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Abstract

Task-oriented dialogue systems are broadly001
used in virtual assistants and other automated002
services, providing interfaces between users003
and machines to facilitate specific tasks. For004
example, in the context of hotel reservations,005
these systems not only recommend hotels that006
align with user preferences but also retain007
user requirements for future reference. Cor-008
responding to a wide range of properties and009
applications of task-oriented dialogue systems,010
their outputs may also be diverse. Nowa-011
days, task-oriented dialogue systems have ben-012
efited greatly from pre-trained language mod-013
els (PLMs). While being effective and perfor-014
mant, scaling these models is expensive and015
complex. To address these challenges, we pro-016
pose SMETOD to generate diverse natural lan-017
guage outputs, which scales the capacity of a018
task-oriented dialogue system while maintain-019
ing efficient inference. We extensively evaluate020
our model on dialogue state tracking, dialogue021
response generation, and intent prediction. Ex-022
perimental results demonstrate that SMETOD023
consistently achieves state-of-the-art or com-024
parable performance on all evaluated datasets.025
Furthermore, SMETOD shows an advantage026
in the cost of inference compared to existing027
approaches.028

1 Introduction029

Task-oriented dialogue systems play a crucial role030

in virtual assistants and various automated services031

through human-machine interactions. The funda-032

mental objective of a task-oriented dialogue system033

is to aid users in completing specific services or034

tasks all achieved through natural language dia-035

logues (Wen et al., 2017). Considering a broad036

range of applications, task-oriented dialogue sys-037

tems should generate diverse types of outputs for038

processing information, evaluating user intentions,039

or retaining for future reference. In real-world040

scenarios, useful information processed from di-041

alogue could be presented in various formats, in-042

cluding form-based (Goddeau et al., 1996; Eric and 043

Manning, 2017b), probability-based (Thomson and 044

Young, 2010; Mrkšić et al., 2016; Lee et al., 2019), 045

or text-based (Hosseini-Asl et al., 2020; Wang et al., 046

2022). Typically, several components are responsi- 047

ble for managing a variety of information: natural 048

language understanding (NLU) for comprehending 049

and translating user intent into either natural lan- 050

guage or a format suitable for machine processing, 051

dialogue state tracking (DST) for discerning the 052

user’s requirements and providing a foundation for 053

subsequent decisions, and natural language genera- 054

tion (NLG) generate a natural language response 055

to the user based on the machine’s decision of the 056

next move. 057

This leads to two predominant system designs, 058

namely pipeline-based and end-to-end, divided by 059

whether the machine-generated response is based 060

on dialogue utterances or processed information 061

from other components only. Either system design 062

presents its own set of limitations in effectively ad- 063

dressing diverse output objectives (Takanobu et al., 064

2020). Drawbacks of pipeline-based systems lie in 065

the potential for error propagation from one mod- 066

ule to another, and local decisions can have adverse 067

global effects (Su et al., 2016). End-to-end dia- 068

logue systems, on the other hand, raise concerns 069

about missing all essential information that may be 070

required other than responses. Moreover, diagnos- 071

ing and considering component-flow characteristics 072

can be challenging in end-to-end systems (Bang 073

et al., 2023). 074

Despite the limitations in dialogue-system de- 075

signs, there are also significant constraints in terms 076

of scaling dialogue models with efficiency. Recent 077

advancements have leveraged the transfer learn- 078

ing capabilities of pre-trained language models 079

(PLMs) (Devlin et al., 2018; Dong et al., 2019; 080

Radford et al., 2019; Raffel et al., 2020b) by fine- 081

tuning (Budzianowski and Vulić, 2019; Hosseini- 082

Asl et al., 2020; Heck et al., 2020) or pre-training di- 083
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Figure 1: Architecture of the SMETOD as in Transformer (Vaswani et al., 2017) encoders. The result from the DB
derived from the output of DST is used for NLG inference. All of the expert layers share the same architecture. The
input is ensembled by experts in the Soft-MoE layer for improving model capacity without the cost of efficiency.
The model is fine-tuned by maximizing the likelihood of predicting the next token for NLU, DST, and NLG outputs.

alogue models (Wu et al., 2020; Zhang et al., 2020;084

Peng et al., 2021; He et al., 2022b). However, their085

remarkable performance is at the cost of significant086

computational resources, especially as the sizes087

of PLMs continue to grow. Recently, parameter-088

efficient adapters raised that freeze the PLM while089

only allowing a small number of parameters up-090

dated for downstream models (Houlsby et al., 2019;091

Li and Liang, 2021; Lester et al., 2021), and have092

gained popularity in dialogue systems (Bang et al.,093

2023; Wang et al., 2023). Nevertheless, the model094

capacity (i.e. number of parameters) is limited by095

the number of downstream models, and the addi-096

tion of adapters can become computationally ex-097

pensive due to their sequential processing (Rücklé098

et al., 2020). We also argue that the issue of infer-099

ence time scaling with model complexity becomes100

more prominent considering the time sensitivity as-101

sociated with the deployment of dialogue systems.102

To address these issues, we propose a Soft103

Mixture-of-Expert Task-Oriented Dialogue sys-104

tem (SMETOD) which scales the model capacity105

for diverse outputs of dialogue systems with signifi-106

cantly less training and inference cost. Specifically,107

we leverage Soft MoE (Puigcerver et al., 2023) to108

improve model capacity and leverage the effective-109

ness and performance of considerably larger mod-110

els with significantly lower computational costs.111

We present a task-oriented dialogue system as a112

multi-module end-to-end text generation to bridge113

the gap between traditional pipeline-based and end-114

to-end response generation systems, and optimize115

NLU, DST, and NLG, respectively, as in (Su et al.,116

2022; Bang et al., 2021). We formulate NLU, DST, 117

and NLG as the text generation problems, which 118

take dialogue history sequence as model input and 119

generate spans as the output. In the cases of NLG, 120

we predict the DST output to obtain the database 121

(DB) state, which becomes incorporated into its 122

input. With T5-small (Raffel et al., 2020a) and T5- 123

base (Raffel et al., 2020a) as the backbone PLM, 124

we evaluate our method on MultiWOZ (Eric et al., 125

2019; Zang et al., 2020) and NLU (Casanueva 126

et al., 2020; Larson et al., 2019; Liu et al., 2019) 127

datasets. We show that our method achieves signif- 128

icant improvement in multi-domain DST on Multi- 129

WOZ 2.1 and NLG on both benchmarks. 130

Our contribution is as follows: 131

• We propose SMETOD, a task-oriented dia- 132

logue system for diverse outputs, which first 133

leverages Soft-MoE in text generation and dia- 134

logue systems to improve model capacity with 135

efficiency. 136

• Experimental results demonstrate the effec- 137

tiveness of our model by improving the per- 138

formance of NLU and DST on all evaluation 139

benchmarks and achieving comparable perfor- 140

mance for NLG. 141

• Our study of time efficiency and the archi- 142

tect of Soft-MoE proves the significant im- 143

provement of efficiency as model complexity 144

continues to grow, promoting future study on 145

dialogue system design with efficiency. 146
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2 Preliminaries147

Soft Mixture-of-Experts. Mixture-of-Experts148

(MoE)-based models have shown advantages in149

scaling model capacity without large increases in150

training or inference costs. There has been work151

on scaling sparsely activated MoE architectures.152

In the context of modern deep learning architec-153

tures, it was firstly found effective by Shazeer et al.154

(2017) by stacking MoE between LSTM (Hochre-155

iter and Schmidhuber, 1997) and resulted in the156

state-of-the-art in language modeling and machine157

translation. Shazeer et al. introduced MoE Trans-158

former where MoE layers are a substitute for the159

FFN layers (2018).160

We adopt Soft-MoE (Puigcerver et al., 2023),161

which scales model capacity without the loss of162

fine-tuning efficiency and is fully differentiable163

and balanced compared to conventional efficient164

MoEs (Lepikhin et al., 2020; Fedus et al., 2022;165

Du et al., 2022; Zhou et al., 2022; Puigcerver et al.,166

2023). Specifically, it performs a soft assignment167

on experts to each input token, achieving similar168

training costs and much lower inference costs at a169

larger model capacity. We use f(·; θ) to denote a170

mapping f associated with the parameter θ from171

the input sample to an output space. σ(·) is the172

Softmax function. We denote {f(·; θi)}mi=1 as m173

experts with identical architectures; their weights174

θ1, . . . , θm applied to individual tokens. Each ex-175

pert has p slots, each of which is a weighted av-176

erage of input. Slots in the same expert apply177

the same weights. Given input and output tokens178

x = {x1, . . . , xl} and y = {y1, . . . , yl} at the179

length l. Each expert will process p slots with180

parameters denoted as Ψ = {ψ(1), . . . , ψ(m×p)}.181

The input of experts, x̃, is defined as the result of182

convex combinations of input tokens.183

x̃j = (σ(xψ(j)))Tx (1)184

where j is the index of the slot in experts and j ∈185

[1, . . . ,m× p]. The corresponding expert function186

is applied on each slot to obtain the output slots:187

ỹj = f(x̃j ; θ⌊j/p⌋) (2)188

Given ỹ = {ỹj}m×p
j=1 , the output of Soft-MoE layer,189

yi, is computed as a convex combination of all190

(m× p) output slots over the expert dimension (i.e.191

the rows of xΨ):192

yi = σ(xiΨ) ỹ (3)193

End-to-end task-oriented dialogue system. End- 194

to-end learning was found effective in training and 195

optimizing the map directly from input to out- 196

put (Wen et al., 2017; Liu and Lane, 2018; Eric 197

and Manning, 2017a; Williams et al., 2017). Later 198

on, a lot of endeavor was given to fine-tuning pre- 199

trained language models and adapting their general- 200

ization capacities for an end-to-end system of task- 201

oriented dialogues (Budzianowski and Vulić, 2019; 202

Casanueva et al., 2020; Mehri et al., 2020; Hosseini- 203

Asl et al., 2020). In recent years, pre-trained task- 204

oriented dialogue models have emerged as strong 205

contenders, surpassing traditional fine-tuning ap- 206

proaches and showcasing competitive generaliza- 207

tion capabilities, particularly in multi-objective sce- 208

narios (Wu et al., 2020; Zhang et al., 2020; Peng 209

et al., 2021; He et al., 2022b). However, it’s worth 210

noting that they require a large amount of dialogue 211

data to train the backbone models and without an 212

interface to optimize sub-modules. 213

Efficient transfer learning. To reduce the effort in 214

tuning large PLMs and promote the scalability of 215

model adaptation, there is a line of work that fixes 216

the entire PLM and introduces a small number of 217

new trainable parameters. Notable examples in this 218

category include adapters (Houlsby et al., 2019; 219

Pfeiffer et al., 2021; Karimi Mahabadi et al., 2021), 220

prefix-tuning (Li and Liang, 2021) and prompt- 221

tuning (Lester et al., 2021), etc. In-context learning 222

prepends related task examples to condition on the 223

generated dialogue states (Hu et al., 2022; Gupta 224

et al., 2022; Venkateswaran et al., 2022). In end-to- 225

end dialogue systems, a line of work prompts with 226

specific text to generate desired outputs (Su et al., 227

2022) or injecting adapters to capture the knowl- 228

edge of different functionalities (Bang et al., 2023; 229

Mo et al., 2023). GPT-3 (Brown et al., 2020) and 230

ChatGPT1 are also successful and efficient open- 231

domain dialogue systems. On the other hand, the 232

MoE approach focuses on improving performance 233

by efficiently scaling model sizes. Recent work 234

on MoE develops more efficient routing implemen- 235

tations of Mixture-of-Experts in scaling language 236

models (Lepikhin et al., 2020; Fedus et al., 2022; 237

Du et al., 2022; Zhou et al., 2022; Puigcerver et al., 238

2023; Ma et al., 2018). 239

3 Method 240

We introduce SMETOD, a multi-objective dia- 241

logue system for NLU, DST, and NLG in task- 242

1https://chat.openai.com/chat
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oriented dialogues, scaling model capacities while243

maintaining computational efficiency with Soft244

MoE (Puigcerver et al., 2023). The overall archi-245

tecture is illustrated in Figure 1.246

3.1 Problem Formulation247

We define the dialogue history h =248

[usys1 , uusr1 , . . . , usyst , uusrt ] as the concatena-249

tion of the system and user utterances in previous250

turns, where t is the number of current turns251

in the dialogue. h has all the dialogue history252

without the last system utterance, denoted as253

r. NLU outputs an I which is an intent or the254

API-name. The objective of DST is to output user255

goals, the tasks or purposes that the user wants256

to accomplish through the dialogue. user goals257

are typically represented as a set of pre-defined258

slot-value pairs that consist of the required259

information to query the dialogue system, i.e.260

yAPI = {(s1, v1), . . . , (sn, vn)}, where n is the261

number of slot-value pairs. Finally, NLG will262

generate S with the previous output: h+yDB → r,263

where yDB is the items in the database retrieved by264

yAPI . Given a pair of training examples (x′, y′),265

we elaborate x′ and y′ corresponding to different266

modules of the dialogue system in the following267

Table.268

x′ y′

NLU h I
DST h yAPI

NLG h+ yDB r

3.2 Soft Mixture-of-Expert Layer269

We implement the Soft-MoE layer to replace270

the second Feed-Forward Layer in each Trans-271

former (Vaswani et al., 2017) Encoder block, as272

illustrated in Figure 1. Mathematically, we denote273

the output out the first Feed-Forward layer of the274

k-the encoder is g(·;ϕk), then x = g(x′;ϕk) ∈275

Rl×dff in Eq. 1, denoting dff as the dimension276

between the first and second Feed-Forward layer277

and d as model’s hidden dimension, and l is the278

length of tokens. ψ(j) ∈ Rdff is dff -dimensional279

vector of parameters corresponding to each slot of280

experts.281

The mapping f(·; θi) in Eq. 2 is simply a linear282

mapping corresponding to each expert, and p is the283

slots per expert having the same weights. There-284

fore, the output of the k-th encoder layer, y′(k), can285

be represented as 286

y′(k) = f(g(x′;ϕk); Θk,Ψk) (4) 287

For fine-tuning, we replicate the pre-trained 288

weights from the second Feed-Forward layer of 289

encoders and assign them to each expert, lever- 290

aging the contextual learning abilities inherent in 291

pre-trained models. 292

3.3 Training Objectives 293

We optimize the generation outputs of NLU, DST, 294

NLG, respectively, following Su et al. (2022). 295

Given a pair of training samples as (x′, y′), the loss 296

function is defined to maximize the log-likelihood 297

of the token to predict given the current context: 298

L{NLU,DST,NLG} = −1

l

l∑
q=1

logP (y′q|y′<q;x
′)

(5) 299

4 Experiment 300

4.1 Data 301

We evaluate our models for NLU on Bank- 302

ing77 (Casanueva et al., 2020), CLINC150 (Lar- 303

son et al., 2019), and HWU64 (Liu et al., 2019); 304

DST and NLG are evaluated on the task-oriented 305

dialogue benchmarks MultiWOZ 2.1 (Eric et al., 306

2019) and MultiWOZ 2.2 (Zang et al., 2020). Bank- 307

ing77 contains 13,083 customer service queries la- 308

beled with 77 distinct intents for distinguishing be- 309

tween intents among queries related to similar tasks. 310

CLINC150, consists of a comprehensive dataset 311

comprising 23,700 examples, annotated with 150 312

intents across 10 distinct domains. HWU64 is col- 313

lected from the home robot that has 25,716 exam- 314

ples for 64 intents spanning 21 domains. 315

MultiWOZ 2.1 (Eric et al., 2019) consists of 316

multi-turn task-oriented dialogues across several 317

domains, where 8,438 dialogues are for training 318

and 1,0000 for dev and test. MultiWOZ 2.2 (Zang 319

et al., 2020) improves MultiWOZ 2.1 by correct- 320

ing annotation errors and adding dialogue act an- 321

notations. In MultiWOZ, the generation of re- 322

sponse is not only related to the dialogue con- 323

text but also grounded on the database (DB) state. 324

The DB state is automatically retrieved from a 325

pre-defined database using the generated dialogue 326

states. SMETOD adopts a two-step approach dur- 327

ing inference (Su et al., 2022; Bang et al., 2023). 328

Firstly, it predicts the DST results to access the 329
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Model Banking77 HWU64 CLINC150

BERT-FIXED⋄∗ 87.19 85.77 91.79
CONVBERT-DG

+Pre+Multi∗
92.99 92.94 97.11

CONVBERT
+Pre+Multi∗

93.44 92.38 97.11

BERT-TUNED⋄∗ 93.66 92.10 96.93
CONVERT⋄∗ 93.01 91.24 97.16

USE+CONVERT⋄∗ 93.36 92.62 97.16
SPACE-2♯∗ 94.77 94.33∗ 97.80
SPACE-3∗ 94.94∗ 94.14 97.89

TOATODsmall 92.40 90.42 98.45
TOATODbase 92.17 90.79 98.01

SMETODsmall 92.47 90.88 98.12
SMETODbase 93.02 92.56 98.64

Table 1: Accuracy (%) on three intent prediction
datasets with full-data experiments. ⋄ comes from
Casanueva et al.(2020). ♯ are obtained from DialoGLUE
leaderboard2. All others are reported as in the original
papers. Models with ∗ are classification-based.

DB state. Subsequently, it utilizes the retrieved DB330

state and the current dialogue context to generate331

the NLG results.332

4.2 Training & Inference Details333

All models are fine-tuned respectively using PP-334

TOD (Su et al., 2022), the pre-trained dialogue335

models based on T5-small (60M parameters) (Raf-336

fel et al., 2020b) and T5-base (220M parame-337

ters) (Raffel et al., 2020b), as the backbone. T5-338

small has 6 encoders and decoders with hidden size339

d = 512 and dff = 2048. While T5-large has 12340

encoders and decoders and d = 768, dff = 3072.341

For models’ architecture, we replace the second342

Feed-Forward layer in all encoder blocks with the343

illustrated Soft-MoE layers, and copy pre-trained344

weights to each expert in the Soft-MoE layers. We345

augment T5 with 8 experts and 2 slots per expert346

for DST, and 16 experts with 2 slots per expert for347

NLU and NLG.348

We fine-tuned all model parameters on the full-349

shot training setting. The linear combination350

weights in Soft-MoE layer are initialized by Kaim-351

ing initialization (He et al., 2015). The initial learn-352

ing rate is set to 0.001 for NLU, and 0.0001 DST,353

NLG, respectively. We use the Adafactor (Shazeer354

and Stern, 2018) optimizer and the training batch355

size is set to 64 on Nvidia A10 GPUs. We tried a356

wide range of learning rates from 1e-2 to 1e-6 then357

set the initial training rate to 1e-4 in all training.358

Our code is developed based on Soft-Mixture-of-359

Experts3 and TOATOD4. Code repository will be 360

released to the public soon. 361

Because different batch sizes will result in dif- 362

ferent padded lengths, inference results are slightly 363

changed by batch sizes due to Softmax over input 364

tokens in the Soft-MoE layer. We make inferences 365

on several selected batch sizes and report average 366

scores. We found out that different batch sizes in 367

our experiments have negligible influence on the 368

inference results5. 369

5 Results & Discussion 370

We show the effectiveness of our models on NLU 371

(Sec. 5.1), DST (Sec. 5.2), and NLG (Sec. 5.3) in 372

task-oriented dialogue systems compared to plenty 373

of strong baselines. In the experiments, we fine- 374

tune SMETOD using the small and base versions 375

of PPTOD(Su et al., 2022), which continues pre- 376

training T5 (Raffel et al., 2020b) on large dialogue 377

corpora, as the start point. We observe that SME- 378

TOD is state-of-the-art on NLU and DST and com- 379

parable with existing baselines on NLG. We also 380

study the improvement of efficiency with SME- 381

TOD (Sec. 5.4). In Sec. 5.5, we investigate model 382

performance when the Soft-MoE layers are in dif- 383

ferent architectures. 384

5.1 Intent Prediction 385

The goal of intent prediction, known as NLU in 386

a task-oriented dialogue system, is to identify the 387

user’s intention based on the user’s utterance. We 388

conduct experiments on three benchmarks: Bank- 389

ing77 (Casanueva et al., 2020), CLINC150 (Larson 390

et al., 2019), and HWU64 (Liu et al., 2019). We 391

report Accuracy (%) of predicting an intention cor- 392

rectly for evaluation. 393

5.1.1 Baselines 394

Baselines have a wide range from BERT-based 395

models: CONVBERT (Mehri et al., 2020), CON- 396

VERT (Casanueva et al., 2020), UniLM-based mod- 397

els: SPACE-2 (He et al., 2022a), SPACE-3 (He 398

et al., 2022b), to T5-based TOATOD (Bang et al., 399

2023). All baseline models utilizing BERT and 400

UniLM follow a classification-based approach, em- 401

ploying a classifier featuring a Softmax layer to 402

make predictions from a predefined set of intents. 403

3https://github.com/fkodom/soft-mixture-of-experts.git
4https://github.com/sogang-isds/TOATOD.git
5We conducted a hypothesis test and found out p-value

< 0.01 for scores changed by batch size. Statistics are sum-
marized in Appendix A, Table 5.
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Model Pre-Trained Model MultiWOZ2.1 MultiWOZ2.2

TRADE - 45.6 45.4
TripPy BERT-base 55.29 -

TripPy+SaCLog BERT-base 60.61 -
CONVBERT-DG BERT-base 55.29 -

SimpleTOD DistilGPT-2 55.76 -
SOLOIST GPT-2 56.85 -
AG-DST PLATO-2 57.26 57.26
UniLM‡ UniLM 54.25 54.25
SPACE-3 UniLM 57.50 57.50

PPTODbase T5-base 57.10 -
PPTODlarge T5-large 57.45 -

D3STbase T5-base 54.2 56.1
D3STlarge T5-large 54.5 54.2
D3STXXL T5-XXL 57.80 58.7

T5DST+desc T5-base 56.66 57.6
TOATODsmall

† T5-small 59.49 59.33
TOATODbase

† T5-base 59.51 60.02

SMETODsmall T5-small 59.69 59.60
SMETODbase T5-base 60.36 60.08

Table 2: Joint Goal Accuracy (%) for DST on MultiWOZ 2.1 and 2.2. Results with ‡ are from He et al.(2022b). †

represents the results of our re-implementation. All others are reported as in the original papers.

5.1.2 Evaluation Results404

Table 1 shows that our approaches perform state-405

of-art on CLINC150, which has the most num-406

ber of intent types. On the other two bench-407

marks, our approaches have the highest accuracy408

compared to other generation-based approaches.409

Classification-based approaches are better which410

may benefit from smaller numbers of intents to411

choose from. Compared to classification models,412

SMETOD copes with the classification task as a413

generation problem by directly generating the text414

label. Therefore, when adapting to a new classi-415

fication task, SMETOD is more scalable to new416

domains and tasks and can predict intents that are417

not in the ontology.418

5.2 Dialogue State Tracking419

As a crucial component in task-oriented dialogue420

systems, DST determines the user goals based on421

the history of dialogue turns. For the evaluation422

of DST models, we use joint goal accuracy (JGA)423

which is the average accuracy of predicting all slot-424

values for the current turn correctly.425

5.2.1 Baselines426

In Table 2, we compare SMETOD with a427

wide range of classification-based approaches:428

TRADE (Wu et al., 2019), TripPy (Heck et al.,429

2020), TripPy + SaCLog (Dai et al., 2021),430

CONVBERT-DG (Mehri et al., 2020), Simple-431

TOD (Hosseini-Asl et al., 2020), SOLOIST (Peng 432

et al., 2021), AG-DST (Tian et al., 2021), SPACE- 433

3 (He et al., 2022b), and generation-based ap- 434

proaches: PPTOD (Su et al., 2022), D3ST (Zhao 435

et al., 2022), T5DST (Lee et al., 2021), and TOA- 436

TOD (Bang et al., 2023). 437

5.2.2 Evaluation Results 438

Compared to other approaches, SMETOD ob- 439

tains state-of-the-art JGA on MultiWOZ 2.1 and 440

2.2 among all generation-based approaches. Our 441

model is more flexible to generate slot-value pairs 442

while classification-based models are limited to the 443

pre-defined ontology. The results show that our 444

model can benefit from not only the transfer learn- 445

ing capacities of per-trained models but also the 446

improvement of model size. 447

5.3 End-to-End Response Generation 448

End-to-end dialogue response generation, aiming 449

at evaluating the model in the most realistic, fully 450

end-to-end setting, where the generated dialogue 451

states are used for the database search and response 452

generation (Hosseini-Asl et al., 2020; Su et al., 453

2022), is NLG in task-oriented dialogue system. 454

Our models evaluated on MultiWOZ generates re- 455

sponses not only related to the dialogue history but 456

also grounded on the database (DB) state. 457
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Model Backbone MultiWOZ2.1 MultiWOZ2.2

Inform Success BLEU Combined Inform Success BLEU Combined

DOTS BERT-base 86.65 74.18 15.90 96.32 - - - -
DiactTOD S-BERT - - - - 89.5 84.2 17.5 104.4

SimpleTOD DistilGPT-2 85.00 70.50 15.23 92.98 - - - -
SOLOIST GPT-2 - - - - 82.3 72.4 13.6 90.9
UBAR△ GPT-2 95.70 81.80 16.50 105.25 83.4 70.3 17.6 94.4
MinTL△ BARTlarge - - - - 73.7 65.4 19.4 89.0

RewardNet△ BARTlarge - - - - 87.6 81.5 17.6 102.2
GALAXY UniLM 95.30 86.20 20.01 110.76 85.4 75.7 19.64 100.2
PPTODbase T5-base 87.09 79.08 19.17 102.26 - - - -
MTTOD♮ T5-base 90.99 82.08 19.68 106.22 85.9 76.5 19.0 100.2
RSTOD♮ T5-small 93.50 84.70 19.24 108.34 83.5 75.0 18.0 97.3

TOATODsmall T5-small 92.10 80.40 18.29 104.54 85.80 74.00 18.00 97.90
TOATODbase T5-base 97.00 87.40 17.12 109.32 90.00 79.80 17.04 101.94

KRLS T5-base - - - - 89.2 80.3 19.0 103.8

SMETODsmall T5-small 92.50 74.00 16.89 100.14 89.6 76.2 17.1 100.1
SMETODbase T5-base 92.30 78.80 16.88 102.43 89.0 76.0 17.6 99.7

Table 3: Evaluation of NLG on Inform, Success, BLEU, and Combined Scores, where Combined = (Inform +
Success) × 0.5 + BLEU. ♮ means the NLG results on MultiWOZ 2.1 is from Cholakov and Kolev (2022). All other
results are from MultiWOZ leaderboards6. △ shows models that require oracle dialogue states for prediction.

5.3.1 Metrics458

For evaluation, we follow the individual and com-459

bined metrics in Hosseini-Asl et al. (2020): Inform,460

Success, and BLEU, and Combined score which461

is defined as Combined = (Inform + Success) ×462

0.5 + BLEU. Specifically, Inform rate measures the463

correctness of entities in the response. Success rate464

success rate assesses attribute fulfillment requested465

by user. BLUE score is used to measure the fluency466

of the generated responses.467

5.3.2 Baselines468

In Table 3, we compare our model with several469

strong baselines: DOTS (Jeon and Lee, 2021), Di-470

actTOD (Wu et al., 2023), SimpleTOD (Hosseini-471

Asl et al., 2020), SOLOIST (Peng et al.,472

2021), UBAR (Yang et al., 2021), MinTL (Lin473

et al., 2020), RewardNet (Feng et al., 2023),474

GALAXY (He et al., 2022c), PPTOD (Su et al.,475

2022), RSTOD (Cholakov and Kolev, 2022), MT-476

TOD (Lee, 2021), TOATOD (Bang et al., 2023),477

KRLS (Xiao Yu, 2022).478

5.3.3 Evaluation Results479

On both MultiWOZ 2.1 and 2.2 datasets, SME-480

TOD performs, though not the best, comparable481

to T5-based models except TOATODbase. We hy-482

pothesize that metrics hinder each other from be-483

ing improved together and may require a mech-484

anism to promote performance towards specific 485

metrics, for example, REINFORCE (Sutton et al., 486

1999). Besides, we observe that only replacing 487

the Feed-Forward layer in Transformer encoders as 488

in Puigcerver et al. (2023) without copying weights 489

to experts doesn’t generate the best results in our 490

dialogue system. It might be because their imple- 491

mentation requires a large amount of data to pre- 492

train, which is inappropriate in the task-oriented 493

scenario. It demonstrates that by duplicating pre- 494

trained weights and fine-tuning, SMETOD opti- 495

mizes well for DST and NLG, respectively, main- 496

taining the prior knowledge learned from the pre- 497

trained model. 498

Model Small↓ Base↓

PPTOD 1× 3.163×
TOATOD 1.116× 3.519×
SMETOD 1.005× 3.095×

Table 4: Comparison of the inference time with small
and base-size models of PPTOD and TOATOD for NLG
on MultiWOZ 2.1. All models are experimented with 5
same and randomly sampled batch sizes. Average time
is reported. ↓: Smaller is better.
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Figure 2: (Left) Performance of SMETOD as a function of the number of experts, for models with a fixed number
of experts × slots-per-expert. (Right) Performance of SMETOD trained with increased experts and 2 slots per
expert. JGA and F1 scores are on MultiWOZ 2.1 dev set for DST.

5.4 Time Complexity Analysis499

According to Puigcerver et al. (2023), the time500

complexity of the Soft-MoE layer can be reduced501

to O(l2d+ lk), given input token length l, model502

hidden dimension d, and the cost of applying an503

expert per token O(k). Thus, the time complex-504

ity is constant and the same as the single-headed505

self-attention cost by increasing the number of ex-506

perts m and scaling slots per expert p = O(l/m)507

accordingly, which will not become a bottleneck in508

Transformer.509

We show in Table 4 that SMETOD could make510

inferences without bringing about much extra time.511

SMETODsmall is 3.5 times larger than PPTOD512

and TOATOD while achieving a similar inference513

speed as the former. Our SMETODbase has even514

less inference time while its model size is 4 times515

of PPTODbase. It proves that we can achieve516

much better scaling while cost is roughly con-517

stant (Puigcerver et al., 2023), with the benefit of518

improved performance.519

5.5 Impact of Expert Numbers520

We investigate the impact of expert and slot num-521

bers in our models on the development set of Mul-522

tiWOZ 2.1 for DST as illustrated in Figure 2. First,523

we fix the total number of slots to 128 and vary524

expert numbers {4, 16, 32, 64, 128} by scaling slot525

numbers per expert. Results suggest the best con-526

figuration is 64 experts and 2 slots per expert. Then,527

we set the number of slots per expert to one and528

evaluate performance with regard to the number of529

experts. The number of experts 8 and 16 perform530

better than others. It should be mentioned that the531

model size scales with increasing expert numbers532

only. Meanwhile, we observe performance is not533

always increasing with the number of experts, indi-534

cating there is a trade-off between model size and535

the amount of training data.536

6 Conclusion 537

We propose an efficient fine-tuning approach based 538

on Soft-MoE to satisfy requirements on diverse out- 539

puts in task-oriented dialogue systems. We demon- 540

strate that incorporating Soft-MoE to our dialogue 541

system achieves remarkable success on MultiWOZ 542

baselines and optimizes outputs of each submodule, 543

showing it powerful technique for task-oriented di- 544

alogue systems with better scaling performance 545

while maintaining time efficiency. 546

7 Limitations 547

Limitations related to adopting Soft-MoE: 548

This work is a practice of leveraging Soft- 549

MoE (Puigcerver et al., 2023) in downstream 550

models with supervised, while the original practice 551

requires unsupervised pre-training. We consider 552

per-taining experts on larger dialogue corpus, 553

for example, Lin et al. (2021); Hu et al. (2022) 554

for better generality performance in the future. 555

Furthermore, we didn’t evaluate our approach to 556

NLP datasets which have more diverse example 557

lengths. Unlike Soft-MoE used in computer vision, 558

the weights over tokens are inconstant due to the 559

variety of length of input tokens, which leads 560

to inconsistent inference with different batch 561

sizes. Although we observe negligible influence 562

in our experiments, variations of lengths require 563

further study. We should also have experimented 564

with more expert numbers and investigated the 565

performance on NLG as well to study how perfor- 566

mance is improved with model size. Last, scaling 567

up model sizes requires a lot of computational 568

memory. 569

Limitations related to datasets: DST and NLG 570

evaluations are on MultiWOZ, which are English 571

and have limited domains. More generalized and 572

larger-scale dialogue corpus need considering, such 573

as DialoGLUE (Mehri et al., 2020), SGD (Lee 574
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et al., 2022), or multi-lingual datasets (Ding et al.,575

2021). NLU evaluations are only on single-576

utterance benchmarks, CamRest676 (Quan and577

Xiong, 2019), In-Car Assistant (Eric and Manning,578

2017b).579

Limitations related to training time: Recently,580

Adapters and prompt approaches have been pro-581

posed that update fewer parameters in models com-582

pared with our fine-tuning approaches. Although583

we didn’t observe longer training time explicitly584

compared to adapter-based models with similar585

sizes, empirical study on this issue is not covered586

in this work. We have shown in Sec. 5.4 that the587

forward pass of our approach is faster. It has been588

shown that original adapters should backpropagate589

through the entire model only except the first com-590

ponents (Rücklé et al., 2020). Moreover, we ar-591

gue that performance and inference efficiency are592

more important regarding the deployment of task-593

oriented dialogue systems.594

Limitations related to GPT3 or ChatGPT (LLM)595

as baselines: We did not include evaluation with the596

above models due to the following reasons. First,597

we consider the generation problem in this paper to598

generate diverse outputs given the same input. The599

quality of prompts will have a significant impact on600

LLM results, making it hard to make a fair compar-601

ison. Second, our training is in full-shot scenarios,602

while GPT3 or ChatGPT is usually considered as a603

zero-shot or few-shot baseline. Last, there is a high604

probability that LLMs have contaminated public605

benchmarks used in this paper.606

8 Potential Risks607

Using public dialogue benchmarks introduces the608

potential for biases stemming from the data collec-609

tion method. Models trained on such datasets might610

encounter challenges when attempting to general-611

ize to real-world scenarios or specific domains, as612

the data may not accurately represent these situa-613

tions. Additionally, public dialogue datasets fre-614

quently lack essential context or metadata, render-615

ing it difficult to comprehend the circumstances616

surrounding the conversations.617

In our approach, we also rely on open-source618

code repositories. However, these repositories can619

present issues related to security vulnerabilities and620

compatibility. Furthermore, their often incomplete621

documentation can pose additional hurdles for fur-622

ther development. Given the absence of reliable623

support or comprehensive documentation, these624

factors can impede troubleshooting and hinder the 625

overall development process. 626
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Model Dataset Module Metric Mean Std

T5small

MultiWOZ 2.1

NLU JGA 59.69 0.028

NLG

Inform 92.50 0.167
Sucess 74.00 0.335
BLEU 16.89 0.019

Combined 100.14 -

MultiWOZ 2.2

NLU JGA 59.60 0.026

NLG

Inform 89.6 0.207
Sucess 76.2 0.349
BLEU 17.1 0.031

Combined 100.1 -

T5base

MultiWOZ 2.1

NLU JGA 60.36 0.017

NLG

Inform 92.3 0.071
Sucess 78.8 0.217
BLEU 16.88 0.011

Combined 102.43 -

MultiWOZ 2.2

NLU JGA 60.08 0.026

NLG

Inform 89.0 0.182
Sucess 76.0 0.349
BLEU 17.6 0.013

Combined 99.7 -

Table 5: Mean and standard deviation of all reported scores in Table 2 and Table 3 using 5 randomly sampled batch
sizes, which are the same for all models and datasets. Student paired t-test shows p < 0.01 for scores changed by
batch size. Combined = (Inform + Success) × 0.5 + BLEU.
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