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Abstract. With recent advances in deep learning, numerous algorithms
have been developed to enhance video quality, reduce visual artifacts, and
improve perceptual quality. However, little research has been reported
on the quality assessment of enhanced content - the evaluation of en-
hancement methods is often based on quality metrics that were designed
for compression applications. In this paper, we propose a novel blind
deep video quality assessment (VQA) method specifically for enhanced
video content. It employs a new Recurrent Memory Transformer (RMT)
based network architecture to obtain video quality representations, which
is optimized through a novel content-quality-aware contrastive learning
strategy based on a new database containing 13K training patches with
enhanced content. The extracted quality representations are then com-
bined through linear regression to generate video-level quality indices.
The proposed method, RMT-BVQA, has been evaluated on the VDPVE
(VQA Dataset for Perceptual Video Enhancement) database through a
five-fold cross validation. The results show its superior correlation per-
formance when compared to ten existing no-reference quality metrics.

Keywords: Video Quality Assessment · RMT-BVQA · Enhanced Video Con-
tent · Recurrent Memory Transformer

1 Introduction

Video content is now everywhere! It is by far the largest global Internet band-
width consumer, with a wide range of applications including consumer video,
video conferencing, and gaming. It has been reported that in 2022, each indi-
vidual in the United Kingdom spent 4.5 hours per day (on average) consuming
video content on different platforms [47]. Due to various conditions associated
with video capture, editing, and delivery, streamed content often contains a
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Fig. 1: Illustration of the proposed RMT-BVQA framework.

range of visual artifacts, which can affect the quality of a user’s experience. To
address this issue, enhancement approaches have been developed, with the aim
of reducing visible artifacts and improving overall perceptual quality, e.g . color
transform [17,38], deblurring [29,68], deshaking [16], post processing [13,65], su-
per resolution [10,63], etc. In particular, more recently, driven by the advances of
deep generative models [7,11,40], we have seen more effective methods proposed
that offer promising enhancement results.

In order to evaluate the performance of these methods, enhanced content
can be assessed subjectively through psychophysical experiments or objectively
using various video quality metrics. While the former offers ground-truth results,
objective video quality assessment (VQA) methods are used more often in prac-
tice due to their higher efficiency and lower cost [4]. In the video enhancement
literature, blind (without pristine reference sources) quality metrics are more rel-
evant compared to full- and reduced- reference VQA methods. This is because,
in most cases, the enhancement operation is performed at the user end, where
the reference content is unavailable.

Conventional blind VQA methods [43,45,55] are predominantly based on var-
ious features extracted in the spatio-temporal or/and frequency domains. Recent
advances in this research area favor deep learning-based models employing con-
volutional neural networks (CNNs) [1, 34] or Vision Transformers (ViTs) [59].
However, these methods tend to exhibit inconsistent performance due to the
lack of large and diverse training databases (in particular, for enhanced video
content) and inefficient training methodologies. Furthermore, in order to make
use of the limited ground-truth quality labels in existing datasets, end-to-end
training at the video level is required, but infeasible due to the computation
constraints (e.g. memory) with most existing hardware. As a result, many meth-
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ods [59,62] resort to subsampling videos before evaluating their quality, leading
to a significant loss of information. Moreover, it is also noted that most of these
blind VQA models were originally optimized and validated on compressed videos
that contain artifact types and (spatio-temporal) distributions that differ com-
pared to enhanced content. This can lead to inconsistent metric performance
when used to assess enhanced video content.

Inspired by recent works in contrastive learning [41, 67] and the recurrent
memory mechanism [3], we proposes a blind VQA method, RMT-BVQA (illus-
trated in Fig. 1), based on a new content-quality-aware self-supervised learning
methodology and a novel Recurrent Memory Vision Transformer (RMViT) mod-
ule. This approach first generates a comprehensive video representation through
dynamically processing global and local information across video frames using
the proposed RMViT module. The video representation is then used to predict
the final sequence quality score through linear regression. To facilitate the opti-
mization of the RMViT module through contrastive learning, we have also cre-
ated a large-scale database containing content generated by various enhancement
methods. The primary contributions of this work are summarized as follows.

1) Recurrent Memory Vision Transformer (RMViT) module: To char-
acterize the artifacts exhibiting in the enhanced video content, we designed
a new network architecture based on the recurrent memory mechanism [3],
which has been employed in language modeling [3], for capturing both short-
term temporal dynamics and long-term global information. This also aligns
well with the visual persistence characteristic of the human visual system [9].
Moreover, this facilitates end-to-end training at the video level, without sub-
sampling the video content, and the recurrence nature allows our model to
evaluate videos of variable length. This is the first time when the Recurrent
Memory Vision Transformer3 is used for the video quality assessment task.

2) Content-quality-aware self-supervised learning: We developed a new
self-supervised learning strategy based on a content-quality-aware loss func-
tion. This training methodology enables us to optimize the proposed RMViT
module based on a large amount of training material without performing ex-
pensive and time consuming subjective tests. Here we, for the first time, used
a proxy perceptual quality metric to support the quality-aware contrastive
learning for VQA, inspired by the ranking-based training strategies [14,49].

3) A new training dataset: We developed a large and diverse training dataset
containing various types of enhanced video content to support the proposed
content-quality-aware contrastive learning strategy. This training dataset is
made available for future research.

The proposed method has been evaluated on the VQA Dataset for Perceptual
Video Enhancement (VDPVE) [15] and achieves superior performance over ten
existing no-reference VQA methods based on five-fold cross validations, with an
average Spearman Rank-order Correlation Coefficient (SRCC) of 0.8209.
3 We acknowledge that other recurrent mechanisms, such as LSTMs, have been em-

ployed for VQA in the literature [19].
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2 Related Work

Objective quality assessment is one of the most important research topics
in the field of image processing. It aims to accurately predict the perceptual
quality of an input signal given (full reference [35, 58, 64]) or without (no refer-
ence [26,45,59]) the corresponding reference content4. Objective quality metrics
play an essential role in comparing different image/video processing methods
and supporting algorithm optimization, e.g . in the rate quality optimization for
compression [46] or as loss functions for learning-based approaches [40]. In the
context of video enhancement, since the quality assessment of enhanced content
is typically performed when the original reference video is absent, we primarily
focus on the no-reference scenario here.
Conventional no-reference quality assessment methods often employ hand-
crafted models to observe the input content through spatial, temporal and/or
frequency feature extraction. For example, V-BLIINDS [51] employs a spatio-
temporal natural scene statistics (NSS) model to quantify motion coherency in
video scenes; TLVQM [28] calculates features at various scales from a selec-
tion of representative video frames; VIDEVAL [55] predicts video quality by
extracting various spatio-temporal artifact features such as motion, jerkiness,
and blurriness. Other notable contributions include NIQE [45], BRISQUE [43],
and V-CORNIA [61]. A more comprehensive review of blind image and video
quality metrics can be found in [52].
Learning-based no-reference quality assessment has become more popular
recently, inspired by advances in machine learning. Early attempts [12,26,28,51]
use various regression models to fit and predict quality indices based on extracted
features and conventional quality metrics. More recently, deep neural networks
have been utilized for both feature extraction and quality regression to offer
improved prediction performance, with important examples including BVQA
[33], SimpleVQA [30], FAST-VQA [59], TB-VQA [60] and SB-VQA [23].
Training methodology For deep learning-based quality models, it is key to
have a large, diverse, and representative training database. However, creating
such databases is costly, since ground-truth quality labels are typically anno-
tated through subjective tests involving human participants. To address this
issue, Feng et al . [14] used proxy quality metrics for labeling training material
and developed a ranking-inspired training strategy to maintain the reliability of
quality annotation. Moreover, self-supervised learning methods have also been
employed that convert quality labeling into an auxiliary task [41,42,67].
Quality assessment for enhanced video content is an underexplored re-
search topic. Previous works typically fine-tune existing blind quality models
using enhanced content. A grand challenge [36] was organized in 2023 specifi-
cally for enhanced video quality assessment, based on a public training database
(VDPVE) [15], which contains enhanced video sequences generated through con-
trast enhancement, deshaking and deblurring. However, it should be noted that

4 Another type of quality assessment methods does exist, denoted reduced-reference
models, which only employ partial information from the reference.
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only the training set in the VDPVE database is publicly available, while the test
dataset used in the grand challenge has not been released.

3 Proposed Method

The proposed RMT-BVQA framework is illustrated in Fig. 1. It first takes each
frame of the input video and transforms it into a one-dimensional embedding
using a Spatial Feature Encoder. The extracted embeddings are then sequentially
processed by the RMViT (Recurrent Memory Vision Transformer) module to
generate the representation of the input video. Finally, a linear ridge regression
is employed to output the final predicted sequence quality score. The network
architectures employed for each module in this framework, the training database,
and the model optimization strategy are described below in detail.

3.1 Network architecture

Spatial Feature Encoder. Here we employ a pre-trained ResNet-50 based [20]
network which was optimized in a deep image quality model [41] for spatial
feature extraction. The network parameters are fixed during our training process
for the proposed RMT-BVQA. For each frame, a 2048×1 embedding is extracted.
RMViT module. Considering that artifact types and distributions in enhanced
video content are different from those in compressed content (on which most
blind VQA methods are optimized and validated), we designed a new Recurrent
Memory Vision Transformer (RMViT) module to effectively capture both local
temporal dynamic and global information within the input video sequence. This
is inspired by the recurrent memory mechanism [3] that has been successfully
integrated into language models. This mechanism can process and “remember"
both local and global information and pass the “memory” between segments
within a long sequence using the recurrence structure [3], thus is applicable
to videos of any length. To our knowledge, this is the first time the recurrent
memory mechanism has been applied to the quality assessment task.

As shown in Fig. 1, in the first recurrent iteration, the proposed RMViT mod-
ule takes N frame embeddings (h1 h2 . . .hN , corresponding to the first segment
in the video) extracted by the Spatial Feature Encoder together with empty
memory (h0

mem ∈ R2048×M ) as input, where N is a configurable hyperparameter
that defines the length of each video segment and M denotes the number of
memory tokens. Specifically, for the first iteration, the input of RMViT is given
below:

H0 = [h0
mem ◦ h1 ◦ h2 ◦ ... ◦ hN ], (1)

in which ◦ stands for the concatenation operation. H0 will then be processed by
a Vision Transformer with the output, H̃0 ∈ R2048×(M+N):

H̃0 := [h1
mem ◦ h̃1 ◦ h̃2 ◦ ... ◦ h̃N ] = ViT(H0) (2)
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Table 1: Training database generation.

Class Number of
Source Videos Enhancement Methods

Colour, Brightness and
Contrast Enhancement 44 ACE [17], DCC-Net [66], MBLLEN [38],

CapCut [54]

Deshaking 50
GlobalFlowNet [16], Adobe Premiere Pro
[48], CapCut (minimum cropping mode)
[54], CapCut (most stable mode) [54]

Deblurring 55 ESTRNN [68], DeblurGANv2 [29], Ba-
sicVSR++ [5], Adobe Premiere Pro [48]

For the second recurrent iteration, we further combine the frame embeddings of
the next video segment (hN+1 hN+2 . . .h2N ) with the memory token h1

mem in
H̃0 as the input of the Vision Transform H1 to obtain H̃1.

H1 = [h1
mem ◦ hN+1 ◦ hN+2 ◦ ... ◦ h2N ], and (3)

H̃1 := [h2
mem ◦ h̃N+1 ◦ h̃N+2 ◦ ... ◦ h̃2N ] = ViT(H1). (4)

After processing all segments in the input video, the RMViT finally outputs
a video-level embedding hv ∈ R2048×1 by performing average pooling on the
concatenation of the memory tokens generated in the last recurrent iteration and
all the Vision Transformer processed frame embeddings, [hS

mem◦h̃1◦h̃2◦...◦h̃T ]. It
is noted that this is slightly different to the original recurrent memory mechanism
[3], where only the memory in the last iteration contributes to the module output.
This modification helps to capture the temporal dynamics across the entire video
sequence and enhances the stability of the model. Here S stands for the number
of segments, while T represents the total number of frames in S segments. In
cases when the last segment contains frames fewer than N , this segment will be
discarded.
Regression. The final output of the RMViT module, hv, is passed to a linear
ridge regressor (the same as in [42]) in order to obtain the predicted sequence
level quality score, Qpred. Here, the regressor is optimized during the cross-
validation experiment, in which the model parameters of the RMViT are fixed.

3.2 Training Database Generation

To support the training of the RMViT module, we have collected 149 source
videos (with a spatial resolution of 1080p or 720p) from five publicly avail-
able datasets including BVI-DVC [39], KoNViD-1k [22], LIVE-VQC [53], Live-
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Qualcomm [18], and YouTube-UGC [57]. Three primary visual artefacts5 (as
defined in VDPVE [15]) including (i) color / brightness / contrast degradation,
(ii) camera shaking, and (iii) blurring are synthesized (for (iii), through Gaussian
filtering) or inherent within the source content (for (i) and (ii)). These videos
are then processed using 12 different conventional and learning-based enhance-
ment methods to generate a total of 596 enhanced video sequences. The detailed
database generation process is summarized in Tab. 1.

Each enhanced video and its corresponding reference counterpart are then
randomly segmented with a non-overlapping spatio-temporal sliding window to
produce training patches with the size of 256 (height) × 256 (width) × 3 (chan-
nel) × 72 (temporal length). The reference patches here are only used to generate
pseudo-labels for quality classification and are not input into the model. This
results in 13,156 (enhanced and reference) patch pairs. Fig. 2 shows example
frames of the training sequences generated for training the proposed model.

3.3 Training Strategy

In self-supervised learning, when the model is difficult to optimize directly for
its primary task, it is often trained to perform a related pretext task, which can
be learned more effectively. In our case, since assessing the quality of enhanced
video content is a challenging task and the corresponding labels are difficult to
obtain, inspired by contrastive learning [24, 31], we employ a projector network
(with two layers of multilayer perceptron), g(·), to transform the original task
into two classification problems focusing on content and quality classification,
rather than predicting absolute quality indices.

Specifically, the projector first takes the output of the RMViT, hv, and ob-
tains the quality representation of the video, z ∈ R128×1, which is expected to
represent the quality of this sequence. This is used to calculate the quality-aware
loss. On the other hand, we perform average pooling on the processed frame em-
beddings in the last recurrent iteration, [h̃T−N+1 ◦ h̃T−N+2 ◦ ...◦ h̃T ], to generate
a content embedding, hc ∈ R2048×1. We also feed the memory token generated
in the second last recurrent iteration, hS−1

mem, into a prediction network [6], f(·),
to obtain the predicted content embedding ĥc. Both hc and ĥc are then passed
to the same projector, g(·), to obtain their corresponding content representation,
c ∈ R128×1, and the predicted content representation, ĉ ∈ R128×1, respectively,
which are used to calculate the content-aware loss.

To enable contrastive learning, a batch (2B) of training patches are fed into
the network with B randomly selected patches of size 256×256×3×72 and their
corresponding down-sampled versions (128×128×3×72). The latter is used here
to provide true positive pairs (for the calculation of the quality-aware loss) in
contrastive learning, as in [41]. The contrastive loss function contains two com-
ponents, quality-aware and content-aware losses.

5 The investigation of other types of enhanced content was not the focus of this work,
but remains as future work.
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ACE CapCut DCC-Net MBLLEN

CapCut(Most Stable) GlobalFlowNet CapCut(Min Stable) Adobe Premiere Pro

Adobe Premiere Pro DeblurGANv2ESTRNN BasicVSR++

Fig. 2: Example frames of the training sequences. The first row shows example frames
corresponding to the videos generated using four different enhancement methods for
color, contrast and brightness enhancement. The second row presents the examples
from the content generated by four deshaking methods. The third row shows those
produced by four deblurring methods.

Quality-aware loss focuses on distinguishing videos based on the similarity
of their visual quality. For a given input patch, the positive pairs are consti-
tuted either between the patches with similar quality or between a full-resolution
patch and its corresponding low-resolution counterpart. The quality-aware loss,
Lquality
i , for the ith input patch in a batch is defined by:

Lquality
i = − 1

Pi

Pi∑
j=1

log

(
exp(ϕ(zi, zj)/τ)∑2B

k=1,k ̸=i exp(ϕ(zi, zk)/τ)

)
. (5)

Here Pi represents the number of patches (positive pairs) in a batch with the
same quality interval (the classification process is described below) as patch i,
or with the similar content to patch i but in different resolutions. ϕ stands for
the normalized dot product function, ϕ(a, b) = aT b /(∥a∥2∥b∥2), which measures
the similarity between a and b. τ is a temperature parameter that is less than 1.
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Quality classification. To support quality-aware learning, we employ a proxy
quality metric to perform quality classification, inspired by the ranking-based
training methodology proposed in RankDVQA [14]. Specifically, we first use
VMAF [35] to calculate the quality score for each patch by comparing it with
the associated corresponding reference (see Sec. 3.2). During the training process,
for patch i, if another patch j is associated with a VMAF value close to that of
patch i (the difference is smaller than a threshold TH),

|VMAFi −VMAFj | <= TH, (6)

these are considered as a positive pair. Similarly as in [14], although VMAF [35]
does not offer a perfect correlation performance with groundtruth subjective
opinions, with a sensible threshold value, the classification here can be considered
to be reliable (with a 95%+ accuracy), as demonstrated in [14]).
Content-aware loss captures the content-dependent nature of video enhance-
ment methods, providing a different observation aspect in the training process.
This has been reported to be effective in the literature [6] for the video quality
assessment task. In our case, the positive pair from the content perspective is
defined for patches with the same source content.

Specifically, given the content representation ci and its predicted version ĉi
for patch i in a batch, the content-aware loss is calculated by:

Lcontent
i = − 1

Ci

Ci∑
j=1

log

(
exp(ϕ(ci, cj)/τ) + exp(ϕ(ci, ĉj)/τ)∑B

k=1,k ̸=i(exp(ϕ(ci, ck)/τ) + exp(ϕ(ci, ĉk)/τ))

)
,

(7)
where Ci represents the number of patches in a batch with the same content as
patch i.

Similarly as in [25], the final contrastive loss is defined as a weighted sum of
the quality- and content-aware components:

L =
1

B

B∑
i=1

(
Lquality
i + λ1L

content
i

)
, (8)

where λ1 is a tuning parameter. Here, we only consider full-resolution patches
when calculating the final contrastive loss.

4 Experimental Configuration

Implementation Details. The implementation of the RMViT module is based
on the Vision transformer for small datasets [32], where the depth is set to 8 and
the number of heads is 64. The hidden dimension is adjusted to 2048 following
the practice in [41]. The size of the segment is fixed at 4. The number of memory
tokens and the segment length are 12 (this is verified in Ablation Study through
an analysis of the training results). The batch size for training is B = 256. τ is
set to 0.1. The threshold TH, used in the quality classification, is set to 6 based
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on [14]. Data augmentation is performed during the training content generation
through block rotation. The RMViT module, the prediction network, f(·), and
the projector network, g(·), were trained simultaneously from scratch for 150
epochs using stochastic gradient descent (SGD) at a learning rate of 0.00025. A
linear warm-up over the first ten epochs was applied to the learning rate, followed
by a cosine decay schedule used in [37]. The proposed method was implemented
using Pytorch 1.13 with an NVIDIA 3090 GPU.
Benchmark blind VQA methods. The proposed quality metric is compared
with ten blind VQA methods, including two conventional models, NIQE [45],
BRISQUE [43], three regression-based methods, V-BLIINDS [51], TLVQA [28]
and ChipQA [12], and five deep learning based approaches, BVQA [33], VSFA
[34], SimpleVQA [30], CONVIQT [42], FAST-VQA [59] and RanKDVQA-NR
[14]. It is noted that some well-performing no-reference VQA models, such as
TB-VQA [60], which ranks first in the NTIRE 2023 quality assessment of video
enhancement challenge [36], and SB-VQA [23], have not been included in this
experiment, as their source codes are not public accessible.
Evaluation settings. Due to the limited test content available, we performed
a five-fold cross validation experiment based on the VDPVE database for RMT-
BVQA and all the other eight learning-based (regression or deep learning) VQA
methods. It should be noted that here we refer to the VDPVE training set,
which contains 839 sequences, while the corresponding test set is not accessible,
as mentioned in Sec. 2. This dataset is further divided into three sub-datasets:
Subset A including 414 videos generated through colour, brightness, and contrast
enhancement; Subset B comprising 210 deshaked videos; and Subset C contain-
ing 215 deblurred videos. It should be noted that for the proposed method, only
the linear regression is optimized using the training set in the cross validation.
The five-fold cross validation has been performed 100 times (the split is based
on source content) to calculate the average correlation coefficients. All trainable
methods (with their pre-trained models) were fine-tuned for up to 150 epochs
during each cross validation with an early stopping strategy. To test the correla-
tion performance with subjective opinions, we employed both the SRCC and the
Pearson Linear Correlation Coefficient (PLCC) as evaluation metrics. We have
also compared the computational complexity of our approach with the other five
deep learning-based VQA methods in terms of runtime and model parameters
(see Tab. 4).

5 Results and Discussion

5.1 Overall performance

Tab. 2 summarizes the comparison results between our proposed method, RMT-
BVQA, and ten benchmark VQA methods. It should be noted that the results
presented here are different from [36], where the test set (unavailable publicly,
as mentioned in in Sec. 2) of the VDPVE database was employed for evaluation.
In this experiment, we performed cross validations (100 times) on the VDPVE
training set instead. It can be observed in Tab. 2 that RMT-BVQA offers the
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Table 2: Summary of the comparison and ablation study results. Here the best and
second best results in each column are highlighted in red and blue colours, respectively.

Subset A Subset B Subset C Overall

NR Metrics SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

NIQE [45] 0.3555 0.4485 0.5830 0.6108 0.0540 0.2079 0.1401 0.2411
VIIDEO [44] 0.1468 0.3484 0.0854 0.3387 0.2701 0.3104 0.0646 0.2574

V-BLIINDS [51] 0.7214 0.7691 0.7028 0.7196 0.7055 0.7104 0.7106 0.7301
TLVQM [28] 0.6942 0.7085 0.5619 0.5940 0.5457 0.6001 0.5861 0.6499
ChipQA [12] 0.4572 0.4756 0.3347 0.3753 0.7713 0.7759 0.5639 0.5285

BVQA [33] 0.5477 0.5596 0.3986 0.4271 0.3403 0.3872 0.4655 0.4807
VSFA [34] 0.4803 0.4912 0.5315 0.5696 0.6564 0.6911 0.5282 0.5473

CONVIQT [42] 0.7411 0.7639 0.4174 0.6926 0.6678 0.7192 0.7052 0.7297
FAST-VQA [59] 0.7022 0.7147 0.7398 0.7706 0.8356 0.8677 0.7196 0.7644

RankDVQA-NR [14] 0.6620 0.6703 0.6623 0.6527 0.5524 0.4872 0.6197 0.5777

RMT-BVQA (ours) 0.8164 0.8139 0.8012 0.8019 0.8315 0.8385 0.8209 0.8384

v1-GRU 0.7906 0.8012 0.5585 0.6085 0.8128 0.8209 0.7852 0.7880
v2-quality 0.8019 0.8023 0.7989 0.8049 0.7864 0.8075 0.8052 0.8255

best overall performance among all the tested quality metrics - the only one with
SRCC and PLCC values above 0.8. For all three subsets, A, B, and C in the
VDPVE database, which correspond to different enhancement method types,
our model is the best performer on Subset A and B, and the second best on
Subset C (very close to FAST-VQA). Fig. 3 provides three visual examples in
which the proposed RMT-BVQA offers the correct quality differentiation as hu-
man perception, while the second (FAST-VQA [59]) or the third best performer
(CONVIQT [42]) fails to do that.

5.2 Ablation study

To further verify the effectiveness of the main contributions in this work, an
ablation study is also conducted including the following sub-tests.
Recurrent Memory Vision Transformer. We evaluated the contribution
of our RMViT module by replacing it with an alternative network structure,
Gated Recurrent Unit (GRU) [8], which has been utilized in previous contrastive
learning based video quality assessment tasks [42]. The new variant is denoted
by (v1-GRU), and its results (based on the same cross-validation experiment)
are shown in Tab. 2. It can be observed that v1-GRU achieves lower average
correlation coefficients compared to the full RMT-BVQA, in particular on Subset
B (deshaking). This verifies the contribution of the recurrent memory vision
transformer, due to its long-term scene memory compared to the traditional
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Fig. 3: Visual examples from three subsets of VDPVE [15] (from the top to the bot-
tom: color transform, deshaking and deblurring) demonstrating the superiority of the
proposed method. In these three cases, RMT-BVQA (ours) provides the same quality
differentiation as human perception does.

GRU module, especially for those videos containing severe scene transitions (in
Subset B).

Moreover, to determine the values of two hyperparameters in this RMViT
module, including the number of memory tokens, M , and the segment length, S
(used in training), we performed an analysis based on the training performance
by varying these values within predefined ranges (limited by our memory con-
straints), 2 ≤ M ≤ 12 and 2 ≤ S ≤ 12. As shown in Tab. 3, when both the
length of segments and the number of memory tokens are set to 12 (we cannot
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Table 3: The analysis on the memory token size, M and the segment length S, used
in the training process. Here the size of the red circle indicates the value of the lowest
training loss.

The number of memory tokens M

Loss 2 4 6 8 10 12
S

12 6.236 5.927 5.728 5.475 5.151 5.133
10 6.374 5.762 5.783 5.564 5.174 5.166
8 6.490 6.271 5.949 5.770 5.569 5.492
6 6.698 6.487 6.174 6.052 5.961 5.944
4 6.765 6.519 6.434 6.326 6.309 6.341
2 6.889 6.879 6.747 6.654 6.541 6.553

test higher values due to memory constraints), the training loss reaches its lowest
level. This justifies the selection of these two hyperparameter values.
Content-quality-aware contrastive learning. We further verify the effec-
tiveness of the proposed content-quality-aware loss function by removing the
content-aware loss, producing (v2-quality). We did not test the contribution of
the quality-aware loss, because only employing content-aware loss leads to un-
stable training performance. The results in Tab. 2 show that v2-quality is worse
than the original RMT-BVQA, which confirms the effectiveness of the content-
quality-aware contrastive learning methodology.
The training database. Since it is difficult to find an alternative to the pro-
posed training database, which can support the optimization of the RMViT
module, we instead compared v1-GRU to the original CONVIQT model to ver-
ify the contribution of the training database. v1-GRU effectively has the same
network architecture as CONVIQT - differing only in the use of the new train-
ing database to optimize the GRU module. From Tab. 2, we can observe that
v1-GRU outperforms CONVIQT, with better overall correlation performance -
this justifies the contribution of the developed training database.

5.3 Model Complexity

Tab. 4 provides the computational complexity results for the proposed method
and the other five deep learning based benchmark methods, in terms of runtime
(second, for processing 300 frames 1280×720 video) and the number of param-
eters. This experiment is implemented on a workstation with an NVIDIA 3090
GPU, a 3.30 GHz Intel W-1250 CPU and 64 GB of RAM. The high complex-
ity in particular in model size is mainly due to the complex network structure
employed (vision transformer in the RMViT module). Although our parame-
ters are significantly higher compared to the benchmarks, the runtime has not
increased proportionally, showing only a 30.48% increase compared to CON-
VIQT [42]. This discrepancy arises from considering only the memory tokens
generated by the final two segments during inference, thereby substantially re-
ducing the model’s effective runtime.
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Table 4: The runtime and model size (number of parameters) figures for the proposed
method and the other learning-based benchmarks.

Benchmark Runtime (s) Params (M)

BVQA [33] 13.9 57.1

VSFA [34] 6.4 0.5

CONVIQT [42] 18.7 38.6

FAST-VQA [59] 1.4 27.6

RankDVQA-NR [14] 46.2 4.6

RMT-BVQA 24.4 703.7

6 Limitations of the proposed method

Although our proposed method shows superior performance over the other bench-
marked quality metrics, it is also associated with higher complexity, in particular
in model size (Tab. 4). This could potentially lead to greater energy consumption
and a larger carbon footprint when implemented in practical applications. This
issue can be alleviated by integrating dynamic input token pruning [27, 50, 56],
into the RMViT module. Approaches such as knowledge distillation [21] and
model compression [2] can also be applied to further reduce the complexity
of the model while maintaining performance. Moreover, the temporal pooling
method employed in RMT-BVQA can be improved through more advanced fea-
ture fusion models [19].

7 Conclusion

In this paper, we propose a deep blind VQA method specifically for enhanced
video content based on a novel self-supervised learning training methodology. In
this work, we designed a new Recurrent Memory Vision Transformer (RMViT)
module to obtain video quality representations, which is optimized through
contrastive learning based on a content-quality-aware loss function. A large
and diverse training dataset has also been developed containing various types
of enhanced video content, which supports the proposed contrastive learning
methodology but does not rely on expensive subjective tests to obtain ground-
truth quality labels. The proposed method, RMT-BVQA, has been tested on
a video enhancement quality database through five-fold cross validation, and
exhibits higher correlation with opinion scores when compared to ten existing
no-reference VQA methods. Future work should focus on benchmarking (and
training) on more diverse enhanced video content and reducing the high com-
plexity in particular in model size (Tab. 4). The prediction performance of the
proposed method on deblurred content (Subset C) can also be further improved.



RMT-BVQA 15

Acknowledgements

Research reported in this paper was supported by an Amazon Research Award,
Fall 2022 CFP. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the views
of Amazon. The authors also appreciate the funding from the UKRI MyWorld
Strength in Places Programme (SIPF00006/1).

References

1. Ahn, S., Lee, S.: Deep blind video quality assessment based on temporal human per-
ception. In: 2018 25th IEEE International Conference on Image Processing (ICIP).
pp. 619–623. IEEE (2018)
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