CLIP-LAD: UNLEASH THE POTENTIAL OF CLIP FOR FEW-SHOT LOGICAL ANOMALY DETECTION

Anonymous authors

Paper under double-blind review

Abstract

Anomaly detection (AD) is crucial for visual inspections, and includes two main types: structural and logical anomalies. Despite growing interest in AD, most methods focus on structural anomalies, while few works address logical anomaly detection (LAD), which requires a global understanding of the context. Leading LAD methods often advocate segmentation algorithms to parse logical relations within images, necessitating extensive training images or elaborate labels, but they undergo significant performance degradation in low-data scenarios at a risk of over-fitting. This study explores a practical yet challenging scenario where only few-shot normal images are available. To the end, we introduce CLIP-LAD, a novel, training-free method for few-shot LAD. We propose a coarse-to-fine segmentation process, involving foreground extraction and fine-grained alignment, to progressively harness the CLIP's generalization abilities for LAD. Specifically, we first aggregate visual features into different regions with clear boundaries, benefited from the strong visual coherence in vision transformer (ViT), and leverage coarse prompts to help identify the foreground. Within the foreground, we further conduct per-pixel fine-grained classification with fine prompts to parse different parts of an object. The anomaly scoring is derived from the class histograms in the precise segmentation masks. For comprehensive evaluation, we build up a few-shot LAD benchmark based on the MvTec-LOCO dataset and include a series of comparison methods. Experiments on this benchmark demonstrates our superiority in low-data regime.

031

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

032 033 034

1 INTRODUCTION

Anomaly detection is a fundamental yet challenging problem, which entails identifying anomalous patterns that deviate significantly from the training distribution. Specifically, in visual inspection, defects can be broadly classified into structural and logical anomalies (Bergmann et al., 2022). Structural anomalies refer to deviations in the visual structure, texture, or shape of an object from its expected norm, *e.g.*, cracks or scratches. In contrast, logical anomalies emphasize violations of logical constraints or expectations, such as missing, surplus objects, or misplacement.

While AD has recently garnered significant research interest, the majority of these meth-042 ods (Bergmann et al., 2020; Wang et al., 2021; Li et al., 2024) are biased towards identifying 043 structural anomalies, with limited focus on logical anomaly detection (LAD), which necessitates 044 an understanding the global context beyond patch-level visual analysis. Current LAD approaches 045 can be classified into two categories: feature-based and segmentation-based. Feature-based meth-046 ods implicitly capture the intricate logical dependencies within images through either knowledge 047 distillation (Batzner et al., 2024) or image reconstruction (Yang et al., 2023). Here, the discrepancy 048 between the original input and its reconstructed counterpart serves as an anomaly indicator. Conversely, segmentation-based methods explicitly infer the relationships among objects or their parts through segmentation (Kim et al., 2024; Liu et al., 2023), delivering enhanced performance due to 051 the granular part-level analysis. Unfortunately, all these LAD methods involve a training process and tend to be data-intensive (Li et al., 2024; Batzner et al., 2024) or require elaborate per-pixel 052 annotations (Kim et al., 2024). This dependency on the data scale and labels poses a significant risk of over-fitting, particularly in low-data regime.

Figure 1: (a) Two types of anomalies: structural anomalies exhibit obvious visual discrepancies compared to normal images, while logical anomalies represent violations of logical constraints. (b)
Sketch of our method: we leverage the generalization abilities of CLIP vision-language alignment to parse normality using only a few normal images, and rely on histogram statistic of segmentation for LAD. Anomalies are indicated by red bounding boxes.

072 073

054

056

058

059

064

065

066

In this study, we address the challenging problem of few-shot LAD to meet the requirements of 074 real-world applications, where access to abundant training images is impractical and per-pixel la-075 beling is resource-intensive. Building on the success of segmentation-based methods, we model ob-076 ject/part relationships through segmentation. Motivated by the remarkable results achieved by Con-077 trastive Language-Image Pre-training (CLIP) in open-vocabulary semantic segmentation (OVSS) us-078 ing image-text pairs, we embrace CLIP to segment regions of interest within the images. However, 079 directly applying CLIP inevitably leads to noisy predictions, especially around the object boundaries, due to the imperfect vision-language alignment at patch level, even with the advanced OVSS 081 method (Hajimiri et al., 2024).

082 To overcome this issue, we introduce CLIP-LAD, a novel, training-free method to refine the segmen-083 tation process for few-shot LAD. We propose a coarse-to-fine segmentation pipeline that consists of 084 foreground extraction and fine-grained alignment, ensuring more accurate object/part segmentation 085 within a few-shot framework. Benefiting from the strong visual coherence in shallow ViT stages, we first cluster the features extracted from these stages into distinct regions. Each of these regions 087 serves as a class-agnostic mask proposal, which is utilized to aggregate patch tokens from the final ViT stage, representing the embedding of the corresponding region. This embedding is then matched with pre-set coarse prompts to distinguish the foreground from the background. Within the identified foreground region, we further perform fine-grained visual-language matching using fined prompts at patch level, ultimately yielding the segmentation masks. Thanks to the ease of 091 region-level discrimination in the first stage, the foreground with clear boundaries can be effectively 092 identified and proceeded in the second stage of fine-grained prediction, eliminating false positives within the background. Regarding the anomaly scoring, we adopt histogram statistic of segmenta-094 tion for logical anomalies and multi-level feature comparison for structural anomalies, respectively. 095 We use scale-invariant Mahalanobis distance to fuse the two types of scoring functions. To com-096 prehensively evaluate our method, we also establish a few-shot LAD benchmark based on MvTec LOCO (Bergmann et al., 2022), the first large-scale dataset featuring LA. A variety of learning-based 098 and training-free LAD methods are included in the benchmark. Notably, owing to its training-free 099 characteristic, our method naturally extends to multiple categories via a unified model, in contrast 100 to the previous state-of-the-art PSAD (Kim et al., 2024; Batzner et al., 2024) that requires training a specialized model for each category. The contributions are three-fold: 101

- 102
- 103

105

• We build up a simple yet effective training-free baseline that only leverages CLIP to parse the logical relations within the image through segmentation.

We introduce a two-stage segmentation pipeline, which utilizes visual coherence and cross-modal alignment with a coarse-to-fine prompting strategy, to harness the CLIP potentials for accurate segmentation.

• Despite its simplicity, our method achieve the state-of-the-art in our established few-shot LAD benchmark.

110 111 112

113

108

109

2 RELATED WORK

Logical Anomaly Detection (LAD). Industrial anomaly detection primarily focuses on two types
of anomalies: structural and logical. In contrast to structural anomalies such as bents and scratches,
which locally exhibit conspicuous visual inconsistency against normal patterns, logical anomalies
violate the logical constraints *e.g.*, the quantity, spatial layout or composition of objects. The majority of AD methods (Bergmann et al., 2020; Salehi et al., 2021; Huang et al., 2022; Jeong et al.,
2023; Li et al., 2024) and widely-used benchmarks (Bergmann et al., 2019; Zou et al., 2022) are biased towards structural anomalies, inapplicable for detecting logical ones, which requires alternative designs for capturing the global dependencies within the image.

121 With the release of MvTec LOCO dataset (Bergmann et al., 2022), few efforts are devoted to ad-122 dressing the issue, and can generally be categorized into two streams. The first is the embedding 123 based methods (Bergmann et al., 2022; Batzner et al., 2024), which train a model to match with 124 the outputs of the other pre-trained one. Specifically, Efficient-AD (Batzner et al., 2024) equips the 125 student-teacher learning framework with an autoencoder to learn the logical constraints of normal 126 images. GCAD (Bergmann et al., 2022) inherits the framework but improves the anomaly scoring 127 by using reconstruction errors and feature distance to address picturable and unpicturable anoma-128 lies, respectively. Some other works attempt synthesize pseudo logical anomalies by either utilizing 129 a diffusion model (Dai et al., 2024) or edge manipulation (Zhao, 2024). Alternative methods reason about logical constraints in images through segmentation. ComAD (Liu et al., 2023) performs 130 K-means on the pre-trained DINO features (Caron et al., 2021) to segment images into multiple 131 components, based on which a series of meticulously designed techniques are developed to model 132 metrological features. The follow-up work PSAD (Kim et al., 2024) improves the segmentation 133 precision and granularity by introducing elaborately annotated masks to train a model to segment 134 object parts. While effective, it heavily depends on the well-trained segmentation model subject to 135 massive training images with a few elaborately annotated ones. 136

More importantly, all the existing methods work within the full-shot setting and require an additional training process, while degenerate significantly in few-shot setting at a risk of over-fitting. Differently, this work especially focuses on the more challenging few-shot setting, in which only a few normal images without any annotations are available at training, and presents a simple yet effective training-free framework that only utilizes the powerful CLIP to detect logical anomalies.

142 Few-shot Anomaly detection (FSAD). FSAD aims at detecting anomalies with only access to a limited number of normal images. RegAD (Huang et al., 2022) sets up a new paradigm that trains 143 a single generalized model for new categories via feature registration. WinCLIP (Jeong et al., 144 2023) embraces the pre-trained CLIP to identify anomalies through matching the well-designed 145 text prompts with window-based visual features in the shared vision-language space. The recent 146 PromptAD (Li et al., 2024) improves the results by introducing learnable prompts conditioned on 147 the few-shot normal images. Nevertheless, all these methods work on detecting structural anomalies 148 and fail to acquire the logical dependencies within the image, leaving much room for improvement 149 in LAD. 150

Open-vocabulary Semantic Segmentation (OVSS). Different from conventional segmentation 151 methods that are confined to a infinite visual concepts, OVSS endeavors to segment semantic el-152 ements of arbitrary categories, with CLIP being the essential impetus for the growth. However, 153 directly applying it to dense prediction tasks is sub-optimal. SCLIP (Wang et al., 2023) attributes 154 the inferiority to spatial misalignment of patch representations caused by vanilla self-attention mod-155 ules. To address this, SCLIP introduces a novel self-attention mechanism that facilitates covariant 156 visual features. More recent methods have further enhanced spatial consistency by encouraging 157 each patch attend to its neighbours (Hajimiri et al., 2024; Shao et al., 2024), thereby enhancing the 158 localization capabilities. Despite the promising achievements of these advanced OVSS methods, 159 their direct application to LAD still yields sub-optimal results, due to the domain gap between the general-purpose pre-training data and the images in industrial scenarios. To unleash the potentials 160 of CLIP for LAD, we introduce a series of modifications to fully utilize both visual coherence and 161 cross-modal alignment capabilities at inference, ensuring more accurate object/part segmentation.

¹⁶² 3 METHOD

164 165

166

3.1 COARSE-TO-FINE SEGMENTATION

The main concept for LAD is to analyze the relationships among objects/parts through the precise 167 segmentation. Though CLIP demonstrates strong generalized abilities in zero-shot classification and 168 segmentation, directly adapting it to industrial images yields false positive predictions. We attribute the imprecise segmentation to two key factors: 1) individual foreground patch token at the last ViT 170 stage probably carries ambiguous semantics infiltrated by background; 2) vision-language alignment 171 at patch level is imperfect due to the CLIP pre-training on matching global image embeddings with 172 captions. In this paper, we argue that with proper modifications in CLIP inference, it can precisely 173 identify objects of interest. Inspired by chain-of-thought (CoT) in natural language process (Wei 174 et al., 2022), which involves providing a series of intermediate reasoning steps to guide the model 175 in solving complex problems, we devise a coarse-to-fine segmentation pipeline to derive a precise 176 fine-grained segmentation mask. This approach operates in a top-to-bottom fashion, considering both visual spatial size and textual prompt granularity. 177

178 Foreground Extraction. While several training-free OVSS methods achieve impressive segmenta-179 tion results on popular benchmarks such as ADE-20K (Zhou et al., 2019), which primarily feature 180 natural images with rich semantic content, their direct application to industrial images often leads 181 to noisy predictions due to the significant domain gap. Specifically, these incorrect predictions fre-182 quently arise around object boundaries or background regions (Fig. 3). This issue is exaggerated when matching visual patch tokens with finer text prompts. The observation inspires us to first ex-183 tract the foreground region and then perform the fine-grained segmentation within the foreground. 184 Benefiting from the strong visual coherence in shallow ViT stages, we propose to aggregate patches based on their visual similarities. Specifically, given k normal images $I \in \mathbb{R}^{k \times H \times W \times 3}$, we first 185 use CLIP ViT to extract their visual representations $\mathbf{F}_i \in \mathbb{R}^{k \times \frac{H}{s} \times \frac{W}{s} \times C}$ at *i*-th ViT stage, where 187 s denotes patch size and C is the embedding dimension. We omit the layer index i for simplicity. 188 We then perform K-means to obtain N cluster centers $\mu_i \in \mathbb{R}^C (i = 1, 2, ..., N_c)$. Each patch is 189 assigned to the nearest μ_i , forming distinct regions that serve as mask proposals $m_i \in \{0, 1\}^{\frac{H}{s} \times \frac{W}{s}}$. 190 Note that we equally treat each patch regardless of its position. These proposals are used to aggre-191 gate patch tokens at the last stage of ViT, which has proven capable of vision-language alignment in 192 addition to the [CLS] token (Zhou et al., 2022). We average the masked-out patch tokens to acquire 193 the representation of the corresponding region m_i . 194

195

196

199

200 201

202

203

204

205

206

207

where \odot denotes the element-wise multiplication and \sum sums over all the positions of elements. Foreground can be easily identified by matching the region-level representation with a pre-set target embeddings. Here, we provide a set of coarse prompts, which can generally describe the semantics of the regions, *e.g.*, background or connector. These words are extended by an ensemble of prompt template, *e.g.*, a photo of [c], which consistently boost the performance (Radford et al., 2021). Compared to common OVSS methods directly performing fine-grained segmentation, binary classification at region level is easy to complete, ensuring more accurate foreground extraction.

 $\overline{\mathbf{F}}_{m_i} = \operatorname{AvgPool}(\mathbf{F}, m_i) = \frac{\sum \mathbf{F} \odot m_i}{\sum m_i},$

(1)

208 Fine-grained Alignment. Thanks to the strong visual coherence, we obtain tight boundaries around 209 the foreground with minimal false positives. However, the initial foreground mask is class-agnostic 210 and does not fully capture the compositional relationships among objects. To address this limitation, 211 we incorporate fine-grained segmentation at patch level. Similar with the previous stage, we prepare 212 a set of detailed prompts such as splicing connector and red/yellow/blue cable 213 for per-patch matching. We disregard any predictions on the background, focusing fine-grained segmentation exclusively within the foreground region. Despite the simplicity of this coarse-to-214 fine segmentation strategy, the resulting segmentation mask features clear boundaries with precise 215 fine-grained object part masks.

Figure 2: The proposed cross-modal coarse-to-fine segmentation for LAD involves two stages: 1) coarse masks are generated through unsupervised clustering, where averaged patch embeddings are used as mask representation and matched with coarse prompts to extract the foreground; 2) patch embeddings are then matched with fine-grained prompts to classify each patch. The final segmentation masks are created by fusing the coarse and fine masks, from which the class histograms are derived for LAD.

3.2 ANOMALY DETECTION

Inference. On the LAD, we calculate the class histogram h_i based on the segmentation mask for each of the k normal images and maintain a memory bank $\mathcal{M}_{hist} = \{h_i\}_{i=1}^k$. The number of bins in the histograms corresponds to the number of classes of interest, as indicated by the text prompts, excluding the background class. This histogram memory is assumed to reveal the compositional relationships among objects within the images. Moreover, we reuse the cluster centroids μ_i derived from the k-shot normal images to partition a query image I_{test} , which helps make logical anoma-lies more recognizable through low-level feature matching. We then apply the same coarse-to-fine vision-language alignment used for processing the normal images to obtain the histogram h_{test} . While high-level compositional relations are crucial for LAD, investigating low-level appearance differences is essential for effective structural anomaly detection. To the end, we adopt per-patch comparison in feature space to spot the visual defects. Specifically, we first extract multi-level ViT features \mathbf{F}_i for all k images and save patch features $f_i \in \mathbb{R}^C$ at all positions to create a patch memory $\mathcal{M}_{patch} = \{f_j\}_{j=1}^{k \times \frac{H}{s} \times \frac{W}{s}}$. The anomaly map is obtained by comparing the query patch f_{patch} with the those in \mathcal{M}_{patch} . Multi-level feature comparison is enabled for robust detection following (Salehi et al., 2021; Wang et al., 2021).

Anomaly Scoring. Based on the constructed memories \mathcal{M}_{hist} and \mathcal{M}_{patch} , we inspect the difference between a query image and its nearest samples in the \mathcal{M}_{hist} and \mathcal{M}_{patch} to measure the anomaly scores. On the logical anomalies, we adopt the histogram difference ratio as the anomaly scoring, different from directly calculating their the L_2 distance (Kim et al., 2024) in consideration of the unbalanced class distribution.

$$u_{log} = \min_{h \in \mathcal{M}_{hist}} \|h_{test}/h\|_1.$$

$$\tag{2}$$

269 On the structural anomalies, we select the maximum value from the anomaly map as the resulting anomaly score.

S

270

292 293

295 296

297

298

299

300

301

302

303

310

271	Table 1: Image-level detection comparison on few-shot MvTec LOCO (Bergmann et al., 2022) and
272	the micro-averaged AUROC scores are measured. We report the mean and standard deviation over
273	five random seeds. The best results are boldface.

210	Satur	Cotogony		Learnir	ng-based				Train	ing-free		
274	Setup	Category	PromptAD	RD4AD	EfficientAD	STFPM	CLIP	PatchCore	ComAD	WinCLIP	SINBAD	CLIP-LAD
075		Breakfast Box	72.8±2.1	70.7±6.9	60.6±1.4	59.4 ± 1.6	65.0 ± 0.2	73.4±1.8	69.3±3.2	47.6±3.0	70.0±2.5	74.6±2.2
215	1-shot	Juice Bottle (Banana)	77.3±1.5	65.8±4.2	85.0 ± 3.0	88.3±3.5	76.6±2.3	76.4 ± 0.4	72.3 ± 2.8	57.6 ± 2.0	80.2 ± 4.0	88.5±0.9
276		Juice Bottle (Cherry)	75.7 ± 0.4	71.8 ± 2.4	88.2±3.7	80.6 ± 2.4	64.8±1.3	77.3 ± 4.2	59.0 ± 5.2	72.1 ± 5.5	86.5 ± 3.5	72.8 ± 1.5
210		Juice Bottle (Orange)	71.4±2.8	67.5 ± 0.6	81.8±5.6	77.8±4.9	60.6±4.2	72.9 ± 4.6	58.2 ± 1.2	60.4 ± 1.6	72.7 ± 3.0	77.7 ± 3.1
277		Pushpins	72.3±1.9	61.0 ± 2.1	61.1 ± 1.8	58.8 ± 3.4	64.8 ± 0.6	67.7±2.6	64.8 ± 2.8	53.1 ± 5.4	52.9 ± 3.2	82.4±1.7
		Screw Bag	53.4±3.3	46.6 ± 3.1	44.2 ± 2.3	51.2 ± 3.2	58.2 ± 5.0	63.7±3.4	54.2 ± 2.7	55.8 ± 2.6	56.3 ± 2.2	72.2±3.4
278		Connectors (Red cable)	65.3±1.2	55.0 ± 4.6	68.1 ± 5.6	54.2 ± 0.6	71.6±3.3	66.2 ± 2.6	78.7 ± 0.6	50.9 ± 0.0	72.1 ± 2.7	60.2 ± 1.4
		Connectors (Blue cable)	72.4±3.8	75.7 ± 4.9	76.4 ± 4.0	59.3±5.7	65.0±2.1	73.9 ± 3.4	60.5 ± 2.2	51.8 ± 3.2	71.6 ± 2.1	78.6±2.9
279		Connectors (Yellow cable)	67.5±0.9	62.9±0.9	69.9±1.5	60.9±2.1	67.5±2.0	64.6±1.1	73.6±5.9	60.4 ± 2.4	72.5±1.6	59.3±4.4
000		Average	69.8±0.8	64.1±1.2	70.6±2.2	65.6±1.6	66.0±1.2	70.7±0.7	65.6±1.5	56.6±1.5	70.5 ± 0.6	74.0±1.0
280		Breakfast Box	74.3±1.6	69.8±3.6	62.3 ± 4.8	63.8 ± 2.4	68.3±2.0	72.4 ± 2.1	64.7 ± 2.7	51.2 ± 2.4	75.9 ± 3.0	81.1±2.7
201		Juice Bottle (Banana)	77.7±2.6	83.1 ± 6.3	87.8 ± 1.1	84.7 ± 1.7	80.6±2.3	76.2 ± 1.3	76.6 ± 1.9	70.0 ± 4.2	84.3 ± 2.5	89.7±3.2
201		Juice Bottle (Cherry)	78.4±1.2	76.9 ± 3.0	90.4±2.9	89.4 ± 1.6	69.9±2.5	82.4 ± 2.5	68.8 ± 3.8	70.5 ± 2.0	88.3±4.3	83.6±1.2
282	2-shot	Juice Bottle (Orange)	72.0±2.9	74.0 ± 0.4	88.3 ± 2.6	84.5 ± 2.4	83.8±3.8	78.8 ± 1.8	64.6±3.9	62.0 ± 4.1	76.8 ± 1.4	77.5 ± 3.9
		Pushpins	70.4 ± 1.4	64.3 ± 3.9	58.7±1.3	58.7 ± 3.2	62.7±4.2	71.7 ± 2.1	56.8 ± 3.8	54.5 ± 2.7	51.5 ± 1.2	82.1±2.3
283		Screw Bag	56.0±1.8	57.6 ± 0.6	44.5 ± 3.9	54.2±1.7	50.1±3.5	64.4 ± 2.2	59.4 ± 1.6	59.3 ± 0.5	55.5 ± 2.1	75.4±7.1
		Connectors (Red cable)	68.9±3.0	54.8±3.3	75.8±1.4	66.2 ± 1.2	72.6±3.5	72.0±3.3	73.1 ± 4.2	47.6 ± 4.9	73.2±5.9	69.8 ± 1.7
284		Connectors (Blue cable)	75.9±1.7	65.1 ± 4.8	79.3 ± 3.4	64.3 ± 2.0	68.3±1.4	76.5 ± 0.2	85.1±3.1	60.1 ± 1.3	78.0 ± 3.2	82.9 ± 4.0
		Connectors (Yellow cable)	71.7±2.3	65.6 ± 1.5	70.2 ± 1.7	62.0 ± 0.8	73.9±2.3	72.6±1.3	77.9 ±4.3	61.0 ± 3.1	69.5 ± 4.2	67.7±3.0
285		Average	71.7±1.0	67.9 ± 0.7	73.0 ± 0.9	69.8 ± 0.8	70.0±2.2	74.1±1.1	69.7 ± 1.0	59.6±1.3	72.6±1.2	78.9±0.8
000		Breakfast Box	77.3±1.1	66.3±2.7	61.5 ± 1.6	67.3±5.4	74.1 ± 1.7	76.4 ± 0.6	65.7 ± 2.0	57.4 ± 1.9	78.0 ± 5.7	83.9±1.7
200		Juice Bottle (Banana)	79.1±2.9	87.7 ± 1.9	92.3 ± 1.9	89.7 ± 1.9	82.4±3.3	75.6±3.7	79.2 ± 3.3	66.8±3.3	85.9 ± 2.1	95.3±2.1
287		Juice Bottle (Cherry)	76.9±0.9	93.4 ± 1.8	95.0 ± 2.4	95.5±6.2	74.8±3.9	84.8±3.9	70.0 ± 4.7	70.3 ± 2.1	85.9 ± 1.8	87.1 ± 2.6
201		Juice Bottle (Orange)	75.5±3.2	84.2 ± 1.0	90.1±5.7	84.9 ± 6.2	72.1 ± 0.8	82.1 ± 2.1	81.9 ± 3.5	71.8 ± 1.6	77.1 ± 2.8	78.2±1.3
288	4-shot	Pushpins	73.6±1.5	65.2 ± 2.7	65.0±1.5	64.6±1.2	65.8±2.1	70.4 ± 4.2	72.5 ± 3.1	51.2 ± 0.8	55.3 ± 3.0	79.2±1.1
		Screw Bag	59.3±4.2	56.9 ± 4.2	50.4 ± 1.0	57.6±3.1	56.6±5.7	66.1 ± 2.2	64.7 ± 3.8	54.3 ± 2.2	56.1 ± 2.9	75.6±3.7
289		Connectors (Red cable)	63.2±2.9	64.2 ± 1.0	76.8 ± 1.8	73.0±1.8	69.4±4.1	70.1±4.5	66.0 ± 2.8	58.0 ± 1.8	77.4±0.6	70.3±1.7
		Connectors (Blue cable)	79.4±2.7	76.8 ± 2.0	82.5 ± 3.9	62.8 ± 4.6	73.8±2.8	74.3±1.5	82.8 ± 4.3	64.8 ± 2.8	78.9 ± 2.2	84.2±4.3
290		Connectors (Yellow cable)	73.6±1.3	63.6±4.4	69.7±4.1	69.0±1.9	65.9±2.4	71.7±4.8	79.8±2.0	66.5±3.2	74.8 ± 0.9	77.0±0.3
0.0.1		Average	73.1±1.6	73.1 ± 0.3	75.9 ± 0.6	73.8±1.5	70.5±1.3	74.6±1.5	73.6±1.9	62.3±1.1	74.4 ± 2.1	81.2±0.5
291												

$$s_{str} = \max_{f \in \mathcal{M}_{patch}} \|f_{test} - f\|_2.$$
 (3)

Score Normalization. We adopt segmentation analysis and patch comparison to cater for detecting logical and structural anomalies, respectively. However, the two strategies generate anomaly scores s_{log} and s_{str} with different scales. Thus, it is essential to reasonably normalize the two types of scoring before aggregation. Following (Batzner et al., 2024), we use the validation set, which contains anomaly-free images and has no overlaps with the training set, to estimate the scales of the two scoring types. With the assumption that each type of anomaly scoring follows a Gaussian distribution, we derive the mean μ and covariance matrix Σ for the set of anomaly scores (s_{log}, s_{str}) across the validation images. For an input tuple x, we define the Mahalanobis distance as the resulting anomaly score:

$$s(x;\mu,\Sigma) = \sqrt{(x-\mu)\Sigma(x-\mu)^T}.$$
(4)

EXPERIMENT 4

Benchmark Set-up. To the best of our knowledge, MvTec LOCO (Bergmann et al., 2022) is the 311 only large-scale dataset featuring logical anomalies. It contains 3,644 images across five categories 312 from industrial inspection scenarios. The training and validation sets consist solely of anomaly-free 313 images, while the test set contains both anomaly-free images and anomalous images. Typical logical 314 anomalies include missing or surplus objects, and misplacement. To comprehensively evaluate our 315 method based on the dataset, we first establish a few-show FAD benchmark, considering 1/2/4-shot 316 normal images only for training. However, since the categories juice bottle and splicing connec-317 tors in the dataset have multiple sub-types, randomly sampling k images constituting the training 318 set could cause label ambiguity. For instance, *juice bottle* includes three types of liquid-orange, 319 cherry and banana juice-that are all considered normal. The sampled k-shot training images may 320 not necessarily include all these sub-types. To eliminate the ambiguity in determining normality 321 or abnormality, we split these two categories into three sub-types each, resulting in a total of nine categories. The area under the ROC curve (AUROC) is used as evaluation metrics. For each k-shot 322 setting, we randomly select k normal images across five random seeds. The models are evaluated 323 on both SA and LA detection together, *i.e.*, micro-average. We also provide separate results in

6

Fig. 2. Following (Kim et al., 2024), we consider image-level AUROC, as logical anomalies are context-based and typically pertain to the entire image.

Comparison Methods. Our few-shot LAD benchmark considers a variety of methods: training-free and learning-based. Training-free methods include CLIP (Radford et al., 2021) PatchCore (Roth et al., 2022), WinCLIP (Jeong et al., 2023), ComAD (Liu et al., 2023), SINBAD (Cohen et al., 2023). The learning-based ones are PromptAD (Li et al., 2024), RD4AD (Deng & Li, 2022), STFPM (Wang et al., 2021) and EfficientAD (Batzner et al., 2024). Notably, since all these comparison methods are developed for full-data scenarios, we adapt them to our few-shot setting by using their official implementations to train the models with only the given k normal images.

Implementation Details. We use OpenCLIP's implementation¹ with DataComp-1B (Gadre et al., 334 2024) and CLIP ViT-L/14 for all experiments. Images are resized to 448×448 . Following (Chen 335 et al., 2023), we evenly divide the visual encoder into four stages and apply K-means clustering on 336 embeddings from the first two stages. We adopt NACLIP (Hajimiri et al., 2024), a top-tier training-337 free method for OVSS, and up-scale feature maps by $\times 2$. Histogram statistics are calculated on 338 the 64×64 segmentation masks. We find that the widely-used mask refinement techniques, such 339 as DenseCRF (Krähenbühl & Koltun, 2011) and PAMR (Araslanov & Roth, 2020) yield similar 340 results. We use the same prompt templates as (Radford et al., 2021) and ensemble text embeddings. 341 For the complex *juice bottle*, we perform region-level fine-grained classification in Fig. 5 to avoid noisy patch-level results. 342

343 **Experimental Results.** Tab. 1 shows the overall comparison with both learning-based and training-344 free methods in 1/2/4-shot settings. While learning-based methods achieve descend results in some 345 categories, such as *juice bottle* which is consistently positioned in the center of the image, they all 346 fail in more challenging categories like *pushpins* and *screw bag*, where objects are placed randomly. 347 This failure is due to the risk of over-fitting on the limited number of normal images. Training-free methods attempt to leverage the generalized capabilities of pre-trained foundation models; however, 348 they typically perform feature matching at either patch-level (Roth et al., 2022) or image-level (Co-349 hen et al., 2023), which fails to capture object relationships adequately, leading to inferior detection. 350 In contrast, our method, with tailored designs that fully harness the potential of CLIP, significantly 351 outperforms these alternatives. 352

353 In Fig. 3, we visualize the segmentation results of NACLIP (Hajimiri et al., 2024), as well as the coarse and the fine stages of our method. Obviously, NACLIP with fine-prompts tends to make 354 incorrect prediction scattered across the image, particularly around object boundaries and in back-355 ground regions, whereas our method provides more precise segmentation masks. This improvement 356 can be attributed to our coarse-to-fine cross-modal alignment design. The coarse stage involves un-357 supervised clustering on shallow embeddings, which results in clearer class boundaries but lacks 358 discriminative labels. The second stage focuses on per-pixel prediction using fine text prompts. By 359 combining the results from these two stages, we achieve precise segmentation results that are well-360 suited for inferring composition relationships for LAD. Additionally, with more training images 361 available, we observe an increase in average performance. To further understand the performance 362 gain, we separately calculate the metrics for logical and structural anomalies, which in Tab. 2 con-363 firms our method's superiority for LAD.

364 365

366

Table 2: Logical and structural detection are evaluated separately on the few-shot MvTec LOCO. The AUROC scores are averaged across all categories over 1/2/4-shot settings.

0	U	0		
	Methods	Structural	Logical	Average
Learning-based	PromptAD	65.0	71.9	68.5
	RD44D	64.6	71.5	68.1
	EfficientAD	75.9	71.8	73.9
	STFPM	69.2	70.3	69.8
Training-free	CLIP	68.7	70.1	69.4
	PatchCore	68.5	76.2	72.4
	ComAD	60.6	75.4	68.0
	WinCLIP	60.6	58.8	59.7
	SINBAD	68.9	77.9	73.4
	CLIP-LAD	77.0	81.4	79.2

¹https://github.com/mlfoundations/open_clip

Figure 3: Visualizations of different segmentation methods are shown, displaying the segmentation 409 results of both anomaly-free and anomalous images, each sized 64×64 . The state-of-the-art OVSS 410 method, NACLIP (Hajimiri et al., 2024) suffers from noticeable noisy prediction at arbitrary positions, while our method offers more precise segmentation. The first stage extracts the foreground 412 with clear boundaries by matching the clustered regions with coarse prompts. The second stage performs fine alignment, targeting pixel-level discrimination using fine text prompts, which results 413 414 in fine-grained segmentation.

411

415 416

417

418

419

420

421

422

423

424

425

426

427 428 429

Methods Juice Bottle Average Connectors PromptAD 73.4 71.2 72.3 RD44D 72.3 63.0 67.7 Learning-based EfficientAD 74.8 69.2 72.0 STFPM 74.1 64.5 69.3 CLIP 69.1 70.9 70.0 71.0 PatchCore 73.3 72.2 67.3 ComAD 59.8 74.8 Training-free WinCLIP 66.5 62.2 64.4 SINBAD 73.7 74.5 74.1 CLIP-LAD 81.2 78.2 79.7

Table 3: Logical anomaly detection in multi-class scenario on categories *juice bottle* and *splicing* connectors with only one image per sub-type for training. The AUROC scores are averaged over 1/2/4-shot settings.

Extension from One-class to Multi-class Scenario. Recall that in our main experiments, we split 430 the *juice bottle* and *splicing connectors* categories from MvTec LOCO into three sub-types, ensuring 431 that the provided k-shot images contain only one class. However, our methods is also applicable to

Figure 4: Ablation studies on the number of clusters across nine categories from MvTec LOCO in 4-shot setting. The optimal number for each category is marked.

Figure 5: Inappropriate cluster numbers result in either over-clustering or under-clustering.

the multi-class scenario, where the training set consists of multiple classes. In this case, we follow the original normality/abnormality division, treating images that violate the logical constraints of any sub-type as anomalous. We consider the challenging 3-shot setting, with only one image per sub-type. As shown in Tab. 3, our method stills outperforms counterparts significantly, confirming its flexibility in addressing both one-class and multi-class scenarios.

Effect of Number of Clustering Centers. The success of our methods lies in its segmentation precision. To achieve precise zero-shot image segmentation, we propose a coarse-to-fine cross-modal alignment. In the coarse stage of foreground extraction, we perform unsupervised clustering on the visual features to aggregate similar patches. The segmentation quality depends largely on the number of clustering centers used. Fig. 4 displays the effects of different cluster numbers across five categories. Over-clustering leads to a large number of fragmented regions, each inevitably mixed with background noise, making it difficult to accurately identify the foreground regions of interest. On the other hand, under-clustering directly results in unclear object boundaries. Thus, it is essential to select an appropriate cluster number for better aggregate the foreground regions.

CONCLUSION

In this work, we consider the challenging few-shot logical anomaly detection and present a simple yet effective training-free method CLIP-LAD. We leverage the off-the-shelf vision-language model to comprehensively understand the logical constraints through segmentation. Specifically, we devise a cross-modal coarse-to-fine segmenting strategy to take full advantage of visual coherence and cross-modal alignment capabilities in CLIP, facilitating precise segmentation. Experimental results on the few-shot LAD benchmark demonstrate the superiority of our method.

486 REFERENCES

488 489	Nikita Araslanov and Stefan Roth. Single-stage semantic segmentation from image labels. In <i>CVPR</i> , 2020.
490 491	Kilian Batzner, Lars Heckler, and Rebecca König. Efficientad: Accurate visual anomaly detection at millisecond-level latencies. In WACV, 2024.
492 493 494	Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection. In <i>CVPR</i> , 2019.
495 496	Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings. In <i>CVPR</i> , 2020.
497 498 499 500	Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, and Carsten Steger. Beyond dents and scratches: Logical constraints in unsupervised anomaly detection and localization. <i>IJCV</i> , 130 (4):947–969, 2022.
501 502	Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In <i>ICCV</i> , 2021.
503 504 505 506	Xuhai Chen, Yue Han, and Jiangning Zhang. A zero-/few-shot anomaly classification and segmen- tation method for cvpr 2023 vand workshop challenge tracks 1&2: 1st place on zero-shot ad and 4th place on few-shot ad. <i>arXiv preprint arXiv:2305.17382</i> , 2023.
507 508	Niv Cohen, Issar Tzachor, and Yedid Hoshen. Set features for fine-grained anomaly detection. In <i>arXiv preprint arXiv:2302.12245</i> , 2023.
509 510 511	Songmin Dai, Yifan Wu, Xiaoqiang Li, and Xiangyang Xue. Generating and reweighting dense contrastive patterns for unsupervised anomaly detection. In <i>AAAI</i> , 2024.
512 513	Hanqiu Deng and Xingyu Li. Anomaly detection via reverse distillation from one-class embedding. In <i>CVPR</i> , 2022.
514 515 516	Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the next generation of multimodal datasets. In <i>NeurIPS</i> , 2024.
517 518 519	Sina Hajimiri, Ismail Ben Ayed, and Jose Dolz. Pay attention to your neighbours: Training-free open-vocabulary semantic segmentation. In <i>arXiv preprint arXiv:2404.08181</i> , 2024.
520 521	Chaoqin Huang, Haoyan Guan, Aofan Jiang, Ya Zhang, Michael Spratling, and Yan-Feng Wang. Registration based few-shot anomaly detection. In <i>ECCV</i> , 2022.
522 523 524	Jongheon Jeong, Yang Zou, Taewan Kim, Dongqing Zhang, Avinash Ravichandran, and Onkar Dabeer. Winclip: Zero-/few-shot anomaly classification and segmentation. In <i>CVPR</i> , 2023.
525 526 527	Soopil Kim, Sion An, Philip Chikontwe, Myeongkyun Kang, Ehsan Adeli, Kilian M Pohl, and Sang Hyun Park. Few shot part segmentation reveals compositional logic for industrial anomaly detection. In <i>AAAI</i> , 2024.
528 529 530	Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In <i>NeurIPS</i> , 2011.
531 532 533	Xiaofan Li, Zhizhong Zhang, Xin Tan, Chengwei Chen, Yanyun Qu, Yuan Xie, and Lizhuang Ma. Promptad: Learning prompts with only normal samples for few-shot anomaly detection. In <i>CVPR</i> , 2024.
534 535 536 537	Tongkun Liu, Bing Li, Xiao Du, Bingke Jiang, Xiao Jin, Liuyi Jin, and Zhuo Zhao. Component- aware anomaly detection framework for adjustable and logical industrial visual inspection. <i>Adv.</i> <i>Eng. Inform.</i> , 58:102161, 2023.
538 539	Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In <i>ICML</i> , 2021.

540 541	Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter Gehler. Towards total recall in industrial anomaly detection. In <i>CVPR</i> , 2022.
542 543 544	Mohammadreza Salehi, Niousha Sadjadi, Soroosh Baselizadeh, Mohammad H Rohban, and Hamid R Rabiee. Multiresolution knowledge distillation for anomaly detection. In <i>CVPR</i> , 2021.
545 546	Tong Shao, Zhuotao Tian, Hang Zhao, and Jingyong Su. Explore the potential of clip for training- free open vocabulary semantic segmentation. In <i>ECCV</i> , 2024.
547 548 549	Feng Wang, Jieru Mei, and Alan Yuille. Sclip: Rethinking self-attention for dense vision-language inference. In <i>arXiv preprint arXiv:2312.01597</i> , 2023.
550 551 552	Guodong Wang, Shumin Han, Errui Ding, and Di Huang. Student-teacher feature pyramid matching for anomaly detection. In <i>BMVC</i> , 2021.
553 554 555	Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In <i>NeurIPS</i> , 2022.
556 557 558	Minghui Yang, Jing Liu, Zhiwei Yang, and Zhaoyang Wu. Slsg: Industrial image anomaly detection by learning better feature embeddings and one-class classification. <i>arXiv preprint arXiv:2305.00398</i> , 2023.
559 560 561	Ying Zhao. Logical: Towards logical anomaly synthesis for unsupervised anomaly localization. In <i>CVPRW</i> , 2024.
562 563	Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic understanding of scenes through the ade20k dataset. <i>IJCV</i> , 127:302–321, 2019.
564 565	Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from clip. In ECCV, 2022.
566 567 568	Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, and Onkar Dabeer. Spot-the-difference self-supervised pre-training for anomaly detection and segmentation. In <i>ECCV</i> , 2022.
569	
570	
571	
572	
573	
574	
575	
577	
578	
579	
580	
581	
582	
583	
584	
585	
586	
587	
588	
589	
590	
591	
592	
593	