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Abstract

In this paper, we present a framework to understand the convergence of commonly1

used Q-learning reinforcement learning algorithms in practice. Two salient features2

of such algorithms are: (i) the Q-table is recursively updated using an agent3

state (such as the state of a recurrent neural network) which is not a belief state4

or an information state and (ii) policy regularization is often used to encourage5

exploration and stabilize the learning algorithm. We investigate the simplest form of6

such Q-learning algorithms which we call regularized agent-state based Q-learning7

(RASQL) and show that it converges under mild technical conditions to the fixed8

point of an appropriately defined regularized MDP, which depends on the stationary9

distribution induced by the behavioral policy. We also show that a similar analysis10

continues to work for a variant of RASQL that learns periodic policies. We present11

numerical examples to illustrate that the empirical convergence behavior matches12

with the proposed theoretical limit.13

1 Introduction14

Reinforcement learning (RL) is a useful paradigm in learn optimal control policies via simulation15

when the system model is not available or when the system is too large for explicitly solving the16

dynamic programming equations. The simplest setting is the fully-observed setting of Markov17

decision processes (MDP), where the controller has access to the environment state. Most existing18

theoretical RL results on convergence of learning algorithms and their rates of convergence and regret19

bounds, etc. are established for the MDP setting.20

However, in many real-world applications, the controller does not have access to the environment21

state. Examples include autonomous driving, robotics, healthcare, finance, and others. In such22

settings, the controller has a partial observation of the environment state, so they need to be modeled23

as a partially observable Markov decision process (POMDP) rather than a MDP.24

When the system model is known, the POMDP model can be converted into an MDP by considering25

the controller’s belief on the state of the environment (also called the belief state) as an information26

state [2,34] However, such a reduction does not work in the RL setting because the belief state depends27

on the system model, which is unknown. Nonetheless, there have been several empirical works28

which show that standard RL algorithms for MDPs continue to work for POMDPs if one uses “frame29

stacking” (i.e., use the last few observations as a state) or recurrent neural networks [12,15,20,41]. In30

recent years, considerable progress has been made in understanding the properties of such algorithms31

but a complete theoretical understanding is still lacking.32

A common way to model such RL algorithms for POMDPs is to consider the state of the controller33

as an agent state [6]. Such agent-state based-controllers have also been considered in the planning34
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setting as they can be simpler to implement than belief-state based controllers. We refer the reader35

to [33] for a review.36

A challenge in understanding the convergence of agent-state based RL algorithms for POMDPs is37

that an agent state is not an information state. So, it is not possible to write a dynamic programming38

decomposition based on the agent state. So, one cannot follow the typical proof techniques used39

to evaluate the convergence of RL algorithms for MDPs (where RL algorithms can be viewed as40

stochastic approximation variant of MDP algorithms such as value iteration and policy iteration to41

compute the optimal policy).42

There is a good understanding of the convergence of agent-state based Q-learning (ASQL) for43

POMDPs [16, 17, 32] (which is related to Q-learning for non-Markovian environments [3, 5]). There44

is also some work on understanding the convergence of actor-critic algorithms for POMDPs [18, 36].45

However, most practical RL algorithms for POMDPs use some form of policy regularization, while46

most theoretical analysis is restricted to the unregularized setting.47

Regularization adds an auxiliary loss to the per-step rewards. Typically the auxiliary loss depends48

on the policy but it may also depend on the value function. Regularization is commonly used49

in RL algorithms for various reasons, including the use of entropy regularization to encourage50

exploration [1, 9, 30] and improve generalization [13], using KL-regularization to constrain the policy51

update to be similar to a prior policy [25, 29], and many others. Unified theory for different facets of52

regularization in MDPs is provided in [7, 23]53

Based on the various benefits of regularization in RL for MDPs, it is also commonly used in RL for54

POMDPs [10, 11, 15, 24, 29, 30, 36, 40]. However, the recent theoretical analysis of RL for POMDPs55

discussed above do not consider regularization. The objective of this paper to to present initial results56

on understanding regularization in RL for POMDPs.57

There is some recent work on understanding regularization in POMDPs but they either consider the58

role of entropy regularization in POMDP solvers (when the model information is known) [4, 35], or59

consider regularization of the belief distribution [22] or observation distribution [39]. These results60

do not directly provide an understanding of the role of regularization in RL for POMDPs.61

In this paper, we revisit Q-learning for POMDPs when the learning agent is using an agent state62

and using policy regularization. Our main contribution is to show that in this setting, Q-learning63

converges under mild technical conditions. We characterize the converged limit in terms of the model64

parameters and choice of behavioral policy used in Q-learning. Recently, it has been argued that65

periodic policies may perform better when considering agent-state based POMDPs [32]. We show66

that our analysis extends to a periodic version of regularized Q-learning as well.67

Notations. We use uppercase letters to denote random variables (e.g. S,A, etc.), lowercase letters68

to denote their realizations (e.g. s, a, etc.) and calligraphic letters to denote sets (e.g. S,A; etc.).69

Subscripts (e.g. St, At, etc.) denote variables at time t. Similarly, S1:t denotes the collection of70

random variables from time 1 to t. ∆(S) denotes the space of probability measures on a set S; P(·)71

and E[·] denote the probability of an event and the expectation of a random variable, respectively;72

and 1(·) denotes the indicator function. |S| denotes the number of elements in S (when it is a finite73

set). R denotes real numbers. [L] denotes the set of integers from 0 to L− 1, where L ∈ Z+. JℓK74

denotes (ℓ mod L).75

2 Background76

2.1 Legendre-Fenchel transform (convex conjugate)77

We start with a short review of convex conjugates and Legendre-Fenchel transforms [28], which are78

an important tool to understand regularization in MDPs [7].79

Definition 1 For a strongly convex function Ω: Rn → R, its convex conjugate Ω⋆ : Rn → R is80

defined as81

Ω⋆(q) = max
p∈Rn

{
⟨p, q⟩ − Ω(p)

}
.

The mapping Ω 7→ Ω∗ is called the Legendre-Fenchel transform.82
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The following is a useful property of the Legendre-Fenchel transform for regularized MDPs:83

Lemma 1 (Based on [14, 21]) Let ∆ be a simplex inRn and Ω: ∆ → R be twice differentiable and84

a strongly convex function. Let Ω⋆ : Rn → R be the Legendre-Fenchel transform of Ω. Then, ∇Ω⋆ is85

Lipschitz and satisfies86

∇Ω⋆(q) = argmax
p∈∆

{
⟨p, q⟩ − Ω(p)

}
.

In Markov decision processes, one often regularizes the policy. Below we describe some of the87

commonly used policy regularizers. For the purpose of the discussion below, let A be a finite set (later88

we will take A to be the set of actions of an MDP, but for now we can consider it as a generic set).89

Entropy regularization uses the regularizer Ω: ∆(A) → R given by90

Ω(p) =
1

β

∑
a∈A

p(a) ln p(a)

where β ∈ R>0 is a parameter. It’s convex conjugate Ω⋆ : R|A| → R is given by91

Ω⋆(q) =
1

β
ln

(∑
a∈A

exp(βq(a))

)
.

Moreover, from Lemma 1, we get that the argmax in the definition of convex conjugate is achieved by92

p⋆(a) =
exp(βq(a))∑

a′∈A exp(βq(a′))
.

KL regularization uses the regularizer Ω: ∆(A) → R given by93

Ω(p) =
1

β

∑
a∈A

p(a) ln
p(a)

pREF(a)
,

where β ∈ R>0 is a parameter and pREF ∈ ∆(A) is a reference distribution. It’s convex conjugate94

Ω⋆ : R|A| → R is given by95

Ω⋆(q) =
1

β
ln
(∑
a∈A

pREF(a) exp(βq(a))
)
.

Moreover, from Lemma 1, we get that the argmax in the definition of convex conjugate is achieved by96

p⋆(a) =
pREF(a) exp(βq(a))∑

a′∈A pREF(a′) exp(βq(a′))
.

2.2 Regularized MDPs97

In this section, we provide a brief review of regularized Markov decision processes (MDPs), which98

are a generalization of standard MDPs with an additional “regularization cost” at each stage.99

Consider a Markov decision process (MDP) with state st ∈ S, control action at ∈ A, where all sets100

are finite. The system operates in discrete time. The initial state s1 ∼ ρ and for any time t ∈ N, we101

have P(st+1 | s1:t, a1:t) = P(st+1 | st, at) =: P (st+1 | st, at), where P is a probability transition102

matrix. The system yields a reward Rt = r(st, at) ∈ [0, Rmax]. The rewards are discounted by a103

factor γ ∈ [0, 1).104

Consider a policy π ∈ S → ∆(A). Let Ω: ∆(A) → R be a strongly convex function that is used as a105

policy regularizer. Then, the regularized performance of policy π is given by106

JΩ
π := Eπ

[ ∞∑
t=1

γt−1
[
r(st, at)− Ω(π(· | st))

] ∣∣∣∣ s1 ∼ ρ

]
,

where the notation Eπ means that the expectation is taken with the joint measure on the system107

variables induced by the policy π.108

The objective in a regularized MDP is to find a policy π that maximizes the regularized performance109

JΩ
π defined above. A key step in understanding the optimal solution of the regularized MDP is to110
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define the regularized Bellman operator BΩ on the space of real-valued functions on S×A as follows.111

For any Q : S× A → R,112

BΩQ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′ | s, a)Ω⋆(Q(s′, ·)),

where Ω⋆ is the Legendre-Fenchel transform of Ω.113

Proposition 1 (Based on [7]) The following results hold:114

(1) The operator BΩ is a contraction and therefore has a unique fixed point, which we denote by QΩ.115

By definition,116

QΩ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′ | s, a)Ω⋆(QΩ(s′, ·)).

(2) Define the policy πΩ,∗ : S → ∆(A) as follows: for any s ∈ S,117

πΩ,⋆( · | s) = ∇Ω⋆(QΩ(s, ·)),= argmax
ξ∈∆(A)

{∑
a∈A

ξ(a)QΩ(s, a)− Ω(ξ)

}

where the last equality follows from Lemma 1. Then, the policy πΩ,⋆ is optimal for maximizing the118

regularized performance JΩ
π over the set of all policies.119

3 System model and regularized Q-learning for POMDPs120

3.1 Model for POMDPs121

Consider a partially observable Markov decision process (POMDP) with state st ∈ S, control action122

at ∈ A, and output yt ∈ Y, where all sets are finite. The system operates in discrete time with the123

dynamics given as follows. The initial state s1 ∼ ρ and for any time t ∈ N, we have124

P(st+1, yt+1 | s1:t, y1:t, a1:t) = P(st+1, yt+1 | st, at)
=: P (st+1, yt+1 | st, at),

where P is a probability transition matrix. In addition, at each time the system yields a reward125

Rt = r(st, at) ∈ [0, Rmax]. The rewards are discounted by a factor γ ∈ [0, 1).126

Let π⃗ = (π⃗1, π⃗2, . . . ) denote any (history dependent and possibly randomized) policy, i.e., under pol-127

icy π⃗ the action at time t is chosen as at ∼ π⃗t(y1:t, a1:t−1). The performance of policy π⃗ is given by128

Jπ⃗ := Eπ⃗

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣ s1 ∼ ρ

]
,

where the notation Eπ⃗ means that the expectation is taken with the joint measure on the system129

variables induced by the policy π⃗.130

The objective is to find a (history dependent and possibly randomized) policy π⃗ to maximize Jπ⃗.131

When the system model is known, the above POMDP model can be converted to a fully observed132

Markov decision process (MDP) by considering the controller’s posterior belief on the system state133

as an information state [2, 34]. However, when the system model is not known, it is not possible to134

run reinforcement learning (RL) algorithms on the belief-state MDP because the belief depends on135

the system model. For that reason, in RL for POMDPs it is often assumed that the controller is an136

agent-state based controller.137

Definition 2 (Agent state) An agent state is a model-free recursively updateable function of the138

history of observations and actions. In particular, let Z denote the agent state space. Then, the agent139

state is a process {zt}t≥0, zt ∈ Z, which starts with some initial value z0, and is then recursively140

computed as141

zt+1 = ϕ(zt, yt+1, at), t ≥ 0 (1)

where ϕ is a pre-specified agent-state update function.142
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Some examples of agent-state based controllers are: (i) a finite memory controller, which chooses the143

actions based on the previous k observations; (ii) a finite state controller, which effectively filters the144

possible histories to values from a finite set Z. We refer the reader to [33] for a detailed review of145

agent-state based policies in POMDPs.146

We use π = (π1, π2, . . . ) to denote an agent-state based policy,1 i.e., a policy where the action at147

time t is given by at ∼ πt(zt). An agent-state based policy is said to be stationary if for all t and t′,148

we have πt(a | z) = πt′(a | z) for all (z, a) ∈ Z× A.149

If the agent state is an information state, then MDP-based RL algorithms can directly be applied150

to find optimal stationary solutions [36]. However, in general, an agent state is not an information151

state, as is the case in frame-stacking or when using recurrent neural networks. In such settings, the152

dynamics of the agent state process is non Markovian and the standard dynamic programming based153

argument does not work. It is possible to find the optimal policy by viewing the POMDP with an154

agent-state based controller as a decentralized control problem and using the designer’s approach [19]155

to compute an optimal agent-state based policy, as is done in [33], but such an approach is intractable156

for all but small toy problems.157

The Q-learning algorithms for POMDPs maintain a Q-table based on the agent states and actions and158

update the Q-values based on the samples generated by the environment. Since the agent state is non159

Markovian, it is not clear if such an iterative scheme converges, and if so, to what value. In the next160

section, we present a formal model for agent state based Q-learning when the agent also uses policy161

regularization.162

3.2 Regularized agent-state based Q-learning for POMDPs163

In this section we describe regularized agent-state based Q-learning (RASQL), which is an online164

off-policy learning approach in which the agent acts according to a fixed behavioral policy to generate165

a sample path (z1, a1, r1, z2, . . . ) of agent states, actions, and rewards observed by a learning agent.166

The learning agent uses a policy regularizer Ω: ∆(A) → R and maintains a regularized Q-table,167

which is arbitrarily initialized and then recursively updated as follows:168

Qt+1(z, a) = Qt(z, a) + α(z, a) [rt + γΩ⋆(Qt(zt+1, ·))−Qt(z, a)] , (2)

where the learning rate sequence {αt(z, a)}t≥1 is chosen such that αt(z, a) = 0 whenever (z, a) ̸=169

(zt, at). For instance, if the policy regularizer is the entropy regularizer, then the above iteration170

corresponds to an agent-state based version of soft-Q-learning [8]. The “greedy” policy at each time171

is given by πt(· | z) = ∇Ω⋆(Qt(z, ·)). Thus, for entropy regularization, it would correspond to172

soft-max based on Qt.173

If the Ω⋆(Qt(zt+1, ·)) term in (2) is replaced by maxa′∈A Qt(zt+1, a
′), the iteration in RASQL174

corresponds to agent-state based Q-learning (ASQL):175

Qt+1(zt, at) = Qt(zt, at) + αt(zt, at)

[
rt + γmax

a′∈A
Qt(zt+1, a

′)−Qt(zt, at)

]
.

The convergence of ASQL and its variations have been recently studied in [3, 17, 32]. However, the176

analysis of ASQL does not include regularization. The main result of this paper is to characterize the177

convergence of RASQL.178

4 Main result179

We impose the following standard assumptions on the model.180

Assumption 1 For all (z, a), the learning rates {αt(z, a)}t≥1 are measurable with respect to the181

sigma-algebra generated by (z1:t, a1:t) and satisfy αt(z, a) = 0 if (z, a) ̸= (zt, at). Moreover,182 ∑
t≥1 αt(z, a) = ∞ and

∑
t≥1(αt(z, a))

2 < ∞, almost surely.183

Assumption 2 The behavior policy µ is such that the Markov chain {(St, Yt, Zt, At)}t≥1 converges184

to a limiting distribution ζµ, where
∑

(s,y) ζµ(s, y, z, a) > 0 for all (z, a) (i.e., all (z, a) are visited185

infinitely often).186

1We use π⃗ to denote history dependent policies and π to denote agent-state based policies.
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Assumption 1 is the standard assumption for convergence of stochastic approximation algorithms [27].187

Assumption 2 ensures persistence of excitation and is a standard assumption in convergence analysis188

of Q-learning [16, 17, 32, 37, 38].189

For ease of notation, we will continue to use ζµ to denote the marginal and conditional distributions190

w.r.t. ζµ. In particular, for marginals we use ζµ(y, z, a) to denote
∑

s∈S ζµ(s, y, z, a) and so on; for191

conditionals, we use ζµ(s|z, a) to denote ζµ(s, z, a)/ζµ(z, a) and so on. Note that ζµ(s, z, y, a) =192

ζµ(s, z)µ(a|z)P (y|s, a). Thus, we have that ζµ(s|z, a) = ζµ(s|z).193

The key idea to characterize the convergence behavior is the following. Given the limiting distribution194

ζµ, we can define an MDP with state space Z, action space A, and per-step reward rµ : Z× A → R195

and dynamics Pµ : Z× A → ∆(Z) given as follows:196

rµ(z, a) :=
∑
s∈S

r(s, a)ζµ(s | z), (3)

Pµ(z
′|z, a) :=

∑
(s,y′)∈S×Y

1{z′=ϕ(z,y′,a)}P (y′|s, a)ζµ(s|z).

Now consider a regularized version of this MDP, where we regularize the policy using Ω. Let Qµ197

denote the fixed point of the regularized Bellman operator corresponding to this reguralized MDP,198

i.e., Qµ is the unique fixed point of the following (see the discussion in Sec. 2.2):199

Qµ(z, a) = rµ(z, a) + γ
∑
z′∈Z

Pµ(z
′ | z, a)Ω⋆(Qµ(z

′, ·)). (4)

Then, our main result is the following:200

Theorem 1 Under Assumptions 1 and 2, the RASQL iteration (2) converges to Qµ almost surely.201

PROOF The proof is provided in Appx. A.202

Remark 1 Note that Proposition 1 implies that the “greedy” regularized policy with respect to the203

limit point of {Qt}t≥1 is given by π∗(· | z) = ∇Ω⋆(Qµ(z, ·)), which typically lies in the interior of204

∆(A) for each z. Thus, the greedy policy is stochastic. This is a big advantage of RASQL compared205

to ASQL because in ASQL, the greedy policy corresponding to the limit point of the Q-learning206

iteration is deterministic. As shown in [31] (also see [32,33]), in general for POMDPs with agent-state207

based controllers, stochastic stationary policies can outperform deterministic stationary policies.208

5 Regularized periodic Q-learning209

The idea of periodic Q-learning has been explored in [32]. They show that periodic policies can210

perform better than stationary policies when the agent state is not an information state. Regularized211

Q-learning can be generalized by regularized periodic Q-learning, since taking the period L = 1212

reproduces the stationary setting.213

Consider the convergence properties when we consider the following regularized periodic agent-state214

based Q-learning (RePASQL) update for ℓ ∈ [L].215

Qℓ
t+1(z, a) = Qℓ

t(z, a) + αℓ
t(z, a)

[
rt + γΩ⋆(Q

Jℓ+1K
t (z′, ·))−Qℓ

t(z, a)
]
. (5)

Assumption 3 For all (ℓ, z, a), the learning rates {αℓ
t(z, a)}t≥1 are measurable with respect to the216

sigma-algebra generated by (z1:t, a1:t) and satisfy αℓ
t(z, a) = 0 if (ℓ, z, a) ̸= (JtK, zt, at). Moreover,217 ∑

t≥1 α
ℓ
t(z, a) = ∞ and

∑
t≥1(α

ℓ
t(z, a))

2 < ∞, almost surely.218

Assumption 4 The behavior/exploration policy µ = {µℓ}ℓ∈[L] is such that the Markov chain219

{(St, Yt, Zt, At)}t≥1 converges to a limiting periodic distribution ζℓµ, where
∑

(s,y) ζ
ℓ
µ(s, y, z, a) > 0220

for all (ℓ, z, a) (i.e., all (ℓ, z, a) are visited infinitely often).221

By considering this limiting distribution w.r.t. the original model’s rewards and dynamics, we can222

construct an artificial MDP on the agent state for each ℓ ∈ [L], which has the following rewards and223
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dynamics:224

rℓµ(z, a) :=
∑
s∈S

r(s, a)ζℓµ(s | z), (6)

P ℓ
µ(z

′|z, a) :=
∑

(s,y′)∈S×Y

1{z′=ϕ(z,y′,a)}P (y′|s, a)ζℓµ(s|z).

Now we can extend the same techniques used in regularized MDPs 2.2 to this by defining a regularized225

Bellman operator Bℓ
µ on an arbitrary Q-function Q ∈ R|Z|×|A| as follows:226

Bℓ
µQ(z, a) = rℓµ(z, a) + γ

∑
z′∈Z

P ℓ
µ(z

′ | z, a)Ω⋆(Q(z′, ·)).

Next define the composition of the sequence of L Bellman operators corresponding to cycle ℓ as is227

done in [32].228

Bℓ
µ = Bℓ

µBJℓ+1K
µ · · · BJℓ+L−1K

µ .

Then we can apply Prop. 1 to Bℓ
µ. In addition, considering the periodicity of the operators, the same229

approach followed in [32] can be used to show that Bℓ
µ is a contraction and therefore has a unique230

fixed point denoted by Qℓ
µ which is given by231

Qℓ
µ(z, a) = rℓµ(z, a) + γ

∑
z′∈Z

P ℓ
µ(z

′ | z, a)V Jℓ+1K
µ (z′).

Theorem 2 Under Assumptions 3 and 4, the RePASQL iteration (5) converges to {Qℓ
µ}ℓ∈[L] almost232

surely.233

PROOF We omit the proof due to space limitations. The proof follows a similar style used in [32].234

6 Numerical example235

In this section, we present an example to highlight the salient features of our results. First, we describe236

the POMDP model.237

6.1 POMDP model238

Consider a POMDP with S = {0, 1, 2, 3},A = {0, 1},Y = {0, 1} and γ = 0.9. The start state239

distribution is given by240

ρ(s) = [0.3, 0.0, 0.2, 0.5]

Now consider the reward and transitions when a = 0:241

r(s, 0) = (1− γ)× [0.6, 0.0, 0.5,−0.3]

P (s′ | s, 0) =

0.0 0.6 0.4 0.0
0.8 0.0 0.2 0.0
0.7 0.3 0.0 0.0
0.2 0.0 0.0 0.8

 .

Note that s, s′ (state, next state) corresponds to the rows, columns of P , respectively. Next, when242

a = 1243

r(s, 1) = (1− γ)× [0.1,−0.3,−0.2, 0.5]

P (s′ | s, 1) =

0.8 0.2 0.0 0.0
0.4 0.0 0.6 0.0
0.0 0.8 0.2 0.0
0.1 0.7 0.2 0.0

 .

Finally, we have the observations function which maps s = {0, 3} to y = 0 and s = {1, 2} to y = 1.244
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6.2 Regularized agent-state based Q-learning (RASQL) experiment245

For the purpose of providing a simple illustration in this example, we fix the agent state to be the246

observation of the agent, i.e., zt = yt. However, in general the theoretical results hold for the general247

agent-state update rule given in (1). Consider the following fixed exploration policy:248

µ(a | z) =
[
0.2 0.8
0.8 0.2

]
.

Note that z, a (observation, action) corresponds to the rows, columns of µ, respectively.249

Using µ, we run 25 random seeds on the given POMDP and we perform the RASQL update (2)250

with a regularization coefficient (β) = 1.0 for 105 timesteps/iterations. We plot the median and251

quartiles from 25 seeds of the iterates {Qt(z, a)}t≥1 for each (z, a) pair as well as their corresponding252

theoretical limits Qµ(z, a) (computed using Theorem 1) are shown in Fig. 1. The salient features of253

these results are as follows:254

• RASQL converges to the theoretical limit predicted by Theorem 1.255

• The limit Qµ depends on the exploration policy µ.256

Thus, it can be seen from this example that we can precisely characterize the limits of convergence257

when using regularized Q-learning with an agent-state based representation.258

Figure 1: RASQL convergence: Q-values vs. number of iterations. Blue: RASQL iterates, Red:
Theoretical limit from Theorem 1.

6.3 Regularized periodic agent-state based Q-learning (RePASQL) experiment259

Similar to the RASQL experiment, we fix the agent state to be the observation of the agent, i.e.,260

zt = yt. Consider the following fixed periodic exploration policy for period L = 2:261

µ0(a | z) =
[
0.2 0.8
0.8 0.2

]
, µ1(a | z) =

[
0.8 0.2
0.2 0.8

]
.

Using µℓ, we run 25 random seeds on the given POMDP and we perform the RePASQL update262

(5) with a regularization coefficient (β) = 1.0 for 105 timesteps/iterations. We plot the median263

and quartiles from 25 seeds of the iterates {Qℓ
t(z, a)}t≥1 for each (ℓ, z, a) pair as well as their264

corresponding theoretical limits Qℓ
µ(z, a) (computed using Theorem 2) are shown in Fig. 2. The265

salient features of these results are as follows:266

• RePASQL converges to the theoretical limit predicted by Theorem 2.267

• The limits {Qℓ
µ}ℓ∈[L] depend on the periodic exploration policy {µℓ}ℓ∈[L].268

Thus, it can be seen from this example that we can precisely characterize the limits of convergence.269
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Figure 2: RePASQL convergence: Q-values vs. number of iterations. Blue: RePASQL iterates, Red:
Theoretical limit from Theorem 2.

7 Conclusions270

In this work, we present theoretical results on the convergence of regularized agent-state based271

Q-learning (RASQL) under some standard assumptions from the literature. In particular, we show272

that: 1) RASQL converges and 2) we characterize the solution that RASQL converges to as a273

function of the model parameters and the choice of exploration policy. We illustrate these ideas274

on a small POMDP example and show that the Q-learning iterates of RASQL matches with the275

calculated theoretical limit. We also generalize these ideas to the periodic setting and demonstrate the276

theoretical and empirical convergence of RePASQL. Thus, in doing so we are able to understand how277

regularization works when combined with Q-learning for POMDPs that have an agent state that is278

not an information state.279

A noteworthy issue with RASQL/RePASQL is that it inherits the limitations of its predecessor280

approaches of ASQL and PASQL. In particular, while we are able to prove convergence and char-281

acterize the converged solution in RASQL/RePASQL, we cannot guarantee the convergence to the282

optimal agent-state based solution and this largely depends on the choice of exploration policy and283

the POMDP dynamics. Even so, seeing how regularization is an important component in several284

empirical works concerning POMDPs with agent states that are not an information state, we find it285

useful to establish some useful theoretical properties on the convergence of such algorithms.286
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A Proof of Theorem 1390

The proof argument for Theorem 1 is similar to the proof argument given in [5, 16, 17, 32].391

Define an error function between the converged value and the Q-learning iteration ∆t+1 := Qt+1 −392

Qµ. Then, combine (2), (4) and (6) as follows for all (z, a).393

∆t+1(z, a) = Qt+1(z, a)−Qµ(z, a)

= (1− αt(z, a))∆t(z, a) + αt(z, a)
[
U0
t (z, a) + U1

t (z, a) + U2
t (z, a)

]
, (7)

where394

U0
t (z, a) := [r(St, At)− rµ(z, a)]1{Zt=z,At=a},

U1
t (z, a) :=

[
γΩ⋆(Qµ(Zt+1, ·)) − γ

∑
z′∈Z

Pµ(z
′ | z, a)Ω⋆(Qµ(z

′, ·))

]
1{Zt=z,At=a},

U2
t (z, a) := [γΩ⋆(Qt(Zt+1, ·))− γΩ⋆(Qµ(Zt+1, ·))]1{Zt=z,At=a}.

Note that we are adding the term γΩ⋆(Qµ(Zt+1, ·))1{Zt=z,At=a} in U1
t (z, a) and subtracting it in395

U2
t (z, a). We can now view (7) as a linear system with state ∆t and three inputs U0

t (z, a), U
1
t (z, a)396

and U2
t (z, a). Using the linearity, we can now split the state into three components ∆t+1 =397

X0
t+1 +X1

t+1 +X2
t+1, where the components evolve as follows for i ∈ {0, 1, 2}:398

Xi
t+1(z, a) = (1− αt(z, a))X

i
t(z, a) + αt(z, a)U

i
t (z, a).

We will now separately show each ∥Xi
t∥ → 0.399

A.1 Convergence of component X0
t400

The proof for the convergence of component X0
t is similar to that given in [32]. Details are omitted401

due to space limitations.402

A.2 Convergence of component X1
t403

The proof for the convergence of component X1
t is based on the argument given in [32]. Let Wt404

denote the tuple (St, Zt, At, St+1, Zt+1, At+1). Note that {Wt}t≥1 is a Markov chain and converges405

to a limiting distribution ζ̄µ, where406

ζ̄µ(s, z, a, s
′, z′, a′) = ζµ(s, z, a)

∑
y′∈Y

P (s′, y′|s, a)1{z′=ϕ(z,y′,a)}µ(a
′|z′).

We use ζ̄µ(s, z, a,S,Z,A) to denote the marginalization over the “future states” and a similar407

notation for other marginalizations. Note that ζ̄µ(s, z, a,S,Z,A) = ζµ(s, z, a).408

Define Vt as the value function associated with Qt, i.e., Vt(z) := Ω⋆(Qt(z, ·)). Fix (z◦, a◦) ∈ ×Z×A409

and define410

hP (Wt; z◦, a◦) =
[
γVµ(Zt+1)− γ

∑
z̄∈Z

Pµ(z̄|z◦, a◦)Vµ(z̄)
]
1{Zt=z◦,At=a◦}.

Then the process {X1
t (z, a)}t≥1 is given by the stochastic iteration411

X1
t+1(z◦, a◦) = (1− αt(z◦, a◦))X

1
t (z◦, a◦) + αt(z◦, a◦)hP (Wt; z◦, a◦).

As argued earlier, the process {Wt}t≥1 is a Markov chain. Due to Assm. 1, the learning rate412

αt(z◦, a◦) is measurable with respect to the sigma-algebra generated by (Z1:t, A1:t) and is therefore413

also measurable with respect to the sigma-algebra generated by W1:t. Thus, the learning rates414

{αt(z◦, a◦)}t≥1 satisfy the conditions of Theorem 2.7 from [26]. Therefore, the theorem implies415
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that {X1
t (z◦, a◦)}t≥1 converges a.s. to the following limit416

lim
t→∞

X1
t (z◦, a◦)

=
∑

s,z,a∈S×Z×A
s′,z′,a′∈S×Z×A

ζ̄µ(s, z, a, s
′, z′, a′)hP (s, z, a, s

′, z′, a′; z◦, a◦)

= γ

[∑
z′∈Z

ζ̄µ(S, z◦, a◦,S, z′,A)Vµ(z
′)

]
−

[
γζ̄µ(S, z◦, a◦,S,Z,A)

∑
z̄∈Z

Pµ(z̄|z◦, a◦)Vµ(z̄)

]
= 0

where the last step follows from the fact that ζ̄µ(S, z◦, a◦,S,Z,A) = ζµ(z◦, a◦) and417

ζ̄µ(S, z◦, a◦,S, z
′,A) = ζµ(z◦, a◦)Pµ(z

′|z◦, a◦).418

A.3 Convergence of component X2
t419

The convergence of the X2
t component is based on [17,32] but requires some additional considerations420

due to the regularization term. We start by defining:421

πt(· | z) = argmax
ξ∈∆(A)

∑
a∈A

ξ(a)Qt(z, a)− Ω(ξ)

π⋆(· | z) = argmax
ξ∈∆(A)

∑
a∈A

ξ(a)Qµ(z, a)− Ω(ξ).

In the previous steps, we have shown that ∥Xi
t∥ → 0 a.s., for i ∈ {0, 1}. Thus, we have that422

∥X0
t +X1

t ∥ → 0 a.s. Arbitrarily fix an ϵ > 0. Therefore, there exists a set Ω1 of measure one and a423

constant T (ω, ϵ) such that for ω ∈ Ω1, all t > T (ω, ϵ), and (z, a) ∈ ×Z× A, we have424

X0
t (z, a) +X1

t (z, a) < ϵ. (8)

Now pick a constant C such that425

κ := γ

(
1 +

1

C

)
< 1 (9)

Suppose for some t > T (ω, ϵ), ∥X2
t ∥ > Cϵ. Then, for (z, a) ∈ Z× A,426

U2
t (z, a)

= γVt(Zt+1)− γVµ(Zt+1)

= γΩ⋆(Qt(Zt+1, ·))− γΩ⋆(Qµ(Zt+1, ·))

= γ

[∑
a∈A

πt(a | Zt+1)Qt(Zt+1, a)− Ω(πt(· | Zt+1))−
∑
a∈A

π⋆(a | Zt+1)Qµ(Zt+1, a) + Ω(π⋆(· | Zt+1))

]

(a)

≤ γ

[∑
a∈A

πt(a | Zt+1)Qt(Zt+1, a)− Ω(πt(· | Zt+1))−
∑
a∈A

πt(a | Zt+1)Qµ(Zt+1, a) + Ω(πt(· | Zt+1))

]

≤ γ
∑
a∈A

πt(a | Zt+1)
∣∣Qt(Zt+1, a)−Qµ(Zt+1, a)

∣∣
(b)

≤ γ∥Qt −Qµ∥ = γ∥∆t∥
≤ γ∥X0

t +X1
t ∥+ γ∥X2

t ∥ (10a)
(c)

≤ γϵ+ γ∥X2
t ∥ (10b)

(d)

≤ γ

(
1 +

1

C

)
∥X2

t ∥
(e)
= κ∥X2

t ∥
(e)
< ∥X2

t ∥, (10c)
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where (a) follows from the fact that we replace the argmax π⋆ with a different argument πt in the427

second term, (b) follows from maximizing over all realizations of Zt+1 and a ∈ A, (c) follows from428

(8), (d) follows from ∥X2
t ∥ > Cϵ, (e) follows from (9). Thus, for any t > T (ω, ϵ) and ∥X2

t ∥ > Cϵ:429

X2
t+1(z, a) = (1− αt(z, a))X

2
t (z, a) + αt(z, a)U

2
t (z, a) < ∥X2

t ∥
=⇒ ∥X2

t+1∥ < ∥X2
t ∥.

Hence, when ∥X2
t ∥ > Cϵ, it decreases monotonically with time. Hence, there are two possibilities:430

either431

1. ∥X2
t ∥ always remains above Cϵ; or432

2. it goes below Cϵ at some stage.433

We consider these two possibilities separately.434

A.3.1 Possibility (i): ∥X2
t ∥ always remains above Cϵ435

We will show that ∥X2
t ∥ cannot remain above Cϵ forever.436

We will now prove that ∥X2
t ∥ cannot remain above Cϵ forever. The proof is by contradiction. Suppose437

∥X2
t ∥ remains above Cϵ forever. As argued earlier, this implies that ∥X2

t ∥, t ≥ T (ω, ϵ), is a strictly438

decreasing sequence, so it must be bounded from above. Let B(0) be such that ∥X2
t ∥ ≤ B(0) for all439

t ≥ T (ω, ϵ). Eq. (10c) implies that ∥U2
t ∥ < κB(0). Then, we have for all (z, a) ∈ Z× A that440

X2
t+1(z, a) ≤ (1− αt(z, a))∥X2

t ∥+ αt(z, a)∥U2
t ∥

< (1− αt(z, a))∥X2
t ∥+ αt(z, a)κ∥X2

t ∥

which implies that ∥X2
t ∥ ≤ ∥M (0)

t ∥, where {M (0)
t }t≥T (ω,ϵ) is a sequence given by441

M
(0)
t+1(z, a) ≤ (1− αt(z, a))M

(0)
t (z, a) + αt(z, a)κB

(0).

Theorem 2.4 from [26] implies that M (0)
t (z, a) → κB(0) and hence ∥M (0)

t ∥ → κB(0). Now pick an442

arbitrary ϵ̄ ∈ (0, (1− κ)Cϵ). Thus, there exists a time T (1) = T (1)(ω, ϵ, ϵ̄) such that for all t > T (1),443

∥M (0)
t ∥ ≤ B(1) := κB(0) + ϵ̄. Since ∥X2

t ∥ is bounded by ∥M (0)
t ∥, this implies that for all t > T (1),444

∥X2
t ∥ ≤ B(1) and, by (10c), ∥U2

t ∥ ≤ κB(1). By repeating the above argument, there exists a time445

T (2) such that for all t ≥ T (2),446

∥X2
t ∥ ≤ B(2) := κB(1) + ϵ̄ = κ2B(0) + κϵ̄+ ϵ̄,

and so on. By (9), κ < 1 and ϵ̄ is chosen to be less than Cϵ. So eventually, B(m) := κmB(0) +447

κm−1ϵ̄+ · · ·+ ϵ̄ must get below Cϵ for some m, contradicting the assumption that ∥X2
t ∥ remains448

above Cϵ forever.449

A.3.2 Possibility (ii): ∥X2
t ∥ goes below Cϵ at some stage450

Suppose that there is some t > T (ω, ϵ) such that ∥X2
t ∥ < Cϵ. Then (10a), (10b) and (9) imply that451

∥U2
t ∥ ≤ γ∥X0

t +X1
t ∥+ γ∥X2

t ∥ ≤ γϵ+ γCϵ < Cϵ.

Therefore,452

X2
t+1(z, a) ≤ (1− αt(z, a))∥X2

t ∥+ αt(z, a)∥U2
t ∥ < Cϵ

where the last inequality uses the fact that both ∥U2
t ∥ and ∥X2

t+1∥ are both below Cϵ. Thus, we have453

that454

X2
t+1(z, a) < Cϵ.

Hence, once ∥X2
t+1∥ goes below Cϵ, it stays there.455

A.3.3 Implication456

We have show that for sufficiently large t > T (ω, ϵ), X2
t (z, a) < Cϵ. Since ϵ is arbitrary, this means457

that for all realizations ω ∈ Ω1, ∥X2
t ∥ → 0. Thus,458

lim
t→∞

∥X2
t ∥ = 0, a.s. (11)

14



A.4 Putting everything together459

Recall that we defined ∆t = Qt −Qµ and in Step 1, we split ∆t = X0
t +X1

t +X2
t . Steps 2 and 3460

together show that ∥X0
t +X1

t ∥ → 0, a.s. and Step 3 (11) shows us that ∥X2
t ∥ → 0, a.s. Thus, by the461

triangle inequality,462

lim
t→∞

∥∆t∥ ≤ lim
t→∞

∥X0
t +X1

t ∥+ lim
t→∞

∥X2
t ∥ = 0,

which establishes that Qt → Qµ, a.s.463

15


	Introduction
	Background
	Legendre-Fenchel transform (convex conjugate)
	Regularized MDPs

	System model and regularized Q-learning for POMDPs
	Model for POMDPs
	Regularized agent-state based Q-learning for POMDPs

	Main result
	Regularized periodic Q-learning
	Numerical example
	POMDP model
	Regularized agent-state based Q-learning (RASQL) experiment
	Regularized periodic agent-state based Q-learning (RePASQL) experiment

	Conclusions
	Proof of Theorem 1
	Convergence of component X0t
	Convergence of component X1t
	Convergence of component X2t
	Possibility (i): 
	Possibility (ii): 
	Implication

	Putting everything together


