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ABSTRACT

Anomaly detection (AD) is crucial for visual inspections, and includes two main
types: structural and logical anomalies. Despite growing interest in AD, most
methods focus on structural anomalies, while few works address logical anomaly
detection (LAD), which requires a global understanding of the context. Lead-
ing LAD methods often advocate segmentation algorithms to parse logical rela-
tions within images, necessitating extensive training images or elaborate labels,
but they undergo significant performance degradation in low-data scenarios at a
risk of over-fitting. This study explores a practical yet challenging scenario where
only few-shot normal images are available. To the end, we introduce CLIP-LAD,
a novel, training-free method for few-shot LAD. We propose a coarse-to-fine seg-
mentation process, involving foreground extraction and fine-grained alignment,
to progressively harness the CLIP’s generalization abilities for LAD. Specifically,
we first aggregate visual features into different regions with clear boundaries, ben-
efited from the strong visual coherence in vision transformer (ViT), and leverage
coarse prompts to help identify the foreground. Within the foreground, we further
conduct per-pixel fine-grained classification with fine prompts to parse different
parts of an object. The anomaly scoring is derived from the class histograms in
the precise segmentation masks. For comprehensive evaluation, we build up a
few-shot LAD benchmark based on the MvTec-LOCO dataset and include a se-
ries of comparison methods. Experiments on this benchmark demonstrates our
superiority in low-data regime.

1 INTRODUCTION

Anomaly detection is a fundamental yet challenging problem, which entails identifying anoma-
lous patterns that deviate significantly from the training distribution. Specifically, in visual inspec-
tion, defects can be broadly classified into structural and logical anomalies (Bergmann et al., 2022).
Structural anomalies refer to deviations in the visual structure, texture, or shape of an object from
its expected norm, e.g., cracks or scratches. In contrast, logical anomalies emphasize violations of
logical constraints or expectations, such as missing, surplus objects, or misplacement.

While AD has recently garnered significant research interest, the majority of these meth-
ods (Bergmann et al., 2020; Wang et al., 2021; Li et al., 2024) are biased towards identifying
structural anomalies, with limited focus on logical anomaly detection (LAD), which necessitates
an understanding the global context beyond patch-level visual analysis. Current LAD approaches
can be classified into two categories: feature-based and segmentation-based. Feature-based meth-
ods implicitly capture the intricate logical dependencies within images through either knowledge
distillation (Batzner et al., 2024) or image reconstruction (Yang et al., 2023). Here, the discrepancy
between the original input and its reconstructed counterpart serves as an anomaly indicator. Con-
versely, segmentation-based methods explicitly infer the relationships among objects or their parts
through segmentation (Kim et al., 2024; Liu et al., 2023), delivering enhanced performance due to
the granular part-level analysis. Unfortunately, all these LAD methods involve a training process
and tend to be data-intensive (Li et al., 2024; Batzner et al., 2024) or require elaborate per-pixel
annotations (Kim et al., 2024). This dependency on the data scale and labels poses a significant risk
of over-fitting, particularly in low-data regime.
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Figure 1: (a) Two types of anomalies: structural anomalies exhibit obvious visual discrepancies
compared to normal images, while logical anomalies represent violations of logical constraints. (b)
Sketch of our method: we leverage the generalization abilities of CLIP vision-language alignment
to parse normality using only a few normal images, and rely on histogram statistic of segmentation
for LAD. Anomalies are indicated by red bounding boxes.

In this study, we address the challenging problem of few-shot LAD to meet the requirements of
real-world applications, where access to abundant training images is impractical and per-pixel la-
beling is resource-intensive. Building on the success of segmentation-based methods, we model ob-
ject/part relationships through segmentation. Motivated by the remarkable results achieved by Con-
trastive Language-Image Pre-training (CLIP) in open-vocabulary semantic segmentation (OVSS) us-
ing image-text pairs, we embrace CLIP to segment regions of interest within the images. However,
directly applying CLIP inevitably leads to noisy predictions, especially around the object bound-
aries, due to the imperfect vision-language alignment at patch level, even with the advanced OVSS
method (Hajimiri et al., 2024).

To overcome this issue, we introduce CLIP-LAD, a novel, training-free method to refine the segmen-
tation process for few-shot LAD. We propose a coarse-to-fine segmentation pipeline that consists of
foreground extraction and fine-grained alignment, ensuring more accurate object/part segmentation
within a few-shot framework. Benefiting from the strong visual coherence in shallow ViT stages,
we first cluster the features extracted from these stages into distinct regions. Each of these regions
serves as a class-agnostic mask proposal, which is utilized to aggregate patch tokens from the fi-
nal ViT stage, representing the embedding of the corresponding region. This embedding is then
matched with pre-set coarse prompts to distinguish the foreground from the background. Within
the identified foreground region, we further perform fine-grained visual-language matching using
fined prompts at patch level, ultimately yielding the segmentation masks. Thanks to the ease of
region-level discrimination in the first stage, the foreground with clear boundaries can be effectively
identified and proceeded in the second stage of fine-grained prediction, eliminating false positives
within the background. Regarding the anomaly scoring, we adopt histogram statistic of segmenta-
tion for logical anomalies and multi-level feature comparison for structural anomalies, respectively.
We use scale-invariant Mahalanobis distance to fuse the two types of scoring functions. To com-
prehensively evaluate our method, we also establish a few-shot LAD benchmark based on MvTec
LOCO (Bergmann et al., 2022), the first large-scale dataset featuring LA. A variety of learning-based
and training-free LAD methods are included in the benchmark. Notably, owing to its training-free
characteristic, our method naturally extends to multiple categories via a unified model, in contrast
to the previous state-of-the-art PSAD (Kim et al., 2024; Batzner et al., 2024) that requires training a
specialized model for each category. The contributions are three-fold:

• We build up a simple yet effective training-free baseline that only leverages CLIP to parse
the logical relations within the image through segmentation.

• We introduce a two-stage segmentation pipeline, which utilizes visual coherence and cross-
modal alignment with a coarse-to-fine prompting strategy, to harness the CLIP potentials
for accurate segmentation.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Despite its simplicity, our method achieve the state-of-the-art in our established few-shot
LAD benchmark.

2 RELATED WORK

Logical Anomaly Detection (LAD). Industrial anomaly detection primarily focuses on two types
of anomalies: structural and logical. In contrast to structural anomalies such as bents and scratches,
which locally exhibit conspicuous visual inconsistency against normal patterns, logical anomalies
violate the logical constraints e.g., the quantity, spatial layout or composition of objects. The ma-
jority of AD methods (Bergmann et al., 2020; Salehi et al., 2021; Huang et al., 2022; Jeong et al.,
2023; Li et al., 2024) and widely-used benchmarks (Bergmann et al., 2019; Zou et al., 2022) are bi-
ased towards structural anomalies, inapplicable for detecting logical ones, which requires alternative
designs for capturing the global dependencies within the image.

With the release of MvTec LOCO dataset (Bergmann et al., 2022), few efforts are devoted to ad-
dressing the issue, and can generally be categorized into two streams. The first is the embedding
based methods (Bergmann et al., 2022; Batzner et al., 2024) , which train a model to match with
the outputs of the other pre-trained one. Specifically, Efficient-AD (Batzner et al., 2024) equips the
student-teacher learning framework with an autoencoder to learn the logical constraints of normal
images. GCAD (Bergmann et al., 2022) inherits the framework but improves the anomaly scoring
by using reconstruction errors and feature distance to address picturable and unpicturable anoma-
lies, respectively. Some other works attempt synthesize pseudo logical anomalies by either utilizing
a diffusion model (Dai et al., 2024) or edge manipulation (Zhao, 2024). Alternative methods rea-
son about logical constraints in images through segmentation. ComAD (Liu et al., 2023) performs
K-means on the pre-trained DINO features (Caron et al., 2021) to segment images into multiple
components, based on which a series of meticulously designed techniques are developed to model
metrological features. The follow-up work PSAD (Kim et al., 2024) improves the segmentation
precision and granularity by introducing elaborately annotated masks to train a model to segment
object parts. While effective, it heavily depends on the well-trained segmentation model subject to
massive training images with a few elaborately annotated ones.

More importantly, all the existing methods work within the full-shot setting and require an additional
training process, while degenerate significantly in few-shot setting at a risk of over-fitting. Differ-
ently, this work especially focuses on the more challenging few-shot setting, in which only a few
normal images without any annotations are available at training, and presents a simple yet effective
training-free framework that only utilizes the powerful CLIP to detect logical anomalies.

Few-shot Anomaly detection (FSAD). FSAD aims at detecting anomalies with only access to a
limited number of normal images. RegAD (Huang et al., 2022) sets up a new paradigm that trains
a single generalized model for new categories via feature registration. WinCLIP (Jeong et al.,
2023) embraces the pre-trained CLIP to identify anomalies through matching the well-designed
text prompts with window-based visual features in the shared vision-language space. The recent
PromptAD (Li et al., 2024) improves the results by introducing learnable prompts conditioned on
the few-shot normal images. Nevertheless, all these methods work on detecting structural anomalies
and fail to acquire the logical dependencies within the image, leaving much room for improvement
in LAD.

Open-vocabulary Semantic Segmentation (OVSS). Different from conventional segmentation
methods that are confined to a infinite visual concepts, OVSS endeavors to segment semantic el-
ements of arbitrary categories, with CLIP being the essential impetus for the growth. However,
directly applying it to dense prediction tasks is sub-optimal. SCLIP (Wang et al., 2023) attributes
the inferiority to spatial misalignment of patch representations caused by vanilla self-attention mod-
ules. To address this, SCLIP introduces a novel self-attention mechanism that facilitates covariant
visual features. More recent methods have further enhanced spatial consistency by encouraging
each patch attend to its neighbours (Hajimiri et al., 2024; Shao et al., 2024), thereby enhancing the
localization capabilities. Despite the promising achievements of these advanced OVSS methods,
their direct application to LAD still yields sub-optimal results, due to the domain gap between the
general-purpose pre-training data and the images in industrial scenarios. To unleash the potentials
of CLIP for LAD, we introduce a series of modifications to fully utilize both visual coherence and
cross-modal alignment capabilities at inference, ensuring more accurate object/part segmentation.
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3 METHOD

3.1 COARSE-TO-FINE SEGMENTATION

The main concept for LAD is to analyze the relationships among objects/parts through the precise
segmentation. Though CLIP demonstrates strong generalized abilities in zero-shot classification and
segmentation, directly adapting it to industrial images yields false positive predictions. We attribute
the imprecise segmentation to two key factors: 1) individual foreground patch token at the last ViT
stage probably carries ambiguous semantics infiltrated by background; 2) vision-language alignment
at patch level is imperfect due to the CLIP pre-training on matching global image embeddings with
captions. In this paper, we argue that with proper modifications in CLIP inference, it can precisely
identify objects of interest. Inspired by chain-of-thought (CoT) in natural language process (Wei
et al., 2022), which involves providing a series of intermediate reasoning steps to guide the model
in solving complex problems, we devise a coarse-to-fine segmentation pipeline to derive a precise
fine-grained segmentation mask. This approach operates in a top-to-bottom fashion, considering
both visual spatial size and textual prompt granularity.

Foreground Extraction. While several training-free OVSS methods achieve impressive segmenta-
tion results on popular benchmarks such as ADE-20K (Zhou et al., 2019), which primarily feature
natural images with rich semantic content, their direct application to industrial images often leads
to noisy predictions due to the significant domain gap. Specifically, these incorrect predictions fre-
quently arise around object boundaries or background regions (Fig. 3). This issue is exaggerated
when matching visual patch tokens with finer text prompts. The observation inspires us to first ex-
tract the foreground region and then perform the fine-grained segmentation within the foreground.
Benefiting from the strong visual coherence in shallow ViT stages, we propose to aggregate patches
based on their visual similarities. Specifically, given k normal images I ∈ Rk×H×W×3, we first
use CLIP ViT to extract their visual representations Fi ∈ Rk×H

s ×W
s ×C at i-th ViT stage, where

s denotes patch size and C is the embedding dimension. We omit the layer index i for simplicity.
We then perform K-means to obtain N cluster centers µi ∈ RC(i = 1, 2, ..., Nc). Each patch is
assigned to the nearest µi, forming distinct regions that serve as mask proposals mi ∈ {0, 1}H

s ×W
s .

Note that we equally treat each patch regardless of its position. These proposals are used to aggre-
gate patch tokens at the last stage of ViT, which has proven capable of vision-language alignment in
addition to the [CLS] token (Zhou et al., 2022). We average the masked-out patch tokens to acquire
the representation of the corresponding region mi.

Fmi = AvgPool(F,mi) =

∑
F⊙mi∑
mi

, (1)

where ⊙ denotes the element-wise multiplication and
∑

sums over all the positions of elements.
Foreground can be easily identified by matching the region-level representation with a pre-set target
embeddings. Here, we provide a set of coarse prompts, which can generally describe the semantics
of the regions, e.g., background or connector. These words are extended by an ensemble
of prompt template, e.g., a photo of [c], which consistently boost the performance (Radford
et al., 2021). Compared to common OVSS methods directly performing fine-grained segmentation,
binary classification at region level is easy to complete, ensuring more accurate foreground extrac-
tion.

Fine-grained Alignment. Thanks to the strong visual coherence, we obtain tight boundaries around
the foreground with minimal false positives. However, the initial foreground mask is class-agnostic
and does not fully capture the compositional relationships among objects. To address this limitation,
we incorporate fine-grained segmentation at patch level. Similar with the previous stage, we prepare
a set of detailed prompts such as splicing connector and red/yellow/blue cable
for per-patch matching. We disregard any predictions on the background, focusing fine-grained
segmentation exclusively within the foreground region. Despite the simplicity of this coarse-to-
fine segmentation strategy, the resulting segmentation mask features clear boundaries with precise
fine-grained object part masks.
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Figure 2: The proposed cross-modal coarse-to-fine segmentation for LAD involves two stages: 1)
coarse masks are generated through unsupervised clustering, where averaged patch embeddings
are used as mask representation and matched with coarse prompts to extract the foreground; 2)
patch embeddings are then matched with fine-grained prompts to classify each patch. The final
segmentation masks are created by fusing the coarse and fine masks, from which the class histograms
are derived for LAD.

3.2 ANOMALY DETECTION

Inference. On the LAD, we calculate the class histogram hi based on the segmentation mask for
each of the k normal images and maintain a memory bank Mhist = {hi}ki=1. The number of bins
in the histograms corresponds to the number of classes of interest, as indicated by the text prompts,
excluding the background class. This histogram memory is assumed to reveal the compositional
relationships among objects within the images. Moreover, we reuse the cluster centroids µi derived
from the k-shot normal images to partition a query image Itest, which helps make logical anoma-
lies more recognizable through low-level feature matching. We then apply the same coarse-to-fine
vision-language alignment used for processing the normal images to obtain the histogram htest.
While high-level compositional relations are crucial for LAD, investigating low-level appearance
differences is essential for effective structural anomaly detection. To the end, we adopt per-patch
comparison in feature space to spot the visual defects. Specifically, we first extract multi-level ViT
features Fi for all k images and save patch features fj ∈ RC at all positions to create a patch

memory Mpatch = {fj}
k×H

s ×W
s

j=1 . The anomaly map is obtained by comparing the query patch
fpatch with the those in Mpatch. Multi-level feature comparison is enabled for robust detection
following (Salehi et al., 2021; Wang et al., 2021).

Anomaly Scoring. Based on the constructed memories Mhist and Mpatch, we inspect the dif-
ference between a query image and its nearest samples in the Mhist and Mpatch to measure the
anomaly scores. On the logical anomalies, we adopt the histogram difference ratio as the anomaly
scoring, different from directly calculating their the L2 distance (Kim et al., 2024) in consideration
of the unbalanced class distribution.

slog = min
h∈Mhist

∥htest/h∥1. (2)

On the structural anomalies, we select the maximum value from the anomaly map as the resulting
anomaly score.
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Table 1: Image-level detection comparison on few-shot MvTec LOCO (Bergmann et al., 2022) and
the micro-averaged AUROC scores are measured. We report the mean and standard deviation over
five random seeds. The best results are boldface.

Setup Category Learning-based Training-free
PromptAD RD4AD EfficientAD STFPM CLIP PatchCore ComAD WinCLIP SINBAD CLIP-LAD

1-shot

Breakfast Box 72.8±2.1 70.7±6.9 60.6±1.4 59.4±1.6 65.0±0.2 73.4±1.8 69.3±3.2 47.6±3.0 70.0±2.5 74.6±2.2

Juice Bottle (Banana) 77.3±1.5 65.8±4.2 85.0±3.0 88.3±3.5 76.6±2.3 76.4±0.4 72.3±2.8 57.6±2.0 80.2±4.0 88.5±0.9

Juice Bottle (Cherry) 75.7±0.4 71.8±2.4 88.2±3.7 80.6±2.4 64.8±1.3 77.3±4.2 59.0±5.2 72.1±5.5 86.5±3.5 72.8±1.5

Juice Bottle (Orange) 71.4±2.8 67.5±0.6 81.8±5.6 77.8±4.9 60.6±4.2 72.9±4.6 58.2±1.2 60.4±1.6 72.7±3.0 77.7±3.1

Pushpins 72.3±1.9 61.0±2.1 61.1±1.8 58.8±3.4 64.8±0.6 67.7±2.6 64.8±2.8 53.1±5.4 52.9±3.2 82.4±1.7

Screw Bag 53.4±3.3 46.6±3.1 44.2±2.3 51.2±3.2 58.2±5.0 63.7±3.4 54.2±2.7 55.8±2.6 56.3±2.2 72.2±3.4

Connectors (Red cable) 65.3±1.2 55.0±4.6 68.1±5.6 54.2±0.6 71.6±3.3 66.2±2.6 78.7±0.6 50.9±0.0 72.1±2.7 60.2±1.4

Connectors (Blue cable) 72.4±3.8 75.7±4.9 76.4±4.0 59.3±5.7 65.0±2.1 73.9±3.4 60.5±2.2 51.8±3.2 71.6±2.1 78.6±2.9

Connectors (Yellow cable) 67.5±0.9 62.9±0.9 69.9±1.5 60.9±2.1 67.5±2.0 64.6±1.1 73.6±5.9 60.4±2.4 72.5±1.6 59.3±4.4

Average 69.8±0.8 64.1±1.2 70.6±2.2 65.6±1.6 66.0±1.2 70.7±0.7 65.6±1.5 56.6±1.5 70.5±0.6 74.0±1.0

2-shot

Breakfast Box 74.3±1.6 69.8±3.6 62.3±4.8 63.8±2.4 68.3±2.0 72.4±2.1 64.7±2.7 51.2±2.4 75.9±3.0 81.1±2.7

Juice Bottle (Banana) 77.7±2.6 83.1±6.3 87.8±1.1 84.7±1.7 80.6±2.3 76.2±1.3 76.6±1.9 70.0±4.2 84.3±2.5 89.7±3.2

Juice Bottle (Cherry) 78.4±1.2 76.9±3.0 90.4±2.9 89.4±1.6 69.9±2.5 82.4±2.5 68.8±3.8 70.5±2.0 88.3±4.3 83.6±1.2

Juice Bottle (Orange) 72.0±2.9 74.0±0.4 88.3±2.6 84.5±2.4 83.8±3.8 78.8±1.8 64.6±3.9 62.0±4.1 76.8±1.4 77.5±3.9

Pushpins 70.4±1.4 64.3±3.9 58.7±1.3 58.7±3.2 62.7±4.2 71.7±2.1 56.8±3.8 54.5±2.7 51.5±1.2 82.1±2.3

Screw Bag 56.0±1.8 57.6±0.6 44.5±3.9 54.2±1.7 50.1±3.5 64.4±2.2 59.4±1.6 59.3±0.5 55.5±2.1 75.4±7.1

Connectors (Red cable) 68.9±3.0 54.8±3.3 75.8±1.4 66.2±1.2 72.6±3.5 72.0±3.3 73.1±4.2 47.6±4.9 73.2±5.9 69.8±1.7

Connectors (Blue cable) 75.9±1.7 65.1±4.8 79.3±3.4 64.3±2.0 68.3±1.4 76.5±0.2 85.1±3.1 60.1±1.3 78.0±3.2 82.9±4.0

Connectors (Yellow cable) 71.7±2.3 65.6±1.5 70.2±1.7 62.0±0.8 73.9±2.3 72.6±1.3 77.9±4.3 61.0±3.1 69.5±4.2 67.7±3.0

Average 71.7±1.0 67.9±0.7 73.0±0.9 69.8±0.8 70.0±2.2 74.1±1.1 69.7±1.0 59.6±1.3 72.6±1.2 78.9±0.8

4-shot

Breakfast Box 77.3±1.1 66.3±2.7 61.5±1.6 67.3±5.4 74.1±1.7 76.4±0.6 65.7±2.0 57.4±1.9 78.0±5.7 83.9±1.7

Juice Bottle (Banana) 79.1±2.9 87.7±1.9 92.3±1.9 89.7±1.9 82.4±3.3 75.6±3.7 79.2±3.3 66.8±3.3 85.9±2.1 95.3±2.1

Juice Bottle (Cherry) 76.9±0.9 93.4±1.8 95.0±2.4 95.5±6.2 74.8±3.9 84.8±3.9 70.0±4.7 70.3±2.1 85.9±1.8 87.1±2.6

Juice Bottle (Orange) 75.5±3.2 84.2±1.0 90.1±5.7 84.9±6.2 72.1±0.8 82.1±2.1 81.9±3.5 71.8±1.6 77.1±2.8 78.2±1.3

Pushpins 73.6±1.5 65.2±2.7 65.0±1.5 64.6±1.2 65.8±2.1 70.4±4.2 72.5±3.1 51.2±0.8 55.3±3.0 79.2±1.1

Screw Bag 59.3±4.2 56.9±4.2 50.4±1.0 57.6±3.1 56.6±5.7 66.1±2.2 64.7±3.8 54.3±2.2 56.1±2.9 75.6±3.7

Connectors (Red cable) 63.2±2.9 64.2±1.0 76.8±1.8 73.0±1.8 69.4±4.1 70.1±4.5 66.0±2.8 58.0±1.8 77.4±0.6 70.3±1.7

Connectors (Blue cable) 79.4±2.7 76.8±2.0 82.5±3.9 62.8±4.6 73.8±2.8 74.3±1.5 82.8±4.3 64.8±2.8 78.9±2.2 84.2±4.3

Connectors (Yellow cable) 73.6±1.3 63.6±4.4 69.7±4.1 69.0±1.9 65.9±2.4 71.7±4.8 79.8±2.0 66.5±3.2 74.8±0.9 77.0±0.3

Average 73.1±1.6 73.1±0.3 75.9±0.6 73.8±1.5 70.5±1.3 74.6±1.5 73.6±1.9 62.3±1.1 74.4±2.1 81.2±0.5

sstr = max
f∈Mpatch

∥ftest − f∥2. (3)

Score Normalization. We adopt segmentation analysis and patch comparison to cater for detecting
logical and structural anomalies, respectively. However, the two strategies generate anomaly scores
slog and sstr with different scales. Thus, it is essential to reasonably normalize the two types of
scoring before aggregation. Following (Batzner et al., 2024), we use the validation set, which con-
tains anomaly-free images and has no overlaps with the training set, to estimate the scales of the two
scoring types. With the assumption that each type of anomaly scoring follows a Gaussian distribu-
tion, we derive the mean µ and covariance matrix Σ for the set of anomaly scores (slog, sstr) across
the validation images. For an input tuple x, we define the Mahalanobis distance as the resulting
anomaly score:

s(x;µ,Σ) =
√

(x− µ)Σ(x− µ)T . (4)

4 EXPERIMENT

Benchmark Set-up. To the best of our knowledge, MvTec LOCO (Bergmann et al., 2022) is the
only large-scale dataset featuring logical anomalies. It contains 3,644 images across five categories
from industrial inspection scenarios. The training and validation sets consist solely of anomaly-free
images, while the test set contains both anomaly-free images and anomalous images. Typical logical
anomalies include missing or surplus objects, and misplacement. To comprehensively evaluate our
method based on the dataset, we first establish a few-show FAD benchmark, considering 1/2/4-shot
normal images only for training. However, since the categories juice bottle and splicing connec-
tors in the dataset have multiple sub-types, randomly sampling k images constituting the training
set could cause label ambiguity. For instance, juice bottle includes three types of liquid-orange,
cherry and banana juice-that are all considered normal. The sampled k-shot training images may
not necessarily include all these sub-types. To eliminate the ambiguity in determining normality
or abnormality, we split these two categories into three sub-types each, resulting in a total of nine
categories. The area under the ROC curve (AUROC) is used as evaluation metrics. For each k-shot
setting, we randomly select k normal images across five random seeds. The models are evaluated
on both SA and LA detection together, i.e., micro-average. We also provide separate results in
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Fig. 2. Following (Kim et al., 2024), we consider image-level AUROC, as logical anomalies are
context-based and typically pertain to the entire image.

Comparison Methods. Our few-shot LAD benchmark considers a variety of methods: training-
free and learning-based. Training-free methods include CLIP (Radford et al., 2021) PatchCore (Roth
et al., 2022), WinCLIP (Jeong et al., 2023), ComAD (Liu et al., 2023), SINBAD (Cohen et al., 2023).
The learning-based ones are PromptAD (Li et al., 2024), RD4AD (Deng & Li, 2022), STFPM (Wang
et al., 2021) and EfficientAD (Batzner et al., 2024). Notably, since all these comparison methods
are developed for full-data scenarios, we adapt them to our few-shot setting by using their official
implementations to train the models with only the given k normal images.

Implementation Details. We use OpenCLIP’s implementation1 with DataComp-1B (Gadre et al.,
2024) and CLIP ViT-L/14 for all experiments. Images are resized to 448 × 448. Following (Chen
et al., 2023), we evenly divide the visual encoder into four stages and apply K-means clustering on
embeddings from the first two stages. We adopt NACLIP (Hajimiri et al., 2024), a top-tier training-
free method for OVSS, and up-scale feature maps by ×2. Histogram statistics are calculated on
the 64 × 64 segmentation masks. We find that the widely-used mask refinement techniques, such
as DenseCRF (Krähenbühl & Koltun, 2011) and PAMR (Araslanov & Roth, 2020) yield similar
results. We use the same prompt templates as (Radford et al., 2021) and ensemble text embeddings.
For the complex juice bottle, we perform region-level fine-grained classification in Fig. 5 to avoid
noisy patch-level results.

Experimental Results. Tab. 1 shows the overall comparison with both learning-based and training-
free methods in 1/2/4-shot settings. While learning-based methods achieve descend results in some
categories, such as juice bottle which is consistently positioned in the center of the image, they all
fail in more challenging categories like pushpins and screw bag, where objects are placed randomly.
This failure is due to the risk of over-fitting on the limited number of normal images.Training-free
methods attempt to leverage the generalized capabilities of pre-trained foundation models; however,
they typically perform feature matching at either patch-level (Roth et al., 2022) or image-level (Co-
hen et al., 2023), which fails to capture object relationships adequately, leading to inferior detection.
In contrast, our method, with tailored designs that fully harness the potential of CLIP, significantly
outperforms these alternatives.

In Fig. 3, we visualize the segmentation results of NACLIP (Hajimiri et al., 2024), as well as the
coarse and the fine stages of our method. Obviously, NACLIP with fine-prompts tends to make
incorrect prediction scattered across the image,particularly around object boundaries and in back-
ground regions, whereas our method provides more precise segmentation masks. This improvement
can be attributed to our coarse-to-fine cross-modal alignment design. The coarse stage involves un-
supervised clustering on shallow embeddings, which results in clearer class boundaries but lacks
discriminative labels. The second stage focuses on per-pixel prediction using fine text prompts. By
combining the results from these two stages, we achieve precise segmentation results that are well-
suited for inferring composition relationships for LAD. Additionally, with more training images
available, we observe an increase in average performance. To further understand the performance
gain, we separately calculate the metrics for logical and structural anomalies, which in Tab. 2 con-
firms our method’s superiority for LAD.

Table 2: Logical and structural detection are evaluated separately on the few-shot MvTec LOCO.
The AUROC scores are averaged across all categories over 1/2/4-shot settings.

Methods Structural Logical Average

Learning-based

PromptAD 65.0 71.9 68.5
RD44D 64.6 71.5 68.1

EfficientAD 75.9 71.8 73.9
STFPM 69.2 70.3 69.8

Training-free

CLIP 68.7 70.1 69.4
PatchCore 68.5 76.2 72.4
ComAD 60.6 75.4 68.0
WinCLIP 60.6 58.8 59.7
SINBAD 68.9 77.9 73.4

CLIP-LAD 77.0 81.4 79.2

1https://github.com/mlfoundations/open clip
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Anomaly-free Images Anomalous Images
Input NACLIP K-means Foreground Ours Input NACLIP K-means Foreground Ours

Figure 3: Visualizations of different segmentation methods are shown, displaying the segmentation
results of both anomaly-free and anomalous images, each sized 64× 64. The state-of-the-art OVSS
method, NACLIP (Hajimiri et al., 2024) suffers from noticeable noisy prediction at arbitrary posi-
tions, while our method offers more precise segmentation. The first stage extracts the foreground
with clear boundaries by matching the clustered regions with coarse prompts. The second stage
performs fine alignment, targeting pixel-level discrimination using fine text prompts, which results
in fine-grained segmentation.

Table 3: Logical anomaly detection in multi-class scenario on categories juice bottle and splicing
connectors with only one image per sub-type for training. The AUROC scores are averaged over
1/2/4-shot settings.

Methods Juice Bottle Connectors Average

Learning-based

PromptAD 73.4 71.2 72.3
RD44D 72.3 63.0 67.7

EfficientAD 74.8 69.2 72.0
STFPM 74.1 64.5 69.3

Training-free

CLIP 69.1 70.9 70.0
PatchCore 71.0 73.3 72.2
ComAD 59.8 74.8 67.3
WinCLIP 66.5 62.2 64.4
SINBAD 73.7 74.5 74.1

CLIP-LAD 81.2 78.2 79.7

Extension from One-class to Multi-class Scenario. Recall that in our main experiments, we split
the juice bottle and splicing connectors categories from MvTec LOCO into three sub-types, ensuring
that the provided k-shot images contain only one class. However, our methods is also applicable to
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Figure 4: Ablation studies on the number of clusters across nine categories from MvTec LOCO in
4-shot setting. The optimal number for each category is marked.

K=10K=5 K=15 K=20Input

Figure 5: Inappropriate cluster numbers result in either over-clustering or under-clustering.

the multi-class scenario, where the training set consists of multiple classes. In this case, we follow
the original normality/abnormality division, treating images that violate the logical constraints of
any sub-type as anomalous. We consider the challenging 3-shot setting, with only one image per
sub-type. As shown in Tab. 3, our method stills outperforms counterparts significantly, confirming
its flexibility in addressing both one-class and multi-class scenarios.

Effect of Number of Clustering Centers. The success of our methods lies in its segmentation
precision. To achieve precise zero-shot image segmentation, we propose a coarse-to-fine cross-
modal alignment. In the coarse stage of foreground extraction, we perform unsupervised clustering
on the visual features to aggregate similar patches. The segmentation quality depends largely on the
number of clustering centers used. Fig. 4 displays the effects of different cluster numbers across five
categories. Over-clustering leads to a large number of fragmented regions, each inevitably mixed
with background noise, making it difficult to accurately identify the foreground regions of interest.
On the other hand, under-clustering directly results in unclear object boundaries. Thus, it is essential
to select an appropriate cluster number for better aggregate the foreground regions.

5 CONCLUSION

In this work, we consider the challenging few-shot logical anomaly detection and present a simple
yet effective training-free method CLIP-LAD. We leverage the off-the-shelf vision-language model
to comprehensively understand the logical constraints through segmentation. Specifically, we devise
a cross-modal coarse-to-fine segmenting strategy to take full advantage of visual coherence and
cross-modal alignment capabilities in CLIP, facilitating precise segmentation. Experimental results
on the few-shot LAD benchmark demonstrate the superiority of our method.
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