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Abstract

Task-oriented dialogue systems are broadly
used in virtual assistants and other automated
services, providing interfaces between users
and machines to facilitate specific tasks. For
example, in the context of hotel reservations,
these systems not only recommend hotels that
align with user preferences but also retain
user requirements for future reference. Cor-
responding to a wide range of properties and
applications of task-oriented dialogue systems,
their outputs may also be diverse. Nowa-
days, task-oriented dialogue systems have ben-
efited greatly from pre-trained language mod-
els (PLMs). While being effective and perfor-
mant, scaling these models is expensive and
complex. To address these challenges, we pro-
pose SMETOD to generate diverse natural lan-
guage outputs, which scales the capacity of a
task-oriented dialogue system while maintain-
ing efficient inference. We extensively evaluate
our model on dialogue state tracking, dialogue
response generation, and intent prediction. Ex-
perimental results demonstrate that SMETOD
consistently achieves state-of-the-art or com-
parable performance on all evaluated datasets.
Furthermore, SMETOD shows an advantage
in the cost of inference compared to existing
approaches.

1 Introduction

Task-oriented dialogue systems play a crucial role
in virtual assistants and various automated services
through human-machine interactions. The funda-
mental objective of a task-oriented dialogue system
is to aid users in completing specific services or
tasks all achieved through natural language dia-
logues (Wen et al., 2017). Considering a broad
range of applications, task-oriented dialogue sys-
tems should generate diverse types of outputs for
processing information, evaluating user intentions,
or retaining for future reference. In real-world
scenarios, useful information processed from di-
alogue could be presented in various formats, in-

cluding form-based (Goddeau et al., 1996; Eric and
Manning, 2017b), probability-based (Thomson and
Young, 2010; Mrksi¢ et al., 2016; Lee et al., 2019),
or text-based (Hosseini-Asl et al., 2020; Wang et al.,
2022). Typically, several components are responsi-
ble for managing a variety of information: natural
language understanding (NLU) for comprehending
and translating user intent into either natural lan-
guage or a format suitable for machine processing,
dialogue state tracking (DST) for discerning the
user’s requirements and providing a foundation for
subsequent decisions, and natural language genera-
tion (NLG) generate a natural language response
to the user based on the machine’s decision of the
next move.

This leads to two predominant system designs,
namely pipeline-based and end-to-end, divided by
whether the machine-generated response is based
on dialogue utterances or processed information
from other components only. Either system design
presents its own set of limitations in effectively ad-
dressing diverse output objectives (Takanobu et al.,
2020). Drawbacks of pipeline-based systems lie in
the potential for error propagation from one mod-
ule to another, and local decisions can have adverse
global effects (Su et al., 2016). End-to-end dia-
logue systems, on the other hand, raise concerns
about missing all essential information that may be
required other than responses. Moreover, diagnos-
ing and considering component-flow characteristics
can be challenging in end-to-end systems (Bang
et al., 2023).

Despite the limitations in dialogue-system de-
signs, there are also significant constraints in terms
of scaling dialogue models with efficiency. Recent
advancements have leveraged the transfer learn-
ing capabilities of pre-trained language models
(PLMs) (Devlin et al., 2018; Dong et al., 2019;
Radford et al., 2019; Raffel et al., 2020b) by fine-
tuning (Budzianowski and Vuli¢, 2019; Hosseini-
Asletal., 2020; Heck et al., 2020) or pre-training di-
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Figure 1: Architecture of the SMETOD as in Transformer (Vaswani et al., 2017) encoders. The result from the DB
derived from the output of DST is used for NLG inference. All of the expert layers share the same architecture. The
input is ensembled by experts in the Soft-MoE layer for improving model capacity without the cost of efficiency.
The model is fine-tuned by maximizing the likelihood of predicting the next token for NLU, DST, and NLG outputs.

alogue models (Wu et al., 2020; Zhang et al., 2020;
Peng et al., 2021; He et al., 2022b). However, their
remarkable performance is at the cost of significant
computational resources, especially as the sizes
of PLMs continue to grow. Recently, parameter-
efficient adapters raised that freeze the PLM while
only allowing a small number of parameters up-
dated for downstream models (Houlsby et al., 2019;
Li and Liang, 2021; Lester et al., 2021), and have
gained popularity in dialogue systems (Bang et al.,
2023; Wang et al., 2023). Nevertheless, the model
capacity (i.e. number of parameters) is limited by
the number of downstream models, and the addi-
tion of adapters can become computationally ex-
pensive due to their sequential processing (Riicklé
et al., 2020). We also argue that the issue of infer-
ence time scaling with model complexity becomes
more prominent considering the time sensitivity as-
sociated with the deployment of dialogue systems.

To address these issues, we propose a Soft
Mixture-of-Expert Task-Oriented Dialogue sys-
tem (SMETOD) which scales the model capacity
for diverse outputs of dialogue systems with signifi-
cantly less training and inference cost. Specifically,
we leverage Soft MoE (Puigcerver et al., 2023) to
improve model capacity and leverage the effective-
ness and performance of considerably larger mod-
els with significantly lower computational costs.
We present a task-oriented dialogue system as a
multi-module end-to-end text generation to bridge
the gap between traditional pipeline-based and end-
to-end response generation systems, and optimize
NLU, DST, and NLG, respectively, as in (Su et al.,

2022; Bang et al., 2021). We formulate NLU, DST,
and NLG as the text generation problems, which
take dialogue history sequence as model input and
generate spans as the output. In the cases of NLG,
we predict the DST output to obtain the database
(DB) state, which becomes incorporated into its
input. With T5-small (Raffel et al., 2020a) and T5-
base (Raffel et al., 2020a) as the backbone PLM,
we evaluate our method on MultiWOZ (Eric et al.,
2019; Zang et al., 2020) and NLU (Casanueva
et al., 2020; Larson et al., 2019; Liu et al., 2019)
datasets. We show that our method achieves signif-
icant improvement in multi-domain DST on Multi-
WOZ 2.1 and NLG on both benchmarks.

Our contribution is as follows:

* We propose SMETOD, a task-oriented dia-
logue system for diverse outputs, which first
leverages Soft-MoE in text generation and dia-
logue systems to improve model capacity with
efficiency.

* Experimental results demonstrate the effec-
tiveness of our model by improving the per-
formance of NLU and DST on all evaluation
benchmarks and achieving comparable perfor-
mance for NLG.

* Our study of time efficiency and the archi-
tect of Soft-MoE proves the significant im-
provement of efficiency as model complexity
continues to grow, promoting future study on
dialogue system design with efficiency.



2 Preliminaries

Soft Mixture-of-Experts. Mixture-of-Experts
(MoE)-based models have shown advantages in
scaling model capacity without large increases in
training or inference costs. There has been work
on scaling sparsely activated MoE architectures.
In the context of modern deep learning architec-
tures, it was firstly found effective by Shazeer et al.
(2017) by stacking MoE between LSTM (Hochre-
iter and Schmidhuber, 1997) and resulted in the
state-of-the-art in language modeling and machine
translation. Shazeer et al. introduced MoE Trans-
former where MoE layers are a substitute for the
FEN layers (2018).

We adopt Soft-MoE (Puigcerver et al., 2023),
which scales model capacity without the loss of
fine-tuning efficiency and is fully differentiable
and balanced compared to conventional efficient
MoEs (Lepikhin et al., 2020; Fedus et al., 2022;
Du et al., 2022; Zhou et al., 2022; Puigcerver et al.,
2023). Specifically, it performs a soft assignment
on experts to each input token, achieving similar
training costs and much lower inference costs at a
larger model capacity. We use f(-;6) to denote a
mapping f associated with the parameter 6 from
the input sample to an output space. o(-) is the
Softmax function. We denote { f(-;6;)}7, as m
experts with identical architectures; their weights
01, ...,0, applied to individual tokens. Each ex-
pert has p slots, each of which is a weighted av-
erage of input. Slots in the same expert apply
the same weights. Given input and output tokens
x = {z1,...,x;} and y = {y1,...,y;} at the
length [. Each expert will process p slots with
parameters denoted as ¥ = {yp(1) ... p(mxp)},
The input of experts, Z, is defined as the result of
convex combinations of input tokens.

&; = (o(zpV)) 'z (1)

where j is the index of the slot in experts and j €
[1,...,m x p|. The corresponding expert function
is applied on each slot to obtain the output slots:

Yj = [(€5:0)5/p)) 2

Giveny = {y;};-,", the output of Soft-MoE layer,
Yi, 1S computed as a convex combination of all
(m x p) output slots over the expert dimension (i.e.
the rows of xW):

yi=o(z;¥)y 3)

End-to-end task-oriented dialogue system. End-
to-end learning was found effective in training and
optimizing the map directly from input to out-
put (Wen et al., 2017; Liu and Lane, 2018; Eric
and Manning, 2017a; Williams et al., 2017). Later
on, a lot of endeavor was given to fine-tuning pre-
trained language models and adapting their general-
ization capacities for an end-to-end system of task-
oriented dialogues (Budzianowski and Vuli¢, 2019;
Casanueva et al., 2020; Mehri et al., 2020; Hosseini-
Asl et al., 2020). In recent years, pre-trained task-
oriented dialogue models have emerged as strong
contenders, surpassing traditional fine-tuning ap-
proaches and showcasing competitive generaliza-
tion capabilities, particularly in multi-objective sce-
narios (Wu et al., 2020; Zhang et al., 2020; Peng
et al., 2021; He et al., 2022b). However, it’s worth
noting that they require a large amount of dialogue
data to train the backbone models and without an
interface to optimize sub-modules.

Efficient transfer learning. To reduce the effort in
tuning large PLMs and promote the scalability of
model adaptation, there is a line of work that fixes
the entire PLM and introduces a small number of
new trainable parameters. Notable examples in this
category include adapters (Houlsby et al., 2019;
Pfeiffer et al., 2021; Karimi Mahabadi et al., 2021),
prefix-tuning (Li and Liang, 2021) and prompt-
tuning (Lester et al., 2021), efc. In-context learning
prepends related task examples to condition on the
generated dialogue states (Hu et al., 2022; Gupta
et al., 2022; Venkateswaran et al., 2022). In end-to-
end dialogue systems, a line of work prompts with
specific text to generate desired outputs (Su et al.,
2022) or injecting adapters to capture the knowl-
edge of different functionalities (Bang et al., 2023;
Mo et al., 2023). GPT-3 (Brown et al., 2020) and
ChatGPT! are also successful and efficient open-
domain dialogue systems. On the other hand, the
MoE approach focuses on improving performance
by efficiently scaling model sizes. Recent work
on MoE develops more efficient routing implemen-
tations of Mixture-of-Experts in scaling language
models (Lepikhin et al., 2020; Fedus et al., 2022;
Du et al., 2022; Zhou et al., 2022; Puigcerver et al.,
2023; Ma et al., 2018).

3 Method

We introduce SMETOD, a multi-objective dia-
logue system for NLU, DST, and NLG in task-

"https://chat.openai.com/chat



oriented dialogues, scaling model capacities while
maintaining computational efficiency with Soft
MOoE (Puigcerver et al., 2023). The overall archi-
tecture is illustrated in Figure 1.

3.1 Problem Formulation

We define the dialogue history & =
(Wi us", o u?? ulsT]  as the  concatena-

tion of the system and user utterances in previous
turns, where t is the number of current turns
in the dialogue. h has all the dialogue history
without the last system utterance, denoted as
r. NLU outputs an [ which is an intent or the
API-name. The objective of DST is to output user
goals, the tasks or purposes that the user wants
to accomplish through the dialogue. user goals
are typically represented as a set of pre-defined
slot-value pairs that consist of the required
information to query the dialogue system, i.e.
yarr = {(s1,v1),...,(Sn,vn)}, where n is the
number of slot-value pairs. Finally, NLG will
generate .S with the previous output: h+ypp — 7,
where ypp is the items in the database retrieved by
yapr. Given a pair of training examples (z/,y'),
we elaborate 2’ and y’ corresponding to different
modules of the dialogue system in the following
Table.

/ /

x Y
NLU h I
DST h YAPI

NLG h+yps T

3.2 Soft Mixture-of-Expert Layer

We implement the Soft-MoE layer to replace
the second Feed-Forward Layer in each Trans-
former (Vaswani et al., 2017) Encoder block, as
illustrated in Figure 1. Mathematically, we denote
the output out the first Feed-Forward layer of the
k-the encoder is g(-; ¢x), then ¢ = g(a’; ¢r) €
R™dsf in Eq. 1, denoting d rf as the dimension
between the first and second Feed-Forward layer
and d as model’s hidden dimension, and [ is the
length of tokens. 1)) € R% is d;-dimensional
vector of parameters corresponding to each slot of
experts.

The mapping f(-;6;) in Eq. 2 is simply a linear
mapping corresponding to each expert, and p is the
slots per expert having the same weights. There-
fore, the output of the k-th encoder layer, 3/ (k), can

be represented as

y'® = f(g(a; 1); Ok, Ty) 4)

For fine-tuning, we replicate the pre-trained
weights from the second Feed-Forward layer of
encoders and assign them to each expert, lever-
aging the contextual learning abilities inherent in
pre-trained models.

3.3 Training Objectives

We optimize the generation outputs of NLU, DST,
NLG, respectively, following Su et al. (2022).
Given a pair of training samples as (2, y’), the loss
function is defined to maximize the log-likelihood
of the token to predict given the current context:

l
1
LinLupsTNLGY = —7 > log P(yylyly:2)
q=1
(%)
4 Experiment

4.1 Data

We evaluate our models for NLU on Bank-
ing77 (Casanueva et al., 2020), CLINC150 (Lar-
son et al., 2019), and HWU64 (Liu et al., 2019);
DST and NLG are evaluated on the task-oriented
dialogue benchmarks MultiwWOZ 2.1 (Eric et al.,
2019) and MultiWOZ 2.2 (Zang et al., 2020). Bank-
ing77 contains 13,083 customer service queries la-
beled with 77 distinct intents for distinguishing be-
tween intents among queries related to similar tasks.
CLINC150, consists of a comprehensive dataset
comprising 23,700 examples, annotated with 150
intents across 10 distinct domains. HWU64 is col-
lected from the home robot that has 25,716 exam-
ples for 64 intents spanning 21 domains.
MultiOZ 2.1 (Eric et al., 2019) consists of
multi-turn task-oriented dialogues across several
domains, where 8,438 dialogues are for training
and 1,0000 for dev and test. MultiwOZ 2.2 (Zang
et al., 2020) improves MultiwOZ 2.1 by correct-
ing annotation errors and adding dialogue act an-
notations. In MultiWOZ, the generation of re-
sponse is not only related to the dialogue con-
text but also grounded on the database (DB) state.
The DB state is automatically retrieved from a
pre-defined database using the generated dialogue
states. SMETOD adopts a two-step approach dur-
ing inference (Su et al., 2022; Bang et al., 2023).
Firstly, it predicts the DST results to access the



Model Banking77 HWU64 CLINCI150
BERT-FIXED®* 87.19 85.77 91.79
CONVBERT;DG 92.99 92.94 97.11
+Pre+Multi
CONVBEET 93.44 92.38 97.11
+Pre+Multi
BERT-TUNED®* 93.66 92.10 96.93
CONVERT®* 93.01 91.24 97.16
USE+CONVERT®* 93.36 92.62 97.16
SPACE-2¢* 94.77 94.33 97.80
SPACE-3* 94.94* 94.14 97.89
TOATODg a1 92.40 90.42 98.45
TOATODjyc 92.17 90.79 98.01
SMETODg;a11 92.47 90.88 98.12
SMETODyse 93.02 92.56 98.64
Table 1: Accuracy (%) on three intent prediction

datasets with full-data experiments. © comes from

Casanueva et al.(2020). ¥ are obtained from DialoGLUE
leaderboard?. All others are reported as in the original
papers. Models with * are classification-based.

DB state. Subsequently, it utilizes the retrieved DB
state and the current dialogue context to generate
the NLG results.

4.2 Training & Inference Details

All models are fine-tuned respectively using PP-
TOD (Su et al., 2022), the pre-trained dialogue
models based on T5-small (60M parameters) (Raf-
fel et al., 2020b) and T5-base (220M parame-
ters) (Raffel et al., 2020b), as the backbone. T5-
small has 6 encoders and decoders with hidden size
d = 512 and dy; = 2048. While T5-large has 12
encoders and decoders and d = 768, dyy = 3072.
For models’ architecture, we replace the second
Feed-Forward layer in all encoder blocks with the
illustrated Soft-MoE layers, and copy pre-trained
weights to each expert in the Soft-MoE layers. We
augment TS with 8 experts and 2 slots per expert
for DST, and 16 experts with 2 slots per expert for
NLU and NLG.

We fine-tuned all model parameters on the full-
shot training setting. The linear combination
weights in Soft-MoE layer are initialized by Kaim-
ing initialization (He et al., 2015). The initial learn-
ing rate is set to 0.001 for NLU, and 0.0001 DST,
NLG, respectively. We use the Adafactor (Shazeer
and Stern, 2018) optimizer and the training batch
size is set to 64 on Nvidia A10 GPUs. We tried a
wide range of learning rates from le-2 to 1e-6 then
set the initial training rate to le-4 in all training.
Our code is developed based on Soft-Mixture-of-

Experts® and TOATOD*. Code repository will be
released to the public soon.

Because different batch sizes will result in dif-
ferent padded lengths, inference results are slightly
changed by batch sizes due to Softmax over input
tokens in the Soft-MoE layer. We make inferences
on several selected batch sizes and report average
scores. We found out that different batch sizes in
our experiments have negligible influence on the
inference results’.

5 Results & Discussion

We show the effectiveness of our models on NLU
(Sec. 5.1), DST (Sec. 5.2), and NLG (Sec. 5.3) in
task-oriented dialogue systems compared to plenty
of strong baselines. In the experiments, we fine-
tune SMETOD using the small and base versions
of PPTOD(Su et al., 2022), which continues pre-
training T5 (Raffel et al., 2020b) on large dialogue
corpora, as the start point. We observe that SME-
TOD is state-of-the-art on NLU and DST and com-
parable with existing baselines on NLG. We also
study the improvement of efficiency with SME-
TOD (Sec. 5.4). In Sec. 5.5, we investigate model
performance when the Soft-MoE layers are in dif-
ferent architectures.

5.1 Intent Prediction

The goal of intent prediction, known as NLU in
a task-oriented dialogue system, is to identify the
user’s intention based on the user’s utterance. We
conduct experiments on three benchmarks: Bank-
ing77 (Casanueva et al., 2020), CLINC150 (Larson
et al., 2019), and HWU64 (Liu et al., 2019). We
report Accuracy (%) of predicting an intention cor-
rectly for evaluation.

5.1.1 Baselines

Baselines have a wide range from BERT-based
models: CONVBERT (Mehri et al., 2020), CON-
VERT (Casanueva et al., 2020), UniLM-based mod-
els: SPACE-2 (He et al., 2022a), SPACE-3 (He
et al., 2022b), to T5-based TOATOD (Bang et al.,
2023). All baseline models utilizing BERT and
UniLLM follow a classification-based approach, em-
ploying a classifier featuring a Softmax layer to
make predictions from a predefined set of intents.

3https://github.com/fkodom/soft-mixture-of-experts.git

*https://github.com/sogang-isds/TOATOD.git

SWe conducted a hypothesis test and found out p-value
< 0.01 for scores changed by batch size. Statistics are sum-
marized in Appendix A, Table 5.



Model Pre-Trained Model Multiw0OZ2.1 Multiw0Z2.2
TRADE - 45.6 454
TripPy BERT-base 55.29 -
TripPy+5a(;LOg BERT-base 60.61 -
CONVBERT-DG BERT-base 55.29 -
SimpleTOD DistilGPT-2 55.76 -
SOLOIST GPT-2 56.85 -
AG-DST PLATO-2 57.26 57.26
UniLM* UniLM 54.25 54.25
SPACE-3 UniLM 57.50 57.50
PPTODy s T5-base 57.10 -
PPTOD; 47 ge T5-large 57.45 -
D3STpyuse T5-base 54.2 56.1
D3STqrge T5-large 54.5 54.2
D3STxx1, T5-XXL 57.80 58.7
T5DST gese T5-base 56.66 57.6
TOATODy,,,,; ' T5-small 59.49 59.33
TOATODyq,, T5-base 59.51 60.02
SMETODyg,,,q11 T5-small 59.69 59.60
SMETODy,; T5-base 60.36 60.08

Table 2: Joint Goal Accuracy (%) for DST on MultiWOZ 2.1 and 2.2. Results with * are from He et al.(2022b). f
represents the results of our re-implementation. All others are reported as in the original papers.

5.1.2 Evaluation Results

Table 1 shows that our approaches perform state-
of-art on CLINC150, which has the most num-
ber of intent types. On the other two bench-
marks, our approaches have the highest accuracy
compared to other generation-based approaches.
Classification-based approaches are better which
may benefit from smaller numbers of intents to
choose from. Compared to classification models,
SMETOD copes with the classification task as a
generation problem by directly generating the text
label. Therefore, when adapting to a new classi-
fication task, SMETOD is more scalable to new
domains and tasks and can predict intents that are
not in the ontology.

5.2 Dialogue State Tracking

As a crucial component in task-oriented dialogue
systems, DST determines the user goals based on
the history of dialogue turns. For the evaluation
of DST models, we use joint goal accuracy (JGA)
which is the average accuracy of predicting all slot-
values for the current turn correctly.

5.2.1 Baselines

In Table 2, we compare SMETOD with a
wide range of classification-based approaches:
TRADE (Wu et al., 2019), TripPy (Heck et al.,
2020), TripPy + SaCLog (Dai et al., 2021),
CONVBERT-DG (Mehri et al., 2020), Simple-

TOD (Hosseini-Asl et al., 2020), SOLOIST (Peng
et al., 2021), AG-DST (Tian et al., 2021), SPACE-
3 (He et al., 2022b), and generation-based ap-
proaches: PPTOD (Su et al., 2022), D3ST (Zhao
et al., 2022), TSDST (Lee et al., 2021), and TOA-
TOD (Bang et al., 2023).

5.2.2 Evaluation Results

Compared to other approaches, SMETOD ob-
tains state-of-the-art JGA on MultiwOZ 2.1 and
2.2 among all generation-based approaches. Our
model is more flexible to generate slot-value pairs
while classification-based models are limited to the
pre-defined ontology. The results show that our
model can benefit from not only the transfer learn-
ing capacities of per-trained models but also the
improvement of model size.

5.3 End-to-End Response Generation

End-to-end dialogue response generation, aiming
at evaluating the model in the most realistic, fully
end-to-end setting, where the generated dialogue
states are used for the database search and response
generation (Hosseini-Asl et al., 2020; Su et al.,
2022), is NLG in task-oriented dialogue system.
Our models evaluated on MultiWOZ generates re-
sponses not only related to the dialogue history but
also grounded on the database (DB) state.



Model Backbone Multiv0Z2.1 Multiw0Z2.2
Inform  Success BLEU Combined Inform Success BLEU Combined
DOTS BERT-base 86.65 74.18 15.90 96.32 - - - -
DiactTOD S-BERT - - - - 89.5 84.2 17.5 104.4
SimpleTOD  DistilGPT-2  85.00  70.50  15.23 92.98 - - - -
SOLOIST GPT-2 - - - - 82.3 72.4 13.6 90.9
UBAR% GPT-2 95.70  81.80  16.50 105.25 83.4 70.3 17.6 94.4
MinTL? BART4rge - - - - 73.7 65.4 194 89.0
RewardNet® BART 4 ge - - - - 87.6 81.5 17.6 102.2
GALAXY UniLM 9530  86.20  20.01 110.76 85.4 75.7 19.64 100.2
PPTODyg T5-base 87.09  79.08 19.17 102.26 - - - -
MTTOD* T5-base 90.99  82.08 19.68 106.22 85.9 76.5 19.0 100.2
RSTOD" T5-small 93,50 84.70  19.24 108.34 83.5 75.0 18.0 97.3
TOATODyg,q11 T5-small 92.10  80.40  18.29 104.54 85.80  74.00  18.00 97.90
TOATODyq ¢ T5-base 97.00 8740 17.12 109.32 90.00 79.80 17.04 101.94
KRLS T5-base - - - - 89.2 80.3 19.0 103.8
SMETODyg, 0y T5-small 9250  74.00 16.89 100.14 89.6 76.2 17.1 100.1
SMETODy, ¢ T5-base 9230 78.80 16.88 102.43 89.0 76.0 17.6 99.7

Table 3: Evaluation of NLG on Inform, Success, BLEU, and Combined Scores, where Combined = (Inform +
Success) x 0.5 + BLEU. ! means the NLG results on MultiWOZ 2.1 is from Cholakov and Kolev (2022). All other
results are from MultiWOZ leaderboards®. * shows models that require oracle dialogue states for prediction.

5.3.1

For evaluation, we follow the individual and com-
bined metrics in Hosseini-Asl et al. (2020): Inform,
Success, and BLEU, and Combined score which
is defined as Combined = (Inform + Success) x
0.5 + BLEU. Specifically, Inform rate measures the
correctness of entities in the response. Success rate
success rate assesses attribute fulfillment requested
by user. BLUE score is used to measure the fluency
of the generated responses.

Metrics

5.3.2 Baselines

In Table 3, we compare our model with several
strong baselines: DOTS (Jeon and Lee, 2021), Di-
actTOD (Wu et al., 2023), SimpleTOD (Hosseini-
Asl et al., 2020), SOLOIST (Peng et al,
2021), UBAR (Yang et al., 2021), MinTL (Lin
et al., 2020), RewardNet (Feng et al., 2023),
GALAXY (He et al., 2022c), PPTOD (Su et al.,
2022), RSTOD (Cholakov and Kolev, 2022), MT-
TOD (Lee, 2021), TOATOD (Bang et al., 2023),
KRLS (Xiao Yu, 2022).

5.3.3 Evaluation Results

On both MultiWwOZ 2.1 and 2.2 datasets, SME-
TOD performs, though not the best, comparable
to T5-based models except TOATODy,,5.. We hy-
pothesize that metrics hinder each other from be-
ing improved together and may require a mech-

anism to promote performance towards specific
metrics, for example, REINFORCE (Sutton et al.,
1999). Besides, we observe that only replacing
the Feed-Forward layer in Transformer encoders as
in Puigcerver et al. (2023) without copying weights
to experts doesn’t generate the best results in our
dialogue system. It might be because their imple-
mentation requires a large amount of data to pre-
train, which is inappropriate in the task-oriented
scenario. It demonstrates that by duplicating pre-
trained weights and fine-tuning, SMETOD opti-
mizes well for DST and NLG, respectively, main-
taining the prior knowledge learned from the pre-
trained model.

Model ‘ Small| ‘ Basel
PPTOD 1x 3.163 x
TOATOD | 1.116x | 3.519x
SMETOD | 1.005x | 3.095x

Table 4: Comparison of the inference time with small
and base-size models of PPTOD and TOATOD for NLG
on MultiWOZ 2.1. All models are experimented with 5
same and randomly sampled batch sizes. Average time
is reported. |: Smaller is better.
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Figure 2: (Left) Performance of SMETOD as a function of the number of experts, for models with a fixed number
of experts x slots-per-expert. (Right) Performance of SMETOD trained with increased experts and 2 slots per
expert. JGA and F1 scores are on MultiWwOZ 2.1 dev set for DST.

5.4 Time Complexity Analysis

According to Puigcerver et al. (2023), the time
complexity of the Soft-MoE layer can be reduced
to O(12d + Ik), given input token length I, model
hidden dimension d, and the cost of applying an
expert per token O(k). Thus, the time complex-
ity is constant and the same as the single-headed
self-attention cost by increasing the number of ex-
perts m and scaling slots per expert p = O(l/m)
accordingly, which will not become a bottleneck in
Transformer.

We show in Table 4 that SMETOD could make
inferences without bringing about much extra time.
SMETODy,,,qy; is 3.5 times larger than PPTOD
and TOATOD while achieving a similar inference
speed as the former. Our SMETODy, . has even
less inference time while its model size is 4 times
of PPTODy,s.. It proves that we can achieve
much better scaling while cost is roughly con-
stant (Puigcerver et al., 2023), with the benefit of
improved performance.

5.5 Impact of Expert Numbers

We investigate the impact of expert and slot num-
bers in our models on the development set of Mul-
tiWOZ 2.1 for DST as illustrated in Figure 2. First,
we fix the total number of slots to 128 and vary
expert numbers {4, 16, 32, 64, 128} by scaling slot
numbers per expert. Results suggest the best con-
figuration is 64 experts and 2 slots per expert. Then,
we set the number of slots per expert to one and
evaluate performance with regard to the number of
experts. The number of experts 8 and 16 perform
better than others. It should be mentioned that the
model size scales with increasing expert numbers
only. Meanwhile, we observe performance is not
always increasing with the number of experts, indi-
cating there is a trade-off between model size and
the amount of training data.

6 Conclusion

We propose an efficient fine-tuning approach based
on Soft-MokE to satisfy requirements on diverse out-
puts in task-oriented dialogue systems. We demon-
strate that incorporating Soft-MoE to our dialogue
system achieves remarkable success on MultiwOZ
baselines and optimizes outputs of each submodule,
showing it powerful technique for task-oriented di-
alogue systems with better scaling performance
while maintaining time efficiency.

7 Limitations

Limitations related to adopting Soft-MoE:
This work is a practice of leveraging Soft-
MOoE (Puigcerver et al., 2023) in downstream
models with supervised, while the original practice
requires unsupervised pre-training. We consider
per-taining experts on larger dialogue corpus,
for example, Lin et al. (2021); Hu et al. (2022)
for better generality performance in the future.
Furthermore, we didn’t evaluate our approach to
NLP datasets which have more diverse example
lengths. Unlike Soft-MoE used in computer vision,
the weights over tokens are inconstant due to the
variety of length of input tokens, which leads
to inconsistent inference with different batch
sizes. Although we observe negligible influence
in our experiments, variations of lengths require
further study. We should also have experimented
with more expert numbers and investigated the
performance on NLG as well to study how perfor-
mance is improved with model size. Last, scaling
up model sizes requires a lot of computational
memory.

Limitations related to datasets: DST and NLG
evaluations are on MultiWwOZ, which are English
and have limited domains. More generalized and
larger-scale dialogue corpus need considering, such
as DialoGLUE (Mehri et al., 2020), SGD (Lee



et al., 2022), or multi-lingual datasets (Ding et al.,
2021). NLU evaluations are only on single-
utterance benchmarks, CamRest676 (Quan and
Xiong, 2019), In-Car Assistant (Eric and Manning,
2017b).

Limitations related to training time: Recently,
Adapters and prompt approaches have been pro-
posed that update fewer parameters in models com-
pared with our fine-tuning approaches. Although
we didn’t observe longer training time explicitly
compared to adapter-based models with similar
sizes, empirical study on this issue is not covered
in this work. We have shown in Sec. 5.4 that the
forward pass of our approach is faster. It has been
shown that original adapters should backpropagate
through the entire model only except the first com-
ponents (Riicklé et al., 2020). Moreover, we ar-
gue that performance and inference efficiency are
more important regarding the deployment of task-
oriented dialogue systems.

Limitations related to GPT3 or ChatGPT (LLM)
as baselines: We did not include evaluation with the
above models due to the following reasons. First,
we consider the generation problem in this paper to
generate diverse outputs given the same input. The
quality of prompts will have a significant impact on
LLM results, making it hard to make a fair compar-
ison. Second, our training is in full-shot scenarios,
while GPT3 or ChatGPT is usually considered as a
zero-shot or few-shot baseline. Last, there is a high
probability that LL.Ms have contaminated public
benchmarks used in this paper.

8 Potential Risks

Using public dialogue benchmarks introduces the
potential for biases stemming from the data collec-
tion method. Models trained on such datasets might
encounter challenges when attempting to general-
ize to real-world scenarios or specific domains, as
the data may not accurately represent these situa-
tions. Additionally, public dialogue datasets fre-
quently lack essential context or metadata, render-
ing it difficult to comprehend the circumstances
surrounding the conversations.

In our approach, we also rely on open-source
code repositories. However, these repositories can
present issues related to security vulnerabilities and
compatibility. Furthermore, their often incomplete
documentation can pose additional hurdles for fur-
ther development. Given the absence of reliable
support or comprehensive documentation, these

factors can impede troubleshooting and hinder the
overall development process.
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Model Dataset Module Metric Mean Std
NLU JGA 59.69 0.028
Inform 9250 0.167

MultiwOZ 2.1 NLG  Sucess 7400 0335
BLEU 16.89 0.019

TS.nal Combined 100.14 -
NLU JGA 59.60 0.026
. Inform 89.6  0.207
MultiWOZ 2.2 NLG Sucess 76.2 0.349
BLEU 17.1 0.031

Combined 100.1 -
NLU JGA 60.36 0.017
. Inform 923  0.071
MultiwOZ 2.1 aLG  Suwess 788 0217
BLEU 16.88 0.011

TS5p0se Combined 102.43 -
NLU JGA 60.08 0.026
MultiWOZ 2.2 Inform 89.0 0.182

ulti .

NLG Sucess 76.0 0.349

BLEU 17.6 0.013
Combined 99.7 -

Table 5: Mean and standard deviation of all reported scores in Table 2 and Table 3 using 5 randomly sampled batch
sizes, which are the same for all models and datasets. Student paired t-test shows p < 0.01 for scores changed by
batch size. Combined = (Inform + Success) x 0.5 + BLEU.
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