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Abstract

We propose a general framework to design posterior sampling methods for model-
based RL. We show that the proposed algorithms can be analyzed by reducing re-
gret to Hellinger distance in conditional probability estimation. We further show
that optimistic posterior sampling can control this Hellinger distance, when we
measure model error via data likelihood. This technique allows us to design and
analyze unified posterior sampling algorithms with state-of-the-art sample com-
plexity guarantees for many model-based RL settings. We illustrate our general
result in many special cases, demonstrating the versatility of our framework.

1 Introduction

In model-based RL, a learning agent interacts with its environment to build an increasingly more
accurate estimate of the underlying dynamics and rewards, and uses such estimate to progressively
improve its policy. This paradigm is attractive as it is amenable to sample-efficiency in both the-
ory [Kearns and Singh, 2002, Brafman and Tennenholtz, 2002, Auer et al., 2008, Azar et al., 2017,
Sun et al., 2019, Foster et al., 2021] and practice [Chua et al., 2018, Nagabandi et al., 2020, Schrit-
twieser et al., 2020]. The learned models also offer the possibility of use beyond individual tasks [Ha
and Schmidhuber, 2018], effectively providing learned simulators. Given the importance of this
paradigm, it is vital to understand how and when can sample-efficient model-based RL be achieved.

Two key questions any model-based RL agent has to address are: i) how to collect data from the
environment, given the current learning state, and ii) how to define the quality of a model, given the
currently acquired dataset. In simple theoretical settings such as tabular MDPs, the first question
is typically addressed through optimism, typically via an uncertainty bonus, while likelihood of
the data under a model is a typical answer to the second. While the empirical literature differs
on its answer to the first question in problems with complex state spaces, it still largely adopts
likelihood, or a VAE-style approximation [e.g. Chua et al., 2018, Ha and Schmidhuber, 2018, Sekar
et al., 2020], as the measure of model quality. On the other hand, the theoretical literature for rich
observation RL is much more varied in the loss used for model fitting, ranging from a direct squared
error in parameters [Yang and Wang, 2020, Kakade et al., 2020] to more complicated divergence
measures [Sun et al., 2019, Du et al., 2021, Foster et al., 2021]. Correspondingly, the literature also
has a variety of structural conditions which enable model-based RL.

In this paper, we seek to unify the theory of model-based RL under a general theoretical and algo-
rithmic framework. We address the aforementioned two questions by always using data likelihood
as a model quality estimate, irrespective of the observation complexity, and use an optimistic poste-
rior sampling approach for data collection. For this approach, we define a Bellman error decoupling
framework which governs the sample complexity of finding a near-optimal policy. Our main result
establishes that when the decoupling coefficient in a model-based RL setting is small, our Model-
based Optimistic Posterior Sampling algorithm (MOPS) is sample-efficient.
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A key conceptual simplification in MOPS is that the model quality is always measured using like-
lihood, unlike other general frameworks [Du et al., 2021, Foster et al., 2021] which need to mod-
ify their loss functions for different settings. Practically, posterior sampling is relatively amenable
to tractable implementation via ensemble approximations [see e.g. Osband et al., 2016a, Lu and
Van Roy, 2017, Chua et al., 2018, Nagabandi et al., 2020] or sampling methods such as stochastic
gradient Langevin dynamics [Welling and Teh, 2011]. This is in contrast with the version-space
based optimization methods used in most prior works. We further develop broad structural condi-
tions on the underlying MDP and model class used, under which the decoupling coefficient admits
good bounds. This includes many prominent examples, such as

o Finite action problems with a small witness e Q-type witness rank problems (new)

rank [Sun et al., 2019] e Kernelized Non-linear Regulators [Kakade
o Linear MDPs with infinite actions et al., 2020]
e Small witness rank and linearly embedded e Linear mixture MDPs [Modi et al., 2020, Ay-
backups (new) oub et al., 2020]

Remarkably, MOPS simultaneously addresses all the scenarios listed here and more, only requiring
one change in the algorithm regarding the data collection policy induced as a function of the poste-
rior. The analysis of model estimation itself, which is shared across all these problems, follows from
a common online learning analysis of the convergence of our posterior. Taken together, our results
provide a coherent and unified approach to model-based RL, and we believe that the conceptual
simplicity of our approach will spur future development in obtaining more refined guarantees, more
efficient algorithms, and including new examples under the umbrella of statistical tractability.

2 Related work

Model-based RL. There is a rich literature on model-based RL for obtaining strong sample com-
plexity results, from the seminal early works [Kearns and Singh, 2002, Brafman and Tennenholtz,
2002, Auer et al., 2008] to the more recent minimax optimal guarantees [Azar et al., 2017, Zanette
and Brunskill, 2019]. Beyond tabular problems, techniques have also been developed for rich ob-
servation spaces with function approximation in linear [Yang and Wang, 2020, Ayoub et al., 2020]
and non-linear [Sun et al., 2019, Agarwal et al., 2020, Uehara et al., 2021, Du et al., 2021] settings.
Of these, our work builds most directly on that of Sun et al. [2019] in terms of the structural prop-
erties used. However, the algorithmic techniques are notably different. Sun et al. [2019] repeatedly
solve an optimization problem to find an optimistic model consistent with the prior data, while we
use optimistic posterior sampling, which scales to large action spaces unlike their use of a uniform
randomization over the actions. We also measure the consistency with prior data in terms of the
likelihood of the observations under a model, as opposed to their integral probably metric losses.
Du et al. [2021] effectively reuse the algorithm of Sun et al. [2019] in the model-based setting, so
the same comparison applies. We note that recent model-based feature learning works [Agarwal
et al., 2020, Uehara et al., 2021] do measure model fit using log-likelihood, and some of their tech-
nical analysis shares similarities with our proofs, though there are notable differences in the MLE
versus posterior sampling approaches. Finally, we note that a parallel line of work has developed
model-free approaches for function approximation settings [Jiang et al., 2017, Du et al., 2021, Jin
et al., 2021], and while our structural complexity measure is always smaller than the Bellman rank
of Jiang et al. [2017], our model-based realizability is often a stronger assumption than realizability
of just the @Q* function. For instance, Jin et al. [2020], Du et al. [2019] and Misra et al. [2019] do
not model the entire transition dynamics in linear and block MDP models.

Posterior sampling in RL. Posterior sampling methods for RL, motivated by Thompson sampling
(TS) [Thompson, 1933], have been extensively developed and analyzed in terms of their expected
regret under a Bayesian prior by many authors [see e.g. Osband et al., 2013, Russo et al., 2017,
Osband et al., 2016b] and are often popular as they offer a simple implementation heuristic through
approximation by bootstrapped ensembles [Osband et al., 2016a]. Worst-case analysis of TS in RL
settings has also been done for both tabular [Russo, 2019, Agrawal and Jia, 2017] and linear [Zanette
et al., 2020] settings. Our work is most closely related to the recent Feel-Good Thompson Sampling
strategy proposed and analyzed in [Zhang, 2021], and its extensions [Zhang et al., 2021, Agarwal
and Zhang, 2022]. Note that our model-based setting does not require the two timestep strategy to
solve a minimax problem, as was required in the model-free work of Agarwal and Zhang [2022].



Model-based control. Model-based techniques are widely used in control, and many recent works
analyze the Linear Quadratic Regulator [see e.g. Dean et al., 2020, Mania et al., 2019, Agarwal
et al., 2019, Simchowitz and Foster, 2020], as well as some non-linear generalizations [Kakade
et al., 2020, Mania et al., 2020, Mhammedi et al., 2020]. Our framework does capture many of these
settings as we demonstrate in Section 6.

Relationship with Foster et al. [2021]. This recent work studies a broad class of decision mak-
ing problems including bandits and RL. For RL, they consider a model-based framing, and provide
upper and lower bounds on the sample complexity in terms of a new parameter called the decision
estimation coefficient (DEC). Structurally, DEC is closely related to the Hellinger decoupling con-
cept introduced in this paper (see Definition 2). However, while Hellinger decoupling is only used in
our analysis (and the distance is measured to the true model), the DEC analysis of Foster et al. [2021]
measures distance to a plug-in estimator for the true model, and needs complicated algorithms to
explicitly bound the DEC. In particular, it is not known if posterior sampling is admissible in their
framework, which requires more careful control of a minimax objective. The Hellinger decoupling
coefficient, in contrast, admits conceptually simpler optimistic posterior sampling techniques.

3 Setting and Preliminaries

We study RL in an episodic, finite horizon Contextual Markov Decision Process (MDP) that is
parameterized as (X, A, D, Ry, P,), where X is a state space, A is an action space, D is the dis-
tribution over the initial context, R, is the expected reward function and P, denotes the transition
dynamics. An agent observes a context 2! ~ D for some fixed distribution D.! At each time
step h € {1,..., H}, the agent observes the state 2", chooses an action a”, observes " with
E[r" | 1, an] = R"(xy,, a;,) and transitions to 2" ~ P(. | ", a"). We assume that 2" for any
h > 1 always includes the context x! to allow arbitrary dependence of the dynamics and rewards
on x'. Following prior works [e.g. Jiang et al., 2017, Sun et al., 2019], we assume that " € [0, 1]
and ZhH:1 r" € [0,1] to capture sparse-reward settings [Jiang and Agarwal, 2018]. We make no
assumption on the cardinality of the state and/or action spaces, allowing both to be potentially in-
finite. We use 7 to denote the agent’s decision policy, which maps from X — A(.A), where A(+)
represents probability distributions over a set. The goal of learning is to discover an optimal policy
w4, which is always deterministic and conveniently defined in terms of the ), function [see e.g.
Puterman, 2014, Bertsekas and Tsitsiklis, 1996]

e (at) = argmax Q" a), Q" a") =E[" + max QU (" al) [a" "], ()
ac a

where we define Q7+ (z,a) = 0 for all x, a. We also define V' (") = max, Q" (2", a).

In the model-based RL setting of this paper, the learner has access to a model class M consisting
of tuples (Pys, Rar),> denoting the transition dynamics and expected reward functions according
to the model M € M. For any model M, we use 77, and V}', to denote the optimal policy and
value function, respectively, at level & in the model M. We assume that like V,*, V}\ also satisfies
the normalization assumption V% (z) € [0, 1] for all M € M. We use EM to denote expectations
evaluated in the model M and E to denote expectations in the true model.

We make two common assumptions on the class M.

Assumption 1 (Realizability) 3 M, € M such that P! = P]\]}[* and R = R}]{J* forall h € [H].

The realizability assumption ensures that the model estimation is well-specified. We also assume
access to a planning oracle for any fixed model M € M.

Assumption 2 (Planning oracle) There is a planning oracle which given a model M, returns its
optimal policy wyy = {7} 7y = arg max, ™ [Zle RA (xh, 7 (2h))], where EM™ s
the expectation over trajectories obtained by following the policy T in the model M.

Given M € M, we define model-based Bellman error as:

Ep(M,z",a") = QY (a", a") — (PMr" + Vi) (2", ), )

'We intentionally call z! a context and not an initial state of the MDP as we will soon make certain structural
assumptions which depend on the context, but take expectation over the states.
*We use Pps and Ry to denote the sets { Py }7-, and { R}, }7_, respectively.



Algorithm 1 Model-based Optimistic Posterior Sampling (MOPS) for model-based RL

Require: Model class M, prior py € A(M), policy generator gen, learning rates 7, and opti-
mism coefficient 7.

1: Set Sy = 0.

2: fort=1,...,Tdo

3:  Observe 2} ~ D and draw h; ~ {1,..., H} uniformly at random.

4 Let L'M(M) = —n(Rh, (2, al) — r™)2 + o/ In Pl (2241 | 2" al). > Likelihood function
5. Define pi(M) = p(M|[S;—1) x po(M) exp(Zi;ll (YVar(xl) + Lhs(M)) as the posterior.

> Optimistic posterior sampling update

6:  Let m = mgen (e, pt) > policy generation
7:  Play iteration ¢ using 7r; for h = 1, ..., hy, and observe {(z?, a?, I, x?“)ﬁt:l

8:  Update Sy = Sy_1 U {zl, al,rl, 271} for h = h,.

9: end for
10: return (7y,...,77).

where for a function f : X x A x [0,1] x X, we define (P f)(x,a) = EM[f(x,a,r,2')|z, a].
This quantity plays a central role in our analysis due to the simulation lemma for model-based RL.

Lemma 1 (Lemma 10 of [Sun et al., 2019]). For any distribution p € A(M) and 2!, we
have Enroy, [V*(z1) — V™ (21)] = Earep [Zthl oyt g ot E5(M, 2", al) — AVys(a), }
where AVys(z1) = Vi (2t) — V*(al).

The Bellman error can in turn be related to Hellinger error in conditional probability estimation via
the decoupling coefficient in Definition 2, which captures the structural properties of the MDP.

We use typical measures of distance between probability distributions to capture the er-
ror in dynamcis, and for any two distributions P and @ over samples z € Z, we de-
note TV(P,Q) = 1/2E..p|dQ(z)/dP(z) — 1|, KL(P||Q) = E..pIndP(z)/dQ(z) and

Dy (P,Q)? = E..p(1/dQ(z)/dP(z) — 1)2. We use A(S) to denote the space of all probabil-
ity distributions over a set .S’ (under a suitable o-algebra) and [H] = {1,..., H}.

Effective dimensionality. We often consider infinite-dimensional maps x(z1, z2) over a pair of
inputs z; € Z7 and 29 € Z,. We define the effective dimensionality of such maps as follows.

Definition 1 (Effective dimension) Given any measure p over Z1 X Zo, and feature map X, define:

Y(p,z1)= E  x(z1,22) ® x(21,22), K(X\) = suptrace((X(p,z1) + M)~ (p, z1)).

za~p(-|21) P71

For any € > 0, define the effective dimension of  as: deg (X, €) = infyso {K(X) : AK(X) < €2},

If dim(x) = d, degr(x,0) < d, and deg (X, €) can more generally be bounded in terms of spectral
decay assumptions (see e.g. Proposition 2 in Agarwal and Zhang [2022]).

4 Model-based Optimistic Posterior Sampling

We now describe our algorithm MOPS for model-based RL in Algorithm 1. The algorithm defines
an optimistic posterior over the model class and acts according to a policy generated from this
posterior. Specifically, the algorithm requires a prior pg over the model class and uses an optimistic
model-error measure to induce the posterior distribution. We now highlight some of the salient
aspects of our algorithm design.

Likelihood-based dynamics prediction. At each round, MOPS computes a likelihood over the
space of models as defined in Line 4. The likelihood of a model M includes two terms. The first
term measures the squared error of the expected reward function R in predicting the previously ob-
served rewards. The second term measures the loss of the dynamics in predicting the observed states
21 given 2 and a” each previous round s. For the dynamics, we use negative log-likelihood as
the loss, and the reward and dynamics terms are weighted by respective learning rates n and n’. Prior
works of Sun et al. [2019] and Du et al. [2021] use an integral probability metric divergence, and
require a more complicated Scheffé tournament algorithmically to handle model fitting under total



variation unlike our approach. The more recent work of Foster et al. [2021] needs to incorporate the
Hellinger distance in their algorithm. In contrast, we directly learn a good model in the Hellinger
distance (and hence total variation) as our analysis shows, by likelihood driven sampling.

Optimistic posterior updates. Prior works in tabular [Agrawal and Jia, 2017], linear [Zanette
et al., 2020] and model-free [Zhang et al., 2021, Agarwal and Zhang, 2022] RL make optimistic
modifications to the vanilla posterior to obtain worst-case guarantees, and we perform a similar
modification in our algorithm. Concretely, for every model M, we add the predicted optimal value in
the initial context at all previous rounds s to the likelihood term, weighted by a parameter y in Line 5.
Subsequently, we define the posterior using this optimistic likelihood. As learning progresses, the
posterior concentrates on models which predict the history well, and whose optimal value function
predicts a large average value on the context distribution. Consequently any model sampled from
the posterior has an optimal policy that either attains a high value in the true MDP M™*, or visits
some parts of the state space not previously explored, as the model predicts the history reasonably
well. Incorporating this fresh data into our likelihood further sharpens our posterior, and leads to the
typical exploit-or-learn behavior that optimistic algorithms manifest in RL.

Policy Generator. Given a sampling distribution p € A(M) (which is taken as the optimistic
posterior in MOPS), and a time step h, we assume access to a policy generator mge, that takes
parameters i and p, and returns a policy mgen(h, p) : X — A (line 6). MOPS executes this policy
up to a random time h; (line 7), which we denote as (2", a"*)|a! ~ mgen(h¢,p). The MDP then
returns the tuple (zt, "t 7t 2"++1) which is used in our algorithm to update the posterior. The
choice of the policy generator plays a crucial role in our sample complexity guarantees, and we
shortly present a decoupling condition on the generator which is a vital component of our analysis.

For the examples considered in the paper (see Section 6), policy generators that lead to good regret
bounds are given as follows.

e ()-type problems: mgep (h, p) follows a sample from the posterior, mgen (h, p) = mar, M ~ p.

e V-type problems with finite actions: e, (h,p) generates a trajectory up to x" using a single
sample from posterior 7, with M ~ p and then samples a” ~ Unif(.A).3

e V-type problems with infinite actions: 7gen(h,p) draws two independent samples M, M’ ~ p
from the posterior. It generates a trajectory up to 2" using 7,7, and samples a” using 7y (-|2").

It is worth mentioning that for Q-type problems, 7gen(h,p) does not depend on h. Hence we can
replace random choice of h; by executing length H trajectories in Algorithm 1 and using all the
samples in the loss. This modification of MOPS has a better regret bound in terms of H dependency.

5 Main Result

We now present the main structural condition that we introduce in this paper, which is used to char-
acterize the quality of the policy generator used in Algorithm 1. We will present several examples of
concrete models which can be captured by this definition in Section 6. The assumption is inspired
by prior decoupling conditions [Zhang, 2021, Agarwal and Zhang, 2022] used in the analysis of
contextual bandits and some forms of model-free RL.

Definition 2 (Hellinger Decoupling of Bellman Error) Let a distribution p € A(M) and a policy
7(x", a"|zt) be given. For any e > 0, a € (0,1] and h € [H], we define the Hellinger decoupling
coefficient dc” (e,p,m, &) of an MDP M* as the smallest number c > 0 so that for all x*:

[e3

]EMNP E(:r}".nl‘)m‘m\,(-\,’I;l)(SB(A‘/[a xhaah) S (Ch Eh(Mv xhvah)> +67

M~p (zh al)~m(-|zt)
where (" (M, 2" a") = Dy (Py(-|2", a"), Po(-|z", a™))? + (Rar (2", a") — Ry (2", a"))2

Intuitively, the distribution p in Definition 2 plays the role of our estimate for A/*, and we seek a
low regret for the optimal policies of models M ~ p, which is closely related to the model-based
Bellman error under samples z". a" are drawn from 7 (the LHS of Lemma 1). The decoupling
inequality relates the Bellman error to the estimation error of p in terms of mean-squared error of

3This can be extended to a more general experimental design strategy as we show in Appendix E.1.



the rewards and a Hellinger distance to the true dynamics P,. However, it is crucial to measure this
error under distribution of the data which is used under model-fitting. The policy T = Tgen(h, p)
plays this role of the data distribution, and is typically chosen in a manner closely related to p in
our examples. The decoupling inequality bounds the regret of p in terms of estimation error under

x, a™ ~ 7, for all p, and allows us to find a good distribution p via online learning.

For stating our main result, we define a standard quantity for posterior sampling, measuring how
well the prior distribution py used in MOPS covers the optimal model M,.

Definition 3 (Prior around true model) Given « > 0 and py on M, define
w(a,po) = inf [ae — Inpo(M(e))]

where M(e) = {M € M : sup sup "(M,z" a") < 62}, with 0M(M,z", ah) =
z! h,zh,ah

KL(Py (|2, a")||Pa (-], a")) + (Ras (a",a") = Ry (2", a))%.

Definition 3 implicitly uses model realizability to ensure that M(e) is non-empty for any ¢ > 0.
However, we note that our bound based on w(c, pg) can still be applied even if the model is mis-
specified, whence the optimization over € naturally gets limited above the approximation error. Un-
derstanding the dependence of such approximation error in the final bounds and instantiating it with
various models of misspecification/corruption is an interesting direction for future work.

Before stating our main result, we state a useful property of w(c, pp), which illustrates its behavior.
It also says that for concrete problems, we can replace the KL ball by the better behaved Hellinger
ball and only pay an extra logarithmic penalty.

Lemma 2. If M is finite, pg is uniform over M, and M* € M, then w(a, pg) < In|M| for all
« > 0. More generally, suppose P* < Py with || dP*/dPy||o < B for any reference probability
measure Py, and that M admits an /.,-covering under the metric £* (given in Definition 2) for all
h € [H], of a size N (¢) at a radius €. Then for any € < 2/3 such that B > log(6B? /¢), there exists
a prior p§ such that w(c, p§) < ae + log N(e/(61og(B/v)), where v = ¢/(61og(6B%/¢)).

The prior p§ adds a small perturbutation to the dynamics in M in order to ensure the boundedness
of the KL divergence to P*. Detailed choice of p§ and definition of ((B) are based on the result
comparing KL divergence and Hellinger distance in Sason and Verdd [2016, Theorem 9], and we
provide a proof of Lemma 2 in Appendix C.

We now state the main result of the paper.

Theorem 1 (Sample complexity under decoupling) Under Assumptions 1 and 2, suppose that there
exists a > 0 such that for all p, dc" (e, p, Tgen (R, D), ) < dc" (e, o). Define

1 H (1—a)/a
de(e, ) = <E Z dch(ga)a/(la)) )

h=1
Ifwe take 1 =1/ = 1/6 and v < 0.5, then the following bound holds for MOPS:

d w(3HT, po)
Z]E {V*(xtl) - MIE VM(gc})] Sf;po +2¢T+ HT [6 + (1 — a)(20Hya) T== dc(e, o) (1,@} .
=1 ~Pt

To simplify the result, we consider finite model classes with pgy as the uniform prior on M. For
a < 0.5, by taking v = min(0.5, /In [M|/T, (In|M|/T)}~%dc(e, a)=*/H), we obtain

Ly : de(e,a)In M| o [In|M
T;E{V*(x%)—M@mVM(x%)] :O(mm(H( c(e a%n\ |) ’ n|T \)JFGH). 3

We note that in Theorem 1, the decoupling coefficient fully characterizes the structural properties of
the MDP. Once dc(e, o) is estimated, Theorem 1 can be immediately applied. We will instantiate
this general result with concrete examples in Section 6. Definition 2 appears related to the decision
estimation coefficient (DEC) of Foster et al. [2021]. As expalined in Section 2, our definition is
only needed in the analysis, and more suitable to posterior sampling based algorithmic design. The
definition is also related to the Bilinear classes model of Du et al. [2021], since the bilinear structures
can be turned into decoupling results as we will see in our examples. Compared to these earlier
results, our definition is more amenable algorithmically.



Proof of Theorem 1

We now give a proof sketch for Theorem 1. As in prior works, we start from bounding the regret of
any policy 7, in terms of a Bellman error term and an optimism gap via Lemma 1. We note that in
the definition of Bellman error in Lemma 1, model M being evaluated is the same model that also
generates the data, and this coupling cannot be handled directly using online learning. This is where
the decoupling argument is used, which shows that the coupled Bellman error can be bounded by
a decoupled loss. In the decoupled loss, the data is generated according to mgen (h¢, pt), while the
model being evaluated is drawn from p; independently of data generation. This intuition is captured
in the following proposition, proved in Appendix A.

Proposition 1 (Decoupling the regret) Under conditions of Theorem 1, the regret of Algorithm 1 at
any round t can be bounded, for any ;> 0 and € > 0, as

B Vi(eh) - B Vuah)| <E B [u™ (Mol ) - AVi(ad)]

I ~p,

+H [e +(1- a)(u/a)—a/(l—a)dc<€7a)a/(l—a)} _

The proposition involves error terms involving the observed samples (:vft, a,}t“ , rft , xi““), which
our algorithm controls via the posterior updates. Specifically, we expect the regret to be small
whenever the posterior has a small average error of models M ~ py, relative to M,. This indeed
happens as evidenced by our next result, which we prove in Appendix B.

Proposition 2 (Convergence of online learning) Withn = n’ = 1/6 and v < 0.5, MOPS ensures:

T
>E E [0.3n7*1£ht(z»1, zhe alt) — AVM(mtI)} < v Ww(3HT, po) + 2+T.
t=1

~Pt
Armed with Proposition 1 and Proposition 2, we are ready to prove the main theorem as follows.

Proof of Theorem 1. Combining Propositions 1 and 2 with uH = 0.37)/~ gives the desired result.
a

6 MDP Structural Assumptions and Decoupling Coefficients Estimates

Since Definition 2 is fairly abstract, we now instantiate concrete models where the decoupling co-
efficient can be bounded in terms of standard problem complexity measures. We give examples of
V-type and @Q-type decouplings, a distinction highlighted in many recent works [e.g. Jin et al., 2021,
Du et al., 2021]. The V-type setting captures more non-linear scenarios at the expense of slightly
higher algorithmic complexity, while Q)-type is more elegant for (nearly) linear settings.

6.1 V-type decoupling and witness rank

Sun et al. [2019] introduced the notion of witness rank to capture the tractability of model-based
RL with general function approximation, building on the earlier Bellman rank work of Jiang et al.
[2017] for model-free scenarios. For finite action problems, they give an algorithm whose sample
complexity is controlled in terms of the witness rank, independent of the number of states, and show
that the witness rank is always smaller than Bellman rank for model-free RL. The measure is based
on a quantity called witnessed model misfit that captures the difference between two probability
models in terms of the differences in expectations they induce over test functions chosen from some
class. We next state a quantity closely related to witness rank.

Assumption 3 (Generalized witness factorization) Ler F = {f(z,a,r,2') =r + g(z,a,2’) : g €
G}, with g(z,a,2') € [0,1], be given. Then there exist maps " (M, x') and u"(M,z"), and a
constant . € (0,1], such that for any context x*, level h and models M, M' € M, we have
KEg(M, M’ h,x') < [(W"(M,z"),u"(M',2"))]
<sup E E |(PJ}\L/I,]") (z" a") — (P! ) (2, ah)| ,  (Bellman domination)

feF ah~mar|at al oy (zh)



where Eg(M, M’ h,z') = E [SB(M’.,ach,ah’)]. We assume that ||ul (M, z') || <

:L‘hNTU\,[,(LhN‘ITAM/ ‘:El
B forall M and xl.

Sun et al. [2019] define a similar factorization, but allow arbitrary dependence of f on the reward
to learn the full distribution of rewards, in addition to the dynamics. We focus on only additive
reward term, as we only need to estimate the reward in expectation, for which this structure of test
functions is sufficient. The additional dependence on the context ! allows us to capture contextual
RL setups [Hallak et al., 2015]. This assumption captures a wide range of structures including
tabular, factored, linear and low-rank MDPs (see Sun et al. [2019] for further examples).

The bilinear structure of the factorization enables us to decouple the Bellman error. We begin with
the case of finite action sets studied in Sun et al. [2019]. Let p o” ¢ be a non-stationary policy which
follows 7 ~ p for h — 1 steps, and chooses a” ~ 7/(-|z") for 7’ ~ q.

Proposition 3 Under Assumption 3, suppose further that | A| = K. Let us define z1 = x', 20 = M
and x = " (M, x') in Definition 1. Then for any € > 0, we have

4K
de(e, p, Tgen(h, ), 0.5) < ?dcﬁ‘ <wh, %e) ,  where Tgen(h,p) = p ol Unif(A).

The proofs of Proposition 3 and all other results in this section are in Appendix E.

Sample complexity under low witness rank and finite actions. For ease of discussion, let
dim(yp") < dforall h € [H] and | M| < oc. Plugging Proposition 3 into Theorem 1 gives:

Corollary 1 Under conditions of Theorem 1, suppose further that Assumption 3 holds with
dim(y") < d for all h € [H]. Let the model class M an action space A have a finite cardi-

nality with | A| = K. Then MOPS satisfies % 31, V* (1) — V™ (z}) < O (M%W) .

With a standard online-to-batch conversion argument [Cesa-Bianchi et al., 2004], this implies a
2 57

sample complexity bound to find an e-suboptimal policy of O (%W), when the contexts are

i.i.d. from a distribution. This bound improves upon those of Sun et al. [2019],and Du et al. [2021],

- A ( H3d2K 1. TIM||F|
who require (9( e lnT

) samples, where F is a discriminator class explicitly used in

their algorithm, while we only use the discriminators implicitly in our analysis.

Factored MDPs Sun et al. [2019] show an exponential separation between sample complexity of
model-based and model-free learning in factored MDPs [Boutilier et al., 1995] by controlling the
error of each factor independently. The gap is demonstrated by choosing a discriminator class that
measures the error separately on each factor in their algorithm. A similar adaptation of our ap-
proach to measure the likelihood of each factor separately in the setting of Proposition 3 allows our
technique to handle factored MDPs.

Next, we further generalize this decoupling result to large action spaces by making a linear embed-
ding assumption that can simultaneously capture all finite action problems, as well as some more
general settings [Zhang, 2021, Zhang et al., 2021, Agarwal and Zhang, 2022].

Assumption 4 (Linear embeddability of backup errors) Let F = {f(z,a,r,z’) =
g(z,a,2") : g € G}, withg(x,a,z") € [0,1], be given. There exist (unknown) functions " ("
and wh(M, f, 2") such thatV f € F, M € M, h € [H| and z", a":

(P]{I)[f)<mh’ ah) - (Pf/f)(xhvah) = <wh(M’ f?xh)) ¢h(xh7ah)> .
We assume that ||w" (M, f,2")||la < Ba for all M, f, 2" and h € [H].

Since the weights w” can depend on both the f and x", for finite action problems it suffices to
choose ¢"(x,a) = e, and w" (M, f,2") = (P¥, f)(z", a) — (P f)(2", a))_,. For linear MDPs,
the assumption holds with ¢" being the MDP features and w" being independent of 2". A similar
assumption on Bellman errors has recently been used in the analysis of model-free strategies for
non-linear RL scaling to large action spaces [Zhang, 2021, Zhang et al., 2021, Agarwal and Zhang,
2022]. Note that Assumption 4 posits a pointwise factorization for each 2", " and for individual
test functions f € F, and in general is not directly comparable to Assumption 3, which assumes a
factorization of the average error in backups in the worst-case over all test functions. Assumption 3

r +
")



allows us to decouple the distribution of 2 from the model being evaluated, while Assumption 4
is needed to decouple the choice of actions a”. Obtaining a decoupling as per Definition 2 requires
using the two assumptions together.

We now state a general bound on the decoupling coefficient under Assumptions 3 and 4.

Proposition 4 Suppose Assumptions 3 and 4 hold. For ¢" in Definition 1, we define z = x" and

20 = a™, with same choices for " as Proposition 3. Then for any € > 0, we have

dch(€7pa ’/Tgen(hvp)a 025) S 16574deﬂ(¢h> 61>2deﬂ((f)ha 62)7 where ’/Tgen(h»p) =P Oh p

Jor any €1, €5 > 0 satisfying Bie1/x + 2BgegV dett (¥ €1)/1c = €.

Compared with Proposition 3, we see that the exponent o changes to 0.25 in Proposition 4. This hap-
pens because we now change the action choice at step h to be from 7., where M’ ~ p independent
of M. To carry out decoupling for this choice, we need to use both the factorizations in Assump-
tions 3 and 4, which introduces an additional Cauchy-Schwarz step. This change is necessary as no
obvious exploration strategy like uniform exploration of Proposition 3 is available here.

Sample complexity for low witness rank and (unknown) linear embedding. Similar to Corol-
lary 1, we can obtain a concrete result for this setting by combining Proposition 4 and Theorem 1.

Corollary 2 Under conditions of Theorem 1, suppose further that Assumptions 3 and 4 hold,
and |[M| < oo. For any e1,ea > 0, let deg(" 1) < deog(,€1) and deg(o",e2) <
der (¢, €2), for all h € [H]. Then MOPS satisfies %Zthl V*(x}) — V™i(z}) <

@) (ﬂ (deff(wsfl)zde;f‘(¢=€2)ln‘M‘)l/Zl + (B;Cl 4 Vv 23262‘%0“(1/)751)) H) .

K K

When the maps ", ¢" are both finite dimensional with dim(¥") < d; and dim(¥") < d; for all
8d2dy H* In | M|

Py ) in this setting. We are not aware of

h, MOPS enjoys a sample complexity of O (

any prior methods for this setting. We note that similar models have been studied in a model-free
framework in Agarwal and Zhang [2022], and that result obtains the same suboptimal ¢~* rate as
shown here. The loss of rates in 7" arises due to the worse exponent of 0.25 in the decoupling bound
of Proposition 4, which is due to the extra Cauchy-Schwarz step as mentioned earlier. For more
general infinite dimensional cases, it is straightforward to develop results based on an exponential
or polynomial spectral decay analogous to the prior model-free work.

6.2 (Q-type decoupling and linear models

We now give examples of two other structural assumptions, where the decoupling holds pointwise
for all x and not just in expectation. As this is somewhat analogous to similar phenomena in Q-type
Bellman rank [Jin et al., 2021], we call such results )-type decouplings. We begin with the first
assumption which applies to linear MDPs as well as certain models in continuous control, including
Linear Quadratic Regulator (LQR) and the KNR model.

Assumption 5 (Q-type witness factorization) Let F be a function class such that f(x,a,r,z’) =
r+g(z,a,2") for g € G, with g(x,a,z') € [0,1], for all x, a,z’. Then there exist maps " (x", a")
and u" (M, f) and a constant k > 0, such that for any h,z",a", f € F and M € M:

|(Parf) (", al) — (P* )z, a")| > €(M, f 2", a"), sup (M, f,z",a") > kEp(M, 2", a"),
feF

with E(M, f, ", ah) = | (" (z", "), u" (M, f))|. We assume ||u" (M, f)|2 < By forall M, f, h.

Assumption 5 is clearly satisfied by a linear MDP when ¢" are the linear MDP features and JF
is any arbitrary function class. We show in Appendix D.1 that this assumption also includes the
Kernelized Non-linear Regulator (KNR), introduced in Kakade et al. [2020] as a model for contin-
uous control that generalizes LQRs to handle some non-linearity. In a KNR, the dynamics follow
2 = Wrp(zh, a") + €, with e ~ N(0,021), and the features (z", a”) are known and lie in an
RKHS. In this case, for an appropriate class F, we again get Assumption 5 with features ¢" = ¢
from the KNR dynamics.

Under this assumption, we get an immediate decoupling result, with the proof in Appendix F.



Proposition 5 Under Assumption 5, let define zo = (x",a") and x = ¢" (2", a") in Definition 1.

Then for any € > 0, we have
4
de(e, p, Tgen (R, p), 0.5) < —5 deff <z/1h’, Bi€> ,  where Tgen(h, p) = mar with M ~ p.
K 1

Here we see that the decoupling coefficient scales with the effective feature dimension, which now
simultaneously captures the exploration complexity over both states and actions, consistent with
existing results for Q-type settings such as linear MDPs.

Sample complexity for the KNR model. We now instantiate a concrete corollary of Theorem 1 for
the KNR model, under the assumption that z* € R4x, o(2" a") € R% and |@(2",a")|s < B for
all 2" a™ and h € [H]. A similar result also holds for all problems where Assumption 5 holds, but
we state a concrete result for KNRs to illustrate the handling of infinite model classes.

Corollary 3 Under conditions of Theorem 1, suppose further that we apply MOPS to the KNR
model with the model class Mygyr = {W € Ré4x*d . |W|y < R}. The MOPS satisfies:

. d2dx log(R+/d, BHT /o)
LS VA (ad) -V (ad) < OBy BUERVLDITIO)

To?

Structurally, the result is a bit similar to Corollary 1, except that there is no action set dependence
any more, since the feature dimension captures both state and action space complexities in the Q-
type setting as remarked before. It is proved by using the bound on w(q, pg) in Lemma 11 in
Appendix D.1 and the decoupling coefficient bound in Proposition 7 in Appendix F with deg = d.

We also do not make a finite model space assumption in this result, as mentioned earlier. To apply
Corollary 3 to this setting, we bound w(7’,pg) in Lemma 11 in Appendix D.1. We notice that
Corollary 3 has a slightly inferior did ~ dimension dependence compared to the dg (dx +dg) scaling
in Kakade et al. [2020]. It is possible to bridge this gap by a direct analysis of the algorithm in
this case, with similar arguments as the KNR paper, but our decoupling argument loses an extra
dimension factor. Note that it is unclear how to cast the broader setting of Assumption 5 in the
frameworks of Bilinear classes or DEC.

Linear Mixture MDPs. A slightly different Q)-type factorization assumption which includes linear
mixture MDPs [Modi et al., 2020, Ayoub et al., 2020], also amenable to decoupling, is discussed in

Appendix D.2. For this model, we get an error bound of O (H A/ %’ng) . Given our assump-

tion on value functions normalization by 1, this suggests a suboptimal scaling in H factors [Zhou
et al., 2021], because our algorithm uses samples from a randomly chosen time step only and our
analysis does not currently leverage the Bellman property of variance, which is crucial to a sharper
analysis. While addressing the former under the Q-type assumptions is easy, improving the latter
for general RL settings is an exciting research direction.

7 Conclusion

This paper proposes a general algorithmic and statistical framework for model-based RL bassd on
optimistic posterior sampling. The development yields state-of-the-art sample complexity results
under several structural assumptions. Our techniques are also amenable to practical adaptations, as
opposed to some prior attempts relying on complicated constrained optimization objectives that may
be difficult to solve. Empirical evaluation of the proposed algorithms would be interesting for future
work. As another future direction, our analysis (and that of others in the rich observation setting)
does not leverage the Bellman property of variance, which is essential for sharp horizon dependence
in tabular [Azar et al., 2017] and some linear settings [Zhou et al., 2021]. Extending these ideas to
general non-linear function approximation is an important direction for future work. More generally,
understanding if the guarantees can be more adaptive on a per-instance basis, instead of worst-case,
is critical for making this theory more practical.
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