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ABSTRACT

In robot policy learning, deriving informative state representations encompassing
visual and proprioceptive representations is critical. While proprioceptions are
acquired from internal sensors, visual state representations primarily rely on vision
backbones. Therefore, leveraging a strong backbone generalized across diverse
tasks and environments is essential for effective robotic perception. Self-supervised
learning (SSL) has been a promising approach for pre-training such backbones.
However, conventional SSL approaches for visual representation learning have pre-
dominantly focused on learning capability for a comprehensive understanding of a
whole image or video, far from requisites for robotics such as seamless interactions.
Bearing this in mind, we introduce a novel and intuitive self-supervised visual
state representation learning pipeline designed to facilitate the acquisition of state
representations through masked autoencoding. Our method implicitly dissolves
the forming process of the state representations into the encoding process without
any additional layers. Extensive experiments in diverse simulated environments
demonstrate the superiority of our method in robot manipulation and locomotion
tasks over previous baselines. Moreover, deploying our pre-trained model on
physical robots confirms its robustness and effectiveness in real-world settings.

(a) Simulation (b) Real-world (c) Overall performance comparison

Figure 1: We validate the effectiveness of our method on (a) simulated environments and (b)
real-world environments. (c) Our method significantly surpasses previous self-supervised visual
representation learning methods designed for static (Chen et al., 2020a; 2021; Caron et al., 2021; He
et al., 2022) and dynamic scenes (Gupta et al., 2023; Weinzaepfel et al., 2022; Jang et al., 2024) on
various robot manipulation and locomotion tasks. More details are in §4.2 and §4.3.
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1 INTRODUCTION

With the increasing interest in deploying robots in real-world environments, enabling seamless
interactions with their surroundings has become a crucial challenge. Such interactions necessitate
state representations that effectively capture both visual and proprioceptive information. While robots
acquire their proprioceptions through internal sensors, visual state representations are predominantly
obtained from the vision backbones. Therefore, leveraging a strong and robust backbone capable of
generalizing across diverse tasks and environments has emerged as a key consideration in robotics.

Self-supervised learning (SSL) of visual representations has been highlighted as pivotal research in
vision domains, with pre-trained models being widely adopted for effective backbone deployment.
A series of studies have introduced promising recipes for learning image (Grill et al., 2020; Chen
et al., 2020a; 2021; Caron et al., 2020; 2021; Chen & He, 2021; He et al., 2022) and video representa-
tions (Tong et al., 2022; Pan et al., 2021) without labeled data, enabling scene comprehension and a
cohesive action understanding, respectively. However, robots require representations that encompass
both a comprehensive understanding of the scene and an awareness of temporal evolution across
consecutive observations, an aspect overlooked by previous approaches.

A sequence of studies has attempted to address the challenges. SiamMAE (Gupta et al., 2023)
introduces a visual representation learning approach that leverages dynamic scenes. It address a
key limitation of MAE (He et al., 2022), which lacks consideration on learning correspondence
during pre-training, leading to poor similarity estimation despite strong localization capability. By
incorporating implicit guidance for learning correspondence across different timestamps within the
masked autoencoding process, SiamMAE enhances understanding of temporal evolution. However, it
remains insufficient in forming effective state representations of timestamps beneficial for the instant
action prediction.

In light of this, we introduce a simple and intuitive approach called State Representation Learning
(SRL), which fully leverages the capabilities of backbone models to preserve the scene information in
an efficient form. Specifically, we guide the model to rely heavily on the state representations during
decoding, enforcing the decoder to predict unseen patches based on the state representations leads
the model to store visual perception information effectively. In addition, our approach seamlessly
integrates the formation of state representations into the encoding process, eliminating the need for
additional layers.

Through extensive experiments across diverse simulated environments, we showcase the effectiveness
of our method in robot manipulation and locomotion tasks, surpassing previous baselines (Chen
et al., 2020a; 2021; Caron et al., 2021; He et al., 2022; Weinzaepfel et al., 2022; Gupta et al., 2023;
Jang et al., 2024; Eymaël et al., 2025) with significant gaps (see Fig. 1). Furthermore, we extend
our validation to real-world environments by deploying our pre-trained models on physical robots,
demonstrating their robustness and superiority even in real-world scenarios.

2 RELATED WORK

Self-supervised learning on a static scene Self-supervised learning (SSL) approaches have been
widely explored in the image domain. Contrastive learning approaches (Chen et al., 2020a; He et al.,
2019; Chen et al., 2020b; 2021; Caron et al., 2020) aim to learn useful representations by maximizing
the similarity between positive pairs derived from a static scene through strong augmentations.
Although these methods excel in facilitating a cohesive understanding of images, they suffer from
limited localization capabilities (Kim et al., 2024), essential for action prediction in robotics. On
the other hand, masked image modeling (MIM) (Bao et al., 2021; He et al., 2022; Xie et al., 2022;
Baevski et al., 2022; Kim et al., 2024) has recently gained attention for its promising capacity to
learn visual representations through predictive learning. Inspired by masked language modeling
(MLM) in transformers (Devlin et al., 2018), BEiT (Bao et al., 2021) extends MLM into the vision
domain, adopting an external offline tokenizer. MAE (He et al., 2022) and SimMIM (Xie et al.,
2022) showcase efficient MIM by directly reconstructing masked input pixels without any tokenizer.
However, despite its strong capability in localization, models pre-trained by MIM approaches tend
to show limited disriminatibility without additional post-training, showing lower linear probing
performance compared to contrastive SSL approaches. Moreover, while the learning strategies of the
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models determine the behaviors of representations, these models lacks capturing temporal evolution
across scenes during training.

Self-supervised learning on dynamic scenes To enhance the capability to capture temporal
evolution, SiamMAE (Gupta et al., 2023) proposes visual representation learning methods that utilize
dynamic scenes. RSP employs stochastic frame prediction tasks along with masked autoencoding. On
the other hand, CropMAE (Eymaël et al., 2025) introduce a simple augmentation strategy that enables
the generation of dynamic scenes even from a single static scenes, While these approaches primarily
focused on learning to capture temporal progression, we aim to encode visual state representations
from the observations in a self-supervised manner.

3 METHOD

3.1 MOTIVATION

For precise action prediction in robotics, the visual state representation should comprehensively
store both fine-grained and semantic information from observations while enabling the recognition
of temporal evolution across consecutive observations. However, previous self-supervised learning
(SSL) approaches have not fully addressed these aspects, suboptimal for robot backbones. In this
section, we discuss the pros and cons of these approaches from a robot backbone perspectives.

Limited temporal evolution awareness of MAE. MAE (He et al., 2022) has been highlighted
with its strong capability in localization, which stems from its design that enforces the autoencoder to
predict missing information based on available prior information (i.e., visible patches). This pipeline
implicitly encourages the encoder to facilitate interactions among the remaining sparse tokens, thereby
enhancing its localization capability. However, since MAE performs predictive learning on a single
static scene, the encoder is not explicitly trained to handle dynamic transitions over time, leading to
limited performance in sequential scene understanding tasks. Moreover, a recent study reveals that
MAE falls short in learning broader contexts (Kim et al., 2024), leading to representations with a
limited cohesive understanding of observed scenes. This limitation further constrains its potential to
effectively understand sequential scenes.

Limited state representations formation of SiamMAE. To alleviate the chronic limitation of SSL
approaches on static scenes, SiamMAE leverages dynamic scenes to build non-trivial problems for
explicit correspondence learning by sampling scenes from sequential data or collecting scenes from
various camera perspectives. The core of these pipelines is the use of source and target scenes with
additional cross-attention layers within decoders. The cross-attention layer guides the encoder to
form discriminative similarity that enables capturing fine-grained token-wise similarity for accurate
correspondence matching. However, while the SiamMAE pipeline enables capturing correspondences
among consecutive scenes, it is fundamentally not capable of learning the model to form visual
state representations, eventually storing insufficient information in its state representations and thus
negatively affecting the execution of robotic tasks.

3.2 PRELIMINARY

Masked autoencoding Given a scene x, we patchify into N non-overlapping patches {x}Ni=1. We
mask the patches by randomly selecting a set of masked patches M ⊂ {1, 2, ..., N} with a masking
ratio r ∈ (0, 1) and exclude them, where M ⊂ {1, 2, ..., N} and |M| = ⌊rN⌋. The remaining
patches {x}i∈Mc are concatenated with a learnable CLS token e[CLS] and fed into the encoder
fθ, becoming spatial token representations {u}i∈Mc with an encoded CLS token. The encoded
tokens are concatenated with mask tokens mi corresponding to the position of i-th masked patches.
The decoder dϕ predicts the excluded image patches {xi}i∈M by referring to the information from
unmasked tokens.

3.3 STATE REPRESENTATION LEARNING (SRL)

Claim Regarding the perspectives in §3.1, our ultimate goal is to derive effective visual state
representations capable of capturing temporal evolution from visual observations during the encoding
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Figure 2: Overview of our proposed State Representation Learning (SRL). (a) Masked Autoen-
coder (MAE) (He et al., 2022) learns visual representations by enforcing token interactions over
scarce tokens via predictive learning on masked patches. (b) In contrast, our SRL reconstructs the
masked patches from the state representation of the reference scene and a few patch tokens from
the target scene. Such extreme scarcity of the target scene leads the decoder to rely heavily on the
reference scene, facilitating the preservation of observed information in the state representation.

process. To accomplish this, our state representation learning (SRL) considers whether (1) visual
observations can be reconstructed from the state representations and (2) temporal relationships are
inherently preserved in the state representations. Ensuring both aspects simultaneously, we enforce
the encoder to reconstruct the corrupted scenes from the state representation of a consecutive scene.
We apply an extremely high masking ratio to the target scene, thereby restricting the decoder from
precisely reconstructing the masked target patches solely based on the unmasked target tokens. In
our pipeline, the quality of reconstruction directly linked to the ability of the encoder to effectively
store visual information and map the representations into an embedding space capable of capturing
temporal evolution. Therefore, minimizing the reconstruction objective is expected to facilitate the
formation of more informative state representations.

Overall pipeline Suppose we sample a reference scene xt and a target scene xt+k with a gap
in the temporal index k from a given video. We patchify xt and xt+k into N non-overlapping
patches {xt,i}Ni=1 and {xt+k,i}Ni=1, respectively. We mask the target scene with an extremely high
masking ratio r ∈ (0, 1) so that and remove them, where M ⊂ {1, 2, ..., N} and |M| = ⌊rN⌋.
The remaining patches {xt+k,i}i∈Mc are concatenated with a learnable state token e[state] and fed
into the encoder fθ, becoming a visual state representation zt+k and spatial token representations
{ut+k,i}i∈Mc for the target scene. The visual state representation zt and token representations
{ut,i}Ni=1 for the reference scene are derived in the same manner without masking. We concatenate
the encoded state token zt of the reference scene xt with spatial token representations {ut+k,i}i∈Mc

of the target scene xt+k and mask tokens mi corresponding to the position of i-th masked patches.
The decoder dϕ predicts the excluded image patches {xt+k,i}i∈M by referring to the information
from zt and {ut+k,i}i∈Mc , eventually obtaining the i-th decoded mask token md

i , where Td ∪
{md

i }i∈M = dϕ(zt, {ut+k,i}i∈Mc , {mi}i∈M). Here, Td is a set of decoded unmasked tokens.
However, due to the excessive scarcity in {ut+k,i}i∈Mc , the decoder dϕ proactively rely on zt, which
enable the encoder fθ to form richer state representations. We minimize the reconstruction loss
LSRL =

∑
i∈M d(md

i , xt+k,i) throughout the training procedure where d(·) is a distance function.
Our proposed pipeline is illustrated in Fig. 2b.

Decoder structure Previous methods in dynamic SSL utilize cross-attention layers as a core
component, placing them within the decoders to guide the encoder to learn representations that
effectively capture correspondences. These approaches leverage a hybrid structure of cross-attention
layers, self-attention layers, and multi-layer perceptrons (MLP) layers. In contrast, we employ
self-attention layers that exclusively attend to the given information, with MLP layers for progressive
transformation from representation embedding spaces into the pixel space.
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4 EXPERIMENTS

In this section, we evaluate the impacts of the proposed method in policy learning for robotic
manipulation and locomotion across various simulated environments (Gupta et al., 2019; James et al.,
2020; Majumdar et al., 2023). We extend our validation to real-world settings by deploying our
pre-trained model on physical robots, showcasing its transferability.

4.1 EXPERIMENTAL SETUP

4.1.1 PRE-TRAINING

We pre-train ViT-S/16 (Dosovitskiy et al., 2021) on Kinetics-400 (Kay et al., 2017) for 400 epochs.
We employ repeated sampling (Hoffer et al., 2020; Feichtenhofer et al., 2021) with a factor of 2 so
that the models are indeed pre-trained for 200 epochs. We use AdamW optimizer (Loshchilov &
Hutter, 2019) with a batch size of 1536, comprising dynamic scenes with a resolution of 224×224.
These scenes are randomly sampled from videos at a rate of 30 FPS, with a temporal index gap
ranging from 4 to 96. We simply apply random resized crop and horizontal flip to the scenes, aligning
the cropping region across reference and target scenes. To drive the learning mechanism of our
proposed method, we randomly mask the target scenes with an extremely high masking ratio of 0.9.
Our decoder is composed of eight vision transformer blocks, i.e., each block contains self-attention
layers and multi-layer perceptrons. We follow the default hyperparameters of the baselines for their
pre-training on Kinetics-400 (Kay et al., 2017). More details are listed in the Appendix.

4.1.2 VISION-BASED ROBOT POLICY LEARNING

Franka Kitchen. We validate models pre-trained by our method and other baselines in five imitation
learning tasks from the Franka Kitchen benchmark Gupta et al. (2019). Our experiments mainly
follow the imitation learning evaluation setup in (Nair et al., 2022; Parisi et al., 2022). Specifically,
we employ an agent comprising a frozen backbone initialized with pre-trained models and a policy
network consisting of a two-layer MLP, with a batch normalization layer applied at the input stage. We
define the state representation for the policy network as the combination of the visual representation
and the robot proprioceptive. For the perception, we employ either a left or right camera with a
224×224 resolution while omitting depth. The policy network is trained with a standard behavior
cloning loss. Training for each demonstration task progresses for 20,000 steps, with a periodic online
evaluation in the simulated environment every 1,000 steps. We evaluate the highest success rates of
each demonstration across four different seeds and report its average with a 95% confidence interval.

RLBench. We consider 5 manipulation tasks from RLBench (James et al., 2020). For each task,
we generate 100 demonstrations and utilize them for training the agent. We employ a front camera
with a 224×224 resolution. Point cloud information are excluded throughout all experiments. We
employ the end-effector controller with path plannin. We evaluate the highest success rates of each
demonstration across four different seeds.

CortexBench. We evaluate the models on four simulated environments from CortexBench (Majum-
dar et al., 2023). We consider two, five, five, and two demonstrations from Adroit, DeepMind Control
(DMC) (Tassa et al., 2020), MetaWorld (Yu et al., 2020), and Trifinger, respectively. Proprioceptive
data is utilized except the DMC benchmark. We mainly follow the experimental setups in (Majumdar
et al., 2023). For each task, we train the agent for 100 epochs, with a periodic online evaluation in the
simulated environment every 5 epochs. We report the normalized score for DMC and the highest

(a) Cabinet Opening (c) Cup Stacking(b) Drawer Closing

Figure 3: Task Description for Real-world Environments
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Table 1: Experimental results on vision-based robot policy learning on Franka Kitchen. We
report the performance of imitation learning agents on Franka Kitchen (Gupta et al., 2019), which
are trained upon representations from the ViT-S/16 model pre-trained on Kinetics-400 (Kay et al.,
2017) dataset. The success rates (%) are reported for all the tasks. We underline the second-best
performance. We report the gains of our method over the second-best baseline.

Method Knob1 on Light on Sdoor open Ldoor open Micro open

SimCLR (Chen et al., 2020a) 25.3±2.1 55.8±6.4 72.3±2.8 17.0±2.9 23.3±2.8
MoCo v3 (Chen et al., 2021) 11.5±3.9 24.3±5.0 66.5±3.2 10.3±2.1 14.3±2.5
DINO (Caron et al., 2021) 27.0±3.2 44.3±6.5 77.0±5.0 16.5±2.5 28.5±4.8
MAE (He et al., 2022) 12.0±3.3 24.3±4.2 71.5±4.3 12.8±3.9 10.0±2.8
SiamMAE (Gupta et al., 2023) 16.8±4.4 36.5±7.0 68.0±7.9 17.3±3.7 13.5±4.8
RSP (Jang et al., 2024) 31.0±2.4 44.5±5.6 82.5±2.7 28.8±4.8 30.3±5.6
CropMAE (Eymaël et al., 2025) 31.5±5.3 54.0±11.2 77.0±8.1 25.5±5.7 32.5±4.1

Ours 57.3±2.3 82.0±1.6 95.0±7.1 51.0±1.4 55.0±1.4

Gain + 25.8 + 26.2 + 12.5 + 26.2 + 22.5

Table 2: Experimental results on vision-based robot policy learning on RLBench. We report
the performance of imitation learning agents on RLBench (James et al., 2020), which are trained
upon representations from the ViT-S/16 model pre-trained on Kinetics-400 (Kay et al., 2017) dataset.
The success rates (%) are reported for all the tasks. We report the gains of our method over the
second-best baseline.

Method Button Phone Umbrella Wine Rubbish

SimCLR (Chen et al., 2020a) 7.4±2.6 34.6±6.6 5.8±3.3 11.0±2.1 5.2±1.2
MoCo v3 (Chen et al., 2021) 11.4±4.1 36.2±3.4 13.2±1.5 8.7±0.7 6.7±0.8
DINO (Caron et al., 2021) 24.7±1.5 32.0±5.5 28.1±1.4 31.4±1.5 12.9±1.5
MAE (He et al., 2022) 6.4±2.2 37.7±1.9 10.0±1.2 10.0±2.1 6.2±3.2
SiamMAE (Gupta et al., 2023) 6.1±2.3 5.4±0.5 4.0±0.0 8.7±0.8 3.5±0.9
RSP (Jang et al., 2024) 28.4±3.0 48.0±4.6 37.3±3.0 31.9±2.3 18.5±1.1
CropMAE (Eymaël et al., 2025) 26.9±6.7 16.6±3.8 37.5±8.8 33.2±0.2 20.6±1.7

Ours 41.2±7.4 52.3±3.2 42.2±6.9 35.4±3.8 37.0±6.1

Gain +12.8 +4.3 +4.7 +2.2 +18.5

success rates for other tasks. We conduct demonstration tasks for five different seeds and report its
average with a 95% confidence interval.

Real-world Environments. We evaluate our proposed method in real-world robotic imitation
learning tasks using a UR5e manipulator equipped with a parallel gripper. The policy operates at
a control frequency of 5 Hz, executing actions defined as delta end-effector poses and gripper’s
state, with specific parameterizations for each task: (dx, dy) for drawer closing, (dx, dy, gripper
open/close) for cabinet opening, and (dx, dy, dz, gripper) for cup stacking. The system employs
joint position control at 50 Hz, with a numerical inverse kinematics (IK) solver running in the
background to calculate the end-effector’s pose to the joint position. Our training dataset consists of
50 demonstrations for cabinet opening and cup stacking and 30 demonstrations for drawer closing.
We train the two-layer MLP policy for 100 epochs without incorporating proprioceptive states, using
a top-front camera view with a resolution of 224×224. The final performance is evaluated based on
the reported average success rate across tasks. Figure 3 provides visual examples of the three tasks
under consideration.

4.1.3 BASELINES.

We compare the performance of our method with conventional self-supervised learning (SSL) methods
for visual representations including SimCLR (Chen et al., 2020a), MoCo v3 (Chen et al., 2021),
DINO (Caron et al., 2021), and MAE (He et al., 2022) We also consider previous dynamic scene SSL
methods, i.e., SiamMAE (Gupta et al., 2023), RSP (Jang et al., 2024), and CropMAE (Eymaël et al.,
2025). We validate the impacts of explicitly learning state representations over these approaches.
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Table 3: Experimental results on vision-based robot policy learning on CortexBench. The
performance of imitation learning agents on CortexBench (Majumdar et al., 2023) is reported, where
the agents are trained upon representations from the ViT-S/16 model pre-trained on the Kinetics-400
(Kay et al., 2017) dataset. We report the normalized score for DeepMind Control Suite (DMC) and
success rates (%) for other tasks. We report the gains of our method over the second-best baseline.

Method Adroit MetaWorld DMC Trifinger

SimCLR (Chen et al., 2020a) 40.4±3.3 78.4±5.2 39.7±2.9 63.3±3.3
MoCo v3 (Chen et al., 2021) 39.6±4.3 65.4±8.0 43.7±3.2 53.3±1.6
DINO (Caron et al., 2021) 45.6±6.2 82.4±5.8 50.9±1.5 64.2±3.5
MAE (He et al., 2022) 39.6±4.3 65.4±8.0 43.7±3.2 53.3±1.6
SiamMAE (Gupta et al., 2023) 44.0±6.6 81.1±6.3 56.0±2.9 52.1±7.6
RSP (Jang et al., 2024) 45.6±4.6 84.5±6.6 61.6±3.4 66.2±0.8
CropMAE (Eymaël et al., 2025) 50.0±5.1 82.4±5.8 46.4±1.1 46.3±1.7

Ours 60.4±2.2 87.8±4.6 73.5±8.6 66.5±1.0

Gain +10.4 +3.3 +11.9 +0.3

Table 4: Experimental results on vision-based robot policy learning in real-world environments.
The performance of imitation learning agents on three demonstration tasks (’Cabinet Opening’,
’Drawer Closing’, and ’Cup Stacking’) in real-world environments is reported. The agents are trained
upon representations from the ViT-S/16 model pre-trained on the Kinetics-400 (Kay et al., 2017)
dataset. We report the success rates (%) for the tasks.

Method Cabinet Opening Drawer Closing Cup Stacking

SiamMAE (Gupta et al., 2023) 20.0 55.0 50.0
RSP (Jang et al., 2024) 25.0 65.0 55.0
CropMAE (Eymaël et al., 2025) 0.0 25.0 20.0

SE-MAE (ours) 65.0 75.0 80.0

4.2 VISION-BASED ROBOT POLICY LEARNING IN SIMULATED ENVIRONMENTS

We evaluated our method through imitation learning on robot manipulation and locomotion
tasks across various simulated environments, including Franka Kitchen (Gupta et al., 2019), RL-
Bench (James et al., 2020), and CortexBench (Majumdar et al., 2023).

Franka Kitchen. We present a comparison between our method and the baselines on vision-based
robot policy learning in the Franka Kitchen environment in Table 1. The results demonstrate that our
method significantly outperforms all the baselines across all tasks. Notably, our method achieves over
20% improvements in success rates on all tasks, except for the ”Light on” task. This highlights the
effectiveness of explicitly encoding visual state representation for vision-based robot policy learning.

RLBench Table 2 showcases the robot manipulation performance on five demonstration tasks in the
RLBench environment. Notably, our method consistently exceeds all baselines across the five tasks.
Morevoer, the degraded performance of MAE and SiamMAE further highlights the significance of
state representation learning for the robot backbones.

CortexBench. We compare our method with the baselines for the vision-based robot manipulation
and locomotion tasks in the Adroit, MetaWorld, DeepMind Control (DMC), and Trifinger environ-
ments in Table 3. The results show that our method achieves superior performance compared to
the baselines across all tasks. In particular, our method surpasses the second-best performance with
success rate gains of 11.9%p on DMC and 10.4%p on Adroit.

4.3 VISION-BASED ROBOT POLICY LEARNING IN REAL-WORLD ENVIRONMENTS

To validate the robustness of our method in real-world environments, we further investigate SSL
methods on real-world robotics robot tasks. Specifically, we design three demonstration tasks: Door
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Opening, Door Closing, and Cup Stacking. For each task, We collect 50 demonstration episodes
for training and 20 demonstration episodes for evaluation for imitation learning. Following the
training protocol used in simulated environments, we train the policy network using a standard
behavior cloning loss. The experimental results for each individual task are reported in Table 4.
We first observe that our method exceeds SiamMAE (Gupta et al., 2023), RSP (Jang et al., 2024),
and CropMAE (Eymaël et al., 2025) on all three tasks. Specifically, our method improves 40%p,
10%p, and 25%p over the baselines on the Door Opening, Door Closing, and Cup Stacking tasks,
respectively. While previous SSL methods on dynamic scenes struggle with the Door Opening task,
our method even successfully executes the task with a considerable success rate. This showcases that
models pre-trained by our method can be robustly transferred to real-world environments.

5 CONCLUSION

We have introduced a state representation learning pipeline for robot backbones. Since deriving state
representations from observed scenes is crucial for accurate robot action prediction, establishing a
strong robot backbone is essential. Such backbone models should effectively encode both fine-grained
and high-level semantic information from observations while facilitating the recognition of tempo-
ral progression across sequential scenes. However, though conventional self-supervised methods
have provided promising recipes for visual representation learning, they have primarily focused on
achieving a holistic understanding of static images or videos. Recent work on SSL has addressed
this limitation by exploiting correspondence learning on dynamic scenes. However, the patch-wise
representations of observations are not structured for the subsequent policy network, resulting in
suboptimal performance for robot backbones. For an enhanced expression of the observations, we
have introduced a simple and intuitive pipeline that explicitly learns state representation derivation
during the encoding process. For a more effective derivation of representations, we have proposed
a straightforward and intuitive pipeline that explicitly learns representation derivation during the
encoding process. Specifically, we guide the masked autoencoding process to depend heavily on
the state representation of the reference scene by applying extreme masking to the target scene.
Our extensive experiments in robot policy learning on various simulated environments verified its
superiority over conventional SSL methods and previous dynamic scene SSL methods. Extension to
the real-world environment validated its robustness.

REFERENCES

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. data2vec:
A general framework for self-supervised learning in speech, vision and language. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
ICML, volume 162 of Proceedings of Machine Learning Research, pp. 1298–1312. PMLR, 17–23
Jul 2022. URL https://proceedings.mlr.press/v162/baevski22a.html.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
In ICLR, 2021.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In Proceedings of
NeurIPS, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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