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Abstract

We introduce the Kernel Calibration Conditional
Stein Discrepancy test (KCCSD test), a non-
parametric, kernel-based test for assessing the cali-
bration of probabilistic models with well-defined
scores. In contrast to previous methods, our test
avoids the need for possibly expensive expecta-
tion approximations while providing control over
its type-I error. We achieve these improvements
by using a new family of kernels for score-based
probabilities that can be estimated without proba-
bility density samples, and by using a conditional
goodness-of-fit criterion for the KCCSD test’s U-
statistic. We demonstrate the properties of our test
on various synthetic settings.

1 INTRODUCTION

Calibration is a statistical property of predictive probabilis-
tic models that ensures that a model’s prediction matches
the conditional distribution of the predicted variable given
the prediction. A calibrated model expresses the uncertainty
about its predictions reliably by being neither over- nor un-
derconfident, and hence can be useful even if its accuracy
is suboptimal. This property is essential in safety-critical
applications such as autonomous driving. Unfortunately,
empirical studies revealed that popular machine learning
models such as deep neural networks tend to trade off cali-
bration for accuracy [Guo et al., 2017]. This has lead to an
increased interest in the study of calibrated models in recent
years.

Calibration has been studied in the meteorological and statis-
tical literature for many decades [e.g., Murphy and Winkler,
1977, DeGroot and Fienberg, 1983]. For a long time, re-
search on calibration has been focused on different notions
of calibration for probabilistic classifiers [e.g., Murphy and
Winkler, 1977, DeGroot and Fienberg, 1983, Platt, 2000,

Zadrozny and Elkan, 2001, Bröcker, 2009, Naeini et al.,
2015, Guo et al., 2017, Kull et al., 2017, Kumar et al., 2018,
Kull et al., 2019, Vaicenavicius et al., 2019, Widmann et al.,
2019] and on calibration of quantiles and confidence in-
tervals for real-valued regression problems [e.g., Ho and
Lee, 2005, Rueda et al., 2006, Taillardat et al., 2016, Song
et al., 2019, Fasiolo et al., 2020]. Regarding the calibra-
tion of classification models, different hypothesis tests have
been proposed [e.g., Cox, 1958, Bröcker and Smith, 2007,
Vaicenavicius et al., 2019, Widmann et al., 2019, Gweon,
2022, Lee et al., 2022]. Given a predictive model and a
validation dataset, these tests output whether a model is
likely to be uncalibrated. The recent work of Widmann et al.
[2021] generalized the calibration-framework introduced
for classification in [Widmann et al., 2019] to (possibly
multi-dimensional) continuous-valued predictive models. In
particular, Widmann et al. [2021] introduced a kernel-based
hypothesis test for such general classes of models.

An important potential consumer of calibration tests is
Bayesian inference, and in particular simulation-based in-
ference (SBI), for which miscalibration is particularly un-
desirable. SBI [Cranmer et al., 2020] lies at the intersection
of machine learning and domain sciences, and refers to the
set of methods that train probabilistic models to estimate
the posterior over scientific parameters of interest given
some observed data. The models are trained using pairs
composed of parameters drawn from a prior distribution,
and their associated “synthetic” observed data, obtained by
running a probabilistic program called the simulator, taking
a parameter value as input, and that faithfully mimics the
physical generative process of interest. The increasing num-
ber of use cases combined with advances in probabilistic
modeling has elevated SBI to a critical role in solving com-
plex scientific problems such as particle physics [Gilman
et al., 2018] and neuroscience [Glöckler et al., 2022, Glaser
et al., 2022]. However, as discussed in [Hermans et al.,
2021], overconfidence in SBI models can conceal credible
alternative scientific hypotheses, and result in incorrect dis-
coveries [Hermans et al., 2021], highlighting the need for
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principled and performant calibration tests suitable for such
models.

While the theoretical framework of Widmann et al. [2021]
describes the calibration of any probabilistic model, ap-
plying its associated calibration test to Bayesian inference
remains challenging: indeed, the test statistics require com-
puting expectations against the probabilistic models of inter-
est, for reasons bearing both to the calibration setting, and
to the limitations of currently available kernel-based tools
for probabilistic models. Although such expectations can
be computed exactly for classification models, expectations
against generic probabilistic models are usually intractable
and must be approximated. In cases where the models are un-
normalized, these approximations are both computationally
expensive—sometimes, prohibitively—and biased, thereby
compromising theoretical guarantees of the calibration tests
of Widmann et al. [2021], including type-I error control.

Contributions In this paper, we introduce the kernel
calibration-conditional Stein discrepancy (or KCCSD) test,
a new nonparametric, score-based kernel calibration test
which addresses the limitations of existing methods. The
KCCSD test builds on the insight that the definition of cali-
bration given by Vaicenavicius et al. [2019] is a conditional
goodness of fit property, as we remark in Section 3. This
fact allows us to leverage the kernel conditional goodness of
fit test proposed by Jitkrittum et al. [2020] as the backbone
of the KCCSD test. Unlike the test-statistics of Widmann
et al. [2021], the KCCSD test statistic does not contain
explicit expectations against the probabilistic models; how-
ever, as in [Widmann et al., 2021], it requires evaluating a
kernel between probabilities densities, which in most cases
of interest introduces an (intractable) expectation against
the densities. To eliminate this limitation, we construct two
new kernels between probability distributions that do not
involve expectations against its input distributions, while
remaining suitable for statistical testing. These kernels rely
on a generalized version of the Fisher divergence and are of
independent interest. We investigate a connection between
these kernels and diffusion, akin to Stein methods, and dis-
cuss the relationships with other kernels on distributions. By
using such kernels in the KCCSD test statistic, we obtain
a fast and scalable calibration test that remains consistent
and calibrated for unnormalized models, answering the need
for such tests discussed above. We confirm in Section 6 the
properties and benefits of the KCCSD test against alterna-
tives on synthetic experiments.

2 BACKGROUND

Notation We consider probabilistic systems character-
ized by a joint distribution P(X,Y ) of random variables
(X,Y ) taking values in X × Y , and study probabilistic
models P|· : x ∈ X 7−→ P|x(·) ∈ P(Y) approximating
the unknown conditional distribution of Y given X = x,

P|x(·) ' P(Y ∈ · |X = x). The target variable Y is typ-
ically a parameter of a probabilistic system of interest—
like synaptic weights in biological neural networks—while
the input variable X is observed data—like neuron voltage
traces measured using electrophysiology.

2.1 CALIBRATION OF PREDICTIVE MODELS

Calibration: General Definition A probabilistic model P|·
is called calibrated or reliable [Bröcker, 2008, Vaicenavicius
et al., 2019, Widmann et al., 2021] if it satisfies

P|X = P
(
Y ∈ · | P|X

)
P(X)-a.s.. (1)

Note that this definition applies to general predictive proba-
bilistic models, also beyond classification, and only assumes
that the conditional distributions on the right-hand side exist.

Hypothesis Testing: Kernel Calibration Error There are
multiple ways to test whether a given predictive probabilis-
tic model is calibrated. In this section, we introduce the
kernel-based tests of Widmann et al. [2019] and their later
generalization [Widmann et al., 2021], since our KCCSD
test is built on these approaches. These tests turn the equality
between conditional distributions present in Equation (1)
into a more classical equality between two joint distributions.
The transformation is achieved by noting that

P|X = P
(
Y ∈ · | P|X

)
P(X)-a.s.

⇐⇒ (P|X , Y )
d
= (P|X , Z)

where Z is an “auxiliary” variable such that Z |P|X ∼
P|X(·). This identity was used by Widmann et al. [2021]
to construct an MMD-type calibration test based on the
(squared) kernel calibration error (SKCE) criterion

sup
h∈B(0H,1)

E(x,y,z)∼P(X,Y,Z)

[
h(P|x, y)− h(P|x, z)

]
. (2)

Here, B(0H, 1) is the unit ball of a reproducing kernel
Hilbert space (RKHS) H of functions with positive defi-
nite kernel kH : (P|X × Y)2 → R. As noted by Widmann
et al. [2021], the SKCE generalizes the (squared) kernel clas-
sification calibration error (SKCCE) defined for the special
case of discrete output spaces Y = {1, . . . , d} [Widmann
et al., 2019], to continuous ones. Given n pairs of sam-
ples {(P|xi , yi)}

n

i=1

i.i.d.∼ P(P|X , Y ), Widmann et al. [2021]
consider the following SKCE estimator

ŜKCE =
2

n(n− 1)

∑
1≤i<j≤n

G((P|xi , y
i), (P|xj , y

j))

(3)
where
G((p, y), (p′, y′)) :=k((p, y), (p′, y′))

− Ez∼p k((p, z), (p′, y′))

− Ez′∼p′ k((p, y), (p′, z′))

+ Ez∼p Ez′∼p′ k((p, z), (p′, z′)).

(4)



For a target false rejection rate α ∈ (0, 1), the test of
Widmann et al. [2021] follows standard methodology in
recent nonparametric testing [Gretton et al., 2012, 2007,
Chwialkowski et al., 2016] by rejecting the null hypothesis
that the model is calibrated if ŜKCE > γ1−α, where γ1−α

denotes the (1−α)-quantile of ŜKCE under the null. While
various methods are available to estimate this quantile, all
tests experiments in this paper use a bootstrap approach
[Arcones and Giné, 1992]. As discussed by Widmann et al.
[2021], Equation (3) contains two important sources of pos-
sible intractability:

First Problem The last three terms in the sum are expecta-
tions under predictions of the probabilistic model of interest.
However, closed-form expressions for these expectations
are only available in restricted cases, such as for classi-
fication and for Gaussian models coupled with Gaussian
kernels. When these expectations are not available, they
must be approximated numerically. If the distributions P|X
are given in the form of unnormalized models, this approxi-
mation requires running expensive approximation methods
that often take the form of an MCMC algorithm and must
be performed for every sample of P|X used to estimate the
test statistic.

Second Problem The second source is the evaluation
of the kernel function k. We restrict our attention to
the conventional form of tensor-product type kernels
k((p, y), (p′, y′)) = kP (p, p′)kY (y, y′) chosen in this set-
ting. While typically many tractable choices for the kernel
kY exist (taking as input discrete or Euclidean values), the
choices for kP , taking as input two probability distributions
p and p′, are more limited and require expensive approxima-
tions methods when working with unnormalized models.

A popular approach to design kernels on distributions [Sz-
abó et al., 2015, 2016] is to first embed the probability
distributions in a Hilbert spaceH using a map φ, and then
compose it with a kernel kH onH:

kP (p, p′) = kH(φ(p), φ(p′)).

Any valid kernel on H, like the linear kernel kH(z, z′) =

〈z, z′〉H, the Gaussian kernel kH(z, z′) = e−‖z−z
′‖2H ,

or the inverse multiquadric kernel kH(z, z′) = (1 +

‖z − z′‖2H)−1 can be used. In practice, the map φ can be
set to be the mean embedding map to an RKHS H, e.g.,
φ(µ) =

∫
kH(z, ·)µ(dz). Kernels kH that are functions of

‖φ(µ)− φ(ν)‖2H := MMD2(µ, ν), are often referred to as
MMD-type kernels [Meunier et al., 2022]. Other distances,
like the Wasserstein distance in 1 dimension or the sliced
Wasserstein distance [Bonneel et al., 2015] in multiple di-
mensions, also take this form for some choice of φ and
H, and can thus be used to construct kernels on distribu-
tions [Meunier et al., 2022]. In general, however, computing
kP (p, p′) becomes intractable apart from special cases such
as when p and p′ are Gaussian distributions. While there

exist finite-samples estimators for such kernels, a fast cal-
ibration estimation method based on Equation (2) would
require an estimator that does not require samples from p
and p′.

2.2 KERNEL CONDITIONAL GOODNESS-OF-FIT
TEST

We briefly introduce the background on goodness-of-fit
methods relevant to our new test. Conditional goodness-
of-fit (or CGOF) testing adapts the familiar goodness of
fit tests to the conditional case. In particular, CGOF tests
whether

H0 : Q|Z = P(Y ∈ · |Z) P(Z)-a.s. (5)

given a candidate Q|z for the conditional distribution

P(Y ∈ · |Z = z) and samples {(zi, yi)}ni=1
i.i.d∼ P(Z, Y ).

This problem was studied by Jitkrittum et al. [2020] for the
case Z × Y ⊂ Rdz × Rdy and models Q|z with a differen-
tiable, strictly positive density fQ|z . They proposed a kernel
CGOF test for Equation (5) based on the (squared) kernel
conditional Stein discrepancy (KCSD)

DQ|·(P) :=
∥∥E(z,y)∼P(Z,Y )

[
KzξQ|z (y, ·)

]∥∥2

FK
(6)

Here, FK is an Fdyl (e.g

dy times︷ ︸︸ ︷
Fl × · · · × Fl)-vector-valued

RKHS with kernel K : Z × Z → L(Fdyl ,Fdyl ), Kz is its
associated linear operator on Fdyl with Kzg := K(z, ·)g ∈
L(Z,Fdyl ) for g ∈ Fdyl , Fl is an RKHS on Y with kernel
l : Y × Y → R and ξQ|z is the “kernelized score”:

ξQ|z (y, ·) = l(y, ·)∇y log fQ|z (y) +∇yl(y, ·) ∈ F
dy
l .

We refer to Jitkrittum et al. [2020, Section 2 and 3] for an
intuition behind the KCSD formula, and its relationship to
the more familiar Kernel Stein Discrepancy Chwialkowski
et al. [2016], Gorham and Mackey [2017]. Under certain
assumptions, the null hypothesis in Equation (5) is true
if and only if DQ|·(P) = 0. In particular, the latter will
hold Jitkrittum et al. [2020, Theorem 1] if Y and Z are
compact and the kernels K and l are universal, meaning
that FK (resp. Fl) is dense with respect to C(Z,Fdyl ) (resp.
C(Y,R)), the space of continuous functions from Z to Fdyl
(resp. Y to R) 1. An instance of a universalFdy -reproducing
kernel is given by

K(z, z′) = k(z, z′)IFdyl
(7)

1These statements hold for noncompact Y,Z by replacing
continuous functions by continuous functions vanishing at infinity
[Jitkrittum et al., 2020, Theorem 1].



where IFdyl
∈ L(Fdyl ,Fdyl ) is the identity operator and k is

a real-valued universal kernel [Carmeli et al., 2010]. Jitkrit-
tum et al. [2020] showed that the CGOF statistic DQ|·(P)
admits an unbiased consistent estimator and used it to con-
struct hypothesis tests of Equation (5) with operator-valued
kernels of the form in Equation (7).

3 KERNEL
CALIBRATION-CONDITIONAL STEIN
DISCREPANCY

Calibration testing in the sense of Equation (1) is an in-
stance of conditional goodness-of-fit testing of Equation (5)
with input Z = P|X , target Y , and models Q|z = z = P|x.
Assuming that Y ⊂ Rdy and that distributions P|x have
a differentiable, strictly positive density fP|x . In that case,
the (squared) kernel conditional Stein discrepancy in Equa-
tion (6) becomes

CP|·(P) :=
∥∥E(x,y)∼P(X,Y )

[
KP|xξP|x(y, ·)

]∥∥2

FK
, (8)

where now K is a kernel on P|X . To emphasize the calibra-
tion setting, we call CP|· the kernel calibration-conditional
Stein discrepancy (KCCSD). Similar to the KCSD, given
samples {P|xi , yi}

n

i=1

i.i.d.∼ P(P|X , Y ) and assuming a ker-
nel K of the form in Equation (7), statistic CP|·(P) has an
unbiased consistent estimator

ĈP|· =
2

n(n− 1)

∑
1≤i<j≤n

H((P|xi , y
i), (P|xj , y

j))

where

H((p, y), (p′, y′)) := k(p, p′)h((p, y), (p′, y′)) (9)

with

h((p, y), (p′, y′)) := l(y, y′)sp(y)>sp′(y
′)

+

dy∑
i=1

∂2

∂yi∂y′i
l(y, y′) + sp(y)>∇y′ l(y, y′)

+ sp′(y
′)>∇yl(y, y′),

(10)

where sp(y) := ∇y log fp(y) (resp. sp′(y)) is the score of
p (resp. p′). In Section A in the supplement we discuss how
the formula of ĈP|· generalizes to operator-valued kernels
that are not of the form in Equation (7).

The above framing of the calibration problem conveniently
avoids the first source of possible intractability present in the
SKCE. For instance, for Gaussian models the test statistic
can be evaluated exactly for arbitrary kernels l on Y whereas
a closed-form expression of the SKCE is known only in the
special case where l is a Gaussian kernel.

Proposition 3.1 shows that the KCCSD can be viewed as
a special case of the SKCE. More generally, as shown in
Section B, the KCSD is a special form of the MMD.

Proposition 3.1 (Special case of Lemma B.1). Under weak
assumptions (see Lemma B.1), the KCCSD with respect to
kernels l : Y×Y → R and k : P|X×P|X → R is equivalent
to the SKCE with kernel H : (P|X ×Y)× (P|X ×Y)→ R
defined in Equation (9).

The full testing procedure is outlined in Algorithm 1. The
computations can be performed with kernels K of the form
in Equation (7) or more general operator-valued kernels, but
crucially the method requires that K is tractable. Thus for
general models of probability distributions, such as energy-
based models and other unnormalized density models, it re-
mains to address the second source of intractability, namely
to construct a kernel K that can be evaluated efficiently.

Algorithm 1: CGOF Calibration Test (Tractable Kernel)

Data: Pairs {(P|xi , yi)}
n

i=1

i.i.d.∼ P(P|X , Y )
Result: Whether to reject H0 : “model is calibrated”
Parameters: Number of data samples n, kernel
l : Y2 → R, kernel k : (P|X )2 → R, level α

/* Estimate KCCSD using Equation (10) or (A.1) */

1 Ĉ ← 2
n(n−1)

∑
1≤i<j≤n

H((P|xi , y
i), (P|xj , y

j))

/* Use e.g. bootstrap [Arcones and Giné, 1992] */

2 Ĉα ← approximate (1− α)-quantile of Ĉ
3 if Ĉ < Ĉα then
4 return Fail to reject H0

5 else
6 return Reject H0

7 end

4 TRACTABLE KERNELS FOR
GENERAL UNNORMALIZED
DENSITIES

In this section, we introduce two kernels between (density-
based) probability distributions that admit unbiased esti-
mates that neither require samples from the said distribu-
tions nor require access their normalizing constant. Cru-
cially, the properties of these new kernels allow to extend
the scope of calibration tests to a more general setting, in-
cluding Bayesian inference.

General Recipe As in prior work on kernels for distribu-
tions [Meunier et al., 2022, Szabó et al., 2016], our proposed
kernels take the form of exponentiated Hilbertian metrics

k(p, q) = e−‖φ(p)−φ(q)‖2H/(2σ
2)

for two probability densities p and q, defined on some set
X ⊂ Rd, where H is some separable Hilbert space, φ : p 7→
φ(p) ∈ H is a feature map, and σ > 0 is a bandwidth
parameter. Our contributions in this section consist in pairs



of carefully designed φ andH that will allow approximating
k easily.

4.1 THE GENERALIZED FISHER DIVERGENCE
(KERNEL)

Our starting point is the Fisher Divergence [Lyu, 2012,
Sriperumbudur et al., 2017, Hyvärinen, 2005], also known
as the Relative Fisher Information [Otto and Villani, 2000],
between two probability densities p and q, which is given
by

FD(p, q) :=

∫
X
‖sp(x)− sq(x)‖2 p(x) dx.

The Fisher Divergence is a convenient tool to compare un-
normalized densities of the form

p(x) :=

tractable︷︸︸︷
f(x)

Zf︸︷︷︸
intractable

where Zf :=

∫
X
f(x) dx

as the score of p can be evaluated without knowing Zf :

sp(x) = ∇x(log f(x)/Zf ) = ∇x log f(x).

This property confers to the (squared) Fisher Divergence a
tractable unbiased estimator given n i.i.d. samples {Xi}ni=1

from p, which takes the form:

̂FD(p, q) =
1

n

n∑
i=1

‖sp(Xi)− sq(Xi)‖2.

While the assumption ensuring access to samples from p is
realistic in the unsupervised learning literature [Hyvärinen,
2005], or when dealing with special instances of unnormal-
ized densities such as truncated densities f(x) = p(x)1x∈C ,
it does not hold in the context of unnormalized models. We
overcome this issue by constructing a generalized version
of the Fisher Divergence:

Definition 4.1 (Generalized Fisher Divergence). Let p, q be
two probability densities on X , and ν a probability measure
on X . The Generalized Fisher Divergence between p and q
is defined as

GFDν(p, q) :=

∫
X
‖sp(x)− sq(x)‖2 ν(dx)

if Eν ‖sp‖2 ,Eν ‖sq‖2 < +∞, and +∞ otherwise.

The Generalized Fisher Divergence differs from the Fisher
Divergence in that the integration is performed with re-
spect to some given base measure ν instead of p. If the
support of ν covers the support of p and q, then we have
that GFDν(p, q) = 0 iff. p = q. Moreover, if ν can be sam-
pled from in a tractable manner, then GFDν(p, q) admits

a tractable estimator given samples {Zi}ni=1 from ν of the
form

̂GFDν(p, q) =
1

n

n∑
i=1

‖sp(Zi)− sq(Zi)‖2.

In practice, the tractability assumption as well as the support
assumption for any p, q are verified by setting ν to be a
standard Gaussian distribution.

The Exponentiated-GFD Kernel Importantly, the
(square root of the) Generalized Fisher Divergence is a
Hilbertian metric on the space of probability densities.
Indeed, for p, q such that Eν ‖sp‖2 ,Eν ‖sq‖2 < +∞, we
have that

GFDν(p, q) = ‖φ(p)− φ(q)‖2L2(ν)

where φ : p 7→ sp(·) ∈ L2(ν) can be checked to be injective.
The latter fact allows to construct a kernel Kν on the space
of probability densities based on the Generalized Fisher
Divergence as follows:

Definition 4.2 (Exponentiated GFD Kernel). Let p, q be
two probability densities on X , and ν a probability measure
on X . The exponentiated GFD kernel between p and q is
defined as

Kν(p, q) := e−GFDν(p,q)/(2σ2)

Since the (square root of the) GFD is a Hilbertian met-
ric, Kν is positive definite [Meunier et al., 2022], and can
be estimated given samples of ν by replacing GFDν with
its empirical counterpart. We summarize the computation
method for Kν in Algorithm 2.

Algorithm 2: Exponentiated GFD Kernel
Data: Probability densities p, q on X
Result: Approx. K̂ν(p, q) of Kν(p, q) in Definition 4.2
Parameters: Base measure ν, num. of base samples m

1 for i← 1 to m do
2 Draw Zi ∼ ν
3 end
4 return exp

(
− 1

2mσ2

∑m
i=1 ‖sp(Zi)− sq(Zi)‖2

)
Use in hypothesis testing In addition to being tractable to
estimate, we show that when X is compact (for instance, a
bounded subset of Rd), the exponentiated GFD kernels Kν

are universal. As a consequence, our KCCSD test, which
is an instance of a KCSD test, will be able to distinguish
the null-hypothesis from any alternative satisfying mild
smoothness assumptions, as guaranteed by Jitkrittum et al.
[2020, Theorem 1].

Proposition 4.3. Assume that X is compact, ν has full
support on X , and let PX be the set of twice-differentiable



probability densities on X equipped with the norm ‖p‖2 =

‖p‖2L2(ν) +
∑d
i=1 ‖∂ip‖2L2(ν) +

∑d
i,j=1 ‖∂i∂jp‖2L2(ν). Then

Kν is universal for any bounded subset of PX .

Proof. The proof is given in Section D.2.

4.2 THE KERNELIZED GENERALIZED FISHER
DIVERGENCE (KERNEL)

While the recipe given above suffices to obtain a valid kernel
on the space of probability densities, the approximation
error arising from the discretization of the base measure ν
may scale unfavorably with the dimension of the underlying
space X . To address this issue, it is possible to apply a
kernel-smoothing step to the GFD feature map φ(p) by
composing it with an integral operator TK,ν associated with
a X -vector-valued kernel K and its RKHSHK

TK,ν : f ∈ L(X ,Rd) 7−→
∫
X
Kxf(x) ν(dx) ∈ HK

and comparing the difference in feature map using the
squared RKHS norm ‖·‖2HK . This choice of feature map
yields another metric, which we call the “kernelized” GFD:

KGFD(p, q) := ‖TK,νsp − Tk,νsq‖2HK .

which, like the GFD, admits a tractable, unbiased estimator:

1

m2

m∑
i,j=1

〈
K(Zi, Zj)(sp − sq)(Zi), (sp − sq)(Zj)

〉
X .

Since the KGFD is also a Hilbertian metric, we build upon
it to construct our second proposal kernel:

Definition 4.4 (Exponentiated KGFD Kernel). Consider
the setting of Definition 4.2, and let k be a bounded positive
definite kernel. The exponentiated KGFD kernel is given
by:

KK,ν := e−KGFD(p,q)/(2σ2)

For characteristic kernels K, the integral operator TK,ν is a
Hilbertian isometry betweenL2(ν,Rd) andHK , making the
exponentiated KGFD kernel positive definite. Additionally,
KK,ν enjoys a similar universality property as its GFD
analogue, as discussed in the next proposition.

Proposition 4.5. Assume that X is compact, ν has full-
support on X , and let PX be the set of twice-differentiable
probability densities equipped with the norm ‖p‖2 =

‖p‖2L2(ν) +
∑d
i=1 ‖∂ip‖2L2(ν) +

∑d
i,j=1 ‖∂i∂jp‖2L2(ν). Then

KK,ν is universal for any bounded subset of PX .

A diffusion interpretation of the KGFD In this section,
we establish a relationship between the KGFD and diffusion
processes [Rogers and Williams, 2000], further anchoring
the KGFD to the array of previously known divergences
while opening the door for possible refinements and gener-
alizations. Diffusion processes are well-known instances of
stochastic processes (Xt)t≥0 that evolve from some initial
distribution µ0 towards a target distribution p according to
the differential update rule

dXt = sp(Xt) dt+
√

2dWt, X0 ∼ µ0,

where Wt is a standard Brownian motion. For any time
t ≥ 0, the probability density ofXt is the solution µµ0,p(·, t)
of the so-called Fokker-Planck equation

∂µ(x, t)

∂t
= div(−µ(x, t)sp(x)) + ∆xµ(x, t) (11)

with initial condition µ(·, 0) = µ0. Proposition 4.6 estab-
lishes a link between these solutions and the KGFD:

Proposition 4.6 (Diffusion interpretation of the KGFD). Let
µν,p (resp. µν,q) be the solution of Equation (11) with initial
condition ν and target p (resp. q). Let k be a real-valued,
twice-differentiable kernel. Then, we have that

lim
t→0

1

t
MMD(µν,p(·, t), µν,q(·, t)) =

√
KGFD(p, q)

where the MMD is w.r.t. the kernel k, and the KGFD is
with respect to the matrix-valued kernel∇x∇yk(x, y).

Proof. See Section D of the Appendix.

Proposition 4.6 frames the exponentiated KGFD kernel as
the t→ 0 limit of the kernel obtained by setting

φt : p 7−→ ∇x logµν,p(·, t)

which is the score of the solution of the Fokker-Planck
equation Equation (11) with target p and initial measure ν,
and setting H = H. Interestingly, the other limit case t→
∞ recovers the exponentiated MMD kernel. Indeed, under
mild conditions, the Fokker-Planck solution converges to the
target and thus we have that limt→∞ φt(p) = p: the feature
map converges to the identity. Thus, the diffusion framework
introduced above allows to recover both the KGFD and the
MMD as special cases. However, while the limit t→ 0 and
t→∞ both yield Hilbertian metrics, it is an open question
whether for a given time 0 < t <∞, φt is also Hilbertian.
A positive answer to this question would allow to construct
positive definite kernels that can possibly overcome the
pitfalls of score-based tools [Wenliang and Kanagawa, 2020,
Zhang et al., 2022], while being computable in finite time.



5 FAST AND SCALABLE CALIBRATION
TESTS

The framing of the calibration testing problem of Section 3
alongside with the GFD-based kernels of Section 4 allows
us to design a fast and scalable alternative to the pioneering
tests of Widmann et al. [2019]. The full testing procedure is
outlined in Algorithm 3.

Algorithm 3: CGOF Calibration Test (GFD Kernel)

Data: Pairs {(P|xi , yi)}
n

i=1

i.i.d.∼ P(P|X , Y )
Result: Whether to reject H0 : “model is calibrated”
Parameters: Base measure ν, num. of base samples m,
number of data samples n, kernel l : Y2 → R,
significance level α

1 for i← 1 to m do
2 Draw zi ∼ ν
3 end
4 for 1 ≤ i < j ≤ n do

/* Use Algorithm 2 with base samples {zk}mk=1 */

5 κi,j ← ̂Kν(P|xi , P|xj )

6 end
7 Run Algorithm 1 with kernel k(P|xi , P|xj ) := κi,j

Calibration tests as a reliability tests in Bayesian infer-
ence As one main motivation for studying calibration of
generic probabilistic models is Bayesian inference, it is im-
portant to note that reliability metrics traditionally used in
Bayesian inference such as conservativeness [Hermans et al.,
2021] differ from the notion of calibration in Equation (1).
We first briefly recall the notion of posterior coverage:

Definition 5.1 (Conservativeness of a Bayesian model [Her-
mans et al., 2021]). Let P|x(·) be a conditional distribution
model for P(Y ∈ · | X = x), and assume that P|x has a den-
sity fP|x for P(X)-almost every x. For level 1− α ∈ [0, 1],
let ΘP|x(1− α) be the highest density region of P|x.2 Then
P|· is said to be conservative if

E(x,y)∼P(X,Y ) 1ΘP|x (1−α)(y) ≥ 1− α.

In the following proposition, we show that a probabilistic
model that is calibrated according to Equation (1) is also
conservative in the sense of Hermans et al. [2021], ground-
ing the use of our tests in Bayesian inference.

Proposition 5.2 (Calibrated models are conservative). If a
model P|· is calibrated in the sense of Equation (1), then it
is conservative.

The proof is given in Section C of the appendix.
2The highest density region of a probabilistic model P|x with

density fP|x is defined [see, e.g., Hyndman, 1996] by ΘP|x(1−
α) := {y : fP|x(y) ≥ cP|x(1 − α)} where cP|x(1 − α) :=

sup{c :
∫
1[c,∞)(fP|x(y))P|x(dy) ≥ 1− α}.

6 EXPERIMENTS

We validate the properties of our proposed calibration tests
with synthetic data and compare them with existing tests
based on the SKCE.3 More concretely, we run KCCSD tests
using either a exponentiated GFD kernel or kernelized ex-
ponentiated GFD kernel with a matrix-valued kernel of the
form in Equation (7) with real-valued Gaussian kernel k;
and compare them with SKCE tests using two already in-
vestigated kernels on distributions: the exponentiated MMD
kernel with a Gaussian kernel on the ground space, and, for
isotropic Gaussian distributions, the exponentiated Wasser-
stein kernel with closed-form expression

kW
(
N (µ, σ2Id),N (µ′, σ′

2
Id)
)

= exp
(
− (‖µ− µ′‖22 + d(σ2 − σ′2))/(2`2)

)
.

We set the base measure ν of the GFD and kernelized GFD
kernels to be a standard Gaussian. On Y , we study the
Gaussian and the inverse multi-quadric (IMQ) kernel.

We repeated all experiments with 100 resampled datasets
and used a wild bootstrap with 500 samples for approximat-
ing the quantiles of the test statistic with a prescribed sig-
nificance level of α = 0.05. The bandwidths of the kernels
are selected with the median heuristic. A "second-order"
median heuristic is used for the ground-space kernels of the
KGFD and the exponentiated MMD kernel: For each pair of
distributions, we compute the median distance between sam-
ples from an equally weighted mixture of these distributions
(numerically for tractable cases such as Gaussian distribu-
tions and using samples otherwise), and then the bandwidth
of the kernel is set to the median of these evaluations.

We repeatedly generate datasets {(P|xi , yi)}i in a two-step
procedure: First we sample distributions P|xi and then we
draw a corresponding target yi for each P|xi . We compare
different setups of targets Y and Gaussian distributions P|X
with varying degree δ ≥ 0 of miscalibration (models are
calibrated for δ = 0 and miscalibrated otherwise):4

Mean Gaussian Model (MGM) Here X = Y = R5,
P(X) = N (0, I5), P(Y |X = x) = N (x, I5), and P|x =
N (x+ δc, I5) for c ∈ {15, e1} ⊂ R5 (miscalibration of all
dimensions or only the first one).

Linear Gaussian Model (LGM) Here X = R5, Y = R,
P(X) = N (0, I5), and P|x = N (δ +

∑5
i=1 ixi, 1).

Heteroscedastic Gaussian Model (HGM) Here X = R3,
Y = R, P(X) = N (0, I3), P(Y |X = x) = N (m(x), 1),
and P|x = N (m(x), σ2(x)) with m(x) =

∑3
i=1 xi and

3The code to reproduce the experiments is available at https:
//github.com/pierreglaser/kccsd.

4MGM is adapted from a model used by Widmann et al. [2021],
and LGM, HGM, and QGM were used by Jitkrittum et al. [2020].

https://github.com/pierreglaser/kccsd
https://github.com/pierreglaser/kccsd
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Figure 1: Rejection rates of the KCCSD and SKCE tests with a Gaussian kernel on the target space Y (significance level
α = 0.05). All kernels and test statistics are evaluated exactly using closed-form expressions.
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Figure 2: False rejection rates of the SKCE tests for the calibrated LGM, HMC, and QGM (n = 200 data points, significance
level α = 0.05). The expectations in the test statistic are estimated with 2 samples obtained with the Metropolis-adjusted
Langevin algorithm (MALA) without step size tuning.

σ2(x) = 1 + 10δ exp (−‖x− c‖22/(2 · 0.82)) for c =
2/313.

Quadratic Gaussian Model (QGM) Here X = Y = R,
P(X) = U(−2, 2), P(Y |X = x) = N (0.1x2 + x+ 1, 1),
and P|x = N (0.1(1− δ)x2 + x+ 1, 1).

Figure 1 demonstrates that the proposed KCCSD tests are
calibrated: The false rejection rates (type I errors) of the
calibrated MGM and LGM do not exceed the set signifi-
cance level, apart from sampling noise. Figures F.1 and F.7
in the suppplementary material confirm empirically that this
is the case also when we approximate the Fisher and MMD
kernels using samples.

Moreover, we see in Figure 1 that for the miscalibrated
HGM the SKCE tests exhibit larger rejection rates, and
hence test power, than the KCCSD tests in the small sample
regime, regardless of the kernel choice. This specific setting
with Gaussian distributions and a Gaussian kernel on the
target space Y is favourable to the SKCE test as both its test
statistic, as well as the exponentiated MMD or Wasserstein
kernel evaluations are available in closed-form. In such
analytical scenarios we expect the score-based KCCSD tests
to perform worse [Wenliang and Kanagawa, 2020, Zhang
et al., 2022]. However, the KCCSD tests present themselves
as a practically useful alternative even in this example: For
the miscalibrated HGM their rejection rates are close to
100% with ≥ 256 data points, and for the miscalibrated
QGM they show very similar performance as the SKCE
tests. Overall, as expected, we see in Figure 1 that for all
studied tests rejection rates for the miscalibrated models

increases with increasing number of samples.

One main advantage of the KCCSD over the SKCE is that
it has first-class support for unnormalized models for which
only the score function is available: In contrast to the SKCE
its test statistic only involves scores but no expectations. In
principle, for unnormalized models these expectations in the
test statistic of the SKCE can be approximated with, e.g.,
MCMC sampling. However, Figure 2 shows that there is a
major caveat: If the MCMC method is not tuned sufficiently
well (e.g., if the chain is too short or the proposal step size
is not tuned properly), it might return biased samples which
causes the SKCE tests to be miscalibrated. On the other
hand, increasing the number of MCMC samples increases
the computational advantage of the KCCSD even more.

Another difference between the KCCSD and SKCE is high-
lighted in Figures F.1 and F.2: The number of combinations
of kernels for which the test statistic can be evaluated ex-
actly is smaller for the SKCE (in these Gaussian examples,
it requires Gaussian kernels on the target space).

One limitation of the (kernelized) exponentiated GFD Ker-
nel is that it necessitates setting an additional hyperparame-
ter: the base measure ν, which weights the score differences
between its two input distributions p and q at all points of
the ground space X . While our experiments have set ν to be
a Gaussian measure in order to obtain closed-form expres-
sions for Gaussian p, q, other choices may be more adequate
depending on the problem at hand. For instance, when p and
q are posterior models for a given prior π, we hypothesize
that setting ν to π constitutes a better default choice.



7 CONCLUSION

In this paper, we introduced the Kernel Calibration Condi-
tional Stein Discrepancy test, a fast and reliable alternative
to prior calibration tests for general, density-based proba-
bilistic models, thereby addressing an important need in the
Bayesian inference community. In doing so, we introduced
kernels for density-based inputs, which we believe are of
independent interest and could be used in other domains
such as distribution regression [Szabó et al., 2016] or meta-
learning [Denevi et al., 2020]. Moreover, while the set of
experiments conducted in this paper focused on “offline”
calibration testing, its low computational cost opens the
door to promising new use cases. One particularly interest-
ing avenue would consist in using the KCCSD test criterion
as a regularizer directly within the training procedure of a
probabilistic model, allowing not only to detect miscalibra-
tion but also to prevent it in the first place. We look forward
to seeing extensions and applications of the tools introduced
in this paper.
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