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ABSTRACT

AlphaZero is a powerful reinforcement learning algorithm based on approximate
policy iteration and tree search. However, AlphaZero can fail to improve its policy
network, if not visiting all actions at the root of a search tree. To address this issue,
we propose a policy improvement algorithm based on sampling actions without
replacement. Furthermore, we use the idea of policy improvement to replace the
more heuristic mechanisms by which AlphaZero selects and uses actions, both at
root nodes and at non-root nodes. Our new algorithms, Gumbel AlphaZero and
Gumbel MuZero, respectively without and with model-learning, match the state
of the art on Go, chess, and Atari, and significantly improve prior performance
when planning with few simulations.

1 INTRODUCTION

In 2018, AlphaZero (Silver et al., 2018) demonstrated a single algorithm achieving state-of-the-art
results on Go, chess, and Shogi. The community reacted quickly. Leela Chess Zero (Linscott et al.,
2018) was created to reproduce AlphaZero results on chess, winning Top Chess Engine Champi-
onship in 2019. Soon, all top-rated classical chess engines replaced traditional evaluations functions
with Efficiently Updatable Neural Network (Nasu, 2018).

AlphaZero was itself generalized by MuZero (Schrittwieser et al., 2020). While AlphaZero requires
a black-box model of the environment, MuZero learns an abstract model of the environment. Essen-
tially, MuZero learns the rules of Go, chess, and Shogi from interactions with the environment. This
allows MuZero to excel also at Atari and continuous control from pixels (Hubert et al., 2021).

In this work, we redesign and improve AlphaZero. In particular, we consider the mechanisms by
which AlphaZero selects and uses actions, which are based upon a variety of heuristic ideas that
have proven especially effective in Go, chess, and Atari (Silver et al., 2018; Schrittwieser et al.,
2020). However when using a small number of simulations, some of AlphaZero’s mechanisms
perform poorly. We use the principle of policy improvement to suggest new mechanisms with a
better theoretical foundation. More specifically, we consider each mechanism in turn, alongside our
proposed modifications:

• Selecting actions to search at the root node. To explore different actions during train-
ing, AlphaZero selects actions by adding Dirichlet noise to its policy network, and then
performs a search using the perturbed policy. However, this does not ensure a policy
improvement. We instead propose to sample actions without replacement by using the
Gumbel-Top-k trick (Section 2), and perform a search using the same Gumbel values to in-
fluence the selection of the best action (Section 3.3), and show that this guarantees a policy
improvement when action-values are correctly evaluated.

• Selecting actions at the root node. AlphaZero uses a variant of the PUCB algorithm
(Rosin, 2011) to select actions at the root node. This algorithm was designed to optimize
cumulative regret in a bandit-with-predictor setting (i.e. given prior recommendations from
the policy network). However, no ancestors are dependent upon the evaluation of the root
node, and the performance of the Monte-Carlo tree search therefore only depends upon the
final recommended action at the root node, and not upon the intermediate actions selected
during search (Bubeck et al., 2011). Consequently, we propose to use the Sequential Halv-
ing algorithm (Karnin et al., 2013) at the root node to optimize simple regret in a stochastic
bandit with a predictor (Section 3.4).
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• Selecting actions in the environment. Once search is complete, AlphaZero selects an ac-
tion by sampling from an (annealed) categorical distribution based upon the visit counts of
root actions resulting from the search procedure. We instead propose to select the singular
action resulting from the Sequential Halving search procedure.
• Policy network update. AlphaZero updates its policy network towards a categorical dis-

tribution based upon the visit counts of root actions. However, even if the considered
actions are correctly evaluated, this does not guarantee a policy improvement, especially
when using small numbers of simulations (Grill et al., 2020). We instead propose a policy
improvement based upon the root action values computed during search, and update the
policy network towards that policy improvement (Section 4).
• Selecting actions at non-root nodes. AlphaZero uses the PUCT algorithm to select actions

at non-root nodes. We instead propose to select actions according to a policy improvement
(similar to the proposal of Grill et al. (2020)) based upon a completion of the action values.
Furthermore, rather than sampling directly from this policy improvement, we propose a de-
terministic action selection procedure that matches the empirical visit counts to the desired
policy improvement (Section 5).

The proposed modifications are applicable also to MuZero or any agent with a policy network and
an expensive Q-network. The modifications are most helpful when using a small number of sim-
ulations, relative to the number of actions. When using a large number of simulations, AlphaZero
works well. We tried to ensure that the new search is principled, better with a smaller number of
simulations, and never worse. We succeeded on all tested domains: Go, chess, and Atari.

2 BACKGROUND

Before explaining the improved search, we will explain the Gumbel-Max trick and the Gumbel-Top-
k trick. The Gumbel-Max trick was popularized by Gumbel-Softmax for a gradient approximation.
In this paper, we are not interested in approximate gradients. Instead, we use the Gumbel-Top-k
trick to sample without replacement.

Gumbel-Max trick. (Gumbel, 1954; Luce, 1959; Maddison et al., 2017; Jang et al., 2017)
Let π be a categorical distribution with logits ∈ Rk, such that logits(a) is the logit of the action a.
We can obtain a sample A from the distribution π by first generating a vector of k Gumbel variables
and then taking argmax:

(g ∈ Rk) ∼ Gumbel(0) (1)
A = argmax

a
(g(a) + logits(a)). (2)

Gumbel-Top-k trick. (Yellott, 1977; Vieira, 2014; Kool et al., 2019) The Gumbel-Max trick can be
generalized to sampling n actions without replacement, by taking n top actions:

(g ∈ Rk) ∼ Gumbel(0) (3)
A1 = argmax

a
(g(a) + logits(a)) (4)

...
An = argmax

a/∈{A1,...,An−1}
(g(a) + logits(a)). (5)

We will denote the set of n top actions by argtop(g + logits, n) = {A1, A2, . . . , An}.

3 PLANNING AT THE ROOT

We are interested in improving AlphaZero Monte-Carlo Tree Search (MCTS). In this section we
will focus on the action selection at the root of the search tree.

3.1 PROBLEM SETTING

Both AlphaZero and MuZero have access to a policy network. At the root of the search tree, they
can explore n simulations, before selecting an action for the real environment. We will formalize the
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problem as a deterministic bandit with a predictor and we will later extend it to a stochastic bandit
and MCTS.

Bandit. A k-armed deterministic bandit is a vector of Q-values q ∈ Rk, such that q(a) is the Q-value
of the action a. The agent interacts with the bandit in n simulations (aka rounds). In each simulation
t ∈ {1, . . . , n}, the agent selects an action At ∈ {0, . . . , k − 1} and visits the action to observe the
Q-value q(At).

The objective is to maximize the Q-value from a special last action An+1. That means we want to
maximize E[q(An+1)]. This objective is equivalent to minimization of simple regret. The simple
regret differs from the cumulative regret from all n simulations. Bubeck et al. (2011), Hay & Russell
(2011), and Tolpin & Shimony (2012) already argued that at the root of the search tree we care about
the simple regret.

The problem becomes interesting when the number of possible actions is larger than the number of
simulations, i.e., when k > n. For example, 19x19 Go has 362 possible actions and we will do
experiments with as few as n = 2 simulations. Fortunately, the policy network can help.

Predictor. In the bandit-with-predictor setting (Rosin, 2011), the agent is equipped with a predictor:
the policy network. Before any interaction with the bandit, the policy network predicts the best
action by producing a probability distribution π. The agent can use the policy network predictions
to make more informed decisions.

Policy improvement. Naturally, we would like to have an agent that acts better than, or as well as,
the policy network. We would like to obtain a policy improvement. If the agent’s action selection
produces a policy improvement, then

E [q(An+1)] ≥
∑
a

π(a)q(a), (6)

where the probability π(a) is the policy network prediction for the action a.1 The policy network
can then keep improving by modeling an improved policy.

3.2 MOTIVATING COUNTEREXAMPLE

We will show that the commonly used heuristics fail to produce a policy improvement.

Example 1. Acting with the best action from the top-n most probable actions fails to produce
a policy improvement. Let’s demonstrate that. Let q = (0, 0, 1) be the Q-values and let π =
(0.5, 0.3, 0.2) be the probabilities produced by the policy network. The value of the policy network
is
∑
a π(a)q(a) = 0.2. For n = 2 simulations, the set of the most probable actions is {0, 1}. With

that, the heuristic would select An+1 = argmaxa∈{0,1} q(a). The expected value of such action is
E [q(An+1)] = 0, which is worse than the value of the policy network.

You can find other counterexamples by generating random q and π vectors and testing the policy
improvement (Inequality 6). The AlphaZero action selection is explained in Appendix A.

3.3 PLANNING WITH GUMBEL

We will design a policy improvement algorithm for the deterministic bandit with a predictor π. After
n simulations, the algorithm should propose an action An+1 with E [q(An+1)] ≥

∑
a π(a)q(a).

One possibility is to sample n actions from π, and then to select from the sampled actions the action
with the highest q(a). Instead of sampling with replacement, we can reduce the variance by sampling
without replacement.

Still, the sampled actions contain a limited amount of information about π. We should exploit the
knowledge of π and its logits when selecting An+1. The main idea is to sample n actions without
replacement by using the Gumbel-Top-k trick, and then to use the same Gumbel g to select the
action with the highest g(a) + logits(a) + σ(q(a)). The σ can be any monotonically increasing
transformation. The pseudocode for the algorithm is in Algorithm 1.

1Inequality 6 can be strict, if we assume that an action has a positive advantage and its π(a) > 0.

3



Published as a conference paper at ICLR 2022

Algorithm 1 Policy Improvement by Planning with Gumbel

Require: k: number of actions.
Require: n ≤ k: number of simulations.
Require: logits ∈ Rk: predictor logits from a policy network π.

Sample k Gumbel variables:
(g ∈ Rk) ∼ Gumbel(0)

Find n actions with the highest g(a) + logits(a):
Atopn = argtop(g + logits, n)

Get q(a) for each a ∈ Atopn by visiting the actions.
From the Atopn actions, find the action with the highest g(a) + logits(a) + σ(q(a)):
An+1 = argmaxa∈Atopn

(g(a) + logits(a) + σ(q(a)))
return An+1

The algorithm produces a policy improvement, because
q(argmax

a∈Atopn

(g(a) + logits(a) + σ(q(a)))) ≥ q(argmax
a∈Atopn

(g(a) + logits(a))). (7)

This holds for any Gumbel g, so it holds also for expectations: E[q(An+1)] ≥ EA∼π[q(A)]. The
argmaxa∈Atopn(g(a) + logits(a)) is equivalent to sampling from the policy network π (see the
Gumbel-Max trick or Appendix B). By using the same Gumbel vector g in the argtop and argmax,
we avoid a double-counting bias.

The prior knowledge contained in the logits can help on partially observable environments, or when
working with approximate or stochastic Q-values.

3.4 PLANNING ON A STOCHASTIC BANDIT

We can now extend the algorithm to a stochastic bandit. A stochastic bandit provides only a stochas-
tic estimate of the expected Q-value q(a). In that setting, we will use the empirical mean q̂(a) in-
stead of q(a). Obviously, the empirical mean would be better estimated, if visiting an action multiple
times. We have to choose which actions to visit and how many times. We can control this in two
places. First, we can control the number of actions sampled without replacement. Second, we can
use a bandit algorithm to efficiently explore the set of sampled actions.

There are multiple bandit algorithms for simple regret minimization. In our preliminary experiments,
Sequential Halving (Karnin et al., 2013) was easier to tune than UCB-E (Audibert et al., 2010)
and UCB

√
· (Tolpin & Shimony, 2012). Conveniently, Sequential Halving does not have problem-

dependent hyperparameters.

We present Sequential Halving with Gumbel in Algorithm 2, with an illustration in Figure 1. Se-
quential Halving is used to identify the action with the highest g(a) + logits(a) + σ(q̂(a)).

Algorithm 2 Sequential Halving with Gumbel

Require: k: number of actions.
Require: m ≤ k: number of actions sampled without replacement.
Require: n: number of simulations.
Require: logits ∈ Rk: predictor logits from a policy network π.

Sample k Gumbel variables:
(g ∈ Rk) ∼ Gumbel(0)

Find m actions with the highest g(a) + logits(a):
Atopm = argtop(g + logits,m)

Use Sequential Halving with n simulations to identify the best action from the Atopm actions,
by comparing g(a) + logits(a) + σ(q̂(a)).
An+1 = argmaxa∈Remaining(g(a) + logits(a) + σ(q̂(a)))
return An+1

For a concrete instantiation of σ, we use
σ(q̂(a)) = (cvisit +max

b
N(b))cscaleq̂(a), (8)
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Figure 1: The number of considered actions and their visit counts N(a), when using Sequential
Halving with Gumbel on a k-armed stochastic bandit. The search uses n = 200 simulations and
starts by sampling m = 16 actions without replacement. Sequential Halving divides the budget of
n simulations equally to log2(m) phases. In each phase, all considered actions are visited equally
often. After each phase, one half of the actions is rejected. From the original k actions, only the best
actions will remain.

where maxbN(b) is the visit count of the most visited action. The transformation progressively
increases the scale for q̂(a) and reduces the effect of the prior policy. This scale is inspired by the
policy updates in MPO (Abdolmaleki et al., 2018; Vieillard et al., 2020). The finite scale for the Q-
values provides regularized policy optimization and puts into effect the prior knowledge contained
in the logits. Experimentally, cvisit = 50, cscale = 1.0 allowed us to use the same hyperparameters
even if changing the number of simulations.

4 LEARNING AN IMPROVED POLICY

After the search, we have An+1 from a (potentially) improved policy. Like AlphaZero, we would
like to distill the improved policy to the policy network. One possibility is to train the policy network
π to predict the An+1. That defines a simple policy loss:

Lsimple(π) = − log π(An+1). (9)

Using completed Q-values. We will explain a different way to train the policy network, by extract-
ing more knowledge from the search. Beside An+1, the search also gives us q(a) (or its approxima-
tion) for the visited actions. We can construct an improved policy by first completing the vector of
Q-values:

completedQ(a) =

{
q(a) if N(a) > 0

vπ, otherwise,
(10)

where the unknown Q-values of the unvisited actions are replaced by vπ =
∑
a π(a)q(a). While in

practice we do not have the exact vπ , we have instead its approximation v̂π from a value network.
Even when training on off-policy data we devised a helpful vπ approximation (Appendix D).

With the completed Q-values, a new improved policy is constructed by

π′ = softmax(logits+σ(completedQ)), (11)

where σ is a monotonically increasing transformation. We provide a proof of a policy improvement
in Appendix C. Intuitively, the completed Q-values give zero advantage to the unvisited actions.

After constructing the new improved policy π′, we can distill it to the policy network π:

Lcompleted(π) = KL(π′, π). (12)

This loss trains all actions, not only the action An+1. Later, we will investigate the effect of the loss
in Figure 3a.
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5 PLANNING AT NON-ROOT NODES

To design an action selection for the non-root nodes of a search tree, we take inspiration from Grill
et al. (2020). That allows us to interpret MCTS as regularized policy optimization. At a non-root
node, we construct an improved policy π′ by using the completed Q-values (Equation 11).

To select an action at the non-root node, one possibility is to sample the action from π′. How-
ever, sampling at non-root nodes adds unwanted variance to the estimated Q-values. Instead, we
can design a deterministic action selection with the smallest mean-squared-error between the π′
probabilities and the produced normalized visit counts. Such action selection would select

argmin
a

∑
b

(
π′(b)− N(b) + I{a = b}

1 +
∑
cN(c)︸ ︷︷ ︸

Normalized visit counts, if taking a.

)2

, (13)

where the indicator I{a = b} is 1 if a = b, and zero otherwise. After a bit of algebra (Appendix E),
we obtain a simpler, more efficient expression:

argmax
a

(
π′(a)− N(a)

1 +
∑
bN(b)

)
. (14)

This deterministic action selection selects the actions proportionally to π′ and avoids an extra vari-
ance. We recommend a deterministic action selection only for non-root nodes. At the root node, the
Gumbel noise is helpful for trying different actions in different episodes, while ensuring an improved
expected value.

6 RELATED WORK

Rosin (2011) introduced the bandit with a predictor and designed PUCB (“Predictor + UCB”) for
cumulative regret minimization. AlphaGo (Silver et al., 2016), AlphaGo Zero (Silver et al., 2017),
AlphaZero (Silver et al., 2018), and MuZero (Schrittwieser et al., 2020) used a deep policy network
as the predictor in a variant of the PUCB algorithm. Bertsekas (2019; 2021; 2022) provides an
in-depth discussion of policy iteration, policy improvement, and their connection to rollout.

If not using a predictor, UCT (Kocsis & Szepesvári, 2006) would need to visit each action before
being able to compare them. Rapid Action Value Estimation (Gelly & Silver, 2011) then helps to
form rough estimates of the action values by aggregating statistics from all future states. Gelly &
Silver (2011) also initialized the action value estimates with a heuristic evaluation function. The best
heuristic used a learned linear network. Hamrick et al. (2020) later extended it to a deep Q-network.

Cazenave (2014) and Pepels et al. (2014) applied Sequential Halving to MCTS. Fabiano & Cazenave
(2021) introduced Sequential Halving Using Scores. The ‘scores’ can be any prior offset to the Q-
values. The way to obtain scores from a policy network was left as an open problem. We can now
view the g + logits as special scores.

MCTS is related to regularized policy optimization. Grill et al. (2020) analyzed AlphaZero tree
search and discovered that AlphaZero approximates a regularized policy optimization. The approxi-
mation error is large if using a small number of simulations. To avoid the approximation error, Grill
et al. (2020) used a regularized policy optimization directly inside the tree search. In the setting
without a predictor, Xiao et al. (2019) compared UCT to a new MCTS with an entropy regularizer.
Dam et al. (2021) generalized it to relative entropy and Tsallis entropy. Regularized policy opti-
mization is helpful when working with approximate Q-values (Vieillard et al., 2020) or when doing
an approximate policy iteration (Kakade & Langford, 2002; Schulman et al., 2015).

TreeQN (Farquhar et al., 2018) uses a breadth-first search inside a network architecture. The net-
work can do a lot of computation before producing a Q-value. To reduce the computation demands,
Dynamic Planning Networks (Tasfi & Capretz, 2018) extended TreeQN to sample only some ac-
tions. To approximate the gradient, Dynamic Planning Networks use Gumbel-Softmax (Maddison
et al., 2017; Jang et al., 2017). Although we use Gumbel variables, we do not employ approximate
gradients from Gumbel-Softmax. We use the Gumbel-Top-k trick to construct efficient planning
with a provable policy improvement.
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Figure 2: Elo on 9x9 Go, when training with n ∈ {2, 4, 16, 32, 200} simulations. Evaluation uses
800 simulations. Shades denote standard errors from 2 seeds.

For sampling without replacement, the unordered set estimator by Kool et al. (2020) provides an
elegant, unbiased estimate of a gradient. However, gradient descent needs multiple steps to reach the
solution of a regularized policy optimization problem (Tomar et al., 2020). Furthermore, the exact
computation of the unordered set estimator requiresO(2m) operations, which would be prohibitively
expensive for m = 16. Practical time complexity can be achieved by using an importance-weighted
estimator (Vieira, 2017; Nauman & Den Hengst, 2020).

Continuous actions can be supported by sampling k actions with replacement and then using the
sampled actions as discrete actions with uniform logits for the rest of the search. This was done in
Sampled MuZero (Hubert et al., 2021). Similarly, Critic Weighted Policy (Wang et al., 2020) uses
sampling with replacement.

7 EXPERIMENTS

In the experiments, we compare AlphaZero or MuZero to the proposed planning with Gumbel and
other alternatives:

MuZero: The newest version of MuZero (Schrittwieser et al., 2021), with ResNet v2 style pre-
activation residual blocks (He et al., 2016) and the Adam optimizer (Kingma & Ba, 2014). Gumbel
MuZero: MuZero with the modified root of the search tree to use Sequential Halving with Gum-
bel. The policy loss uses the completed Q-values (Equation 12). Gumbel MuZero sampled with
replacement (Replacement): An ablation to Gumbel MuZero by sampling m actions with re-
placement, as in Sampled MuZero (Hubert et al., 2021). TRPO MuZero: MuZero with modified
learning, acting, and the root of the search tree to use the regularized policy optimization with the
TRPO regularizer KL(π, πnew) (Schulman et al., 2015; Grill et al., 2020). MPO MuZero: TRPO
MuZero but with the MPO regularizer KL(πnew, π) (Abdolmaleki et al., 2018; Grill et al., 2020).
Full Gumbel MuZero: Gumbel MuZero with a principled action selection also for the non-root
search nodes (Section 5). In the plots, we will show Full Gumbel MuZero only if it produces results
significantly different from Gumbel MuZero.

We conducted the experiments on Go, chess, and Atari. We present the main results here and we
report additional ablations and experimental details in Appendix F.

7.1 9X9 GO

On Go, we use Elo to compare MuZero and other agents. While an agent trains by self-play, its Elo
is computed by evaluation versus reference opponents. One of the opponents is Pachi (Baudiš &
Gailly, 2011) with 10k simulations per move. We anchored the Elo to have this Pachi at 1000 Elo.
For example, a difference of 500 Elo corresponds to a 95% win probability for the player with the
higher Elo.2

2The corresponding win probability is 1

1+10
− EloDifference

400

(Elo, 1978).
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Figure 3: Gumbel MuZero ablations on 9x9 Go. (a) Policy loss ablations, when training with
n ∈ {2, 4, 16, 200} simulations. Gumbel MuZero uses the policy loss with completed Q-values.
(b) Sensitivity to the number of sampled actions. Gumbel MuZero samples m actions without
replacement.
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Figure 4: Large-scale experiments with n = 400 simulations per move. (a) Elo on 19x19 Go, when
training MuZero. (b) Elo on chess, when training AlphaZero.

In Figure 2 we investigate the impact of the number of simulations on the obtained Elo. When
training an agent by self-play, the agent uses n simulations per move. In the five plots, the n varies
from 2 to 200. In evaluation, we allow all agents to use 800 simulations. The speed of the evaluation
does not affect the speed of training. In the 9x9 Go results, MuZero fails to learn from 16 or less
simulations. Strikingly, Gumbel MuZero learns reliably even with 2 simulations.

In Figure 3a we compare the simple policy loss (Equation 9) and the policy loss with the completed
Q-values (Equation 12). The simple policy loss would be enough for many applications. We used
the completed Q-values also in TRPO MuZero and MPO MuZero. Without the completed Q-values,
TRPO MuZero and MPO MuZero would fail to produce a policy improvement.

In Figure 3b we study Gumbel MuZero’s sensitivity to the number of sampled actions. When sam-
pling m = 4 actions without replacement, the simulation budget is spent on the small number of
actions. The learning was then slower. In all other Go experiments, we sample m = min(n, 16)
actions without replacement.

7.2 LARGE-SCALE 19X19 GO AND CHESS

In Figure 4a we demonstrate that Gumbel MuZero is not worse than MuZero on 19x19 Go. MuZero
is excellent on 19x19 Go and Gumbel MuZero reaches or exceeds its performance. The Elo is still
anchored to have Pachi at 1000 Elo.

Similarly, in Figure 4b we show Gumbel AlphaZero performance on chess. We train AlphaZero on
chess, because AlphaZero learns faster than MuZero on chess. On Go, MuZero learns faster than
AlphaZero.
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Figure 5: Atari results. (a) Mean return on ms pacman, when training Gumbel MuZero and
MuZero with n ∈ {2, 4, 16, 18, 50} simulations. MuZero fails to learn from 4 or less simula-
tions. (b) Mean return on beam rider for Gumbel MuZero with cscale ∈ {0.01, 0.1, 1, 10, 100},
compared to MuZero with n = 50 simulations. Shades denote standard errors from 10 seeds.

7.3 ATARI

Our last set of experiments is on Atari. We use the Arcade Learning Environment (Bellemare et al.,
2013) with sticky actions (Machado et al., 2018). The network sizes and hyperparameters match
the MuZero setup by Schrittwieser et al. (2021). On Atari, MuZero does not use more simulations
at evaluation. The reported score is the mean return from the last 200 training episodes. MuZero
with n = 50 simulations works well on Atari and establishes the state of the art (Schrittwieser et al.,
2021).

In Figure 5a we show the obtained mean return on ms pacman. Gumbel MuZero again learns
reliably even with n = 2 simulations. Atari has only 18 actions, so we sample m = min(n, 18)
actions without replacement. In the experiments with n ≤ 18, Gumbel MuZero selects An+1 from
the n visited actions, without any Sequential Halving. This confirms that planning with Gumbel is
the key ingredient responsible for the policy improvement from a small number of simulations.

Atari is challenging, because different games can have very different reward scales. MuZero nor-
malizes the Q-values by dividing them by max(v̂π,maxa q̂(a))−min(v̂π,mina q̂(a)) found inside
the tree search (Schrittwieser et al., 2020). A normalized advantage is then in [−1, 1]. For Gum-
bel MuZero, we use the same normalization and we scale the normalized Q-values by cvisit = 50
and cscale = 0.1. A scaled normalized advantage is then approximately in [−5, 5]. Thanks to the
bounded advantage, Gumbel MuZero has a bounded total variation distance between π and π′ (Hes-
sel et al., 2021).

In Figure 5b we use beam rider as an example of a partially observable game and we study
the importance of the prior knowledge contained in the logits. Gumbel MuZero selects an action
based on g(a) + logits(a) + (cvisit +maxbN(b))cscaleq̂(a) (Equation 8). If cscale is large, Gumbel
MuZero focuses on q̂(a) and neglects the logits. Indeed, Gumbel MuZero performance is worse
on beam rider if using large cscale. In the future, we can try normalizing the Q-values by the
standard deviation of an advantage estimator and we can try clipping the normalized advantages, as
in Muesli (Hessel et al., 2021).

8 CONCLUSION

We redesigned AlphaZero tree search. With the principle of policy improvement, we replaced five
heuristic mechanisms in AlphaZero. On Go, chess, and Atari, we validated that Gumbel MuZero
and Gumbel AlphaZero keep improving, even when learning from two simulations. On top of that,
Gumbel MuZero provides a principled way to achieve state-of-the-art results. We hope that future
research will benefit from the clean theoretical foundation, the faster experimentation with a small
number of simulations, and the released open-source code.3

3https://github.com/deepmind/mctx
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APPENDIX

Content

• A - AlphaZero action selection
• B - Policy improvement proof for planning with Gumbel
• C - Policy improvement proof for completed Q-values
• D - Mixed value approximation
• E - Derivation of the deterministic action selection
• F - Experimental details

A ALPHAZERO ACTION SELECTION

We will explain AlphaZero’s (Silver et al., 2018) action selection here. On the deterministic bandit,
AlphaZero would select actions A1, . . . , An by

argmax
a

[
q?(a) + c1π(a)

√
1 +

∑
bN(b)

1 +N(a)

]
, (15)

where q?(a) ∈ [0, 1] is q(a) for the already visited actions and zero otherwise. The c1 > 0 is a factor
independent of a. After the search, AlphaZero acts by sampling from an (annealed) categorical
distribution based upon the visit counts of the root actions.

At the root of the search tree, AlphaZero perturbs π by Dirichlet noise to avoid visiting always
the most probable actions. That does not ensure a policy improvement, because AlphaZero with
Dirichlet noise can produce a worse policy by adding noise to a potentially optimal policy network.

B POLICY IMPROVEMENT PROOF FOR PLANNING WITH GUMBEL

We will prove that Algorithm 1 generates An+1 such that E[q(An+1)] ≥ EA∼π[q(A)].
For the right-hand side, the Gumbel-Max trick tells us that EA∼π[q(A)] is equal to
E(g∈Rk)∼Gumbel(0)[q(argmaxa(g(a) + logits(a))]. First, we will show that we can replace the
argmaxa with argmaxa∈Atopn

. Remember thatAtopn is defined asAtopn = argtop(g+logits, n)
and that we use the same Gumbel vector g in the argtop and argmax. The setAtopn then includes
the action with the highest g(a)+ logits(a) and we can replace the argmaxa with argmaxa∈Atopn

.

After these rewrites, we have to prove that

E[q(An+1)] ≥ E(g∈Rk)∼Gumbel(0)[q(argmax
a∈Atopn

(g(a) + logits(a))]. (16)

On the left-hand side, E[q(An+1)] is equal to

E(g∈Rk)∼Gumbel(0)[q(argmax
a∈Atopn

(g(a) + logits(a) + σ(q(a))))]. (17)

We can finish the proof by proving that for any vector g ∈ Rk we have

q(argmax
a∈Atopn

(g(a) + logits(a) + σ(q(a)))) ≥ q(argmax
a∈Atopn

(g(a) + logits(a)). (18)

This is true, because σ is a monotonically increasing transformation.

C POLICY IMPROVEMENT PROOF FOR COMPLETED Q-VALUES

We will prove that π′completed = softmax(logits+σ(completedQ)) produces a policy improve-
ment. We will start by showing that π′completed is produced by a specific instance of Algorithm 3.
We will then prove that any instance of Algorithm 3 produces a policy improvement.

14
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Algorithm 3 Policy improvement when having vπ
Require: π, vπ .
Require: q(a) for each visited action. The visited actions can be from any distribution.

Initialize π′ with π.
For the visited actions:

If q(a) > vπ , increase the π′(a) logit.
If q(a) < vπ , decrease the π′(a) logit.

return π′

C.1 SPECIFIC INSTANCE

Algorithm 3 is more general than the usage of the completed Q-values. Specifically, Algorithm 3
would produce π′completed, if updating the logits by σ(completedQ(a)) − σ(vπ). This update in-
creases the logit, if q(a) > vπ . This update decreases the logit, if q(a) < vπ . And the update does
not modify the logits of the unvisited actions. The resulting softmax(logits+σ(completedQ) −
σ(vπ)) is equal to softmax(logits+σ(completedQ)), because the constant offset σ(vπ) does not
change the softmax output.

C.2 POLICY IMPROVEMENT PROOF FOR ANY INSTANCE

We will now prove that π′ from Algorithm 3 satisfies∑
a

π′(a)q(a) ≥
∑
a

π(a)q(a). (19)

Notice that π′(a) for any unvisited action a will be czπ(a), with a normalization constant cz > 0.

For one visited action: Let’s denote the visited (aka expanded) action by aex. First, if π(aex) = 1
then vπ = q(aex) and the policy will remain unchanged.

Let’s now consider the case with π(aex) < 1. The vπ can be rewritten as

vπ = π(aex)q(aex) + (1− π(aex))
∑
a 6=aex

π(a)q(a)∑
b6=aex π(b)

. (20)

Let’s denote the weighted sum by qmiss:

qmiss =
∑
a 6=aex

π(a)q(a)∑
b6=aex π(b)

. (21)

We notice that the qmiss does not change if scaling π by a constant cz > 0.

We will now rewrite the left-hand side of Inequality 19 to use qmiss:∑
a

π′(a)q(a) = (22)

= π′(aex)q(aex) + (1− π′(aex))
∑
a6=aex

czπ(a)q(a)∑
b 6=aex czπ(b)

(23)

= π′(aex)q(aex) + (1− π′(aex))qmiss (24)

= π′(aex)(q(aex)− qmiss) + qmiss. (25)

The right-hand side of Inequality 19 can be also rewritten:

vπ = π(aex)q(aex) + (1− π(aex))qmiss (26)
= π(aex)(q(aex)− qmiss) + qmiss. (27)

With these rewrites, Inequality 19 becomes

π′(aex)(q(aex)− qmiss) ≥ π(aex)(q(aex)− qmiss). (28)
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Figure 6: Detailed policy loss ablations. Gumbel MuZero uses the policy loss with Q-values com-
pleted by the vmix value estimator from Appendix D. That works better than Q-values completed by
the raw value network v̂π .

0 200 400 600 800
Millions of frames

0

500

1000

1500

2000

2500

3000

El
o

9x9 Go n=2

0 200 400 600 800
Millions of frames

9x9 Go n=4

0 200 400 600 800
Millions of frames

9x9 Go n=16

0 200 400 600 800
Millions of frames

9x9 Go n=200

Gumbel MuZero
Full Gumbel MuZero
Stochastic non-root

Figure 7: A comparison of different action selections at the non-root nodes. Gumbel MuZero uses
the unmodified (deterministic) MuZero action selection at non-root nodes. Full Gumbel MuZero
uses the deterministic action selection from Equation 14, which we compare to stochastic sampling
from π′ at non-root nodes.

The q(aex)− qmiss can negative, zero or positive.
If q(aex) = qmiss, the inequality is satisfied.
If q(aex) > qmiss, we want π′(aex) ≥ π(aex).
If q(aex) < qmiss, we want π′(aex) ≤ π(aex).

We do not know qmiss so we cannot use it in an algorithm. We will instead show that q(aex) > qmiss

is equivalent to q(aex) > vπ , when π(aex) < 1:

q(aex) > vπ (29)
q(aex) > π(aex)q(aex) + (1− π(aex))qmiss (30)

(1− π(aex))q(aex) > (1− π(aex))qmiss (31)
q(aex) > qmiss. (32)

So we directly arrived at Algorithm 3.

For multiple visited actions: We will focus on one of the visited actions. If the logits of the other
visited actions are unmodified, the algorithm is equivalent to using only one visited action. If the
logits of the other visited actions are modified by Algorithm 3, they can further help to improve the
policy.

D MIXED VALUE APPROXIMATION

We will construct an approximation of vπ . The exact vπ is defined by vπ =
∑
a π(a)q(a). We have

an approximate v̂π from a value network, we know π, and we have q(a) for the visited actions. With
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Figure 8: Additional Gumbel MuZero ablations on 9x9 Go. (a) Sensitivity to Q-value scaling by
cvisit. (b) On the perfect-information game, Gumbel MuZero used zero Gumbel noise at evaluation.
Although, evaluation with stochastic Gumbel noise is not worse. During training, MuZero and
Gumbel MuZero benefit from explorative acting proportional to the visit counts.

these inputs, we approximate vπ by a consistent estimator:

vmix =
1

1 +
∑
bN(b)

v̂π +

∑
bN(b)∑

b∈{b:N(b)>0} π(b)

∑
a∈{a:N(a)>0}

π(a)q(a)

 . (33)

The estimator interpolates v̂π and the weighted average of the available Q-values. This is an unso-
phisticated estimator, with results in Figure 6. You are welcome to explore other possibilities.

E DERIVATION OF THE DETERMINISTIC ACTION SELECTION

We will derive Equation 14 from Equation 13:

argmin
a

∑
b

(
π′(b)− N(b) + I{a = b}

1 +
∑
cN(c)

)2

(34)

=argmin
a

∑
b

((
π′(b)− N(b)

1 +
∑
cN(c)

)
− I{a = b}

1 +
∑
cN(c)

)2

(35)

=argmin
a

∑
b

−2
(
π′(b)− N(b)

1 +
∑
cN(c)

)
I{a = b}

1 +
∑
cN(c)

(36)

=argmin
a

−
∑
b

(
π′(b)− N(b)

1 +
∑
cN(c)

)
I{a = b} (37)

=argmax
a

(
π′(a)− N(a)

1 +
∑
cN(c)

)
. (38)

The simplification was possible, because additive terms independent of a do not affect argmina.
While widely applicable, the deterministic action selection provides only a small benefit on 9x9 Go
(Figure 7).

F EXPERIMENTAL DETAILS

In general, we use hyperparameters consistent with the newest MuZero experiments (Schrittwieser
et al., 2021). MuZero’s pseudocode is available thanks to Schrittwieser et al. (2020). Gumbel
MuZero does not need to set the Dirichlet noise hyperparameters, because Gumbel MuZero does
not use Dirichlet noise.

In a tree search, the Q-values q̂(a) are provided by the visited child nodes. We do not modify the
structure of AlphaZero’s search tree. Inside the tree search, the Q-values are normalized to be from
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Figure 9: Gumbel MuZero Elo on 9x9 Go, evaluated with different numbers of simulations. The
evaluation with n = 1 simulation acts with the most probable action from the policy network.

the [0, 1] interval. We use the normalized Q-values also in Full Gumbel MuZero, but the algorithm
does not require Q-values from a specific interval. In all Go and chess experiments, Gumbel MuZero
scales the Q-values by cvisit = 50 and cscale = 1.0. On the perfect-information game of Go, Gumbel
MuZero is not very sensitive to the scale of the Q-values. Any cvisit ≥ 50 produced similar results
(Figure 8a).

In each phase of Sequential Halving, we use at least one new visit. For example, in the first phase,
we update q̂(a) by max

(
1,
⌊

n
dlog2(m)em

⌋)
visits. This allows us to experiment with an incomplete

or no Sequential Halving. When Sequential Halving runs out of the budget of n simulations, we stop
the search. The agent then selects as An+1 the action with the highest g(a) + logits(a) + σ(q̂(a))
from the set of the most visited actions. Fabiano & Cazenave (2021) provide a different way to deal
with the rounding in Sequential Halving.

During training, MuZero acts with explorative actions in the first 30 moves of each self-play game.
MuZero samples the explorative actions proportionally to the visit counts, like AlphaGo Zero (Silver
et al., 2017). Gumel MuZero benefits from the same exploration (Figure 8b).

Figure 9 shows the importance of the number of simulations at evaluation time. For example, in the
first subplot a network is trained with n = 2 simulations and the same network is evaluated with
800, 200, 32, 16, 2, and 1 simulations.

To run the experiments, we used Google Cloud Tensor Processing Units v3 (TPUs). On 9x9 Go,
MuZero is not limited by lack of data if using 3-times more TPUs for self-play than for training. By
using a smaller number of simulations, we can substantially reduce the number of TPUs needed for
self-play. Table1 lists the obtained speedups if not being limited by the TPUs for training.

Table 1: The speedup from a smaller number of simulations on 9x9 Go.

Training step speedup

MuZero n = 200 1.0
Full Gumbel MuZero n = 200 1.0
Gumbel MuZero n = 200 1.0
Gumbel MuZero n = 32 5.9
Gumbel MuZero n = 16 11.3
Gumbel MuZero n = 8 16.2
Gumbel MuZero n = 4 24.3

F.1 NETWORK ARCHITECTURE

In all Go and chess experiments, we used a modified version of the AlphaZero network architecture
that is roughly 2-times faster at the same accuracy. Concretely, we replace the dense residual blocks
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with bottleneck blocks (He et al., 2016), and replace every 8th block with a global broadcasting
residual block (Figures 11, 13). The broadcasting block is similar to global pooling or squeeze-and-
excitation (Hu et al., 2018), but we found it to be more stable when training from self-play.

Figure 10 provides data to support the architecture change. For each network architecture the figure
shows multiple data points, differing by the number of layers. For dense networks, the number of
layers is from {12, 16, 20, 24, 28, 32, 36, 40, 48}. For bottleneck networks, data points with 56 and
64 layers are shown as well.

Both value MSE and policy accuracy improve consistently with larger but slower networks. For any
constant number of inferences per second, the bottleneck blocks and the broadcast/pooling blocks
lead to significant improvements.

For the architecture search, the Elo was computed at a fixed computational budget of 300ms per
move. For example, the budget allows us to do 3200 simulations when using a network with 256
planes and 32 blocks with bottlenecks and broadcasting (achieving 104 inferences/second). Here
the Elo is anchored to have the base AlphaZero architecture at 0 Elo; 95% confidence intervals are
about 30 Elo wide. We observe that diminishing returns in the prediction accuracy for very large
networks lead to decreasing Elo, as the improved predictions fail to compensate for the much lower
number of simulations in MCTS. Gumbel AlphaZero was not yet used for the architecture search.

Given the efficient network architecture, we used a small 6 layer network on 9x9 Go, and a bigger
32 layer network in the large-scale 19x19 Go experiments. The networks used 256 hidden planes,
128 bottleneck planes and a broadcasting block in every 8th layer.
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Figure 10: Scaling of value Mean Squared Error (MSE), policy accuracy and playing strength in
Elo vs inference speed for different network architectures. In the legend, btl indicates bottleneck
residual blocks; broad/8 and pool/8 indicate broadcast (Figure 11) and pooling blocks (Figure 12)
in every 8th layer. 128p, 256p, etc. indicate the number of hidden planes.
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class BasicBlock(hk.Module):
"""Basic block composed of an inner op, a norm op and a non linearity."""

def __init__(self, make_inner_op, non_linearity=jax.nn.relu, name=’basic’):
super().__init__(name=name)
self._op = make_inner_op()
self._norm = hk.BatchNorm(create_scale=False, create_offset=True, decay_rate=0.999,

eps=1e-3)
self._non_linearity = non_linearity

def __call__(self, x: Tensor, call_args: CallArgs):
x = self._op(x)
x = self._norm(x, is_training=call_args.is_training,

test_local_stats=call_args.test_local_stats)
return self._non_linearity(x)

class ResBlock(hk.Module):
r"""Creates a residual block with an optional bottleneck."""

def __init__(self, stack_size: int, make_first_op, make_inner_op, make_last_op, name):
super().__init__(name=name)
assert stack_size >= 2

self._blocks = []
for i, make_op in enumerate([make_first_op] + [make_inner_op] *

(stack_size - 2) + [make_last_op]):
self._blocks.append(

BasicBlock(
make_inner_op=make_op,
non_linearity=lambda x: x if i == stack_size - 1 else jax.nn.relu,
name=f’basic_{i}’))

def __call__(self, x: Tensor, call_args: CallArgs):
res = x
for b in self._blocks:

res = b(res, call_args)
return jax.nn.relu(x + res)

class BroadcastResBlock(ResBlock):
"""A residual block that broadcasts information across spatial dimensions.

The block consists of a sequence of three layers:
- a layer that mixes information across channels, e.g. a 1x1 convolution.
- a layer that mixes information within each channel, a dense layer.
- another layer to mix across channels.

The same set of weights is used for mixing information within each channel.
"""

def __init__(self, make_mix_channel_op, name):

def broadcast(x: jnp.ndarray):
n, h, w, c = x.shape

# Process all planes at once, applynig the same linear layer to each.
x = x.transpose((0, 3, 1, 2)) # NHWC -> NCHW
x = x.reshape((n, c, h * w))
x = hk.Linear(h * w, name=’broadcast’)(x)
x = jax.nn.relu(x)
x = x.reshape((n, c, h, w))
x = x.transpose((0, 2, 3, 1)) # NCHW -> NHWC
return x

super().__init__(
stack_size=3,
make_first_op=make_mix_channel_op,
make_inner_op=lambda: broadcast,
make_last_op=make_mix_channel_op,
name=name)

Figure 11: Bottleneck and broadcast blocks used by the board game network, implemented in JAX
(Bradbury et al., 2018) with the neural network library Haiku.
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class PoolResBlock(hk.Module):
"""A residual block that broadcasts information across spatial dimensions.

The block consists of a sequence of three layers:
- a layer that mixes information across channels, e.g. a 1x1 convolution.
- a layer that mixes information within each channel, a dense layer.
- another layer to mix across channels.

The same set of weights is used for mixing information within each channel.
"""

def __init__(self,
make_mix_channel_op: MakeForwardModule,
name=’pool’):

super().__init__(name=name)
self._block = functools.partial(

BasicBlock, make_inner_op=make_mix_channel_op)

def __call__(self, x: Tensor, call_args: CallArgs):
a = self._block(non_linearity=jax.nn.relu, name=’input_a’)(x, call_args)
b = self._block(non_linearity=jax.nn.relu, name=’input_b’)(x, call_args)

b_planes = jnp.concatenate([jnp.mean(b, (1, 2)), jnp.max(b, (1, 2))], -1)
b_planes = hk.Linear(a.shape[-1], name=’mix_channels’)(b_planes)
c = a + b_planes[:, None, None, :]

x = x + self._block(non_linearity=lambda x: x, name=’output’)(c, call_args)
return jax.nn.relu(x)

Figure 12: Pooling block, based on Wu (2019).

def make_conv(output_channels: int, kernel_shape: int):
return functools.partial(hk.Conv2D, output_channels, kernel_shape, with_bias=False,

w_init=hk.initializers.TruncatedNormal(0.01))

def make_network(num_layers: int, output_channels: int, bottleneck_channels: int,
broadcast_every_n: int):

blocks = [
BasicBlock(make_inner_op=make_conv(output_channels), non_linearity=jax.nn.relu,

name=’init_conv’)
]

for i in range(num_layers):
if broadcast_every_n > 0 and i % broadcast_every_n == broadcast_every_n - 1:

blocks.append(BroadcastResBlock(
make_mix_channel_op=make_conv(output_channels, kernel_shape=1),
name=f’broadcast_{i}’))

elif bottleneck_channels > 0:
blocks.append(ResBlock(

stack_size=4,
make_first_op=make_conv(bottleneck_channels, kernel_shape=1),
make_inner_op=make_conv(bottleneck_channels, kernel_shape=3),
make_last_op=make_conv(output_channels, kernel_shape=1),
name=f’bottleneck_res_{i}’))

else:
blocks.append(ResBlock(

stack_size=2,
make_first_op=make_conv(output_channels, kernel_shape=3),
make_inner_op=make_conv(output_channels, kernel_shape=3),
make_last_op=make_conv(output_channels, kernel_shape=3),
name=f’res_{i}’))

return blocks

Figure 13: Usage of modules defined in Figure 11 to create the network used for board game exper-
iments. Alternatively, PoolResBlock can be used instead of BroadcastResBlock.
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