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ABSTRACT

Graph Shift Operators (GSOs), such as the adjacency and graph Laplacian matri-
ces, play a fundamental role in graph theory and graph representation learning.
Traditional GSOs are typically constructed by normalizing the adjacency matrix by
the degree matrix, a local centrality metric. In this work, we instead propose and
study Centrality GSOs (CGSOs), which normalize adjacency matrices by global
centrality metrics such as the PageRank, k-core or count of fixed length walks.
We study spectral properties of the CGSOs, allowing us to get an understanding
of their action on graph signals. We confirm this understanding by defining and
running the spectral clustering algorithm based on different CGSOs on several
synthetic and real-world datasets. We furthermore outline how our CGSO can act
as the message passing operator in any Graph Neural Network and in particular
demonstrate strong performance of a variant of the Graph Convolutional Network
and Graph Attention Network using our CGSOs on several real-world datasets.

1 INTRODUCTION

We propose and study a new family of operators defined on graphs that we call Centrality Graph
Shift Operators (CGSOs). To insert these into the rich history of matrices representing graphs and
centrality metrics, the two concepts married in CGSOs, we begin by recalling major advances in these
two topics in turn (readers interested purely in recent developments in Graph Representation Learning
and Graph Neural Networks are recommended to begin reading in Paragraph 3 of this section). The
study of graph theory and with it the use of matrices to represent graphs have a long-standing history.
Graph theory is often said to have its origins in 1736 when Leonard Euler posed and solved the
Konigsberg bridge problem (Euler, |1736). His solution did not involve any matrix calculus. In fact, it
seems that the first matrix defined to represent graph structures is the incidence matrix defined by
Henri Poincaré in 1900 (Poincaré, |1900). It is difficult to pinpoint the first definition of adjacency
matrices, but by 1936 when the first book on the topic of graph theory was published by Dénes Konig
adjacency matrices had certainly been defined and began to be used to solve graph theoretic problems
(Konig| |1936). Two seemingly concurrent works in 1973 defined an additional matrix structure to
represent graphs that later became known as the unnormalized graph Laplacian (Donath & Hoffman)
1973} [Fiedler, |1973). Then, it was Fan Chung in her book “Spectral Graph Theory” published in 1997
who extensively characterized the spectral properties of normalized Laplacians (Chungl [1997). In the
emerging field of Graph Signal Processing (GSP) (Sandryhaila & Moura, |2013; |Ortega et al., | 2018)
these different graph representation matrices were all defined to belong to a more general family
of operators defined on graphs, the Graph Shift Operators (GSOs). GSOs currently play a crucial
role in graph representation learning research, since the choice of GSO, used to represent a graph
structure, corresponds to the choice of message passing function in the currently much-used Graph
Neural Network (GNN) models.

In parallel to advances in graph representation via matrices, centrality metrics have proved to be
insightful in the study of graphs. Chief among them is the success of the PageRank centrality criterion
revealing the significance of certain webpages (Brin & Page), [1998) and playing a role in the formation
of what is now one of the largest companies worldwide. But also an even older metric, the k-core
centrality (Seidmanl |1983]; Malliaros et al.;, 2020), as well as the degree centrality, closeness centrality,
and betweenness centrality, have proven to be impactful in revealing key structural properties of
graphs (Freeman| |1977;Zhang & Luo, [2017).
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A commonality of the most frequently used GSOs is their property to encode purely local information
in the graph, with the adjacency matrix encoding neighborhoods in the graph and the graph Laplacians
relying on the node degree, a local centrality metric, to normalize the adjacency matrix. In this work,
we propose a novel class of GSOs, the Centrality GSOs (CGSOs) that arise from the normalization
of the adjacency matrix by centrality metrics such as the PageRank, k-core and the count of fixed
length walks emanating from a given node. Our CGSOs introduce global information into the graph
representation without altering the connectivity pattern encoded in the original GSO and therefore,
maintain the sparsity of the adjacency matrix. We provide several theorems characterizing the spectral
properties of our CGSOs. We confirm the intuition gained from our theoretical study by running the
spectral clustering algorithm on the basis of our CGSOs on 1) synthetic graphs that are generated
from a stochastic blockmodel in which each block is sampled from the Barrabasi-Albert model
and 2) the real-world Cora graph in which we aim to recover the partition provided by the k-core
number of each node. We will furthermore describe how our CGSOs can be inserted as the message
passing operator into any GNN and observe strong performance of the resulting GNNs on real-world
benchmark datasets.

In particular, our contributions can be summarized as follows: (i) we define Centrality GSOs, a
novel class of GSOs based on the normalization of the adjacency matrix with different centrality
metrics, such as the degree, PageRank score, k-core number, and the count of walks of a fixed
length; (ii) we conduct a comprehensive spectral analysis to unveil the fundamental properties of the
CGSOs. Our gained understanding of the benefits of CGSOs is confirmed by running the spectral
clustering algorithm using our CGSOs on synthetic and real-world graphs; (iii) we incorporate the
proposed CGSOs within GNNs and evaluate performance of a Graph Convolutional Network and
Graph Attention Network v2 with a CGSO message passing operator on several real-world datasets.

2 BACKGROUND AND RELATED WORK

2.1 GRAPH SHIFT OPERATORS

We consider a graph G = (V,€) where V = {1, ..., N} is the set of nodes, and £ C V x V is the
set of edges. The adjacency matrix is one of the standard graph representation matrices considered in
our work. Formally, a graph can be represented by an adjacency matrix A = [a;;] € RV*¥ where
a;j = 1if (i,j) € € and a;; = 0 otherwise. Analyzing the spectrum of the adjacency matrix provides
much information about the topological properties of the underlying graph (Cvetkovic et al., {1980).
For example, the largest eigenvalue of A is an upper bound of the average degree, a lower bound
on the largest degree (Cvetkovi€ et al., 2009; Sarkar & Jalan, [2018) and its multiplicity indicates
whether the represented graph is connected (Stanicl [2015). Another nice example is the fact that the
adjacency spectrum of bipartite graphs is symmetric around 0 (Stanic, 2015).

In addition to the adjacency matrix, there are alternative graph representations that provide related,
but often different insights into the topology of the underlying graph. One often-used representation

is the symmetrically normalized Laplacian matrix defined by Ly, = I — D~ '/2AD~'/2, where

D € RV*N ig the degree matrix, i.e., a diagonal matrix with diagonal entries D;; = d; = Zf\il aij.

The normalized Laplacian plays a fundamental role in spectral graph theory. For example, the
celebrated Cheeger’s Inequality establishes a bound on the edge expansion of a graph via its spectrum
(Cheeger,[1970). There are other graph representations with particularly interesting spectral properties
(Lutzeyer, 2020b)), such as the random-walk Normalised Laplacian (Modell & Rubin-Delanchy}[2021)
and the Signless Laplacian matrices (Cvetkovi¢ & Simic, [2010). All these graph representations
belong to the family of Graph Shift Operators (GSOs), which we define now in Definition 2.1]

Definition 2.1 (Graph Shift Operator). Given an arbitrary graph G = (V, &), a Graph Shift Operator
S € RV*N is a matrix satisfying S;; = 0 for i # j and (4, ) ¢ £ (Mateos et al., 2019) and S;; # 0
fori = jand (7,5) € €.

In addition to the classical or fixed GSOs, parametrized GSOs can be learned during the optimization
process of any model in which they are inserted. These parametrized operators are a fundamental
component of many modern GNN architectures and allow the model to adapt and capture complex
patterns and relationships in the graph data. For example, the parametrized GSO (PGSO) of |Dasoulas
et al.|(2021) parametrizes the space of commonly used GSOs leading to a learnable GSO that adapts
to the dataset and learning task at hand.
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2.2 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNSs) are neural networks that operate on graph-structured data that is
defined as the combination of a graph G = (V, £), and a node feature matrix X € RV*9_ containing
the node feature vector of node 1 in its i*" row. GNNs are formed by stacking several computational
layers, each of which produces a hidden representation for each node in the graph, denoted by
H® =[],y € R¥*d. A GNN layer ¢ updates node representations relying on the structure
of the graph and the output of the previous layer H(*-1). Conventionally, the node features are used
as input to the first layer H’ = X. The most popular framework of GNNs is that of Message Passing
Neural Networks (Gilmer et al., 2017} |Hamilton, [2020), where the computations are split into two
main steps:

Message Passing: Given a node v, this step applies a permutation-invariant function to its neighbors,
denoted by N (v), to generate the aggregated representation,

M = d(A)HO, (1)
where ®(A) : RYXN _s RNXN 3 function of the adjacency matrix, is the chosen GSO.

Update: In this step, we combine the aggregated hidden states with the previous hidden representation
of the central node v, usually by making use of a learnable function,

H(Z+1) _ J(M(f+1)w(5))’ (2)
where W) ¢ R%-1-% are learnable weight matrices.

With the emergence and increasing popularity of GNNs, the importance of GSOs has significantly
increased. Numerous GNN architectures, such as notably Graph Convolutional Networks (GCNs),
rely on these operators in their message passing step. In the context of GCNs (Kipf & Welling} 2017),

the used message passing operator, i.e., the chosen GSO, corresponds to ®(A) = Df1/2ADfl/2,
where D; = D + I is the degree matrix of the graph corresponding to the adjacency matrix
A; = A + 1. For Graph Attention Networks v2 (GATv2) (Brody et al.| [2022), @ becomes

MUED = @(Ag /iTvz)H“), where, in this setting, ® corresponds to the identity function and the
rows of Ag /{m contain the edge-wise attention coefficients.

Global Information in GNNs. Besides our GNNs, which leverage the CGSO to make global
information accessible to any given GNN layer, there exists a plethora of other approaches to achieve
this goal. These include for example the PPNP and APPNP (Gasteiger et al., 2019), as well as the
PPRGo (Bojchevski et al., 2020) models that use the PageRank centrality to define a completely new
graph over which to perform message passing in GNNs. The work of [Vela et al.| (2022)) extends these
models to consider both the PageRank and k-core centrality. In addition, there is the AdaGCN (Sun
et al.,|2019) and the VPN model (Jin et al., 2021)) which propose to message pass using powers of the
adjacency matrix to incorporate global information and increase the robustness of GNNs, respectively.
Lee et al.|(2019) propose the Motif Convolutional Networks, that define motif adjacency matrices
and then use these in the message passing scheme. Also the k-hop GNNs of Nikolentzos et al.| (2020)
consider neighbors several hops away from a given central node in the message passing scheme of a
single GNN layer to consider more global information in a GNN. Additionally there exists a rich and
long-standing literature on spectral GNNss that facilitate global information exchange by explicitly or
approximately making use of the spectral decomposition of the GSO chosen to be the GNN’s message
passing operator (Bruna et al.l 2014; Defferrard et al.,|2016} |Koke & Cremers} 2024)). Finally, there
is an arm of research investigating graph transformers, where usually the graph structure is used to
provide structural encodings of nodes and the optimal message passing operator is learning using an
attention mechanism (Kreuzer et al., 202 1; Rampasek et al., 2022 Ma et al.,|2023). These approaches
increase the computational complexity of the GNN, whereas our CGSO based GNNs maintain the
complexity of the underlying GNN model by preserving the sparsity of the original adjacency matrix.

3 CGSO: CENTRALITY GRAPH SHIFT OPERATORS

In this section, we introduce the Centrality GSOs (CGSO), a family of shift operators that incorporate
the global position of nodes in a graph. We discuss different instances of CGSOs corresponding to
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widely used centrality criteria. We further conduct a comprehensive spectral analysis to unveil the
fundamental properties of CGSOs, including the eigenvalue structure and the expansion properties,
examining how these operators influence information spread across the graph. Then, we leverage
CGSOs in the design of flexible GNN architectures.

3.1 MATHEMATICAL FORMULATION

For a given node ¢ € V, let ¢; denote a centrality metric associated with ¢, such as the node degree,
k-core number, PageRank, or the count of walks of specific length starting from node i. The Hilbert
space L?(@) is characterized by the set of functions ¢ defined on V such that 3, ., ¢;|o(i)| con-
verges, equipped with the inner product: (¢1, v2)a = >,y cip1(i)P2(i). The Markov Averaging
Operator on L?(G) is defined as the linear map Mg : ¢ + Mg such that

(M) (i) = (CTA9) () =+ 3 (i),

L JEN;

where C = diag(cy, . ..,cn) and N; is the neighborhood set of node i. The form of this Markov
Averaging Operator gives rise to the simplest formulation of our CGSOs, which is a left normalization
of the adjacency matrix by a diagonal matrix containing node centralities on the diagonal, i.e., C"TA.
Note that the mean aggregation operator, as discussed inXu et al.|(2019), represents a specific instance
of these CGSOs where the degree corresponds to the chosen centrality metric, namely C = D. We
will further extend the concept of CGSOs in (3) where we extend and parameterize these CGSOs. In
this paper, we focus on three global centrality metrics, in addition to the local node degree. We recall
the definitions of these global centrality metrics now.

k-core. The core number of a node can be determined in the process of the core decomposition of
a graph, which captures how well-connected nodes are within their neighborhood (Malliaros et al.,
2020). The process of core decomposition involves iteratively removing vertices with degree less
than & until no such vertices remain. The core number k of a node is then equal to the largest k
for which the considered node has not yet been removed in the decomposition process. We define
Ceore € RY*N t0 be the diagonal matrix containing the core number of node i in C o[t 7).

PageRank. We choose Cpr € R™V*¥ such that, Vi € V, Cpgli,i] = (1 — PR(i)) !, where PR(i)
corresponds to the PageRank score (Brin & Pagel |1998). The PageRank score quantifies the likelihood
of a random walk visiting a particular node, serving as a fundamental metric for evaluating node
significance in various networks.

Walk Count. Here, we consider Cy.,qs € RV the diagonal matrix indicating the number of
walks of length ¢ starting from each node i, i.e., Vi € V, Cpyaisi, 1] = (A1) [i], where T € RY
is the vector of ones. When ¢ = 2, Cy.,,4is corresponds to Wyg,, 1 — D, where Wy, , the graph
operator presented by [Benson et al.|(2016), which corresponds to the count of open bidirectional
wedges, i.e., the motif M;3. This motif network captures higher-order structures and gives new
insights into the organization of complex systems.

In what follows, we delve into the theoretical properties of Markov Averaging Operators, since all
three CGSOs C,,e, Cpg and Cy.,,qs are instances of Markov Averaging Operators.

Proposition 3.1. The following properties of operator Mg hold: (i) Mg is self-adjoint; (ii) M¢ is
diagonalizable in an orthonormal basis, its eigenvalues are real numbers, and all eigenvalues have

absolute values at most v = min;cy (;—)

The proof of Proposition [3.1] and all subsequent theoretical results in this section can be found in
Appendix [l Hence, we have shown in Proposition [3.1| that all CGSOs have a real set of eigenvalues,
which is of real use in practice.

In the now following Proposition[3.2] we provide the mean and standard deviation of the spectrum of
Mg, i.e., the set of Mg’s eigenvalues.

Proposition 3.2. The following properties hold for the spectrum of M¢.

(1) Ina graph G = (V, £) with multiple connected components C C V, where each connected
component C induces a subgraph of G denoted by G¢, a complete set of eigenvectors of
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Mg can be constructed from the eigenvectors of the different M¢,, where eigenvectors
of M, are extended to have dimension N via the addition of zero entries in all entries
corresponding to nodes not in the currently considered component C.

(2) The mean u(Mg) and standard deviation c(M¢) of Mg ’s spectrum have the following
analytic form
1% (MG) =0,

o(Mg) = [(% > oGj)ee i) - “(MG)Q}

We define the normalized spectral gap \1(G) as the smallest non-zero eigenvalue of I — M.
In Proposition we link A1 (G) to the expansion properties of the graph. In the literature, we
characterize graph expansion via the expansion or Cheeger constant (Chungl [1997). In our work, we
generalize this definition to any centrality metric.

Definition 3.3. For a graph G = (V, &) we define the centrality-based Cheeger constant h,(G)
as h,(G) = min {% |UCV,|U|, < %\V|U} , where |0U| equals the number of vertices that

are connected to a vertex in U but are notin U, and | - [, : U C V + ., ¢;. When the chosen
centrality is the degree, h, (G) corresponds to the classical Cheeger constant.

1/2

Definition [3.3]allows us to establish a link between the spectrum of our considered Markov operators,
i.e., CGSOs, and the centrality-based Cheeger constant in Proposition [3.4]

Proposition 3.4. Let G be a connected, non-empty, finite graph without isolated vertices. We have,
2
A(G) < (QNZ—J:) hy(G), where we denote v_ = min;ey ¢; and v = max;ey ¢;.

3.2 CGNN: CENTRALITY GRAPH NEURAL NETWORK

CGSOs, as defined above, normalize the adjacency matrix based on the centrality of the nodes,
thereby providing a refined representation of graph connectivity. Here, we leverage CGSOs to
design flexible message passing operators in GNNs. Incorporating CGSOs within GNNs aims to
harness structural information, enhancing the model’s ability to discern subtle topological patterns
for prediction tasks. To achieve this, we integrate these operators, without loss of generality, in
Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017) and Graph Attention Networks v2
(GATv2)(Brody et al., 2022)). We replace the initial shift operator ®(A) in , with the proposed
CGSOs ®(A, C), incorporating different types centrality operators C defined in Section

It has been shown that the maximum PageRank score converges to zero when the total number of
nodes is very high (Cai et al.,[2023), which is the case in many real-world dense graph data (Leskovec
et al.,[2010; |ILeskovec & Mcauley, |2012). Also, the number of walks is high when the expansion of
the graph is high. Thus, training a GNN with the proposed CGSOs can lead to numerical instabilities
such as vanishing and exploding gradients. To avoid such issues, we can control the range of the
eigenvalues of CGSOs. We particularly consider a learnable parameterized CGSO framework which
is a generalization of the work of |[Dasoulas et al.| (2021). This has the further advantage that the
CGSOs are fit to the given datasets and learning tasks, which leads to more accurate and higher
performing graph representation. The exact formula of the new parametrized CGSO is

B(A,C) = mC* + myC?A,C% + msly, 3)

where A, = A + aly, and (m1, ma, m3, €1, €2, €3, a) are scalar parameters that are learnable via
backpropagation. Here m; controls the additive centrality normalization of the adjacency matrix. The
parameter e; controls whether the additive centrality normalization is performed with an emphasis
on large centrality values (for large positive values of e;) or with an emphasis on small centrality
values (for large negative values of e;). Similarly, we have es and e3 controlling the emphasis
on large or small centralities, as well as whether the multiplicative centrality normalization of the
adjacency matrix is performed symmetrically or predominantly as a column or row normalization.
The parameter my controls the magnitude and sign of the adjacency matrix term; in particular,
a negative my corresponds to a more Laplacian-like CGSO, while a positive mo gives rise to a
more adjacency-like CGSO. Finally, a determines the weight of the self-loops that are added to the
adjacency matrix, and mg controls a further diagonal regularization term of the CGSO. More details
on the experimental setup are provided in Section 3
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In our experiments, we notice the best centrality to vary across datasets, although the walk-based
centrality CGSO appears to be frequently outperformed by the k-core and PageRank CGSO. More
particularly, in some cases e.g. PubMed, it is desirable to use local centrality metrics such as
the degree, while for other datasets e.g., Cornell, it’s preferable to normalize the adjacency with
global centrality metrics. In light of this uncertainty, we can opt for a dynamic, trainable choice
of centrality by including both local and global centrality-based CGSO in our CGNN; this can be
done by summing the CGSO of the degree matrix with the CGSO of a global centrality metric, e.g.,
Pd = P(A,D) + ®(A, C.or)- The parameters mq, ms, m3 controlling the magnitude of both the
local and global CGSOs are then able to learn the relative importance of the local and the global
CGSO. In Section 5] we provide experimental results for GNNs with such combined CGSOs.

Time Complexity. We recall that the main complexity of our CGCN model is concentrated around
the pre-computation of each centrality score. Computing the degree of all nodes in a graph has a time
complexity of O(|V| + |€]), where |V] is the number of nodes and |£] is the number of edges in the
graph (Cormen et al.,|[2022). For the PageRank algorithm, each iteration requires one vector-matrix
multiplication, which on average requires O(|V|?) time complexity. To compute the core numbers of
nodes, we iteratively remove nodes with a degree less than a specified value until all remaining nodes
have a degree greater than or equal to that value. This operation can be done with a complexity of
O(|V| + |&]). Finally, counting the number of walks of length ¢ for all the nodes can be done via
matrix multiplication A“1. Since our CGSOs preserve the sparsity pattern of the original adjacency
matrix, the complexity of the GNNs in which the CGSOs are inserted is unaltered.

4 A SPECTRAL CLUSTERING PERSPECTIVE OF CGSOs

In this section, we analyze CGSOs through the lens of spectral clustering (Von Luxburg, |2007; Ng
et al., 2001). Spectral clustering is a powerful technique that relies on the spectrum of GSOs to reveal
underlying structures within graphs, providing insights into their connectivity properties.

4.1 SPECTRAL CLUSTERING ON STOCHASTIC BLOCK BARABASI-ALBERT MODELS

Here, we investigate the behavior of CGSOs in the spectral clustering task on synthetic data. Specifi-
cally, we propose a new graph generator that is a trivial combination of the well-known Stochastic
Block Models (SBM) (Holland et al., |1983) and Barabasi—Albert (BA) models (Albert & Barabasi,
2002), we call this generator the Stochastic Block Barabdsi—Albert Models (SBBAM). We will now
discuss the properties and parameterizations of these two graph generators in turn to then discuss
their combination in the SBBAMs.

SBMs. Firstly, in SBMs the node set of the graph is partitioned into a set of K disjoint blocks
B1, ..., Bk, where both the number and size of these blocks is a parameter of the model. In SBMs
edges are drawn uniformly at random with probability p;; for i, j € {1,..., K'} between nodes in
blocks B; and B;. Note that this parameterization is often simplified by the following constraints
pij = qif i = jand p;; = pif i # j. SBMs produce graphs which exhibit cluster structure if
p # ¢, which makes them a common benchmark for clustering algorithms and subject to extensive
theoretical study (Abbel 2018). Note that SBMs can produce both homophilic graphs if p < ¢ and
heterophilic graphs if ¢ > p (Lutzeyer}, 2020a, Figure 1.2).

BA. The second ingredient of our SBBAMs are the Barabasi—Albert (BA) models (Albert & Barabasi,
2002). This model generates random scale-free networks using a preferential attachment mechanism,
which is why these models are also sometimes referred to as preferential attachment (PA) models. In
this PA mechanism we start out with a seed graph and then add nodes to it one-by-one at successive
time steps. For each added node r edges are sampled between the added node and nodes existing in
the graph, where the probability of connecting to existing nodes is proportional to their degree in
the graph. Hence, high degree nodes are more likely to have their degree rise even further than low
degree nodes in future time steps of the generation process (an effect, that is some time referred to
as ‘the rich get richer’). BA models characterize several real-world networks (Barabasi & Albert,
1999). A key characteristic of a BA model is their degree distribution. In Lemma[4.1] we prove that
the density and connectivity of a BA model strongly depend on and positively correlate with the
hyperparameter 7. Thus, we can generate structurally different BA models by choosing different
values of r. Lemmad.1]is proved in Appendix [J}
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Figure 1: Result for the spectral clustering task on the Cora graph (Sen et al.| 2008)) with core numbers
considered as clusters. We report the values of the Adjusted Mutual Information (AMI) in percentage
for different combinations of the exponents (e, e3) in C*2 AC®3.

Lemma 4.1. Let GBA be a Barabdsi-Albert graph of N nodes generated with the hyperparameters
No < N the initial number of nodes, 1o < N¢ the initial number of random edges and r the
number of added edges at each time step. Then, the average degree in the network is, d(G**) =
2r + 2% — 2No 57, and thus, as the number of nodes grows, i.e., N — 0o, then d(GPY) ~ 2r.

SBBAMs. In our SBBAMs we combine SBMs and BA models, by sampling K BA graphs each of
size |Bi], ..., |Bk| and with parameters rq, . .., rx. We then randomly draw edges between nodes
in different BA graphs, B; and B;, uniformly at random with probability p,; fori,j € {1,..., K}.
In other words, SBBAMs trivally extend SBMs to graph in which each block is generated using a BA
model. This allows us to generate graphs with cluster structure, in which the different clusters exhibit
potentially interesting centrality distributions, which will serve as an informative testbed to explore
the clustering obtained from the eigenvectors of our CGSOs.

Experimental Setting. To better understand the information contained in the spectral decomposition
of our CGSOs we will now generate graphs from our SBBAMs and use the spectral clustering
algorithm defined on the basis of our CGSOs to attempt to cluster our generated graphs. In our
experimental setting, each block or BA graph has 100 nodes and an individual parameter r, specifically,
ry = 5,79 = 10 and r3 = 15. In addition we set p;; = 0.1 for all ¢ # j with ¢,j € {1,2,3}.
Figure 3] in Appendix [E] gives an example of an adjacency matrix sampled from this model. We
observe variations in edge density across different blocks and in particular observe homophilic cluster
structure in the third block, while the first block appears to be predominantly heterophilic, a rather
challenging and different structure.

Figure ] illustrates the /-core distribution of the ~ Taple 1: The result of the spectral clustering task
three individual BA blocks aqd the c'omb.m.ed on the synthetic graph data. We present the mean
SBBAM. Notably, the k-core distribution distin-  4nd standard values of AMI and ARI in percentage.

guishes the three BA graphs, while the nodes in (1) Spectral clustering using the centrality based
the combined graph exhibit less discernibility  GSOQs, @) Other baselines.

by k-core. Method AMIin %  ARIin %
Following the graph generation, we perform Fast Greedy 17.27+4.28  19.98+5.03
spectral clustering (see Algorithm [I] in Ap- O Louvain 14.37+3.34  14.82+3.92
pendix [F) using our CGSOs to asses their ability Node2Vec 1.11+0.02 1.17+0.96

Walktrap 1.39+1.16 1.14+0.97

to recover the blocks in our generated SBBAM.
Specifically, we utilize the three eigenvectors CGSO w/D 23.26+3.36  22.95+3.86
of & = C°>AC® corresponding to the three @ CGSO W/ Ve 35.7814'1.({7 33.76+5.83
largest eigenvalues of different CGSOs defined gggg zj X"W””‘S ggzgigé gg?gi;i
in Section Working with this particular PR it i
parametrized form our CGSOs further allows us to study the effect of different centrality nor-
malizations with eq, e3 € [—1.5, 1.5]. We repeated each experiment 200 times, and then reported the
mean and standard deviation of Adjusted Mutual Information (AMI) and Adjusted Rand Index (ARI)
values. For consistency, we used the same 200 generated graphs for all the GSOs and the baselines.

In Figure([I] we report the AMI values using the four centralities. As noticed, while having competitive
results between the degree centrality, the PageRank score and the count of walks, we reach the highest
AMI values by using the k-core centrality metrics. Using the degree centrality, we reach the highest
AMI value when both exponent es and es are negative, while for the k-core and the number of walks,
we notice a different behavior as the AMI increase when both the exponents es and eg are positive.
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Thus, we conclude that nodes with higher k-core and count of walks are important for this setup, i.e.,
when the node labels are positively correlated with global centrality metrics such as the k-core. We
report the ARI values of the same experiment in Appendix

4.2 CENTRALITY RECOVERY IN SPECTRAL CLUSTERING

In this experiment, we aim to discern the CGSOs’ effectiveness in recovering clusters based on
centrality within a real-world graph. Using the Cora dataset, we chose core numbers to indicate
centrality-based clusters. We aim to assess the capacity of various CGSOs to effectively recover
clusters reflective of core numbers. This investigation aims to shed light on their potential utility in
capturing centralities and hierarchical structures within intricate graphs.

In this experiment, we consider only the largest connected component of the Cora graph. We use the
spectral clustering algorithm on the different CGSOs to recover K clusters, where K is the number
of possible core numbers in the graph. We repeat each experiment 10 times, and report the average
AMI and ARI values. We also compared our CGSOs with the popular Louvain community detection
method (Blondel et al., 2008)), the node2vec node embedding methods (Grover & Leskovec,|[2016)
combined with the k-means algorithm, the Walktrap algorithm (Pons & Latapy, [2005])), and the Fast
Greedy Algorithm which also optimizes modularity by greedily adding nodes to communities (Clauset
et al., | 2004). For the walk count node centrality matrix, we used ¢ = 2 in all our experiments. We
consider the CGSO ¢ = C°2 AC*®3, where we normalize the adjacency matrix with the topological
diagonal matrix C using different exponents (es, €3).

The results of the spectral clustering on this synthetic graph are presented in Table[l} As expected,
normalizing the adjacency matrix with k-core yields higher AMI and ARI values. This observation
indicates an improved discernment of each node’s membership in its respective cluster, achieved
through the incorporation of global centrality metrics. Our CGSO outperforms well-known commu-
nity detection techniques, such as the Louvain algorithm, which optimizes the modularity, measuring
the density of links inside communities compared to links between communities. However, in our
setting, some blocks have fewer inter-edges than intra-edges with other blocks, thus making it difficult
for the Louvain algorithm to cluster these nodes using the edge density. This experiment further
reinforces the intuition that if different clusters exhibit different centrality distributions then our
CGSOs are able to capture this difference better than other clustering alternatives which leads to
better clustering performance.

5 EXPERIMENTAL EVALUATION

We begin by discussing our experimental setup. Further details on the datasets and the baselines
we evaluate on and the training set-up can be found in Appendix[A]l We present the performance of
our CGCN and CGATVv2 in Table[2] The performance of CSGC, i.e. centrality based Simple Graph
Convolutional Networks (Wu et al.,2019), in Appendix[Cl We also incorporated our learnable CGSOs
into H2GCN (Zhu et al., 2020) resulting CH2GCN, that go beyond the message passing scheme and
which is designed for heterophilic graphs, we detailed the experiment and the results in Appendix
The results of CGCN, CGATv2, CSGC and the other baselines on additional datasets can be
found in Table [7)of Appendix [B] and Tables §]and 9] of Appendix[C] It has been observed that, across
numerous datasets, CGCN and CGATV2 outperform classical GSOs and vanilla GNNs. Moreover,
it is noteworthy that the optimal choice of centrality for CGCN varies depending on the specific
dataset. To better understand the choice of each centrality, we displayed the learned weights of CGCN
together with some statistics of each dataset in Tables [I3] [[4] [I5]and [I6] Several trends are clear:
i) For all the centrality metrics, the exponent e; is usually positive for most of the datasets, which
indicates that an additive normalization of the GSO with our centralities in-style of the unnormalized
Laplacian often leads to optimal graph representation. However, the exponent values es and eg
have different behaviors across centrality metrics, e.g., when using the PageRank centrality, the
exponents e, and e3 are almost null for the graph datasets that are strongly homophilous indicating
that an unnormalized sum over neighborhoods is optimal. ii) When using the PageRank and Count
of walks centrality metrics, we notice that the parameter a is always negative for non-homophilous
datasets. This is a very interesting finding indicating that a representation with negatively weighted
self-loops is advantageous for non-homophilous datasets (an observation that we have not previously
seen in the literature). iii) For the datasets where the k-core centrality performs well (i.e. Cornell,
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Table 2: Classification accuracy (* standard deviation) of the models on different benchmark node
classification datasets. The higher the accuracy (in %) the better the model. () GCN-based models
) Other vanilla GNN baselines ) CGCN @) CGATV2. Highlighted are the first, second best results.
OOM means Out of memory.

Model ‘ CiteSeer PubMed arxiv-year chamelon Cornell deezer-europe  squirrel ‘Wisconsin
GCNw/ A 64.95+058  77.12x061  38.55+0.71  61.03+1.31  57.03+3.91  57.65+0.84 22.38+6.06  54.51+1.47
GCN w/ L 28.11+0.54 43.65+0.71 32.81+0.29 56.97+0.75  54.32+0.81 53.92+0.59 36.20+0.84 60.00+2.00
GCN w/ Q 63.28-£0.80 76.57+0.59  33.76+2.36 53.8842.35  35.41+2.55 56.79+1.79 27.69+2.21 53.33+0.78
@O GCN W/ Lypy 30.1840.74  59.68+1.03  36.36+0.24  48.77+0.54  61.62+1.08  54.04%0.44 34.27+0.35 65.10+0.78
GCN w/ Lgym 29.90+0.66 57.68+0.45 36.49+0.14 50.81+0.24 60.27+1.24 53.30+0.45 35.96+0.28 66.08+2.16
GCN w/ A 68.74+0.82  T8.45+022  42.23+0.25  58.444026  56.22+1.62  60.68+0.45 37.73+0.33  57.45+0.90
GCN w/H 66.15+0.55  76.45x0.48  41.27+0.21  56.51+0.47  54.86x1.24  59.45+0.50 38.23+0.47  54.31+0.90
GIN 66.62:+£0.44 78.22x0.52 38.27+3.43  61.60+1.05 45.95+3.42 OOM 25.78+5.12 58.82+1.75
GAT 59.84+3.14  T1.55+4.69  41.26+030  63.60+£1.70  49.46+8.11  57.67+0.74 40.37+2.89  55.88+2.81
@ GATv2 63.01+2.07  73.96+2.22  41.16+0.25  64.14+153  43.78+480  56.77+1.19 42.63+2.61 53.53+4.12
PNA 48.89+11.15  70.83+6.51 32.45+2.34  22.89+1.00  40.54x000 OOM OOM 53.14+2.55
CGCN w/ D 68.35+0.45  78.70+1.10 45.39+045 64174810  72.43+13.09 58.04+1.06 42.30+1.34  76.86+7.70
CGCN W/ Ve 68.40+0.75 77.91+0.41 47.27+0.31  63.68+5.00 73.78+12.16  60.90+2.28 40.59+2.21 74.90+6.52
& CGCN W/ V . yvaiks 67.31+0.75  77.57x0.37  39.35+0.49  66.21+249 72.70x3.24  59.15+1.24 36.03+5.81 74.90+4.19
CGCN w/ Vpg 67.11+0.56 78.17T+4.27 47.1440.31 60.94+7.00 76.22+16.3 63.41+0.77 32.17+3.94 80.78+11.7
CGATvV2 w/ D 68.60+0.60  77.46x0.51  45.09+0.17 58224274  76.49+a37 OOM 35.30+2.32  85.69+3.17
CGATV2 W/ Ve 68.83+0.66 77.99+0.43 44.38+0.25 55.83+2.28 75.95+3.72 OOM 34.17+1.45 85.10+2.80
® CGATV2 W/ V pyyaiis | 68.1140.91 75.43+0.89 46.70+0.21 55.59+2.57 74.32+5.70 OOM 34.25+2.15 83.53+2.66
CGATvV2 w/ Vpg 68.97+0.65 78.46+0.23  41.64+0.18 58.82+1.68 74.05+4.55 OOM 38.41+1.66 80.78+2.45

Table 3: Classification accuracy (= standard deviation) of the models on different benchmark node
classification datasets. The higher the accuracy (in %) the better the model.

Model CiteSeer PubMed arxiv-year chamelon Cornell deezer-europe  squirrel Wisconsin
CGCN w/ D 68.35+0.45 78.70+1.10  45.39+045  64.17+s.10  72.43+13.09 58.04+1.06 42.30+1.31  76.86+7.70
CGCN w/ Ceppe 68.40+0.75  77.91+0.41  47.27+031  63.68+£5.00  73.78+12.16 60.90+2.28 40.59+2.21  74.90+6.52
CGCN W/ Cyyyaiis 67.31+0.75  77.57+0.37 39.35+0.49 66.21+2.49 72.70+3.24 59.15+1.24 36.03+5.81 74.90+4.19
CGCN w/ Cpr 67.11+0.56 78.17+a.27  47.14x031  60.94+7.00  76.22+163 63.41+0.77 32174394 80.78+11.7
CGCNw/ D — C,ppe 69.0+0.64 T78.77+0.34 48.37+0.15 65.0444.37 73.2446.56 59.8140.51 40.74+a.77 74.51+3.62
CGCN W/ D — Cyppairs | 67.99+0.55  78.53+0.39 49.12+0.41  58.09+3.78 74.32+2.77 59.30+0.70 34.49+2.66 81.37+3.64
CGCN w/ D — Cpg 68.45+0.6 77.7540.55 39.63+1.27 64.3243.13 72.97+4.98 59.2840.75 42.80+6.58 74.31+3.97

arxiv-year, Penn94, and deezer-europe), we notice that the parameter mg is very close to zero, i.e,
the regularization by adding an identity matrix to the CGSO turns out to be best-ignored in these
settings. These findings suggest that the optimal GSO components vary depending on the graph type,
highlighting the need for adaptable CGSO approaches rather than relying solely on classical GSOs.

General intuition on the choice of centrality that we can provide relates to the fact that the node
degree is a local centrality metric, while the remaining three centralities we consider correspond
to global metrics. Therefore, it is apparent that if the learning task only requires local information
a degree-based normalization of the GSO is likely beneficial, while global centrality metrics are
appropriate if more global information is required. Beyond this statement it seems to be difficult to
provide general guidance on the choice of the global centrality metrics. Therefore, including both
local and global centrality-based CGSO in the CGNN might be optimal to dynamically distinguish
the best type of centrality. We present the results of this experiment in Tables [3|and[I0] By combining
local and global centralities in the CGNNs, we usually increase their performance.

6 CONCLUSION

In this work, we have proposed CGSOs, a novel class of Graph Shift Operators (GSOs) that can
leverage different centrality metrics, such as node degree, PageRank score, core number, and the
count of walks of a fixed length. Furthermore, we have modified the message-passing steps of Graph
Neural Networks (GNNs) to integrate these CGSOs, giving rise to a novel model class the CGNNss.
Experimental results comparing our CGNN models to existing vanilla GNNs show the superior
performance of CGNN on many real-world datasets. These experiments furthermore allowed us to
analyse the optimal parameters of our CGSO, which led to new and interesting insight such as for
example an apparent benefit of negatively weighted self-loops for non-homophilous graphs. To further
understand the cases where each centrality is beneficial, we conducted additional experiments focused
on spectral clustering using two distinct types of synthetic graphs. Through these experiments, we
identified instances where CGSOs outperformed conventional GSOs.
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A DATASETS AND IMPLEMENTATION DETAILS

In this section, we present the benchmark datasets and the baselines used for our experiments, and
the process used for the training.

A.1 BASELINES

We experiment with two particular instances of our proposed CGNN model, using a GCN and GATv2
as the backbone models, we refer to this instance as CGCN and CGATV2, respectively. We compared
the proposed CGCN to GCN with classical GSOs: the adjacency matrix A, Unormalised Laplacian
L =D — A, Singless Laplacian Q = D + A (Cvetkovi¢ & Simi¢, |2010), Random-walk Normalised
Laplacian Ly, = I — D7'A, Symmetric Normalised Laplacian Lgy,, = I — D™Y/2AD~1/2,
Normalised Adjacency A = D~'/2AD~1/2 (Kipf & Welling, 2017) and Mean Aggregation H =
D 1A (Xu et al},[2019). We also compare to other standard GNN baselines: Graph Attention
Network (GAT) (Velickovic¢ et al.,|2018])), Graph Attention Network v2 (GATV2) (Brody et al.| [2022),
Graph Isomorphism Network (GIN) (Xu et al., [2019)), and Principal Neighbourhood Aggregation
(PNA) (Corso et al.| [2020).

A.2 STATISTICS OF THE NODE CLASSIFICATION DATASETS

We use ten widely used datasets in the GNN literature. In particular, we run experiments on the
node classification task using the citation networks Cora, CiteSeer, and PubMed (Sen et al., |2008)),
the co-authorship networks CS and Physiscs (Shchur et al., 2018), the citation network between
Computer Science arXiv papers OGBN-Arxiv (Hu et al., 2020), the Amazon Computers and Amazon
Photo networks (Shchur et al., 2018)), the non-homophilous datasets Penn94 (Traud et al., [2012),
genius (Lim & Benson, [2021)), deezer-europe (Rozemberczki & Sarkar, [2020) and arxiv-year (Hu
et al.,|2020), and the disassortative datasets Chameleon, Squirrel (Rozemberczki et al., 2021}, and
Cornell, Texas, Wisconsin from the WebKB dataset (Lim et al., [2021)).

Characteristics and information about the datasets utilized in the node classification part of the study
are presented in Table

Table 4: Statistics of the node classification datasets used in our experiments.

Dataset #Features  #Nodes #Edges #Classes Edge Homophily
Cora 1,433 2,708 5,208 7 0.809
CiteSeer 3,703 3,327 4,552 6 0.735
PubMed 500 19,717 44,338 3 0.802
CS 6,805 18,333 81,894 15 0.808
arxiv-year 128 169,343 1,157,799 5 0.218
chameleon 2,325 2,277 62,792 5 0.231
Cornell 1,703 183 557 5 0.132
deezer-europe 31,241 28,281 185,504 2 0.525
squirrel 2,089 5,201 396,846 5 0.222
Wisconsin 1,703 251 916 5 0.206
Texas 1,703 183 574 5 0.111
Photo 745 7,650 238,162 8 0.827
ogbn-arxiv 128 169,343 2,315,598 40 0.654
Computers 767 13752 491,722 10 0.777
Physics 8,415 34,493 495,924 5 0.931
Penn94 4,814 41,554 2,724,458 3 0.470

A.3 IMPLEMENTATION DETAILS

We train all the models using the Adam optimizer (Kingma & Bal 2014). To account for the impact
of random initialization, each experiment was repeated 10 times, and the mean and standard deviation
of the results were reported. The experiments have been run on both a NVIDIA A100 GPU and a
RTX A6000 GPU.
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Training of our CGNN. We train our model using the Adam optimizer (Kingma & Bal 2014),
with a weight decay on the parameters of 5 x 10~%, an initial learning rate of 0.005 for the expo-
nential parameters and an initial learning rate of 0.01 for all other model parameters. We repeated
the training 10 times to test the stability of the model. We tested 7 initialization of the weights
(m1,ma, m3, €1, €2, €3, a). These initializations are reported in Table [5|in Appendix [A] and corre-
spond to classical GSOs when the chosen centrality is the degree. For the Cora, CiteSeer, and Pubmed
datasets, we used the provided train/validation/test splits. For the remaining datasets, we followed the
framework of |Lim et al.|(2021)); Rozemberczki et al. (2021]).

A.4 WEIGHTS INITIALIZATION

In this part, we present the different initializations of CGSO. When the chosen centrality is the degree,
i.e. V = D, the initializations corresponds to popular classical GSO (Dasoulas et al., 2021)).

Table 5: Differenet initialization of the weights (m1, ma, ms, e1, €2, €3, a).

Initialization of (mq, mo, ms, e1,e2,e3,a) Corresponding GSO Description when C = D
(0,1,0,0,0,0,0) AC)=A Adjacency matrix

(1, —1, 07 1,0,0,0) L(C)=C-A Unnormalised Laplacian matrix
(1,1,0,1,0,0,0) Q(C)=C+A Signless Laplacian matrix
(0,-1,1,0, 71, 0,0) Lw(C)=1-C!A Random-walk Normalised Laplacian
(0,-1,1,0,-1/2,-1/2,0) Lsym(C) =1 - C~Y/2AV~'/2  Symmetric Normalised Laplacian
(0,1,0,0,-1/2,-1/2,1) A(C)=C"12A,C71/2 Normalised Adjacency matrix

(0, 1,0 0,-1,0,0) H(C)=C A Mean Aggregation Operator

A.5 HYPERPARAMETER CONFIGURATIONS

For a more balanced comparison, however, we use the same training procedure for all the models.
The hyperparameters in each dataset where performed using a Grid search on the classical GCN (i.e.
with the GSO : Normalised adjacency) over the following search space:

* Hidden size : [16, 32,64, 128, 256, 512],
* Learning rate : [0.1,0.01,0.001],
* Dropout probability: [0.2,0.3,0.4,0.5,0.6,0.7,0.8].

The number of layers was fixed to 2. The optimal hyperparameters can be found in Table [6]

B ADDITIONAL RESULTS FOR THE NODE CLASSIFICATION TASK

To further evaluate our CGCN and CGATv2, we compute its performance on additional datasets. The
results of this study are presented in Table

C SIMPLE GRAPH CONVOLUTIONAL NETWORKS

In Tables[§]and[0] we present the results of our centrality-aware Simple Graph Convolutional Networks
CGSC of 2 layers. As noticed in most cases, by incorporating our CGSO, we outperform the classical
SGC. To also understand the effect of the centrality on the oversmoothing effect, we analyzed the
variation of Dirichlet Energy (Zhao et al [2024) of CGSC across different numbers of layers. As
noticed, while the centrality has a lower effect on the oversmoothing in the homophilous dataset Cora,
we notice a larger impact on the heterophilious dataset Chameleon.
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Table 6: Hyperparameters used in our experiments.

Dataset Hidden Size Learning Rate Dropout Probability
Cora 64 0.01 0.8
CiteSeer 64 0.01 0.4
PubMed 64 0.01 0.2
CS 512 0.01 0.4
Arxiv-year 512 0.01 0.2
chameleon 512 0.01 0.2
cornell 512 0.01 0.2
deezer-europe 512 0.01 0.2
squirrel 512 0.01 0.2
Wisconsin 512 0.01 0.2
Texas 512 0.01 0.2
Photo 512 0.01 0.6
OGBN-Arxiv 512 0.01 0.5
Computers 512 0.01 0.2
Physics 512 0.01 0.4
Penn94 64 0.01 0.2

Table 7: Classification accuracy (% standard deviation) of the models on different benchmark node
classification datasets. The higher the accuracy (in %) the better the model. () GCN Based models
@ Other Vanilla GNN baselines @) CGCN @) CGATv2. Highlighted are the first, second best results.
OOM means Out of memory.

Model Cora Texas Photo ogbn-ariv CS Computers  Physics Penn94
GCNw/ A 78.61+0.51 63.51+2.18  82.31+2.61 13.23+6.44  87.70+1.25  69.32+3.64  88.92+1.93  52.35:+0.36
GCN w/ L 31.57+0.41 84.32+265 27.42+6.23 10.91+1.49  23.75+3.22 26.27+3.89  35.31+3.71 65.31+0.59
GCN w/ Q 77.32+050  60.54+1.32  77.06+6.73 10.50+1.97  89.42+1.31  47.72+18.37  90.69+2.13  53.46+2.16
@D | GCN W/ Lyw 26.59+1.11 78.38+2.09 24.60+4.21 8.07+0.07 26.34+4.09 13.76+3.96 28.19+3.75 69.82+0.44
GCN w/ Lgym 26.79+0.50 71.35+1.32 22.82+2.67 20.18+0.24 24.39+1.96 16.06+5.19 30.94+3.11 70.57+0.30
GCN w/ A 80.84+0.40 60.81+1.81 78.94+1.65  65.80+0.14  91.52+0.75  68.91+3.00  93.72+0.80 74.60+0.42
GCNw/H 80.15+0.37  59.46+0.00  73.95+4.75  63.34+0.15  90.98+1.84  62.01+4.36  92.16+1.12  71.78+0.47
GIN 79.06+0.47  57.03+1.89  83.00+2.52  9.30+6.42 89.53+1.20  55.89413.45 89.15+244  OOM
GAT T7.73+1.83  52.16+6.74 71.56+3.48  67.36+0.13  67.67+3.96  59.73+£3.50  80.91+4.48  73.85+1.38
@ | GATv2 74.53+2.48  48.11+3.78  73.49+249  68.14x0.07  70.13+4.92  58.18+4.76  83.28+3.68  75.54+2.54
PNA 56.67+10.53  63.51+4.05 16.75+559  OOM OOM 13.62+639  OOM OOM
CGCN w/ D 79.45+0.58  81.89+9.38  88.78+1.74  69.09+0.21  91.28+129  79.26+1.87 92.51+1.16  73.06+0.34
CGCN w/ Cpre 79.80+0.43 77.84+5.51 88.53+1.40 65.54+0.57 91.37+1.18 77.35+2.67 91.98+1.49 78.11+3.74
©) CGCN w/ Cypyaiks 79.52+0.35 78.11+5.82 83.72+2.03 22.54+8.22 89.87+1.20 68.56+3.39 89.84+2.74 68.44+0.37
CGCN w/ Cpg 79.51+15.01  82.70+4.95 81.28+6.08 68.56+0.18 88.76+30.68 65.54+6.43 89.64+10.3 72.59+0.84
CGATv2 w/ D 79.07+0.64  82.70+530  87.97+177  70.09+0.10  91.48+1.05  78.62+235  91.32+1.18  72.81+0.36
CGATV2 w/ Cppe 79.03+0.96 83.78+6.62 89.72+1.54  69.93+0.13 91.91+1.06 77.31+3.33 91.15+1.07 72.86+0.41
C) CGATV2 W/ Cpypairs | 78.58+0.58 79.73+4.72 88.11+2.02 70.51+0.24 90.73+1.46 79.09+1.66 89.98+1.37 72.79+0.43
CGATv2 w/ Cpg 78.60-+0.38 83.78+4.98 88.38+2.09 69.26+0.12 91.77+1.00 74.95+3.05 92.73+1.44 75.16+0.69

D COMBINING LOCAL AND GLOBAL CENTRALITIES

E THE GRAPH STRUCTURE OF THE STOCHASTIC BLOCK BARABASI-ALBERT
MODELS

In Figure 3] we give an example of an adjacency matrix sampled from SBBAM model, presented
previously in Section[d.1} Yellow points indicate edges, while purple points represent non-edges.
Notably, there are variations in edge density across different blocks: while the first block appears to
be predominantly heterophilic, the third block inherits a homophilic cluster structure.

F SPECTRAL CLUSTERING ALGORITHM

In Algorithm [T} we outline the steps of the Spectral Clustering Algorithm using CGSOs. This
algorithm is applied on SBBAMs for cluster recovery and on the Cora dataset for centrality recovery.
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Table 8: Classification accuracy (+ standard deviation) of the models on different benchmark node
classification datasets. The higher the accuracy (in %) the better the model. (I) CSGC with nodes
centrality, @) SGC. Highlighted are the best results.

Model CiteSeer PubMed arxiv-year chamelon Cornell deezer-europe  squirrel Wisconsin
CSGCw/D 67.70+0.17  77.37+025  35.01x0.16  59.10+1.66  72.70+4.26  58.22+0.47 40.12+1.69  75.88+4.96
CSGC w/ C,ppe 66.85+0.15 78.19+0.12 37.71+0.17 63.11+a56 72.16+5.55 61.29+0.50 38.66+2.27 75.10+4.12
o CSGC W/ Cpyairs | 67.09+0.05 77.50x0.18  36.67+022 45261251  74.32+6.07  59.69+0.50 27854138  81.76+3.73
CSGC w/ Cpg 64.91+0.47 76.47+0.37 23.87+0.51 55.18+3.36 69.4645.14 58.94+0.48 26.73+2.25 75.29+4.31
@ | sGC | 64.96+0.10  75.72x012  26.61+024  38.4d4aar 45414577 62.66+0.48 19.88+0.79  53.53+s.09

Table 9: Classification accuracy (=4 standard deviation) of the models on different benchmark node
classification datasets. The higher the accuracy (in %) the better the model. (I) CSGC with nodes
centrality, @) SGC. Highlighted are the best results.

Model Cora Texas Photo ogbn-arxiv.  CS Computers  Physics Penn%4
CSGCw/D 80.10+0.11 76.76+324  89.38+1.81 67.94+006 92.29+1.04 79.04+1.94 92.32:12 78.84+415
1) CSGC W/ C,ppe 78.80+0.17 77.30+3.86 88.58+1.68 62.54+0.16 91.82+1.10 76.46+2.29 91.71+1.63  76.25+1.21
CSGC W/ Cpypaiks | 77322020  80.27+541 88.78+269  66.41+0.05  91.96+084  76.17+4.92  91.71+1.58 73.20+0.36
CSGC w/ Cpg 76.92+0.30  77.30+4.86  84.33+3.06  44.82+1.16  90.24x0.86  61.51+2.71 91.57+1.70  77.24+0.67
@ | SGC | 78.79+0.13  58.654420  24.0+1182 60.48+0.14  70.78+5.47  11.34+11.67  91.69+1.48 66.63+0.62

G ADDITIONAL RESULTS FOR THE SPECTRAL CLUSTERING TASK

In this section, we report the ARI value of the spectral clustering task described in Section 4]

Figure [3] illustrates the k-core distribution of the three individual BA blocks and the combined
SBBAM. Notably, the k-core distribution distinguishes the three BA graphs, while the nodes in the
combined graph exhibit less discernibility by k-core.

H CGNN wWITH HETEROPHILY

In this section, we incorporate our learnable CGSOs into H2GCN |Zhu et al.|(2020), designed for het-
erophilic graphs. We compared the results of CH2GCN and H2GCN on datasets with low homophily.
We report the results of this experiment in Table As noticed, our CH2GCN outperforms H2GCN.

I PROOFS OF PROPOSITIONS
In this section, we details the proofs of the propositions[3.1] B.2]and [3.4]

1.1 PROOF OF PROPOSITION[3.1]

Proof of Proposition[3.1] We first prove that the operator M is self-adjoint.
For @1, o2 € L?(G), we have:

< Mgpr, 92 >c = »_ ¢; (Mapr) (i)2(i)

i€V
= Zci Cl Z <P1(j)) P2(i)
i€y ' JENG
=Y @6 | > m(j))
% JEN;
=Y > aip(i)ei(d)
i€V JEN;
= Z ai,j92(1)e1(7)-
ijEV
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Figure 2: Dirichlet Energy variation with layers in (a) Cora and (b) Chamelon.

Table 10: Classification accuracy (£ standard deviation) of the models on different benchmark node
classification datasets. The higher the accuracy (in %) the better the model.

Model Cora Texas Photo ogbn-arxiv. ~ CS Computers ~ Physics Penn9%4

CGCNw/D 79.45+0.58 81.89+9.38  88.78+1.74  69.09+0.21 91.28+1.29 79.26+1.87 92.51+1.16 73.06+0.34
CGCN w/ Cope 79.80+0.43 T7.84+5.51 88.53+1.40 65.5440.57 91.37+1.18 77.35+2.67 91.98+1.49 78.11+3.74
CGCN W/ Cyypans 79.52+0.35 78.11+5.82 83.72+2.03 22.54+8.22 89.87+1.20 68.56+3.39 89.84+2.74 68.44+0.37
CGCN w/ Cpg 79.51+15.01 82.70+4.95 81.28+6.08 68.56+0.18 88.76430.68 65.54+6.43 89.64+10.3 72.59+0.84

CGCNw/D & Ceope 79.88+0.38 78.92+4.32 89.06+1.28 67.67+0.26 91.63+0.95 78.41+1.94 91.28+3.17 80.28+2.93
CGCNw/ D & Cpppans | 79.38+0.72 81.89+4.69  86.78+2.75 69.57+0.24 91.78+1.04 78.39+2.36 91.2+1.56 72.540.48
CGCN w/D & Cpg 79.84+0.4 78114255 82.76+2.06 21.2849.89 90.04+0.57 65.66+4.96 90.2441.86 71.03+5.83

Similarly, we also have that,
< @1, Maps >a = »_ cip1(i)(Mapa) (i)

i€V
N .
= Zcﬁpl(l) P Z ©2(7)
icy b jEN;
=Y i) | Y i)
i€V JEN;
= Y ai;pa(0)e1(4)
i,jEV
= > 40201 (i)
i,jEV
Thus,
<M1, 02 >6=2_; jep @i P2(8)p1(d)
v , €L2 G , ’ B,JEV T T 2" ' 4
oLz (@) { <1, Maps >a=2_; icy aji92(5) 1 (7). )

Since a; ; = a; ;, we conclude that M is self-adjoint, i.e.
< Mgp1,p2 >a=< v1,Mgp2 >¢q .

M is self-adjoint, the space L?(G) is finite-dimensional, thus is diagonalizable in an orthonormal
basis, and its eigenvalues are real.
We define the following norm,

M| = sup Mo 20,

©#0 ol

We will now prove that all eigenvalues have absolute values at most v = min;¢y ¢;/d;. For that, we
will first compute the two inner-products < (I — Mg) ¢, p >¢ and < (I + Mg) ¢, ¢ >¢. For any
¢ € L?(@G), using (4)), we have that:
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Figure 3: The adjacency matrix of the synthetic graph generated from an SBBAM with 3 blocks.

Algorithm 1: Spectral Clustering using the Centrality GSOs

Inputs: Graph G, Centrality GSO ®, Number of clusters to retrieve C.
1. Compute the eigenvalues {\}i—; and eigenvectors {u}j-; of ®;

2. Consider only the eigenvectors U € R™*© corresponding to the C' largest eigenvalues;

3. Cluster rows of U, corresponding to nodes in the graph, using the K-Means algorithm to retrieve a
node partition P with C clusters;

P = K-Means(U, C)
return P;

< 907@ >G: ZiEV CZ|<IO(Z)‘25 N .
< Mgy, ¢ >a= >, jey ali, j)@(i)e(j)

Let’s first take the simple case, where v = min;ey ( j) < 1, then,

2< 00> =2 cilo(i)

3%
> 2y dilo(i)]?
3%
>2% dile(i)
3%
>2) D ali.g) ] o)
i€V \jeV
>2 Z a(i, j)|e(4)
4,jEV
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Figure 4: Result for the spectral clustering task on Cora graph with core numbers considered as
clusters. We report the values of the Adjusted Rand Information (ARI) in % different combination of
the exponents (eg, e3) in C2AC*®3.

(a) Seperate BA Graphs (b) Combined Graph
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Figure 5: The left figure represents the k-core distributions of three different BA models with the
hyperparameters r = 5, 10 and 15 serving as blocks of of our SBBAM. The right figure represents
the k-core distribution of the SBBAM.

Therefore,

2<(I_MG)</77<P>G:2<90‘P>G—2<MG<P90>G

>2 % ali, e =2 al (5)

i,jEV 1,jeV
> ali, Ple@) + > ali, el —2 ) a 0 (j)
i,jEV i,jEV i,JjeEY
> 37 ali, i) - o)
1,jEV

Similarly, we can prove that,

< (T+Me)p, o >a> Y ali,j)le) + ().
i,jEV

Therefore, if ¢ # 0, then,

{ <(I-Mg)p, ¢ >¢>0,

<(I+Ma)p,p>a>0 —T<H9 >a<S< Mgy, p >g<< @9 >a .

M
:>|< G%<P>G|<1
<QP7SD>G

Thus, |[Mg|| < 1,i.e. all the eigenvalues have absolute values at most 1. Let now consider the general
v(N) )

case, where 7 is not necessarily smaller than 1. Let’s consider V= %V = diag(@7 e o

Since,
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Table 11: Classification accuracy (£ standard deviation) of the models on different benchmark node
classification datasets. The higher the accuracy (in %) the better the model. ) CH2GCN with nodes

centrality, 2) H2GCN. Highlighted are the best results.

Model \ Texas Cornell Wisconsin chameleon
CH2GCN w/ D 79.73+5.02 68.65+5.16 79.80+4.02 67.89+4.23
) CH2GCN w/ C,ype 78.92+5.77  68.92+7.28 79.80+3.40 60.00+5.63
CH2GCN w/ Cppais | 78.11+6.10 68.92+6.19 82.35+5.04 44.28+2.32
CH2GCN w/ Cpg 60.27+5.41  44.86+7.76  52.35+7.75  31.95+5.79
@ | H2GCN | 56.76+6.73  51.08+6.80  55.29+5.10  63.93+2.07
- . (G
=min | —
v icv \ d;

PRI

(@)

Therefore, all the eigenvalues of Mg = V1A = %C_lA = %MG have absolute values at most 1.
Thus, all the eigenvalues of M have absolute values at most .

1.2 PROOF OF PROPOSITION[3.2]

Proof of Proposition[3.2] We will prove the first property.
We consider P as the number of connected components, i.e. G = Uil C;.

The adjacency matrix of the graph G is,

Ac

.0

0
0

0

Acy |

And the transformation of A by the Markov Average operator M is,

Mg =

Me, 0

0
0

Me

0

0
0

Me, ]

O

According to Proposition for each connected component C;, the matrix M, is diagonalizable in

an orthonormal basis, and its eigenvalues are real numbers. We denote by e©i = [eclj‘, . ,elcé_ I] the
eigenvectors basis of M¢, corresponding the eigenvalues \¢¢ = [)\f", ce )‘|Cc |].

We consider the set of vectors
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The column vectors of e are eigenvectors of the matrix M, and which achieves the conditions of
Property 1. Let’s now prove the formulas of the mean and standard deviation of the M spectrum.
The matrix C~ ' A is defined as follow,

Therefore, the diagonal elements of the matrix (D_lA)2 is defined as follow,

vi<i<N, (D'A)") = (D'AD"'A)

i

= (DA k(D' A,
J

= AijAji
j CiCj

2
A7
Ci;Cj

2
j J

1

CiCj

JEN;

Thus,

1 (Mg) = Mean (Spectrum [CflA])
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and,

o (Mg) = Stdev (Spectrum [C'A])

=ls X 0 Mean(opy))?

A€Spectrum[C—1A]

1
= (N Z A2 | — Mean (spy)*

AeSpectrum[C—1A]

= (;fSum(Spectrum [dﬂ)) — Mean (sp¢)2

— G[Tr [(DlA)ZD — Mean (spy)”

= \/<;Sum(5pectrum [(DlA)ﬂ)) — Mean (51%)2

i=1jeN;

1 1
— Mean (sp¢)2.

C; X Cj

V(FES ) vemionr

(i,7)€E

1.3 PROOF OF PROPOSITION[3.4]

Proof of Proposition[3.4] Let W C V/, such that [W| < 1|V|.
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For ¢ = 1w — pug(W) where pug(W) = % and Ny, =3 iy, ¢i = [Vl

2<(I-Mg)p, ¢ >c=2<¢,¢>g —2<Mqap, ¢ >¢

<2 eile(@)? =2 ali,j)@(i)e()

i€V L,JEV
<2) Bxdilp@ -2 a v (j)
i€V i,jeV
<2) dilp()P =2 ali, 5)@(i)e())
i€V B,jeV
<23 S alig) | le@ =2 Y ali, )@ ()
iev \jev i,jEV
<2 ai e =2 al ()
i,jEV 1,jEV
<Z (1, 9) (i |2+Z (4,5)1e(4) _QZ o(4)
i,jEV 1,jeV i,jeV
< > ali, fled) — o)
i,jEV
< Z a(i, )| hw (3) — Tw (5)]*.
i,jeV

The non-zero terms in ), .y, a(4, j)|¢(i) — ¢(j) |2 are those where i and j are adjacent, but one of
them is in W and the other not.

<(I-Mg)p, o >a <= Y a(i,j)[Iw (i) — Tw ()
i,jEV

[EW)].

There % was removed because of the symmetry. We also have that,

1
E<]1W7]1W >a= ~ Zcz—
zEV
and,
L peW) >a= = S e (W) = (e (W))?
N, W, G G= N, Cipla = (MG 5

i€V
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Therefore,
1 1
N, <pp>a= N, <lw — pucW),lw — pc(W) >¢
1
=5 <l dw —ncW) >¢ —5= < paW), 1w — pa(W) >
1 2 1
=N <lw,lw >¢ N <lw,ucg(W) >¢q +E <pucW),ua(W) >a
1
= pe(W) =2 (uac(W))? + (ua(W))” v <bLl>c
1
= pa(W) =2 (pa(W))* + (na(W))? N > e
Yiey
2 2 Nv
pe(W) =2 (nc(W))" + (na(W))" 1~
pne(W) = (pa(W))?
pe(W) (1 = pa(W))
(W)MG(WI)a
where W/ =V — VV.
By definition,
A1(G) = min <= IYICi)% Lt <y
¢#0 <@, p>a
Therefore,
I-M
)\1(G) S < ( G)‘PNP >a
< @, P >aG
_#EW) N,
- Ny, <pp>c
< #E(W) N,
Ny opeW)pag(W’)
Since,
v_ |W|v v ‘W|v
- S HG W S - )
o Ve =MW =,
then,
W|1) v— |W/‘1)
Nyug(W W’y > N, | —
MU’G( ):LLG( )— v ‘Vl'u vy |V‘v
. A
Z Ziev Ci ‘W|UU; |W |U
‘V|v V4 |V‘v
> Diey Ci \W|Uv; Wl
Ziev Ci vy [Vl
v_ |[W',
Z W v
Wl ML
v_ w'l,
= 7‘W|v| I
U |V‘v
U_
> -
> 27j+|W|v,
because
{50 = W= .
Thus,
1 2’U+ #g(W)
< — < — .
YW c Vv, |[W|, < 2|V|U = M (G) < o W
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Thus,
2vy vi
M(G) < Tth(G) < 2NU—hU(G).

J AVERAGE DEGREE OF A BARABASI-ALBERT MODEL
In this section, we details the proofs of the propositions 4.1

Proof of Proposition We start with a small graph of Ny nodes and ry edges. At each time step,
we increase the number of edges by r. Thus, if IV is the number of nodes at a certain time step, then
there are exactly ro + (N — Np) edges.

As each edge contributes to the degree of two nodes, thus, the average degree is twice the number of
edges divided by the number of nodes /N. Therefore,

— 2
d(GP*) = N (ro +7(N —19))
To r
=2 2— — 2Ny—.
Ty Ty

K LEARNED PARAMETERS OF DIFFERENT CENTRALITY BASED GSOS

In this section, we present some graph properties of the used dataset. We specifically present the node
density, the homophily coefficient as well as the average value of different centrality metrics in Table

We also present the (11, ma, m3, €1, €2, €3, a) learned by the GNN in Tables [15)and[16]

Table 12: Detailed graph properties of the used datasets.

Dataset \ density Avg. Degree  Avg. PageRank Avg. K-core Avg. Count. Paths  homophily
Physics 4.16 x 1074 14.37 2.89 x 107° 7.71 449.22 0.931
Photo 4.07 x 1073 31.13 1.30 x 1074 16.97 3204.098 0.827
Cora 1.43 x 1073 3.89 3.69 x 1074 2.31 42.52 0.809
CS 4.87 x 1074 8.93 5.45 x 1075 4.94 162.75 0.808
PubMed 2.28 x 1074 4.49 5.07 x 1073 2.39 75.43 0.802
Computers 2.60 x 1073 35.75 7.27 x 107° 18.84 6221.39 0.777
CiteSeer 8.22 x 1074 2.73 3.00 x 1074 1.73 18.91 0.735
ogbn-arxiv 8.07 x 107° 13.67 5.90 x 1076 7.13 4898.16 0.654
deezer-europe | 2.31 x 1074 6.55 3.53 x 107° 3.57 106.16 0.525
Penn9%4 1.57 x 1073 65.56 2.40 x 107 33.68 10662.08 0.470
chameleon 1.21 x 1072 27.57 4.39 x 1074 16.60 2913.48 0.231
squirrel 1.46 x 1072 76.30 1.92 x 1074 41.55 31888.02 0.222
arxiv-year 8.07 x 107° 6.88 5.90 x 1076 7.13 82.85 0.218
Wisconsin 1.48 x 1072 3.64 3.98 x 1073 2.05 76.26 0.206
Cornell 1.68 x 1072 3.04 5.46 x 1073 1.74 58.47 0.132
Texas 1.77 x 1072 3.13 5.46 x 1073 1.71 70.72 0.111
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K.1 DEGREE CENTRALITY

Table 13: Graph Properties of the used datasets and the corresponding learned hyperparameters in

GAGCN w/ Degree

Dataset | Graph Properties Hyperparameters

\ Avg. K-core  Avg. Count. Walks homophily ey es es my me mg a
Physics 7.71 0.931 0.28+0.01 —0.31£0.00 —0.32£0.00 0.34 +0.01 1.33£0.01 0.31+0.01 1.36 £0.01
Photo 16.97 0.827 0.39+0.06 —0.26+0.01 —0.25+0.01 0.59 +0.05 1.51£0.01 0.53 £ 0.04 1.70 £0.04
Cora 2.31 0.809 0.31 4 0.04 0.0240.01  —0.02£0.01 0.67 +0.02 1.4340.04 0.66 + 0.02 0.69 £ 0.01
(& 4.94 0.808 0.334+0.00 —0.2540.00 —0.26+£0.00 0.44 4 0.01 1.44 £ 0.00 0.40 £ 0.01 1.47£0.01
PubMed 2.39 0.802 0.284+0.01 —0.274£0.00 —0.28£0.00 0.39 & 0.00 1.40 £0.01 0.38 = 0.00 1.39£0.01
Computers 18.84 0.777 0.40£0.05 —0.74 £0.02 0.24 +£0.03 0.74 4+ 0.05 1.60 £ 0.05 0.66 = 0.04 0.86 4 0.10
CiteSeer 1.73 0.735 0.35+0.00 —0.21£0.01 —0.22+0.01 0.49 +0.01 1.49 £ 0.01 0.47 £0.01 1.50 £ 0.01
ogbn-arxiv 7.13 0.654 | —0.08+0.02 —0.29+0.01 —0.41+0.00 0.13 4+ 0.01 1.31 £0.04 0.13+0.01 1.00 £ 0.01
deezer-europe 3.57 0.525 0.314+0.04 —0.5140.03 —0.54+£0.02 0.594+0.04 —0.96 £ 0.04 1.55+£0.03 —0.59 4 0.03
Penn%4 33.68 0.470 0.514+0.01 —1.00£0.02 —0.09+£0.02 0.98 +0.01 1.01£0.04 0.82+0.01 0.95 4 0.03
chameleon 16.60 0.231 0.15+0.04 —0.06+£0.01 —0.06+0.01 —0.17+0.03 0.884+0.02 —0.16£0.03 —0.15+0.02
squirrel 41.55 31888.02 0.222 0.38 £ 0.05 264+0.03  —0.24 £0.03 0.31 (0.80) 1.75+£0.07 0.26 £ 0.70 1.69 £ 0.56
arxiv-year 7.13 82.85 0218 | =0.25+0.01 —0.27+0.01 —0.40 +0.01 0.0140.01 0.99 4 0.01 0.05 %+ 0.01 0.80 £ 0.01
Wisconsin 2.05 76.26 0.206 0.954+0.05 —0.0940.04 —0.05=£0.01 1.27+£0.25 —0.94+0.05 0.66 £ 0.07  —0.64 & 0.06
Cornell 1.74 58.47 0.132 0.884+0.05 —0.17+£0.07 —0.07£0.03 1.04£029 —0.86+0.11 0.80+0.10 —0.78 £0.08
Texas 1.71 70.72 0.111 0.93+0.03 —0.09+0.04 —0.05=+0.01 1.17£0.20 —0.98 £0.05 0.65+0.07  —0.64 +0.07

K.2 k-CORE CENTRALITY

Table 14: Graph Properties of the used datasets and the corresponding learned hyperparameters in
GAGCN w/ K-Core

Dataset | Graph Properties Hyperparameters

| Avg. K-core  Avg. Count. Walks homophily ey ey e3 my ma m3 a
Physics 7.71 449.22 0.931 0.38+£0.03 —0.354+0.01 —0.35+0.01 0.34 £0.02 1.28 4+0.01 0.30 £ 0.02 1.35 4 0.02
Photo 16.97 3204.098 0.827 0.52+£0.02 —0.314+0.01 —0.31£0.01 0.73 £0.03 1.4440.02 0.59 £ 0.03 1.77 £ 0.05
Cora 2.31 42.52 0.809 0.34 £0.01 74 £0.00 0.24 £0.01 0.60 £ 0.01 1.5540.01 0.59 £0.01 0.68 £0.01
Cs 4.94 162.75 0.808 0.41 +£0.01 2940.01  —0.29 £0.01 0.43 +£0.01 1.39£0.01 0.39 £ 0.01 1.47£0.01
PubMed 2.39 75.43 0.802 0.27+0.00 —0.3140.00 —0.32+0.00 0.34 £ 0.01 1.34 £0.01 0.34 £ 0.01 1.35£0.01
Computers 18.84 6221.39 0.777 0.514£0.02 -0.2840.01 —0.29+0.01 0.78 £0.03 1.50 4 0.01 0.66 =+ 0.03 1.7240.05
CiteSeer 1.73 18.91 0.735 0.39£0.01 —0.2640.00 —0.26 +0.00 0.45£0.01 1.4340.01 0.44 £0.01 1.46 4 0.00
ogbn-arxiv 7.13 4898.16 0.654 0.27£0.01 —0.534+0.01 —0.55+£0.01 —0.70£0.01 —1.04+0.03 0.31 £0.02 0.70 £0.02
deezer-europe 3.57 106.16 0.525 | =0.014+0.03 —0.51£0.00 —0.51=0.00 0.02 +0.01 0.99 +0.01 0.02 £0.01 1.07+0.01
Penn94 33.68 10662.08 0.470 | —0.09+0.30 —0.39£0.08 —0.40 £ 0.08 0.28 £0.36 1.2740.16 0.05 £ 0.41 1.60 +£0.15
chameleon 16.60 2913.48 0.231 0.15+£0.04 —0.0640.01 —0.06+0.01 —0.17£0.02 0.88+0.01 —0.16+0.02 —0.1540.01
squirrel 41.55 31888.02 0.222 0.46 £0.02 —0.78+0.01 0.24£0.01  —0.97+0.05 1.78 4 0.04 974+0.05 —1.08+0.12
arxiv-year 7.13 82.85 0.218 0.34£0.05 —0.36+0.01 —0.41£0.01 —0.13=£0.06 1.034£0.01  —0.03£0.02 0.80 £0.02
Wisconsin 2.05 76.26 0.206 1.20+£0.02 — —0.06 +0.02 1.4840.03 —0.96 £ 0.04 .54 £0.02  —0.54 £0.03
Cornell 1.74 58.47 0.132 0.34+0.05 — —0.41£0.01  —0.13 4+ 0.06 1.03 4 0.01 03 £ 0.02 0.80 +0.02
Texas 1.71 70.72 0.111 0.50 £0.06 —0.0240.02 —0.04+0.02 —0.87+0.05 1.0440.05 —0.85+0.05 —0.86+0.05

K.3 PAGERANK CENTRALITY

Table 15: Graph Properties of the used datasets and the corresponding learned hyperparameters in

GAGCN w/ PageRank

Dataset | Graph Properties Hyperparameters

‘ Avg. K-core  Avg. Count. Walks  homophily e es €3 my mo ms a
Physics 7.7 449.22 0.931 0.51 +0.00 0.00 +0.00 0.00 = 0.00 1.31 £ 0.06 1.00 4 0.08 0.34 £ 0.06 0.33 £0.07
Photo 16.97 3204.098 0.827 0.53 £0.02 0.08 £0.01 0.08 £ 0.01 0.88 £ 0.01 0.85+0.01 —0.12£0.01 —0.13+0.01
Cora 2.31 42.52 0.809 0.00£0.00 —0.7140.02 0.11£0.01 0.63 £ 0.01 1.4940.02 0.63 £ 0.01 0.67 £ 0.01
Ccs 4.94 162 0.808 0.00£0.00 —0.1040.01 —0.10=£0.01 0.46 £ 0.04 1.3840.10 0.46 £ 0.04 1.4940.03
PubMed 2.39 7 0.802 0.51 +0.00 0.00 +0.00 0.00 £ 0.00 1.34 £0.02 1.28 £0.02 0.36 £ 0.02 0.38 £ 0.02
Computers 18.84 6221.39 0.777 0.00+0.00 —0.42-+0.00 —0.42+0.00 —0.13+0.02 0.8440.01 —0.13+0.02 0.87 +0.02
CiteSeer 1.73 18.91 0.735 0.00£0.00 —0.1440.00 —0.12£0.00 0.44 4 0.01 1.41 £ 0.00 0.44 £0.01 1.47£0.01
ogbn-arxiv 4898.16 0.654 0.00£0.00 —0.8940.01 0.11£0.01 —0.2240.01 0.78+0.01 —0.22£0.01 —0.2240.01
deezer-europe 106.16 0.525 0.57 £0.05 0.05 £ 0.01 0.05 £ 0.01 0.90 £ 0.03 0.90£0.02 —0.10£0.03 —0.10+0.02
Penn94 10662.08 0.470 0.54 £ 0.01 0.0540.01 0.05 £ 0.01 1.10£0.01  —0.90 £ 0.01 0.10+£0.01  —0.10£0.01
chameleon 2913.48 0.231 | —0.01 +£0.00 —0.94 £ 0.00 0.06 £ 0.01 0.27£0.05  -0.8840.02 1.26£0.05 —0.25+0.05
squirrel 31888.02 0.222 0.00£0.00 —0.4340.01 —0.43+£0.01 0.144+0.01 —0.86 £ 0.01 1.14 £0.01  —0.1440.01
arxiv-year 82.85 0.218 0.00£0.00 —0.8440.03 0.06 £0.01  —0.0440.02 0.86 +0.03 0440.02 —0.05+0.03
Wisconsin 76.26 0.206 0.64 £0.02 0.10 £0.01 0.10 £0.01 1.68+0.03 —1.01£0.04 0.69 £0.02 —0.69 4 0.02
Cornell 58.47 0.132 0.64 +0.03 0.1140.01 0.11 £0.01 1.71£0.02 —-1.03+£0.05 0.71+£0.01  —0.7240.01
Texas 70.72 0.111 0.68 £0.03 0.14+£0.03 0.14 £ 0.03 1.63£0.04 —0.93 +0.06 0.64 £0.04 —0.63+0.04
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K.4 COUNT OF WALKS CENTRALITY

Table 16: Graph Properties of the used datasets and the corresponding learned hyperparameters in

GAGCN w/ Count of walks.

Dataset | Graph Properties Hyperparameters

‘ Avg. K-core  Avg. Count. Walks  homophily e ea e3 my ma mg a
Physics 7.71 449.22 0.931 0.95+£0.01 —0.0240.02 —0.02+0.02 0.89 £ 0.02 0.96 +£0.03 —0.10£0.01 —0.09 +0.01
Photo 16.97 3204.098 0.827 | —=0.06 £0.01 —0.07£0.00 —0.07+0.00 —0.05+£0.01 0.87+£0.00 —0.04£0.02 —0.09+0.01
Cora 2.31 42.52 0.809 0.36 £ 0.02 0.03 £0.01 0.02 £0.01 0.68 £0.02 1.3740.09 0.63 £ 0.02 0.64 £ 0.01
CS 4.94 162.75 0.808 0.45 £ 0.02 0.03 +0.01 0.02 £0.01 0.62 +0.03 1.23£0.04 0.47 £0.02 0.52 +0.02
PubMed 2.39 75.43 0.802 0.30 £0.02 —0.1540.02 —0.16 £0.02 0.60 £ 0.02 1.58 4 0.03 0.56 + 0.02 1.38 £0.04
Computers 18.84 6221.39 0.777 | =0.05+0.01 —0.07+£0.00 —0.0740.00 —0.05+0.02 0.86£0.01 —0.0440.03 —0.10+0.02
CiteSeer 18.91 0.735 0.254£0.01 —-0.1340.01 —0.14£0.01 0.67 £ 0.01 1.6340.01 0.62 £ 0.01 1.63 4+0.01
ogbn-arxiv 4898.16 0.654 0.12£0.00 —0.0840.00 —0.19£0.00 0.32£0.00 1.5740.02 0.32 £ 0.00 0.93 £0.01
deezer-europe 106.16 0.525 0.26 £0.03 —1.0440.03 —0.07 £0.03 0.58 +0.04 0.88 £ 0.06 0.60 £ 0.04 0.67 £ 0.06
Penn94 10662.08 0.470 0.30 £0.00 —0.7740.03 0.06 £ 0.09 0.58 £0.00 —0.4640.16 1.39£0.01 —0.31+0.17
chameleon 2913.48 0.231 0.32+£0.06 —0.0540.01 —0.05+0.01 —0.28+0.08 0.89 +0.02 174£0.03 —0.14£0.02
squirrel 31888.02 0.222 0.23+£0.11 —0.7140.10 0.35£0.10 —0.46 4 0.46 1284022 —0.32+0.33 —0.29+£0.48
arxiv-year 82.85 0.218 0.23£0.01 —-0.2840.01 —0.16+£0.01 —0.26=+0.01 0.99+£0.03 —0.01£0.04 0.84 £0.03
Wisconsin 76.26 0.206 0.40 £0.01  —0.79 £ 0.07 0.18 £0.05 0.61+0.01 —1.3840.08 1.48£0.01  —0.69 +0.06
Cornell 58.47 0.132 0.40+£0.01  —0.214+0.04 —0.22+0.04 0.59+0.01  —1.51 £ 0.06 1.47+£0.01  —0.6140.05
Texas 70.72 0.111 0.40£0.01 —0.7240.03 0.24 £ 0.03 0.58£0.01 —1.4840.05 1.4740.01 —0.59 +0.03
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