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Abstract. Medical image segmentation tasks are often intricate and
require medical domain expertise. Recent advancements in deep learn-
ing have expedited these demanding tasks, transitioning from specialized
models tailored to each task to versatile foundation models capable of
accommodating various image modalities. However, many of these foun-
dation models are optimized for GPU computation, necessitating sig-
nificant computational resources and constraining their practical utility
in clinical settings. Furthermore, their variable accuracy across modali-
ties and novel domains undermines their reliability in clinical practice.
To address these limitations, we undertake a comparative investigation
into deploying medical image segmentation models on CPU, focusing on
accuracy and runtime efficiency, as part of the “CVPR 2024: Segment
Anything In Medical Images On Laptop” challenge. Our methodology
employs different models customized for each modality, including pre-
trained EfficientViT-SAM and LiteMedSAM to yield the most precise
and efficient outcomes. Additionally, to bolster model performance for
datasets featuring small regions of interest, such as PET scans, we in-
tegrate a majority voting mechanism. We optimize runtime using the
OpenVINO format within a C++ inference script. This approach im-
proves inference runtime while maintaining competitive accuracy, achiev-
ing an average DSC score of 0.86 on the validation set and 0.75 on the
testing set with an average runtime of 4.61s on testing set. Notably,
given that most modalities are evaluated in a zero-shot manner, our
findings suggest that the zero-shot capability of foundation models can
be further refined through dataset-specific inference strategies.
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1 Introduction

Medical image segmentation, which involves manually delineating regions of in-
terest (ROI), is a time-consuming endeavor. Furthermore, it requires a significant
level of domain expertise for the precise identification of relevant landmarks and
segmentation. The advent of deep learning marks a significant step forward to an
automated solution for medical image segmentation [9]. Nevertheless, the vari-
ance between different medical image modalities and segmentation tasks makes
developing a general segmentation model challenging [19]. However, recent ad-
vances in leveraging foundation models [1] have the potential to address these
challenges. For example, by leveraging these pre-trained foundation models with
prompt engineering techniques, one can optimize model performance without
the need for model fine-tuning using large-scale medical image datasets.

Notably, the Segment Anything model (SAM) [5], a vision foundation model
trained on a billion masks from 11 million natural scene images, has demon-
strated immense potential to automate segmentation tasks. SAM is a prompt-
able model—that is, it accepts prompts to guide segmentation, such as points,
bounding boxes, or masks. While SAM shows strong zero-shot segmentation ca-
pabilities, differences in data statistics (intensity ranges and distributions) and
inhomogeneity of medical images compared to natural scene images pose signif-
icant challenges, potentially limiting its performance [13,4,2].

Accordingly, MedSAM has been proposed to address the limited generaliz-
ability of SAM for medical image segmentation. It is a SAM-based model fine-
tuned on one million medical image-ground truth segmentation pairs across 10
modalities [11]; it demonstrates a significant improvement in zero-shot medical
image segmentation tasks in comparison to the original SAM. Nevertheless, given
the large architecture footprint inherited from SAM, inference (or mask genera-
tion) requires GPU resources to perform efficiently and timely. This computing
infrastructure requirement impedes the deployment of MedSAM in real-world
scenarios, such as in clinical settings.

Therefore, there is a need for lightweight, promptable medical image segmen-
tation models that can be deployed on laptops or edge devices without relying
on expensive and scarce GPU resources. Accordingly, significant effort has been
invested in various optimization techniques, such as model distillation, quanti-
zation, and pruning[12]. For example, LiteMedSAM consists of a distilled[15,8]
version of MedSAM resulting in a more compact and efficient model, with re-
duced model size and, hence, inference time. Similarly, EfficientViT-SAM [18]
replaces the heavy encoder of SAM with EfficientViT [7] through distillation.
These studies have demonstrated the effectiveness of transferring knowledge to
lightweight image encoders, showcasing their ability to reduce model size and
runtime while maintaining accuracy to a considerable extent. However, their ef-
ficacy for zero-shot transfer to the medical imaging domain remains to be further
investigated.

Here, we leverage these lightweight foundation models for efficient medical
image segmentation using an edge device with limited memory and hardware (a
3.6GHz Intel CPU with 8G of RAM). To date, there is no one-size-fits-all solu-

https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM
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tion for medical image segmentation; hence, we opt to use multiple lightweight
foundation models in conjunction. Specifically, we explore the performance of
different models—EfficientViT-SAM[18], EfficientSAM[16], and LiteMedSAM—
across medical image modalities by comparing their accuracy and runtime. We
further enhance model performance for 3D data with small regions of interest,
such as PET scans, by integrating multiple-view knowledge and employing a
majority voting strategy to combine segmentations across anatomical views. To
reduce the model size, we converted the model into a lightweight format using
OpenVINO. Finally, to accelerate deployment efficiency, we use a C++ inference
script with an embedding caching mechanism that reduces runtime compared to
the Python-based approach due to its compiled nature, optimized memory man-
agement, and direct hardware interaction [6]. This combination of strategies
results in significant improvement in runtime while maintaining comparable ac-
curacy on the validation set and testing set, demonstrating the potential of our
solution to make advanced medical image segmentation models more accessible
and efficient in practice without requiring an immense amount of labeled data
for model fine-tuning.

2 Methods

2.1 Pre-processing

In the pre-processing phase, the intensity of each grey-scale 2D image (or 2D
slices from 3D medical images) was normalized to the range of [0, 255]. Then,
Gaussian normalization (which may produce negative values) was applied for Ef-
ficientSAM and EfficientViT-SAM, while min-max normalization (values are in
the range of [0,1]) was applied for LiteMedSAM-based inference. The normalized
images are then either padded or resized to match the required input dimension
from each model (EfficientSAM: input image size of 1024×1024; EfficientViT-
SAM: input image size of 512×512; LiteMedSAM: input image size of 256×256).
Our models were validated using 3,278 images from the validation set (Table 1;
see section 3.1 for more information about the data).

Table 1. The validation set consists of both 2D images and 3D volumes across various
modalities. The 2D data includes images from CT, MR, Microscopy, Dermoscopy, En-
doscopy, Fundus, X-Ray, and Ultrasound—US, while the 3D data comprises volumetric
scans from CT, MR and PET.

Modality Microscopy Dermoscopy Endoscopy Fundus X-ray US PET MR CT
Number
of Subjects 50 66 200 10 581 600 3 628 1140

2.2 Proposed Method

Our approach (Figure 1) involves a tailored selection of SAM-based models for
each medical image modality, combined with prompt engineering techniques

https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM
https://docs.openvino.ai/2024/index.html
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designed to enhance segmentation accuracy. By customizing the model and
prompts based on the specific characteristics of each modality, we aim to optimize
performance across diverse imaging types and improve the overall robustness of
the segmentation process.

Fig. 1. Modality-specific strategy for medical image segmentation in edge device de-
ployment.

Model selection. Our approach combines modality-specific strategies that
leverage the potential of zero-shot generalizability of lightweight, pre-trained
SAM-based foundation models. We found that EfficientViT-SAM[18], LiteMed-
SAM, and EfficientSAM[16] demonstrated different generalizability across medi-
cal imaging modalities, requiring an empirical selection of inference models based
on their performance.

Prompt engineering. To enhance the zero-shot performance of foundation
models, one promising approach is to explore different model prompts [14].
Prompts—a click (point) or a bounding box—provide the spatial priors for tar-
get location and segmentation. Specifically for 3D medical data, an ROI within
the current inference slice shares a similar spatial location with the same ROI
in adjacent slices. Given that these foundation models only take 2D images as
input, it is possible to use the mask prediction of the current inference slice to
generate a bounding box for the next inference slice. This strategy can be lever-
aged to improve the prompt by narrowing the bounding box to include only the
ROI in an automated fashion.

https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM
https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM
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3D data segmentation. Another challenge in deploying foundation models is
the potential lack of consideration for 3D spatial information. A single anatom-
ical view (or plane) of 3D images, specifically the axial view, is commonly used
for inference with 2D foundation models. However, some regions of interest may
be easier to segment by considering other anatomical views. Here, we also lever-
age a majority voting mechanism to integrate segmentation from multiple views
for PET image segmentation.

2.3 Post-processing

The model-generated mask underwent post-processing steps, which included
cropping the padded space from the pre-processing step and resizing the mask
to the original image dimensions using a linear interpolation algorithm. Subse-
quently, the output logits were thresholded at a value of 0.

2.4 Inference efficiency

Model format. Efficient deep learning model deployment is challenging due
to dependencies on specific frameworks, libraries, and computational environ-
ments. Moreover, large amounts of model weights and intricate architectures
make model deployment take an extensive time to run without GPU acceler-
ators. Thus, we leveraged the Open Visual Inference and Neural Network Op-
timization (OpenVINO) project to enhance model efficiency. OpenVINO stores
model graphs in a lightweight format and provides a C++ API optimized for
Intel hardware, reducing initialization and runtime. We exported our model to
the ONNX format, taking advantage of its graph optimization features, and then
converted the ONNX graph to OpenVINO for execution with a C++ pipeline.

Embedding cache. Given that the image encoder is the most computationally
expensive part of SAM-based models, we cache the image embedding for 3D
inference with multiple ROIs to avoid recalculation.

Docker image. Regarding runtime evaluation, our results include Docker im-
age loading time, which is significantly impacted by the Docker image size. We
adjusted the base image to include only the operating system, system libraries,
and necessary libraries for imaging processing and model inference as the initial
layer for building a Docker image. This adjustment notably decreased loading
time compared to the original Docker image provided by the CVPR challenge.

3 Experiments

3.1 Dataset and evaluation measures

The “CVPR 2024: Segment Anything In Medical Images On Laptop” challenge
dataset consists of three subsets: 1) more than one million image-ground truth
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segmentation pairs of pre-processed training data; 2) 3,278 image-bounding box
pairs of pre-processed validation data; 3) 10 testing set demos from 10 different
modalities with image-bounding box-ground truth segmentation triads. The ac-
curacy and runtime were evaluated on the validation set and final testing set
(as per the challenge).

We evaluated segmentation accuracy using two distinct metrics, Dice Simi-
larity Coefficient (DSC) and Normalized Surface Dice (NSD), and the runtime as
our deployment efficiency measure. Models were deployed using CPU restrained
within 8GB of memory by Docker. These metrics collectively contribute to the
ranking computation of the challenge.

3.2 Implementation details

Environment settings. Table 2 presents the development environment and
general requirements.

Table 2. Development environments and requirements.

System Ubuntu 20.04.6 LTS
CPU AMD EPYC-Milan Processor@2.6GHz
RAM 120GB
GPU (number and type) One NVIDIA A100 40GB
CUDA version 12.0
Programming language Python 3.10
Deep learning framework torch 2.0.1, torchvision 0.15.2
Specific dependencies N/A
Code https://github.com/NeuroDesk/cvpr-sam-on-laptop-2024

Training protocols. To improve the performance of LiteMedSAM for spe-
cific modalities, including PET and microscopy, we explored model fine-tuning
using Sharpness-aware Minimization [3] for loss optimization. Sharpness-aware
Minimization considers regions in the loss landscape with uniformly low val-
ues instead of solely focusing on achieving the lowest possible loss value. This
strategy aims to improve the robustness of model performance given our small
training set. However, given the memory-performance gain trade-off, we did not
include the fine-tuned model in our final challenge submission.

Initially, we converted 3D PET images into 2D slices and augmented these
alongside microscopy images using random flips. Considering training efficiency,
we only fine-tuned the image encoder of LiteMedSAM, keeping the remaining
parameters frozen. Detailed training protocols are listed in Table 3.

⋆ https://github.com/MrYxJ/calculate-flops.pytorch
⋆⋆ https://github.com/lfwa/carbontracker/

https://github.com/NeuroDesk/cvpr-sam-on-laptop-2024
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Table 3. Training protocols.

Pre-trained Model LiteMedSAM
Batch size 16
Patch size 16×16×3
Total epochs 50
Optimizer AdamW [10], Sharpness-aware Minimization[3]
Initial learning rate (lr) 0.00005
Lr decay schedule ReduceLROnPlateau
Training time 20 hours
Loss function DiceLoss + BCEWithLogitsLoss + MSELoss
Number of model parameters 9.79M*
Number of flops 147.57 GFLOPS*
CO2eq 1 Kg**

4 Results and Discussion

The runtime and DSC scores were compared across nine modalities using LiteMed-
SAM, EfficientSAM, and EfficientViT-SAM models on 450 images sampled from
the training set (50 images for each modality), for which ground-truth masks
were available. The results (Figure 2) indicate that LiteMedSAM demonstrated
great performance while maintaining a competitive runtime for most modali-
ties. However, for microscopy and X-Ray data, EfficientViT-SAM outperformed
LiteMedSAM by 10.31% DSC and 6.12% DSC, respectively, even though LiteMed-
SAM was trained using these data. Based on these findings, EfficientViT-SAM
was selected for microscopy and X-Ray images, while LiteMedSAM was selected
for the rest of the modalities.

As LiteMedSAM performed worse on PET images, we explored two meth-
ods to further improve segmentation accuracy: 1) fine-tuning LiteMedSAM with
PET data; 2) using the pre-trained LiteMedSAM with a majority voting mech-
anism that incorporates 3D spatial information across segmentations generated
from each anatomical view (axial, sagittal, and coronal). As shown in Figure 3,
the majority voting mechanism using LiteMedSAM improved the DSC score and
NSD by 9% and 22.28% compared to the pre-trained LiteMedSAM model as the
baseline model, respectively. However, the fine-tuned and EfficientViT models
with majority voting yielded little to no accuracy improvement. These results
(Figure 3) demonstrate the effectiveness of incorporating 3D spatial information
to improve segmentation accuracy without further training.

Given these initial findings, we proposed a solution that includes multiple
models and techniques tailored for different imaging modalities rather than hav-
ing a one-size-fits-all solution. EfficientViT-SAM is applied to microscopy and
X-ray images using a bounding box as the prompt. The original LiteMedSAM
model is utilized for other modalities, with bounding boxes automatically gen-
erated from previous slice segmentation for 3D MR and CT data. To improve
segmentation accuracy for PET, a majority voting mechanism is applied to in-
tegrate 3D spatial information.

https://github.com/bowang-lab/MedSAM/tree/LiteMedSAM
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LiteMedSAM

E�cientViT-SAM
E�cientSAM

Fig. 2. Runtime as a function of DSC score across models—LiteMedSAM, EfficientViT-
SAM, and EfficientSAM—and 9 modalities sampled from the training set. All models
were converted to OpenVINO graphs for C++ inference pipeline.

EfficientViT-SAM 
+ Majority Voting

Fig. 3. DSC and NSD scores for PET validation data (n = 3) segmentation, as well
as the runtime, are shown for three distinct approaches: baseline model, pre-trained
LiteMedSAM with majority voting to incorporate 3D spatial information, finetuned
LiteMedSAM with majority voting and EfficientViT-SAM with majority voting. The
baseline model is in the Pytorch framework; the other three are OpenVINO models in
the C++ pipeline.



Modality-Specific Strategies using Lightweight SAM 9

4.1 Quantitative results on validation set

Our proposed method was evaluated in PyTorch, ONNX, and OpenVINO im-
plementation, comparing DSC and NSD scores across all modalities to further
understand the impact of different frameworks.

Overall, OpenVINO has a lower average DSC score than PyTorch and ONNX
but achieves the highest average NSD score (Table 4). The performance variation
among the three formats may be attributed to differences in the preprocessing
step. OpenVINO’s inference script used OpenCV’s bilinear interpolation with
fixed coefficients for faster processing, while PyTorch and ONNX employed bi-
linear interpolation with custom coefficients based on image dimensions.

While OpenVINO showed only marginal differences in accuracy compared
to ONNX and PyTorch for 2D images, it exhibited significant discrepancies for
3D images, where bounding boxes were derived from masks in previous slices
(Table 4). Its accuracy dropped by approximately 2% for CT and 3% for MR,
while gaining notable improvement on PET images, achieving approximately 3%
higher DSC and 8% higher NSD scores.

Table 4. Accuracy on the validation set using our proposed approach (a combination
of models) in Pytorch, ONNX and OpenVINO frameworks.

Target DSC (%) NSD (%)
PyTorch ONNX OpenVINO PyTorch ONNX OpenVINO

CT 92.19 92.19 90.05 94.71 94.74 92.66
MR 88.88 88.85 85.85 92.19 92.17 89.49
PET 60.68 60.33 63.87 43.21 42.94 51.40
US 94.77 94.77 94.50 96.81 96.83 96.56
X-Ray 76.31 76.13 76.46 81.52 81.15 81.49
Dermotology 92.47 92.41 92.2 93.86 93.80 93.58
Endoscopy 96.04 96.05 96.07 98.11 98.12 98.16
Fundus 94.81 94.77 93.28 96.42 96.38 94.88
Microscopy 82.79 83.03 83.25 89.67 89.58 89.96
Average 86.55 86.50 86.17 87.39 87.3 87.57

4.2 Qualitative results on training set

The resulting segmentations for PET images from the training set, obtained us-
ing the pre-trained LiteMedSAM model with fixed 3D bounding box prompts
and majority voting across anatomical views, are shown in Figure 4. In some
instances, the model under-segments, generating a segmentation that is much
smaller than ground truth (upper panel in Figure 4; DSC = 0.39, NSD = 0.45).
However, the segmentation quality is considerably better in other cases, ac-
curately capturing the target regions (lower panel in Figure 4; DSC = 0.91,
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NSD = 0.93). This indicates that while the majority voting mechanism gener-
ally improves segmentation accuracy, there are still scenarios where the model’s
performance could be enhanced, especially for smaller ROIs.

Ground truth segmentation LiteMedSAM segmentation

G
oo

d 
ex

am
pl

e
Ba

d 
ex

am
pl

e

Fig. 4. Ground truth (left) and predicted segmentations (right)
using majority voting with pre-trained LiteMedSAM model on
PET images: 3D_PET_Lesion_PETCT_185da4c8b6 (upper panel) and
3D_PET_Lesion_PETCT_01140d52d8 (lower panel) in the training set.

As for microscopy images, the EfficientViT-SAM model prompted with a
bounding box, demonstrated reasonable segmentation performance as in Fig-
ure 5. Similarly to LiteMedSAM, in some instances, EfficientViT-SAM under-
performed at the segmentation of small ROIs, leading to inaccurate segmen-
tation (upper panel in Figure 5; DSC = 0.53, NSD = 0.71). In contrast, the
EfficientViT-SAM model performs exceptionally well for larger targets, deliver-
ing highly accurate segmentations (lower panel in Figure 5; DSC = 0.90, NSD
= 0.91). This suggests that the model’s effectiveness is influenced by the size
of the segmentation target, and while it excels with larger regions, additional
refinement may be needed for smaller targets.
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Ground truth segmentation E�cientViT segmentation
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Fig. 5. Ground truth (left) and predicted segmentations (right) using
EfficientViT-SAM model with bounding box prompt on microscopy im-
ages: 2D_Microscope_NeurIPS22CellSeg_cell_00020 (upper panel) and
2D_Microscope_NeurIPS22CellSeg_cell_00020 (lower panel) in the training set.

Overall, our results suggest that the selected strategies exhibit promising
performance in their respective modalities.

4.3 Segmentation efficiency results on validation set

The runtime measurement starts from loading the Docker image and ends with
saving the segmentation. The OpenVINO models in the C++ pipeline consis-
tently outperform the same approach using PyTorch and ONNX framework re-
garding runtime across all examples (Table 5).

4.4 Results on final testing set

Table 6 presents the DSC, NSD, and runtime metrics for our proposed approach
using OpenVINO, compared to the baseline model. While the DSC and NSD
scores of the proposed approach are marginally lower than the baseline, it offers
a significant advantage with respect to runtime, achieving inference speed over
three times faster. This highlights a trade-off between segmentation accuracy and
computational efficiency, demonstrating that the proposed method substantially
improves inference speed with a slight compromise in performance.

4.5 Limitation and future work

Despite LiteMedSAM being trained on microscopy data and EfficientViT-SAM
having no medical image training data, the zero-shot generalizability of EfficientViT-
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Table 5. Quantitative evaluation of segmentation efficiency in terms of runtime (s)
on 12th Gen Intel® Core™ i7-12700 × 20 @ 2.10GHz RAM 32GB, Docker version
26.0.0. PyTorch is our proposed approach (a combination of models) using PyTorch
framework within a Python inference pipeline, ONNX represents the converted graph of
our PyTorch approach inferred using a Python script, and OpenVINO is the converted
model from ONNX that is inferred using C++ script.

Case ID Size No. Objects PyTorch ONNX OpenVINO
3DBox_CT_0566 (287,512,512) 6 330.18 208.05 45.46
3DBox_CT_0888 (237,512,512) 6 85.81 56.96 16.75
3DBox_CT_0860 (246,512,512) 1 15.33 9.46 5.24
3DBox_MR_0621 (115,400,400) 6 133.41 88.25 16.57
3DBox_MR_0121 (64,290,320) 6 88.01 57.26 10.59
3DBox_MR_0179 (84,512,512) 1 13.86 9.14 4.52
3DBox_PET_0001 (264,200,200) 1 42.54 31.72 10.23
2DBox_US_0525 (256,256,3) 1 3.62 2.04 1.13
2DBox_X-Ray_0053 (320,640,3) 34 3.27 2.67 1.49
2DBox_Dermoscopy_0003 (3024,4032,3) 1 4.03 2.33 1.52
2DBox_Endoscopy_0086 (480,560,3) 1 3.60 2.04 1.10
2DBox_Fundus_0003 (2048,2048,3) 1 3.64 2.07 1.18
2DBox_Microscope_0008 (1536,2040,3) 19 4.63 2.52 1.49
2DBox_Microscope_0016 (1920,2560,3) 241 12.81 7.82 7.01

Table 6. Accuracy on the testing set using our proposed approach (a combination
of models) in the OpenVINO framework.

DSC (%) NSD (%) Runtime (s)Target Baseline Our solution Baseline Our solution Baseline Our solution
CT 55.75 49.13 58.48 52.12 38.78 11.50
MR 64.80 58.80 62.75 59.07 18.57 5.55
PET 76.94 71.36 66.98 60.11 14.90 12.24
US 85.24 83.54 89.73 89.30 8.96 2.37

X-Ray 85.51 78.17 94.40 88.97 9.95 1.98
OCT 73.31 67.29 80.20 73.75 8.39 1.89

Endoscopy 94.41 94.40 96.95 96.93 7.56 1.81
Fundus 87.47 87.49 89.58 89.57 8.77 1.91

Microscope 84.36 87.61 86.15 89.35 16.34 2.19
Average 78.64 75.31 80.58 77.69 14.69 4.61
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SAM for this modality outperformed LiteMedSAM. Considering expensive train-
ing costs and the difficulty of collecting medical image data at a large scale,
this finding motivates further exploration of zero-shot capabilities of foundation
models trained on large-scale natural scene images to segment medical images
without further fine-tuning.

In our current implementation of the majority vote mechanism for PET scans,
all anatomical views have the same weight. Future work may consider the effect of
weight adjustment on the final prediction to understand the contributions of each
anatomical view in the overall segmentation improvement. To further optimize
runtime for PET scans, one may test reducing the number of anatomical views for
inference, for example, from three to two. This may lead to minor segmentation
accuracy degradation but substantial runtime gains.

5 Conclusion

In conclusion, our solution includes various models customized for distinct imag-
ing modalities: EfficientViT-SAM for microscopy and X-ray; the original LiteMed-
SAM for other modalities with an automatic bounding box generation mecha-
nism for 3D data and majority voting to integrate 3D spatial information for
PET data. Overall, the runtime of OpenVINO with the C++ inference script
outperformed the baseline provided by the challenge. While accuracy on Mi-
croscopy images surpassed the baseline on the testing set, accuracy for other
modalities remains suboptimal and requires further improvement.

Acknowledgements We thank all the data consortiums and researchers in-
volved in data acquisition for making the training medical imaging data publicly
available, CodaLab [17] for hosting the challenge platform, and the CVPR 2024
challenge organizers.
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