))∥2

]
≤ Et,(x0,yt)

[
wtLG(τ, t) ∥Aτ (Φθ(yt, t))−Aτ (x0)∥2

]
≤ max

t∈[0,1]
(LG(τ, t))Et,(x0,yt)

[
wt ∥Aτ (Φθ(yt, t))−Aτ (x0)∥2

]
= max

t∈[0,1]
(LG(τ, t))LIR(∆t,θ)

This means that if the model has large enough capacity, minimizing the incremental reconstruction
loss in (12) also implies minimizing (10), and thus the true score is learned (denoising is achieved).
Otherwise, the incremental reconstruction loss is an upper bound on the loss in (10). Training a
model on (12), the model learns not only to denoise, but also to perform small, incremental recon-
structions of the degraded image such that At−∆t(Φθ(yt, t)) ≈ At−∆t(x0). There is however a
trade-off between incremental reconstruction performance and learning the score: as Proposition
A.6 indicates, we are optimizing an upper bound to (10) and thus it is possible that the score es-
timation is less accurate. We expect our proposed incremental reconstruction loss to work best in
scenarios where the degradation may change rapidly with respect to t and hence a network trained
to accurately estimate At(x0) from yt may become inaccurate when predicting At−∆t(x0) from
yt. This hypothesis is further supported by our experiments in Section 4. Finally, we mention that in
the extreme case where we choose ∆t = 1, we obtain a loss function purely in clean image domain.

A.4 THEOREM 3.7

Lemma A.7 (Transitivity of data consistency). If yt+
d.c.∼ yt and yt++

d.c.∼ yt+ with t < t+ < t++,
then yt++

d.c.∼ yt.

Proof. By the definition of data consistency yt++
d.c.∼ yt+ ⇒ ∃x0 : At++(x0) = yt++ and

At+(x0) = yt+ . On the other hand, yt+
d.c.∼ yt ⇒ ∃x′

0 : At+(x
′
0) = yt+ and At(x

′
0) = yt.

Therefore,

yt++ = At++(x0) = Gt+→t++(At+(x0)) = Gt+→t++(yt+) = Gt+→t++(At+(x
′
0)) = At++(x′

0).

By the definition of data consistency, this implies yt++
d.c.∼ yt.

Theorem. 3.7. Assume that we run the updates in (6) with sθ(yt, t) = ∇yt
log qt(yt|x0), ∀t ∈

[0, 1] and R̂(t,∆t;yt) = R(t,∆t;x0), x0 ∈ X0. If we start from a noisy degraded observation
ỹ = A1(x0)+z1, x0 ∈ X0, z1 ∼ N (0, σ2

1I) and run the updates in (6) for τ = 1, 1−∆t, ...,∆t, 0,
then we have

E[ỹ] d.c.∼ E[yτ ], ∀τ ∈ [1, 1−∆t, ...,∆t, 0]. (18)

15



Under review as a conference paper at ICLR 2024

Proof. Assume that we start from a known measurement ỹ := yt = At(x0) + zt at arbitrary time
t and run reverse diffusion from t with time step ∆t. Starting from t = 1 that we have looked at in
the paper is a subset of this problem. Starting from arbitrary yt, the first update takes the form

yt−∆t = yt +At−∆t(Φθ(yt, t))−At(Φθ(yt, t))

− (σ2
t−∆t − σ2

t )
At(Φθ(yt, t))− yt

σ2
t

+
√
σ2
t − σ2

t−∆tz

= At(x0) + zt +At−∆t(Φθ(yt, t))−At(Φθ(yt, t))

− (σ2
t−∆t − σ2

t )
At(Φθ(yt, t))−At(x0)− zt

σ2
t

+
√
σ2
t − σ2

t−∆tz

Due to our assumption on learning the score function, we have At(Φθ(yt, t)) = At(x0) and due to
the perfect incremental reconstruction assumption At−∆t(Φθ(yt, t)) = At−∆t(x0). Thus, we have

yt−∆t = At−∆t(x0) +
σ2
t−∆t

σ2
t

zt +
√

σ2
t − σ2

t−∆tz.

Since z and zt are independent Gaussian, we can combine the noise terms to yield

yt−∆t = At−∆t(x0) + zt−∆t, (19)

with zt−∆t
∼ N (0,

[(
σ2
t−∆t

σt

)2

+ σ2
t − σ2

t−∆t

]
I). This form is identical to the expression on our

original measurement ỹ = yt = At(x0)+zt, but with slightly lower degradation severity and noise
variance. It is also important to point out that E[yt]

d.c.∼ E[yt−∆t]. If we repeat the update to find
yt−2∆t, we will have the same form as in (19) and E[yt−∆t]

d.c.∼ E[yt−2∆t]. Due to the transitive
property of data consistency (Lemma A.7), we also have E[yt]

d.c.∼ E[yt−2∆t], that is data consistency
is preserved with the original measurement. This reasoning can be then extended for every further
update using the transitivity property, therefore we have data consistency in each iteration.

B GUIDANCE

So far, we have only used our noisy observation ỹ = A1(x0) + z1 as a starting point for the reverse
diffusion process, however the measurement is not used directly in the update in (6). We learned the
score of the prior distribution ∇yt

log qt(yt), which we can leverage to sample from the posterior
distribution qt(yt|ỹ). In fact, using Bayes rule the score of the posterior distribution can be written
as

∇yt log qt(yt|ỹ) = ∇yt log qt(yt) +∇yt log qt(ỹ|yt), (20)
where we already approximate ∇yt log qt(yt) via sθ(yt, t). Finding the posterior distribution ana-
lytically is not possible, and therefore we use the approximation qt(ỹ|yt) ≈ qt(ỹ|Φθ(yt, t)), from
which distribution we can easily sample from. Since qt(ỹ|Φθ(yt, t)) ∼ N (A1(Φθ(yt, t)), σ

2
1I),

our estimate of the posterior score takes the form

s′θ(yt, t) = sθ(yt, t)− ηt∇yt

∥ỹ −A1(Φθ(yt, t))∥2

2σ2
1

, (21)

where ηt is a hyperparameter that tunes how much we rely on the original noisy measurement. Even
though we do not need to rely on ỹ after the initial update for our method to work, we observe small
improvements by adding the above guidance scheme to our algorithm.

For the sake of simplicity, in this discussion we merge the scaling of the gradient into the step size
parameter as follows:

s′θ(yt, t) = sθ(yt, t)− η′
t∇yt∥ỹ −A1(Φθ(yt, t))∥2 (22)

We experiment with two choices of step size scheduling for the guidance term η′t:

• Standard deviation scaled (constant): ηt = η 1
2σ2

1
, where η is a constant hyperparameter

and σ2
1 is the noise level on the measurements. This scaling is justified by our derivation of

the posterior score approximation, and matches (22).
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Figure 6: Effect of guidance step size on best reconstruction in terms of LPIPS. We perform experi-
ments on the CelebA-HQ validation set on the deblurring task.

• Error scaled: ηt = η 1
∥ỹ−A1(Φθ(yt,t))∥ , which has been proposed in Chung et al. (2022a).

This method attempts to normalize the gradient of the data consistency term.

In general, we find that constant step size works better for deblurring, whereas error scaling per-
formed slightly better for inpainting experiments, however the difference is minor. Figure 6 shows
the results of our ablation study on the effect of ηt. We perform deblurring experiments on the
CelebA-HQ validation set and plot the mean LPIPS (lower the better) with different step size
scheduling methods and varying step size. We see some improvement in LPIPS when adding guid-
ance to our method, however it is not a crucial component in obtaining high quality reconstructions,
or for maintaining data-consistency.

C OVERVIEW OF THE ALGORITHM

A complete algorithmic overview of Dirac is depicted in Algorithm 1.

Algorithm 1 Dirac

Input: ỹ: noisy observation, Φθ: score network, At(·): degradation function, ∆t: step size, σt:
noise std at time t, ηt: guidance step size, ∀t ∈ [0, 1], tstop: early-stopping parameter
N ← ⌊1/∆t⌋
y ← ỹ
for i = 1 to N do

t← 1−∆t · i
if t ≤ tstop then ▷ Early-stopping

break
end if
z ∼ N (0, σ2

t I)
x̂0 ← Φθ(y, t) ▷ Predict posterior mean
yr ← At−∆t(x̂0)−At(x̂0) ▷ Incremental reconstruction

yd ← −
σ2
t−∆t−σ2

t

σ2
t

(At(x̂0)− y) ▷ Denoising
yg ← (σ2

t−∆t − σ2
t )∇y∥ỹ −A1(x̂0)∥2 ▷ Guidance

y ← y + yr + yd + ηtyg +
√

σ2
t − σ2

t−∆tz

end for
Output: y ▷ Alternatively, output x̂0

D DEGRADATION SCHEDULING

When solving inverse problems, we have access to a noisy measurement ỹ = A(x0) + z and we
would like to find the corresponding clean image x0. In order to deploy our method, we need to
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Figure 7: Results of degradation scheduling from Algorithm 2. Left: Gaussian blur with kernel std
wt on CelebA-HQ. Center: inpainting with Gaussian mask with kernel width wt on CelebA-HQ.
Right: inpainting with Gaussian mask on ImageNet.

define how the degradation changes with respect to severity t following the properties specified
in Definition 3.3. That is, we have to determine how to interpolate between the identity mapping
A0(x) = x for t = 0 and the most severe degradation A1(·) = A(·) for t = 1. Theorem 3.4
suggests that sharp changes in the degradation function with respect to t should be avoided, however
a more principled method of scheduling is needed.

In the context of image generation, Daras et al. (2022) proposes a scheduling framework that splits
the path between the distribution of clean images D0 and the distribution of pure noise D1 into T
candidate distributions Di, i ∈ [1/T, 2/T, ..., T−1

T ]. Then, they find a path through the candidate
distributions that minimizes the total path length, where the distance betweenDi andDj is measured
by the Wasserstein-distance. However, for image reconstruction, instead of distance between image
distributions, we are more interested in how much a given image degrades in terms of image quality
metrics such as PSNR or LPIPS. Therefore, we replace the Wasserstein-distance by a notion of
distance between two degradation severities d(ti, tj) := Ex0∼D0

[M(Ati(x0),Atj (x0))], where
M is some distortion-based or perceptual image quality metric that acts on a corresponding pair of
images.

We propose a greedy algorithm to select a set of degradations from the set of candidates based on the
above notion of dataset-dependent distance, such that the maximum distance is minimized. That is,
our scheduler is not only a function of the degradation At, but also the data. The intuitive reasoning
to minimize the maximum distance is that our model has to be imbued with enough capacity to
bridge the gap between any two consecutive distributions during the reverse process, and thus the
most challenging transition dictates the required network capacity. In particular, given a budget of
m intermediate distributions on [0, 1], we would like to pick a set of m interpolating severities S
such that

S = argmin
T

max
i

d(ti, ti+1), (23)

where T = {t1, t2, ..., tm|ti ∈ [0, 1], ti < ti+1 ∀i ∈ (1, 2, ...,m)} is the set of possible interpolating
severities with budget m. To this end, we start with S = {0, 1} and add new interpolating severities
one-by-one, such that the new point splits the interval in S with the maximum distance. Thus, over
iterations the maximum distance is non-increasing. We also have local optimality, as moving a single
interpolating severity must increase the maximum distance by the construction of the algorithm.
Finally, we use linear interpolation in between the selected interpolating severities. The technique is
summarized in Algorithm 2, and we refer the reader to the source code for implementation details.

The results of our proposed greedy scheduling algorithm are shown in Figure 7, where the distance
is defined based on the LPIPS metric. In case of blurring, we see a sharp decrease in degradation
severity close to t = 1. This indicates, that LPIPS difference between heavily blurred images is
small, therefore most of the diffusion takes place at lower blur levels. On the other hand, we find
that inpainting mask size is scaled almost linearly by our algorithm on both datasets we investigated.

E NOTE ON THE OUTPUT OF THE ALGORITHM

In the ideal case, σ0 = 0 and A0 = I. However, in practice due to geometric noise scheduling
(e.g. σ0 = 0.01), there is small magnitude additive noise expected on the final iterate. Moreover,
in order to keep the scheduling of the degradation smooth, and due to numerical stability in practice
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Algorithm 2 Greedy Degradation Scheduling

Input: M: pairwise image dissimilarity metric, X0: clean samples, At: unscheduled degradation
function, N : number of candidate points, m: number of interpolation points
ts← (0, 1

N−1 ,
2

N−1 , ...,
N−2
N−1 , 1) ▷ N candidate severities uniformly distributed over [0, 1]

S ← (1, N) ▷ Array of indices of output severities in ts
dmax ← Distance(ts[1], ts[N ]) ▷ Maximum distance between two severities in the output array
estart ← 1 ▷ Start index of edge with maximum distance
eend ← N ▷ End index of edge with maximum distance
for i = 1 to m do

s← FindBestSplit(estart, eend, dmax)
Append(S, s)
dmax, estart, eend ← UpdateMax(S)

end for
Output: S

procedure DISTANCE(ti, tj) ▷ Distance between degradation severities ti and tj
d← 1

|X0|
∑

x∈X0
M(Ati(x),Atj (x))

Output: d
end procedure

procedure FINDBESTSPLIT(estart, eend, dmax) ▷ Split edge into two new edges with minimal
maximum distance

MaxDistance← dmax

for j = estart + 1 to eend − 1 do
d1 ← Distance(ts[estart], ts[j])
d2 ← Distance(ts[j], ts[eend])
if max(d1, d2) < MaxDistance then

MaxDistance← max(d1, d2)
Split← j

end if
end for

Output: Split
end procedure

procedure UPDATEMAX(S)
MaxDistance← 0
for i = 1 to |S| − 1 do

estart ← S[i]
eend ← S[i+ 1]
d← Distance(ts[estart], ts[eend])
if d > MaxDistance then

MaxDistance← d
NewStart← estart
NewEnd← eend

end if
end for

Output: MaxDistance,NewStart,NewEnd
end procedure
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A0 may slightly deviate from the identity mapping close to t = 0 (for example very small amount
of blur). Thus, even close to t = 0, there may be a gap between the iterates yt and the posterior
mean estimates x̂0 = Φθ(yt, t). Due to these reasons, we observe that in some experiments taking
Φθ(yt, t) as the final output yields better reconstructions. In case of early stopping, taking x̂0 as the
output is instrumental, as an intermediate iterate yt represents a sample from the reverse SDP, thus
it is expected to be noisy and degraded. However, as Φθ(yt, t) always predicts the clean image, it
can be used at any time step t to obtain an early-stopped prediction of x0.

F EXPERIMENTAL DETAILS

Datasets – We evaluate our method on CelebA-HQ (256× 256) Karras et al. (2018) and ImageNet
(256 × 256) Deng et al. (2009). For CelebA-HQ training, we use 80% of the dataset for training,
and the rest for validation and testing. For ImageNet experiments, we sample 1 image from each
class from the official validation split to create disjoint validation and test sets of 1k images each.
We only train our model on the official train split of ImageNet. We center-crop and resize ImageNet
images to 256× 256 resolution. For both datasets, we scale images to [0, 1] range.

Comparison methods – We compare our method against DDRM Kawar et al. (2022a), the most
well-established diffusion-based linear inverse problem solver; DPS Chung et al. (2022a), a very
recent, state-of-the-art diffusion technique for noisy and possibly nonlinear inverse problems; PnP-
ADMM Chan et al. (2016), a reliable traditional solver with learned denoiser; and ADMM-TV,
a classical optimization technique. Furthermore, we perform comparison with InDI Delbracio &
Milanfar (2023) in Section G. More details on comparison methods can be found in Section J.1.

Models – For Dirac, we train new models from scratch using the NCSN++Song et al. (2020)
architecture with 67M parameters for all tasks except for ImageNet inpainting, for which we scale
the model to 126M parameters. For competing methods that require a score model, we use pre-
trained SDE-VP models1 (126M parameters for CelebA-HQ, 553M parameters for ImageNet). The
architectural hyper-parameters for the various score-models can be seen in Table 2.

Training details – We train all models with Adam optimizer, with learning rate 0.0001 and batch
size 32 on 8× Titan RTX GPUs, with the exception of the large model used for ImageNet inpainting
experiments which we trained on 8× A6000 GPUs. We only use exponential moving averaging for
this large model. We train for approximately 10M examples seen by the network. For the weighting
factor w(t) in the loss, we set w(t) = 1

σ2
t

in all experiments.

Degradations – We investigate two degradation processes of very different properties: Gaussian
blur and inpainting, both with additive Gaussian noise. In all cases, noise with σ1 = 0.05 is added
to the measurements in the [0, 1] range. We use standard geometric noise scheduling with σmax =
0.05 and σmin = 0.01 in the SDP. For Gaussian blur, we use a kernel size of 61, with standard
deviation of wmax = 3 to create the measurements. We change the standard deviation of the kernel
between wmax (strongest) and wmin = 0.3 (weakest) to parameterize the severity of Gaussian blur
in the degradation process, and use the scheduling method described in Section D to specify At. In
particular, we set

Ablur
t (x) = CΨtx,

where CΨt is a matrix representing convolution with the Gaussian kernel Ψt. The degradation level
is parameterized by the standard deviation of Ψt, and scheduled between wmax = 3.0 at t = 1 and
wmin = 0.3 at t = 0. We keep an imperceptible amount of blur for t = 0 to avoid numerical
instability with very small kernel widths. For inpainting, we generate a smooth mask in the form

Mt =
(
1− f(x;wt)

maxx f(x;wt)

)k

, where f(x;wt) denotes the density of a zero-mean isotropic Gaussian
with standard deviation wt that controls the size of the mask and k = 4 for sharper transition. That
is, the degradation process is defined as

Ainpaint
t (x) = Mtx.

We set w1 = 50 for CelebA-HQ/FFHQ inpainting and 30 for ImageNet inpainting, and set M0 = I
in all experiments. We determine the schedule of wt for t ∈ (0, 1) using Algorithm 2.

1CelebA-HQ: https://github.com/ermongroup/SDEdit
ImageNet: https://github.com/openai/guided-diffusion
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Dirac(Ours)

Hparam Deblur/CelebA-HQ Deblur/ImageNet Inpainting/CelebA-HQ Inpainting/ImageNet

model channels 128 128 128 256
channel mult [1, 1, 2, 2, 2, 2, 2] [1, 1, 2, 2, 2, 2, 2] [1, 1, 2, 2, 2, 2, 2] [1, 1, 2, 2, 4, 4]
num res blocks 2 2 2 2
attn resolutions [16] [16] [16] [16]
dropout 0.1 0.1 0.1 0.0
Total # of parameters 67M 67M 67M 520M

DDRM/DPS

Hparam Deblur/CelebA-HQ Deblur/ImageNet Inpainting/CelebA-HQ Inpainting/ImageNet

model channels 128 256 128 256
channel mult [1, 1, 2, 2, 4, 4] [1, 1, 2, 2, 4, 4] [1, 1, 2, 2, 4, 4] [1, 1, 2, 2, 4, 4]
num res blocks 2 2 2 2
attn resolutions [16] [32, 16, 8] [16] [32, 16, 8]
dropout 0.0 0.0 0.0 0.0
Total # of parameters 126M 553M 126M 553M

Table 2: Architectural hyper-parameters for the score-models for Dirac (top) and other diffusion-
based methods (bottom) in our experiments.

PO Sampling hyper-parameters

Hparam Deblur/CelebA-HQ Deblur/ImageNet Inpainting/CelebA-HQ Inpainting/ImageNet

∆t 0.02 0.02 0.005 0.01
tstop 0.25 0.0 0.0 0.0
ηt 0.5 0.2 1.0 0.0
Guidance scaling std std error -
Output x̂0 x̂0 yt yt

DO Sampling hyper-parameters

Hparam Deblur/CelebA-HQ Deblur/ImageNet Inpainting/CelebA-HQ Inpainting/ImageNet

∆t 0.02 0.02 0.005 0.01
tstop 0.98 0.7 0.995 0.99
ηt 0.5 1.5 1.0 0.0
Guidance scaling std std error -
Output x̂0 x̂0 x̂0 x̂0

Table 3: Settings for perception optimized (PO) and distortion optimized (DO) sampling for all
experiments on test data.

Evaluation method – To evaluate performance, we use PSNR and SSIM as distortion metrics and
LPIPS and FID as perceptual quality metrics. For the final reported results, we scale and clip all
outputs to the [0, 1] range before computing the metrics. We use validation splits to tune the hyper-
parameters for all methods, where we optimize for best LPIPS in the deblurring task and for best
FID for inpainting. As the pre-trained score-models for competing methods have been trained on
the full CelebA-HQ dataset, we test all methods for fair comparison on the first 1k images of the
FFHQ Karras et al. (2019) dataset. The list of test images for ImageNet can be found in the source
code.

Sampling hyperparameters – The settings are summarized in Table 3. We tune the reverse process
hyper-parameters on validation data. For the interpretation of ’guidance scaling’ we refer the reader
to the explanation of guidance step size methods in Section B. In Table 3, ’output’ refers to whether
the final reconstruction is the last model output (posterior mean estimate, x̂0 = Φθ(yt, t)) or the
final iterate yt.

G COMPARISON WITH BLENDING

Our proposed method interpolates between degraded and clean distributions via a SDP. A parallel
line of work Delbracio & Milanfar (2023); Heitz et al. (2023) considers an alternative formulation
in which the intermediate distributions are convex combinations of degraded-clean image pairs, that
is yt = tỹ + (1 − t)x0. We compare the InDI Delbracio & Milanfar (2023) formulation to Dirac
on the FFHQ dataset (Table 4). We observe comparable results on the deblurring task, however the
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Deblurring Inpainting
Method LPIPS(↓) FID(↓) LPIPS(↓) FID(↓)
Blending (InDI Delbracio & Milanfar (2023)) 0.2604 56.27 0.2424 54.08
Dirac-PO (ours) 0.2716 53.36 0.2626 39.43

Table 4: Comparison with blending schedule on
the FFHQ test split.

0.0 0.02 0.04 0.06 0.08

0.3

0.4

0.5

0.6

0.7

σ

L
P
IP

S

Dirac
InDI

1

Figure 8: Robustness experiment: we
simulate a mismatch between train and
test noise levels (FFHQ test split, de-
blurring). Dirac is more robust to per-
turbations in measurement noise vari-
ance.

blending parametrization is not suitable for inpainting as reflected by the large gap in FID. To see
this, we point out that in Dirac t directly parametrizes the severity of the degradation, that is our
model learns a continuum of reconstruction problems with smoothly changing difficulty. On the
other hand, blending missing pixels with the clean image does not offer a smooth transition in terms
of reconstruction difficulty: for any 0 ≤ t < 1 the reconstruction of x0 from yt becomes trivial.
Furthermore, as our model is trained on a wide range of noise levels due to the SDP formulation,
we observe improved robustness to test-time perturbations in measurement noise compared to the
blending formulation (Fig. 8).

H ROBUSTNESS ABLATIONS

Degradation severity – We evaluate robustness of Dirac against test-time perturbations in the for-
ward process for Gaussian blur. In particular, suppose that the standard deviation of the Gaus-
sian blur kernel is perturbed with a multiplicative factor of k (i.e., wperp = kwmax). We pick
k ∈ [0.6, 0.8, 1.0, 1.2, 1.4] and plot the change in distortion (SSIM) and perception (LPIPS) metrics
on the FFHQ test split (see Figure 9) using our perception-optimized model. We observe that, as is
the case for other supervised methods, reconstruction performance degrades (in terms of both dis-
tortion and perception metrics) when the degradation model is significantly changed. Nevertheless,
we observe that the performance of Dirac is almost unchanged under blur kernel standard deviation
reductions of up to 20%, which is a significant perturbation. We hypothesize that the robustness
of Dirac to forward model shifts is due to fact that the model is trained on a range of degradation
severities in the input. Furthermore, we observe that distortion metrics, such as SSIM, degrade less
gracefully in the increased severity direction, while perception metrics, such as LPIPS, behave in the
opposite manner. We expect our distortion optimized model to be more robust in terms of distortion
metric degradation when the forward model is perturbed.

Measurement noise– We test the robustness of Dirac against perturbations of measurement noise
variance compared to the training setup. We evaluate our perception-optimized model, trained un-
der measurement noise with σ = 0.05, on the FFHQ test split on the gaussian deblurring task with
measurement noise standard deviations in σ = [0.0, 0.02, 0.04, 0.05, 0.06, 0.08]. Our model demon-
strates great performance when the nosie level is decreased with improved performance in terms of
LPIPS compared to the training setting (see Figure 8). For higher noise variances, the performance
of Dirac degrades more gracefully than other similar techniques such as InDI Delbracio & Milanfar
(2023) (see more discussion in Appendix G).
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Figure 9: Effect of Gaussian blur kernel width perturbation on the FFHQ test set for the deblurring
task. The change in the LPIPS metric (left) together with the SSIM metric (right) is shown.

I INCREMENTAL RECONSTRUCTION LOSS ABLATIONS

We propose the incremental reconstruction loss, that combines learning to denoise and reconstruct
simultaneously in the form

LIR(∆t,θ) = Et,(x0,yt)

[
w(t) ∥Aτ (Φθ(yt, t))−Aτ (x0)∥2

]
, (24)

where τ = max(t − ∆t, 0), t ∼ U [0, 1], (x0,yt) ∼ q0(x0)qt(yt|x0). This loss directly im-
proves incremental reconstruction by encouraging At−∆t(Φθ(yt, t)) ≈ At−∆t(x0). We show in
Proposition A.6 that LIR(∆t,θ) is an upper bound to the denoising score-matching objective L(θ).
Furthermore, we show that given enough model capacity, minimizing LIR(∆t,θ) also minimizes
L(θ). However, if the model capacity is limited compared to the difficulty of the task, we expect
a trade-off between incremental reconstruction accuracy and score accuracy. This trade-off might
not be favorable in tasks where incremental reconstruction is accurate enough due to the smooth-
ness properties of the degradation (see Theorem 3.4). Here, we perform further ablation studies to
investigate the effect of the look-ahead parameter ∆t in the incremental reconstruction loss.

Deblurring – In case of deblurring, we did not find a significant difference in perceptual quality
with different ∆t settings. Our results on the CelebA-HQ validation set can be seen in Figure 10
(left). We observe that using ∆t = 0 (that is optimizing L(θ)) yields slightly better reconstructions
(difference in the third digit of LPIPS) than optimizing with ∆t = 1, that is minimizing

LIR(∆t = 1,θ) := LX0

IR(θ) = Et,(x0,yt)

[
w(t) ∥Φθ(yt, t)− x0∥2

]
. (25)

This loss encourages one-shot reconstruction and denoising from any degradation severity, intu-
itively the most challenging task to learn. We hypothesize, that the blur degradation used in our
experiments is smooth enough, and thus the incremental reconstruction as per Theorem 3.4 is ac-
curate. Therefore, we do not need to trade off score approximation accuracy for better incremental
reconstruction.

Inpainting – We observe very different characteristics in case of inpainting. In fact, using the
vanilla score-matching loss L(θ), which is equivalent to LIR(∆t,θ) with ∆t = 0, we are unable to
learn a meaningful inpainting model. As we increase the look-ahead ∆t, reconstructions consistently
improve. We obtain the best results in terms of FID when minimizing LX0

IR(θ). Our results are
summarized in Figure 10 (middle). We hypothesize that due to rapid changes in the inpainting
operator, our incremental reconstruction estimator produces very high errors when trained on L(θ)
(see Theorem 3.4). Therefore, in this scenario improving incremental reconstruction at the expense
of score accuracy is beneficial. Figure 10 (right) demonstrates how reconstructions visually change
as we increase the look-ahead ∆t. With ∆t = 0, the reverse process misses the clean image manifold
completely. As we increase ∆t, reconstruction quality visually improves, but the generated images
often have features inconsistent with natural images in the training set. We obtain high quality,
detailed reconstructions for ∆t = 1 when minimizing LX0

IR(θ).
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Figure 10: Effect of incremental reconstruction loss step size on the CelebA-HQ validation set for
deblurring (left) and inpainting (middle). Visual comparison of inpainted samples is shown on the
right.

J FURTHER INCREMENTAL RECONSTRUCTION APPROXIMATIONS

In this work, we focused on estimating the incremental reconstruction

R(t,∆t;x0) := At−∆t(x0)−At(x0) (26)

in the form
R̂(t,∆t;yt) = At−∆t(Φθ(yt, t))−At(Φθ(yt, t)), (27)

which we call the look-ahead method. The challenge with this formulation is that we use yt with
degradation severity t to predict At−∆t(x0) with less severe degradation t − ∆t. That is, as we
discussed in the paper Φθ(yt, t) does not only need to denoise images with arbitrary degradation
severity, but also has to be able to perform incremental reconstruction, which we address with the
incremental reconstruction loss. However, other methods of approximating (26) are also possi-
ble, with different trade-offs. The key idea is to use different methods to estimate the gradient of
At(x0) with respect to the degradation severity, followed by first-order Taylor expansion to estimate
At−∆t(x0).

Small look-ahead (SLA) – We use the approximation

At−∆t(x0)−At(x0) ≈ ∆t · At−δt(x0)−At(x0)

δt
, (28)

where 0 < δt < ∆t to obtain

R̂SLA(t,∆t;yt) = ∆t · At−δt(Φθ(yt, t))−At(Φθ(yt, t))

δt
. (29)

The potential benefit of this method is that At−δt(Φθ(yt, t)) may approximate At−δt(x0) much
more accurately thanAt−∆t(Φθ(yt, t)) can approximateAt−∆t(x0), since t−δt is closer in severity
to t than t −∆t. However, depending on the sharpness of At, the first-order Taylor approximation
may accumulate large error.

Look-back (LB) – We use the approximation

At−∆t(x0)−At(x0) ≈ At(x0)−At+∆t(x0), (30)

that is we predict the incremental reconstruction based on the most recent change in image degrada-
tion. Plugging in our model yields

R̂LB(t,∆t;yt) = At(Φθ(yt, t))−At+∆t(Φθ(yt, t)). (31)

The clear advantage of this formulation over (27) is that if the loss in (10) is minimized such that
At(Φθ(yt, t)) = At(x0), then we also have

At+∆t(Φθ(yt, t)) = Gt→t+∆t(At(Φθ(yt, t))) = Gt→t+∆t(At(x0)) = At+∆t(x0).

However, this method may also accumulate large error if At changes rapidly close to t.

Small look-back (SLB)– Combining the idea in SLA with LB yields the approximation

At−∆t(x0)−At(x0) ≈ ∆t · At(x0)−At+δt(x0)

δt
, (32)
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where 0 < δt < ∆t. Using our model, the estimator of the incremental reconstruction takes the
form

R̂SLB(t,∆t;yt) = ∆t · At(Φθ(yt, t))−At+δt(Φθ(yt, t))

δt
. (33)

Compared with LB, we still have At+δt(Φθ(yt, t)) = At+δt(x0) and the error due to first-order
Taylor-approximation is reduced, however potentially higher than in case of SLA.

Incremental Reconstruction Network – Finally, an additional model ϕθ′ can be trained to directly
approximate the incremental reconstruction, that is ϕθ′(yt, t) ≈ R(t,∆t;x0). All these approaches
are interesting directions for future work.

J.1 COMPARISON METHODS

For all methods, hyperparameters are tuned based on first 100 images of the folder "00001" for
FFHQ and tested on the folder "00000". For ImageNet experiments, we use the first samples of
the first 100 classes of ImageNet validation split to tune, last samples of each class as the test set.

J.1.1 DPS

We use the default value of 1000 NFEs for all tasks. We make no changes to the Gaussian blurring
operator in the official source code. For inpainting, we copy our operator and apply it in the image
input range [0, 1]. The step size ζ ′ is tuned via grid search for each task separately based on LPIPS
metric. The optimal values are as follows:

1. FFHQ Deblurring: ζ ′ = 3.0

2. FFHQ Inpainting: ζ ′ = 2.0

3. ImageNet Deblurring: ζ ′ = 0.3

4. ImageNet Inpainting: ζ ′ = 3.0

As a side note, at the time of writing this paper, the official implementation of DPS2 adds the noise
to the measurement after scaling it to the range [−1, 1]. For the same noise standard deviation,
the effect of the noise is halved as compared to applying in [0, 1] range. To compensate for this
discrepancy, we set the noise std in the official code to σ = 0.1 for all DPS experiments which is the
same effective noise level as σ = 0.05 for our experiments.

J.1.2 DDRM

We keep the default settings ηB = 1.0, η = 0.85 for all of the experiments and sample for 20 NFEs
with DDIM Song et al. (2021a). For the Gaussian deblurring task, the linear operator has been
implemented via separable 1D convolutions as described in D.5 of DDRM Kawar et al. (2022a).
We note that for blurring task, the operator is applied to the reflection padded input. For Gaussian
inpainting task, we set the left and right singular vectors of the operator to be identity (U = V = I)
and store the mask values as the singular values of the operator. For both tasks, operators are applied
to the image in the [−1, 1] range.

J.1.3 PNP-ADMM

We take the implementation from the scico library. Specifically the code is modified from the
sample notebook3. We set the number of ADMM iterations to be maxiter=12 and tune the ADMM
penalty parameter ρ via grid search for each task based on LPIPS metric. The values for each task
are as follows:

1. FFHQ Deblurring: ρ = 0.1

2. FFHQ Inpainting: ρ = 0.4

2https://github.com/DPS2022/diffusion-posterior-sampling
3https://github.com/lanl/scico-data/blob/main/notebooks/superres_ppp_

dncnn_admm.ipynb
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3. ImageNet Deblurring: ρ = 0.1

4. ImageNet Inpainting: ρ = 0.4

The proximal mappings are done via pre-trained DnCNN denoiser with 17M parameters.

J.1.4 ADMM-TV

We want to solve the following objective:

argmin
x

1

2
∥y −A1(x)∥22 + λ∥Dx∥2,1

where y is the noisy degraded measurement, A1(·) refers to blurring/masking operator and D is a
finite difference operator. ∥Dx∥2,1 TV regularizes the prediction x and λ controls the regularization
strength. For a matrix A ∈ Rm×n, the matrix norm ∥.∥2,1 is defined as:

∥A∥2,1 =

m∑
i=1

√√√√ n∑
j=1

A2
ij

The implementation is taken from scico library where the code is based on the sample notebook4.
We note that for consistency, the blurring operator is applied to the reflection padded input. In
addition to the penalty parameter ρ, we need to tune the regularization strength λ in this problem.
We tune the pairs (λ, ρ) for each task via grid search based on LPIPS metric. Optimal values are as
follows:

1. FFHQ Deblurring: (λ, ρ) = (0.007, 0.8)

2. FFHQ Inpainting: (λ, ρ) = (0.02, 0.2)

3. ImageNet Deblurring: (λ, ρ) = (0.007, 0.5)

4. ImageNet Inpainting: (λ, ρ) = (0.02, 0.2)

J.1.5 INDI

In order to ablate the effect of degradation parametrization, we match the experimental setup as
closely as possible to Dirac setting on CelebA-HQ. We train the same model as used for Dirac
from scratch. As InDI does not leverage diffusion directly, we train on a weighted ℓ2 loss, where
wt =

1
t2+ϵ instead of 1/σ2

t -weighting in our method. We adjust the learning rate to account for the
resulting difference in scale. We use our degradation scheduling method from 2 to schedule t. For
inference, we set ∆t = 0.05.

K FURTHER RECONSTRUCTION SAMPLES

Here, we provide more samples from Dirac reconstructions on the test split of CelebA-HQ and
ImageNet datasets. We visualize the uncertainty of samples via pixelwise standard deviation across
n = 10 generated samples. In experiments where the distortion peak is achieved via one-shot
reconstruction, we omit the uncertainty map.

4https://github.com/lanl/scico-data/blob/main/notebooks/deconv_tv_
padmm.ipynb
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Figure 11: Distortion and Perception optimized deblurring results for the CelebA-HQ dataset (test
split). Uncertainty is calculated over n = 10 reconstructions from the same measurement.

27



Under review as a conference paper at ICLR 2024

Measurement DO - Sample 1 DO - Sample 2 PO - Sample 1 PO - Sample 1 PO Uncertainty Target

0

0.2

0.4

0.6

0.8

1

Figure 12: Distortion and Perception optimized inpainting results for the CelebA-HQ dataset (test
split). Uncertainty is calculated over n = 10 reconstructions from the same measurement. For
distortion optimized runs, images are generated in one-shot, hence we don’t provide uncertainty
maps.
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Figure 13: Distortion and Perception optimized deblurring results for the ImageNet dataset (test
split). Uncertainty is calculated over n = 10 reconstructions from the same measurement.
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Figure 14: Distortion and Perception optimized inpainting results for the ImageNet dataset (test
split). Uncertainty is calculated over n = 10 reconstructions from the same measurement. For
distortion optimized runs, images are generated in one-shot, hence we don’t provide uncertainty
maps.
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