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Abstract

Knowledge graph (KG) reasoning utilizes two primary techniques, i.e., rule-based
and KG-embedding based. The former provides precise inferences, but inferring
via concrete rules is not scalable. The latter enables efficient reasoning at the cost
of ambiguous inference accuracy. Neuro-symbolic reasoning seeks to amalgamate
the advantages of both techniques. The crux of this approach is replacing the
predicted existence of all possible triples (i.e., truth scores inferred from rules)
with a suitable approximation grounded in embedding representations. However,
constructing an effective approximation of all possible triples’ truth scores is a
challenging task, because it needs to balance the tradeoff between accuracy and
efficiency, while compatible with both the rule-based and KG-embedding models.
To this end, we proposed a differentiable framework - DiffLogic. Instead of
directly approximating all possible triples, we design a tailored filter to adaptively
select essential triples based on the dynamic rules and weights. The truth scores
assessed by KG-embedding are continuous, so we employ a continuous Markov
logic network named probabilistic soft logic (PSL). It employs the truth scores of
essential triples to assess the overall agreement among rules, weights, and observed
triples. PSL enables end-to-end differentiable optimization, so we can alternately
update embedding and weighted rules. On benchmark datasets, we empirically
show that DiffLogic surpasses baselines in both effectiveness and efficiency.

1 Introduction

Knowledge graph (KG) reasoning refers to the process of using existing triples in a KG to infer new
knowledge that is not explicitly stated in the original KG (Safavi & Koutra, 2020). For instance, if
we know that (Paris, is_the_capital_of, France) and (France, is_a_country_in, Europe), we can infer
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that (Paris, is_a_city_in, Europe), which is not explicitly included in the original KG. KG reasoning
is essential to KG completion (Shi & Weninger, 2017) and KG error detection (Zhang et al., 2022a;
Dong et al., 2023b). Moreover, KG reasoning can infer underlying knowledge and improve the
quality of learning or predictions on KGs, which benefits various downstream tasks, such as question
answering (Huang et al., 2019; Dong et al., 2023a), recommendations (Huang et al., 2023; Xu et al.,
2023), and interpretable machine learning (Lecue, 2020; Tiddi & Schlobach, 2022).

There are mainly two lines of research in KG reasoning (Zhang et al., 2022b). First, rule-based
reasoning derives new triples from existing ones by applying a set of predefined rules, which are
usually expressed in a form of logical statements (Yang et al., 2017; Sadeghian et al., 2019; Fang
et al., 2023). For example, if there are two triples (A, is_a_parent_of, B) and (B, is_a_parent_of,
C), and a rule saying “the parent of a parent is a grandparent”, then we can infer a new triple (A,
is_a_grandparent_of, C). Rule-based reasoning is particularly effective when the rules are well-
defined and the KG is relatively small and static (Bach et al., 2017). Recent studies employ Markov
logic network (MLN) (Richardson & Domingos, 2006) to dynamically learn soft rules, which are
associated with weight scores indicating their credibility. But it remains not scalable because assessing
the truth scores to all possible triples requires O(|E|2|R|) parameters, where |E| and |R| denote the
numbers of entities and relations. Thus, rule-based reasoning becomes inefficient when dealing with
large KGs. Second, KG-embedding based reasoning projects a KG into a low-dimensional space and
infers new relations based on embedding representations (Zhang et al., 2021; Ren et al., 2022). It
assumes that KG embedding can preserve most semantic information in the original KGs (Bordes
et al., 2013; Wang et al., 2014; Sun et al., 2019; Dong et al., 2014) so that missing relations can
be inferred by using the distances or semantic matching scores in the embedding space. Recent
studies (Shang et al., 2019; ?; Vashishth et al., 2019; Zhang et al., 2023) also seek to design tailored
Graph convolutional networks for learning structural-aware KG embeddings. KG-embedding based
reasoning can be scalable (Zheng et al., 2020; Ren et al., 2022). However, there is no explicit rule to
ensure its accuracy and logical consistency. Also, it requires a sufficient amount of training data, and
its results are difficult to interpret.

Neuro-symbolic reasoning models combine the advantages of both techniques, which is to approxi-
mate the predicted truth scores of all possible triples inferred by rules with the normalized output
scores of a KG-embedding model. However, it is nontrivial to effectively and efficiently construct
such an approximation. Directly employing rules (Guo et al., 2016, 2018) to regularize the embedding
learning is efficient, but it cannot update rule weights and is thus sensitive to the initialization of rule
weights. Incorporating KG-embedding models into sophisticated rule-based models, such as MLN,
enables the handling of rule uncertainty (Qu & Tang, 2019; Zhang et al., 2020). However, directly
approximating the distributions of the truth scores are still challenging. First, directly approximating
the distribution of truth scores within the MLN framework is unfeasible. This process necessitates the
optimization of the joint probability of the approximated distribution, which subsequently requires
the computation of integration across all scores. Second, optimizing neuro-symbolic models rely
on training with ground formulas (i.e. instantiated rules). Given the large grounding space, the
performance of neuro-symbolic models may deteriorate if important ground formulas are missed
(Guo et al., 2016; Qu & Tang, 2019), and efficiency issues may arise if too many ground formulas are
considered (Zhang et al., 2020).

To this end, we proposed a differentiable framework - DiffLogic. Firstly, a tailored filter is used to
adaptively select important ground formulas based on weighted rules and extract connected triples.
Second, a KG-embedding model is used to compute a truth score for each triple. Then we employ a
continuous MLN named probabilistic soft logic (PSL) (Bach et al., 2017) that takes these truth scores
as input, and assesses the overall agreement among rules, weights, and observed triples with a joint
probability. The PSL template enables end-to-end differentiable optimization. In this way, DiffLogic
is optimized by alternately updating embedding and weighted rules. Contributions of this work are
summarized as follows:

(1) We develop a unified neuro-symbolic framework — DiffLogic, that combines the advantages of
KG-embedding models and rule-based models: efficiency, effectiveness, capability of leveraging
prior knowledge and handling uncertainty.

(2) We enable consistent training of rule-based models and KG-embedding models. By employing
PSL, the joint probability of truth scores can be optimized directly rather than optimizing an evidence
lower bound (ELBO) instead.
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(3) We propose an efficient grounding technique that iteratively identifies important ground formulas
required for inference, enabling effective and data-efficient optimization.

(4) We devise a fast estimation technique for the gradient of rule weights, which efficiently estimates
the rule weight gradient by exploiting the sparsity of violated ground formulas.

(5) Through experiments, we empirically show that: (i) DiffLogic scales to large knowledge graphs
with consistently improved performance, such as YAGO3-10; (ii) our model can leverage human
prior knowledge by injecting rule patterns using only a compact set of logic rules; and (iii) our
grounding technique is both efficient and effective, it reduces the number of ground formulas required
for optimization by orders of 103 ∼ 105, without compromising performance.

2 Preliminaries

In this section, we formally define the problem of knowledge base completion, provide a brief
introduction to first-order logic, and how to evaluate its agreement with a knowledge base.

2.1 Problem statement

A knowledge base K comprises a set of entities E and a set of relations R. For any pair of head-tail
entities (h, t) ∈ E × E and a relation r ∈ R, the relation maps the pair of entities to a binary
score, i.e., r : E × E → {0, 1},∀r ∈ R, indicating that the head entity h either has the relation r
with the tail entity t or not. In the knowledge base completion problem, people observe a set of
facts O = {(hi, ri, ti)}ni=1 along with their true assignment vector x = [x1, . . . , x|O|] ∈ R|O| with
xi = ri(hi, ti). Denote the unobserved facts as H = E × R × E\O, and let {(Fq,Wq)}mq=1 be a
set of weighted rules, where Fq is a rule (see Section 2.2 for details, where a rule is referred to as
first-order logic), Wq is the corresponding rule weight. The knowledge graph completion task aims to
infer the assignment vector for all unobserved facts y ∈ R|H| given the observed facts and the rules.

2.2 First-order logic

First-order logic. A first-order logic (also referred to as “logic rule” in this paper) associated with a
knowledge base K is an expression based on relations in K. Formally, a logic rule Fq in clausal form
can be represented as a disjunction of atoms and negated atoms:(

∨i∈I+
q
ri(Ai, Bi)

)
∨
(
∨i∈I−

q
¬ri(Ai, Bi)

)
, (1)

where I−
q and I+

q are two index sets containing the indices of atoms that are negated or not,
respectively, Ai and Bi are variables. Logic rules in clausal form can be equivalently reorganized as
an implication from premises (negated) to conclusions (non-negated):

∧i∈I−
q
ri(Ai, Bi) =⇒ ∨i∈I+

q
ri(Ai, Bi). (2)

The implication Eq. (2) is quite expressive since it includes many commonly used types of logic rule,
e.g., symmetry/asymmetry, inversion, sub-relation, composition, etc.

2.3 Rule grounding and distance to satisfaction

Rule grounding. For a logic rule Fq in Eq. (2), by assigning entities e ∈ E to the variables Ai and
Bi, Fq is grounded, producing a set of ground formulas. For example, consider a simple logic rule
Father(A,B) ∧Wife(C,A) ⇒ Mother(C,B). Let A = Jack, B = Ross and C = Judy, we
get a ground formula: Father(Jack,Ross) ∧Wife(Judy, Jack) ⇒ Mother(Judy,Ross).

Distance-to-satisfaction. Denote all ground formulas created by the q-th logic rule Fq by {G(j)
q }nq

j=1,

where nq is the number of ground formula for the q-th rule. For any ground formula G
(j)
q of Fq,

when ri(hi, ti) ∈ {0, 1}, the satisfaction of G(j)
q can be evaluated via Eq. (1). The value is either

1 or 0, meaning that the ground formula is satisfied or violated, respectively. The binary value of
ri(hi, ti) can be relaxed to a continuous value ranging over [0, 1]. In such case, we may define the
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Figure 1: Overall framework of DiffLogic.

distance-to-satisfaction for G(j)
q via Łukasiewicz t-norm:

d(G(j)
q ) := max

{
1−

∑
i∈I+

q

ri(hi, ti)−
∑
i∈I−

q

(1− ri(hi, ti)), 0

}
. (3)

Note that d(G(j)
q ) ∈ [0, 1], and the smaller d is, the better satisfied the ground formula G

(j)
q is.

3 Differentiable neuro-symbolic reasoning

In this section, we propose a neuro-symbolic model, namely, DiffLogic, which unifies KG-embedding
and rule-based reasoning. What follows we present the overall framework of DiffLogic, then show
how to perform DiffLogic efficiently.

3.1 Overall framework

As shown in Figure 1, the model comprises three components: 1) an efficient grounding technique
serving as a filter to identify crucial ground formulas and extract triples connected to them; 2) a
KG-embedding model to compute truth scores for the extracted triples; and 3) a tailored continuous
MLN framework that takes the truth scores as input and assess the overall probability. The model is
optimized using an EM algorithm, alternating between embedding optimization and weight updating.
During the E-step, we fix the rule weights and optimize embeddings in an end-to-end fashion, by
maximizing the overall probability; while in the M-step, we design an efficient rule weight updating
method by leveraging the sparsity of violated rules. It is also worth mentioning here that the model
requires a set of rules, which can be obtained from certain rule-mining process or domain experts.

Next, we turn to the abovementioned three components.

Rule-guided iterative grounding. The success of probabilistic logic reasoning heavily depends on
the grounding process. However, the number of grounding formulas is overwhelmingly large, under
our setting, equals

∑m
q=1 |E|

|I−
q |+1. As a result, one has to sample for approximation. In this work,

we propose a grounding technique called Rule-guided Iterative Grounding (RGIG) that incrementally
identifies crucial ground formulas, reducing the number of ground formulas needed for optimization
without compromising performance.

Inference inherently promotes the agreement between assignments (i.e., y, x) and the weighted rule
set (i.e., {(Fq,Wq)}mq=1) by penalizing violated rules. Consequently, ground formulas with higher
distance-to-satisfaction are more valuable in guiding optimization. In light of this, we only need
to find the ground formulas whose premise atoms in Eq. (2) have (or potentially have) high scores.
Pursuing this idea, RGIG iteratively grounds all logic rules and updates a fact set V . The fact set V
is initialized with the observed facts O from the training set. In each iteration, rules are grounded
only from the facts in V that match the premise parts of the rules. New facts are derived from the
conclusion parts of the rules and subsequently added to V . In the subsequent iterations, the updated
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Figure 2: An illustration of probabilistic soft logic (PSL).

V is used to derive more new facts. From our numerical experience, a few iterations of RGIG are
sufficient, say 3. In the end, RGIG yields a set of ground formulas.

This grounding technique leverages the sparsity of violated rules (the distances to satisfaction for
most ground formulas are approximately zero) to efficiently identify important ground formulas,
facilitating data-efficient optimization. The case study in Section 4.2 illustrates that our grounding
technique attains comparable reasoning performance and is orders of (103 ∼ 105) more efficient in
terms of the number of ground formulas.

KG-embedding model. In the literature of probabilistic logic reasoning, the representation of
assignment y for all unobserved facts is very expensive, which is approximate |E|2|R| as the observed
fact triples are only a small portion. To this end, we employ a KG-embedding model to parameterize
y and x. By embedding each entity to continuous representation with ne parameters, and each
relation with nr parameters. The number of parameters is reduced from |E|2|R| to |E|ne + |R|nr,
which is linear with respect to the number of entities/relations.

Although (re)-parameterization improves the representation efficiency, we also need to consider
effectiveness. The relation pattern modeling capability is essential for honestly modeling the logic in
a KG and performing reasoning. For example, the ability to model symmetric and reverse relation is
attributed to capturing logic rules with one premise atom (e.g. Husband(A,B) ⇒ Wife(B,A)),
while the ability to model composition relation is attributed to capturing logic rules with two premise
atoms (e.g. Father(A,B)∧Wife(C,A) ⇒ Mother(C,B)). Among all candidate KG-embedding
models, we choose RotatE (Sun et al., 2019) for its simplicity and capability of modeling the various
logic patterns. And of course, one may use also other KGE models instead. Let the KGE model be
parameterized by θ. Using the sigmoid function, we can transform the score for the fact triple (h, r, t)
produced by the KGE model into [0, 1], which can be taken as the truth value for (h, r, t). So the
truth value for (h, r, t) can be parameterized by θ. Therefore, the assignment vectors x and y can be
parameterized by θ, with their entries being the truth values for the observed and unobserved fact
triples, respectively.

Hinge-loss Markov random field. Given the parameterized assignments, we employ PSL (Bach
et al., 2017) to build a hinge-loss Markov random field (HL-MRF). Specifically, given a knowledge
base K with assignments x,y, and a set of weighted logic rules {(Fq,Wq)}mq=1. A HL-MRF P over
y conditioned on x is a probability density function defined as

Pw(y|x) = 1

Z(W ,x)
exp(−fw(y,x)), Z(W ,x) =

∫
y

exp(−fw(y,x))dy, (4)

where fw is the hinge-loss energy function, defined as the weighted sum of all potentials:

fw(y,x) = W⊤Φ(y,x) = [W1, . . . ,Wm][Φ1(y,x), . . . ,Φm(y,x)]⊤ =

m∑
q=1

WqΦq(y,x), (5)

and Φq(y,x) is the sum of potentials of all ground formulas of Fq , i.e., Φq(y,x) =
∑nq

j=1 d(G
(j)
q ).

HL-MRF optimizes the assignment y and the rule weights W by alternating between Maximum a
posterior (MAP) inference and weight learning. The former step fixes the W and optimizes y, while
the latter step fixes y and updates W .

3.2 Optimization

Below we elaborate on the optimization details of DiffLogic. We demonstrate how the model opti-
mization is efficiently performed by employing numerical optimization techniques and approximation
methods that leverage sparse properties.
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Embedding updating The task in the inference step is to infer Pw(y|x), i.e., finding the optimum
y given the observed assignment x and current weights W , which can be formulated as a maximum
a posterior (MAP):

argmaxy Pw(y|x) ≡ argminy∈[0,1]|H| W
⊤Φ(y,x).

To be consistent with the observation, x(θ) should be as small as possible. Additionally, we also want
the truth values for negative samples to be large. So, the overall cost function can be formulated as:

min
θ

W⊤Φ(y(θ),x(θ)) + λ

 1

|T+|
∑

(h,r,t)∈T+

[1− r(h, t; θ)] +
1

|T−|
∑

(h,r,t)∈T−

r(h, t; θ)

 , (6)

where x, y are parameterized by θ, λ > 0 is a parameter, r(h, t; θ) ∈ [0, 1] stands for the truth
value of a fact triple (h, r, t), T+ and T− are positive and negative sample sets, respectively. The
optimization problem Eq. (6) can be solved by stochastic gradient descent, where we sample a batch
of ground formulas to compute the potentials, T+ is a batch of positive triples from O, and T− is a
set of negative samples obtained by corrupting T+.

Rule weights updating In this step, θ is fixed, and rule weights are updated by maximizing
logPw(y|x). The gradient of logPw(y|x) with respect to the weight of Fq can be given by

∂ logPw(y | x)
∂Wq

= EW [Φq(y,x)]− Φq(y,x). (7)

The first term computes the expectation of potential, which involves integration over y under the
distribution defined by rule weight W . Directly computing the integration is impractical, so we
instead optimize the pseudo-likelihood of training data:

P ∗
w(y | x) =

n∏
i=1

exp
[
−f i

w

(
yi ∪ y\i,x

)]
Zi(W , yi ∪ y\i,x)

, f i
w =

m∑
q=1

Wq

nq∑
j=1

1{yi→G
(j)
q }d(G

(j)
q ).

Here 1{yi→G
(j)
q } = 1 if yi is connected to ground formula G(j)

q , otherwise, zero. Zi is the integration

of f i
w over yi, similar to the second equation in Eq. (4). The pseudo-likelihood is a mean-field

approximation for the exact likelihood in Eq. (4). It approximates the exact likelihood by decomposing
it into a product of the probabilities of yi’s, conditioned on the Markov Blanket of yi denoted by
MB(yi). The gradient of the pseudo-likelihood is as follows (see Appendix A.2 for a detailed
derivation):

∂ logP ∗
w(y | x)

∂Wq
=

n∑
i=1

{
Eyi|MB

[
Ψq,MB(i)

]
−Ψq,MB(i)

}
, Ψq,MB(i) =

nq∑
j=1

1{yi→G
(j)
q }d(G

(j)
q ).

The above equality enables us to estimate gradients by minibatch sampling. For each sampled yi,
we need to compute both Ψq,MB(i) and its expectation. The integration term can be estimated using
Monte Carlo integration by fixing other variables and sampling yi on the interval [0, 1]. The Monte
Carlo integration is parallelizable and converges quickly as the number of samples increases.

To further reduce the computation burden, we leverage the sparsity of the violated ground formulas
to filter ground formulas. Practically, we pre-compute the truth scores of all triples connected to the
ground formulas using the KG-embedding model, then use a threshold to divide these triples into
a "positive" set and a "negative" set. A ground formula is expected to be violated if all its premise
atoms are positive and all its conclusion atoms are negative. By only involving the violated rules
when computing potentials, we significantly reduce computational costs.

Joint reasoning with rules and embeddings After training, we get the trained embeddings and
updated rule weights, which can be used to perform reasoning. There are two ways to compute the
score: 1) compute each embedding score ri(hi, ti; θ) using the learned embeddings θ; 2) compute
the cumulative rule score frule(hi, ri, ri;W ) by summing up weights of ground formulas that infer
the target triple:

frule(hi, ri, ti;W ) =

m∑
q=1

Wq

nq∑
j=1

1{ri(hi,ti) can be inferred by G
(j)
q }.
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Table 1: Reasoning performance on real-world datasets. [T=n] means the maximum body length
of mined rules is n. The best results are shown in bold and the second best are underlined. [NA]
indicates that the model cannot finish inference within ten hours.

CodeX-s CodeX-m CodeX-l WN18RR YAGO3-10
MRR hit@10 MRR hit@10 MRR hit@10 MRR hit@10 MRR hit@10

MLP 0.279 0.502 0.197 0.347 0.190 0.339 0.139 0.218 0.365 0.575
RotatE 0.421 0.634 0.325 0.466 0.319 0.453 0.469 0.566 0.495 0.670

TuckER 0.444 0.638 0.328 0.458 0.309 0.430 0.470 0.526 - -
TransE 0.353 0.607 0.320 0.481 0.308 0.452 0.218 0.510 0.436 0.647
SACN - - - - - - 0.470 0.540 - -

CompGCN - - - - - - 0.479 0.546 - -
AMIE 0.195 0.283 0.063 0.095 0.026 0.029 0.36 0.485 0.25 0.343

NeuraLP 0.290 0.395 NA NA NA NA 0.433 0.566 NA NA
DRUM(T=2) 0.290 0.393 NA NA NA NA 0.434 0.565 NA NA
DRUM(T=3) 0.342 0.542 NA NA NA NA 0.486 0.586 NA NA
RNNLogic+ - - - - - - 0.51 0.597 NA NA

RLogic+ - - - - - - 0.52 0.604 0.53 0.703
MLN4KB 0.082 0.134 0.035 0.045 0.028 0.032 0.368 0.374 0.460 0.525
pLogicNet 0.342 0.505 0.306 0.448 0.270 0.388 0.440 0.534 0.387 0.595
DiffLogic 0.445 0.662 0.335 0.487 0.326 0.448 0.493 0.585 0.503 0.673

DiffLogic+ 0.458 0.655 0.343 0.495 0.337 0.46 0.50 0.587 0.513 0.674

To perform joint inference using both embedding scores and rule scores, a simple way is to use the
weighted sum of embedding scores and the normalized rule scores:

ri(hi, ti) = (1− η) · ri(hi, ti; θ) + η · f̂i(hi, ti;W ), (8)

where f̂i(hi, ti;W ) is the rescaled value of frule(hi, ri, ti;W ) calculated by minmax normalization.
The optimum weight coefficient η is selected by using the validation set.

4 Experiments

In this section, we conduct experiments to answer the following research questions. RQ1: Can
DiffLogic outperform rule-based and embedding-based models in terms of reasoning performance?
RQ2: Can DiffLogic scale to large knowledge graphs that rule-based models struggle to handle?
RQ3: Does DiffLogic actually learn representations compatible with rules? RQ4: Quantify the
efficiency and scalability of DiffLogic. RQ5: How effective is the model in terms of leveraging prior
knowledge encoded in rules, compared with data-driven methods?

Datasets and candidate rules. We incorporate four real-world knowledge graph datasets: YAGO3-
10, WN18, WN18RR, and CodeX (available in three sizes: small, medium, and large), along with
a synthetic logic reasoning dataset: Kinship. Dataset statistics and descriptions can be found in
Appendix B.1. Candidate rules for knowledge graphs are mined using AMIE3 (Lajus et al., 2020),
with rule weights initialized by rule confidence scores.

Baseline models. Baseline models include four KG-embedding models — TransE (Bordes et al.,
2013), RotatE (Sun et al., 2019), TuckER (Balažević et al., 2019), MLP (Dong et al., 2014), two
GNN-based models — SACN (Shang et al., 2019), CompGCN (Vashishth et al., 2019), four rule-
learning models — Neural LP (Yang et al., 2017), DRUM (Sadeghian et al., 2019), RNNLogic (Qu
et al., 2020), RLogic (Cheng et al., 2022), a discrete MLN engine MLN4KB Fang et al. (2023), and a
neuro-symbolic model pLogicNet (Qu & Tang, 2019) that also integrate KG-embedding and MLN.
We exclude the recently proposed ExpressGNN (Zhang et al., 2020) from our experiments on KG
experiments since it requires querying test data1 during training and is inapplicable in our setting.
For all baselines that employ a KG embedding model, we unify the negative sampling scheme as
adversarial negative sampling for fair comparison. Hyperparameters for each baseline are taken from
their original paper.

1Please see the discussion on the usage of test data at https://openreview.net/forum?id=rJg76kStwH.
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4.1 Reasoning on real-world knowledge graphs

To answer RQ1, RQ2, and RQ3, we conduct link prediction tasks on several real-world datasets.
Including WN18RR, YAGO3-10, and CodeX of three sizes (denoted as CodeX-s/m/l). Note that
YAGO3-10 and Codex-l are large knowledge graphs that are suitable for assessing scalability. We
report the performance of DiffLogic under two settings, using embedding scores for reasoning
(denoted by DiffLogic) and using both embedding scores and rule scores for reasoning (denoted by
DiffLogic+). We evaluate the performance using the Mean Reciprocal Rank (MRR) and Hit@10,
with the results presented in Table 1. We also investigate the evolution of violated rules and MRR on
WN18RR during the inference of DiffLogic and RotatE, as demonstrated in Figure 3. These results
lead to several key observations:

First, DiffLogic surpasses both rule-based and KG embedding-based methods. This can be
primarily attributed to the fact that it combines the ability of both sides: 1) the ability to utilize
embeddings to model similarities among entities, which enhance the reasoning performance; and 2)
compared with data-driven KG-embedding models that only learn rule patterns from a large amount
of labeled data, DiffLogic can explicitly leverage rule patterns within a principled logic reasoning
framework, leading to better overall performance. Our results also indicate that jointly using rules and
learned embeddings for reasoning is more effective than solely relying on embeddings. This suggests
that rules and embeddings can complement each other during the reasoning process, ultimately
leading to more accurate and robust inferences.

Second, DiffLogic outperforms pLogicNet, a neuro-symbolic model. Although pLogicNet also
integrates MLN and KG-embeddings for reasoning, the key difference is that DiffLogic optimizes
MLN and KG-embedding using a unified objective, whereas pLogicNet accommodates the discrete
nature of MLN and essentially employs an MLN as a data augmentation technique to annotate
additional facts for training KG embeddings. As a result, the optimization of MLN and KG embedding
in pLogicNet is less consistent, and its performance is sensitive to the annotation threshold. Its
performance is lower than TransE - its base KG embedding model on several large KGs (YAGO3-
10/CodeX-l) because the annotated triples are mostly false positive. This highlights the advantages of
DiffLogic in providing a more coherent and robust optimization process.

Third, DiffLogic demonstrates superior scalability compared to rule-based methods. DiffLogic
is adept at efficiently scaling to expansive KG datasets like YAGO3-10 and CodeX-l. Conversely, rule-
based methods, including NeuraLP, DRUM, RNNLogic, and MLN4KB, often encounter challenges
when attempting to scale to such large KGs. An exception is RLogic, which is a scalable rule-learning
model designed to mine complex and lengthy rules for reasoning. Remarkably, our model achieves
comparable results by including only simply rules with a rule body length of ≤ 2.

Furthermore, DiffLogic proficiently learns representations that align with both KG-embeddings
and rules. As the left subfigure in Figure 3 demonstrates, the number of violated rules during the
inference (embedding learning) phase is initially sparse, rises rapidly, and eventually decreases with
training progression. We attribute this to 1) the random initialization of embeddings, which assigns
low truth scores to most triples, resulting in fewer initial violations; 2) the model’s training phase,
where truth scores for training set triples increase but rule patterns are not yet fully captured, causing
a rapid rise in rule violations; 3) as training progresses, KG embeddings begin to encapsulate rule
patterns, reducing the number of violations. Importantly, despite its base embedding model being
RotatE, DiffLogic is more effective than pure data-driven RotatE in capturing rule patterns, ensuring
a consistent decrease in rule violations. As depicted in the middle subfigure in Figure 3, DiffLogic
achieves faster convergence in test MRR compared to RotatE.

4.2 Scalability of optimization

To answer RQ4, we assess the scalability of our methodology, focusing primarily on optimization
efficiency, i.e., the efficacy of grounding. We employ Kinship, a widely used (Zhang et al., 2020;
Fang et al., 2023) synthetic benchmark dataset, to evaluate the efficacy and efficiency of RGIG in
identifying important ground formulas. This dataset includes a training set, a test set, and a set of logic
rules with full confidence. Some predicates are unobserved in the training set and can only be inferred
via logic rules. The task is to deduce the gender of each individual in the test set, given the training
set and the rule set. Kinship, designed for logical reasoning, necessitates resolving contradictions
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Figure 3: Left: Violated rules evolution during inference on WN18RR. Middle: MRR evolution on
WN18RR. Right: Number of considered ground formulas in PSL/ExpressGNN and RGIG.

among ground formulas, thus the reasoning performance heavily depends on the grounding process.
Such a challenging dataset is suitable for assessing the efficacy of grounding techniques.

In our empirical evaluations, we discovered that three iterations of RGIG are enough to identify
crucial ground formulas for accurate reasoning, yielding an AUC-ROC of 0.982± 0.014 (detailed
results are available in Appendix B.2.). We then compared the efficiency of RGIG with PSL and
ExpressGNN’s grounding techniques by examining the number of ground formulas considered
for optimization across five different sizes of the Kinship dataset. Detailed calculations for PSL
grounding can be found in Appendix A.3. The comparative results are depicted in the right subfigure
in Figure 3. Although PSL and ExpressGNN can also perform accurate reasoning on Kinship, our
model using RGIG has orders of (103 ∼ 105) more data-efficient optimization process over varied
sizes of Kinship dataset, demonstrating its applicability.

To further evaluate the efficiency of RGIG, we empirically test the run-time and memory overhead on
real-world datasets. Results are presented in Table 2.

Table 2: Grounding overhead on real-world datasets. Run-time overhead is evaluated ten times and
report mean and std.

Datasets CodeX-s CodeX-m CodeX-l WN18RR YAGO3-10
Run-time(/sec) 0.03±0.00 0.38±0.01 0.87±0.04 0.54±0.01 3.20±0.04
Memory(/MB) 2.19 11.57 25.58 18.73 262.65

The experimental results demonstrate that RGIG can efficiently scale to accommodate large KGs
while maintaining minimal run-time and memory overhead. On the largest KG, YAGO3-10, the
grounding process is completed in approximately 3.2 seconds, using around 262 MB of memory. In
practice, we also observed that as the grounding iteration progresses, most inferred facts turn out to
be negative triples. This trend could introduce noise and potentially impact efficiency. To enhance
the efficiency of RGIG, one could consider filtering out facts with low scores by using a pre-trained
RotatE model.

4.3 Learning from data vs. learning from rules

To answer RQ5, we design a “rule-pattern re-injection” experiment to evaluate DiffLogic’s capability
of injecting prior knowledge into embeddings, and compare it with pure data-driven based KG-
embeddings. The design details are as follows:

The experiment contains two steps: 1) rule pattern removal, and 2) rule pattern re-injection. In
our experiments, we use WN18 and select fourteen rules whose confidence scores are higher than
0.95. Then we deduplicate these rules so that no rules can be inferred from other rules, resulting
in seven compact rules. In the rule pattern removal step, we use the selected seven rules to split
the original training set, by finding all paths in the original training set that match the rules and
extract the connected triples. The triples that match the conclusion part of the rules comprise the
pattern set, and the original training set with the pattern set removed becomes the fact set. In this
way, the generated fact set does not contain any pattern for the seven rules. In the rule pattern
re-injection step, we add different ratios (0%, 10%, 20%, 100%) of the pattern set back into the fact
set, so that rule patterns become increasingly evident. For DiffLogic, seven rules are applied to the
training process for explicit rule pattern injection. We also include three KG-embedding models
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for comparison. To fairly compare the rule-injection capability for embeddings, we use only the
embedding scores of DiffLogic for evaluation. Experimental results are presented in Table 3.

Table 3: Comparison of pure data-driven training and rule injection by DiffLogic for embeddings.

Model MRR Hits@10
0% 10% 20% 100% 0% 10% 20% 100%

MLP 0.123 0.156 0.198 0.851 0.279 0.364 0.449 0.932
TransE 0.399 0.469 0.500 0.775 0.917 0.944 0.944 0.957
RotatE 0.579 0.890 0.927 0.944 0.784 0.949 0.961 0.962
DiffLogic 0.954 0.953 0.952 0.954 0.964 0.966 0.963 0.967

The results show a significant difference between the two rule pattern learning paradigms: DiffLogic
can directly leverage explicit prior knowledge compactly encoded in rules, achieving significant
improvement in reasoning performance by using only a small number of logical rules. On the
contrary, pure data-driven based KG-embedding algorithms can only implicitly learn rule patterns
from labeled data. By adding more data from the pattern set back to the fact set, the performance of
data-driven algorithms increases as the rule patterns become more evident in the knowledge base.
Nevertheless, these data-driven algorithms are not comparable to DiffLogic even though rule patterns
are observable.

5 Related work

There have been some studies attempting to integrate rule-based methods and KG-embedding models.
For example, Guo et al. (2016) proposes to learn embeddings from both triples and rules by treating
triples as ‘atomic formulas’ while treating ground logic formulas as ‘complex formulas’, thus unifying
the learning from triples and rules. However, their framework only uses hard rules and thus cannot
make use of the soft rules with uncertainty. Another study (Guo et al., 2018) applied soft rules
for generating additional training data but could not optimize rule weights, making the model’s
effectiveness dependent on rule weights initialization. Qu & Tang (2019) enable embedding learning
and rule weight updating in a tailored MLN framework, by alternately employing one component
to annotate triples to update the other component. However, the annotation process renders the
inference not differentiable and is sensitive to the annotation threshold. Moreover, their grounding
process only considers ground formulas with premise atoms observed in the training set, limiting the
model’s effectiveness due to the potential omission of important ground formulas. Zhang et al. (2020)
designed a graph neural network for learning structure-aware expressive representations under the
MLN framework. However, its inference efficiency suffers from a large number of ground formulas
and limited generalization ability (requiring querying the test data during inference). The MLN-based
neuro-symbolic models (Qu & Tang, 2019; Zhang et al., 2020) benefit from the dynamically updated
rule weights which handle uncertainty. However, they all fail to directly optimize the objective of
MLN due to the complexity of the associated integration and thereby resorting to optimizing ELBO.

6 Conclusion

In this paper, we aim to scale neuro-symbolic reasoning to large knowledge graphs with improved
performance. We develop a differentiable model, namely, DiffLogic, that combines the advantages of
KG-embedding models and rule-based models. DiffLogic directly optimizes the joint probability
rather than the EBLO. The KG-embedding component enables linear scalability in representation,
together with the grounding technique and the estimation technique for the gradient of rule weights,
make DiffLogic efficient and scalable. Numerical simulations on benchmark datasets show the merits
of DiffLogic. The performance of DiffLogic heavily depends on the quality of the rules. Was it
possible to design an automatic and differentiable rule mining method, we may incorporate it into
DiffLogic to further improve the performance. This could be future work.
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A Notations and mathematical proofs

A.1 Notations

Table 4: Notations.
Notation Description

K The knowledge base
E The entity set
R The relation set

O,H The set of observed and unobserved facts
x,y The assignments of O and H, respectively

{Fq,Wq}mq=1 The set of logic rules and attached weights
I−
q , I+

q The index set of premise atoms and conclusion atoms of rule Fq , respectively
A,B, ... Variables in logic rules

{G(j)
q , j ∈ tq} All ground formulas created by the qth logic rule
Φq(y,x) The sum of potentials of all ground formulas of Fq

θ The embedding parameters

A.2 Derivation of rule weight gradient

Given

P ∗
w(y | x) =

n∏
i=1

P ∗ (yi | MB(yi) ,x) =

n∏
i=1

exp
[
−f i

w

(
yi ∪ y\i,x

)]
Zi(W , yi ∪ y\i,x)

,

Zi(W , yi ∪ y\i,x) =
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exp
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−f i

w

(
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)]
, f i

w =
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(j)
q }d(G

(j)
q ),

we have
∂ logP ∗(y | x)

∂Wq
=

n∑
i=1

∂ logP ∗(yi | MB(yi) ,x)

∂Wq
. (9)

The partial derivative in the left side of Eq. (9) is a summation of n terms, each term represents the
partial derivatives of the pseudo-log-likelihood for each yi, conditioned on its Markov blankets. Each
term can be further simplified as follows:

∂ logP ∗(yi | MB(yi) ,x)

∂Wq

=
∂
{
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)
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(
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)
− log

∫
yi
exp

[
−f i

w

(
yi ∪ y\i,x

)]}
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.

Here, we can easily get

∂f i
w

(
yi ∪ y\i,x

)
∂Wq

=
∑
j

1{yi→G
(j)
q }d(G

(j)
q ). (10)

To make the writing concise, we replace the right term of Eq. (10) with the following notation:

Ψq,MB(i) =
∑
j

1{yi→G
(j)
q }d(G

(j)
q ).
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In this way, we can deduce that:

∂ logP ∗(yi | MB(yi) ,x)

∂Wq

=−Ψq,MB(i) −
1

Zi(W , yi ∪ y\i,x)

∂
∫
yi
exp

[
−f i

w

(
yi ∪ y\i,x

)]
∂Wq

. (11)

The partial derivative and the integration in Eq. (11) can be swapped using Lebesgue’s dominated
convergence theorem, the Eq. (11) thus becomes:

∂ logP ∗(yi | MB(yi) ,x)

∂Wq

=−Ψq,MB(i) −
1

Zi(W , yi ∪ y\i,x)

∫
yi

∂ exp
[
−f i

w

(
yi ∪ y\i,x

)]
∂Wq

=−Ψq,MB(i) +

∫
yi

exp
[
−f i

w

(
yi ∪ y\i,x

)]
Zi(W , yi ∪ y\i,x)

Ψq,MB(i)

=−Ψq,MB(i) +

∫
yi

P ∗ (yi | MB(yi) ,x)Ψq,MB(i)

=−Ψq,MB(i) + Eyi|MB
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Therefore, the partial derivative of pseudo-log-likelihood with respect to rule weight Wq is computed
by:

∂ logP ∗(y | x)
∂Wq

=
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 .

A.3 Calculation of number of ground formulas for Kinship datasets

We present a detailed calculation of the number of ground formulas considered by PSL in Kinship
datasets as follows.

Given

• a first-order logical rule Fq containing |I−
q | premise atoms, and

• a knowledge base containing |E| number of entities,

the number of variables in Fq is |I−
q |+ 1.

PSL grounds each rule by substituting the variables with all possible entities. The number of ground
formulas created by this logic rule Fq on the knowledge base is:

|E||I
−
q |+1.

Thus the overall ground formulas created by the rule set {Fq}mq=1 is:

m∑
q=1

|E||I
−
q |+1.

Given the statistics of Kinship datasets in Table 7, rules statistics are shared across different sizes of
Kinship datasets, each dataset contains 12 rules that contain two variables and 9 rules that contain 3
variables. The number of ground formulas considered by PSL is thus computed by:
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12× |E|2 + 9× |E|3. (12)

By applying the Eq. (12), we can get the ground formula number for each size of the Kinship dataset,
as presented in Table 5:

Table 5: Number of ground formulas of Kinship datasets created by classical grounding method.
Kinship Size S1 S2 S3 S4 S5
Number of 1,373,601 10,853,976 35,798,376 74,671,320 172,162,935ground formulas

B Experimental details

B.1 Dataset statistics

We list the statistics of the real-world knowledge graph datasets in Table 6 and the synthetic Kinship
dataset in Table 7. We present detailed descriptions for each dataset below.

CodeX. The CodeX dataset, recently proposed for knowledge graph completion tasks, is a compre-
hensive collection extracted from both Wikidata and Wikipedia. This challenging dataset comes in
three versions: small (S), medium (M), and large (L), allowing for comprehensive evaluation.

YAGO3-10. YAGO3-10 is a subset of YAGO3 (Suchanek et al., 2007), a large knowledge base
completion dataset, with the majority of triples describing attributes of persons, including their
citizenship, gender, and profession.

WN18. WordNet 18 (WN18) dataset is one of the most commonly used subsets of WordNet.

WN18RR. WN18RR is a modified version of WN18 designed to be more challenging for knowledge
graph reasoning algorithms by removing reverse relations in the knowledge graph.

Kinship. A synthetic dataset, widely used (Zhang et al., 2020; Fang et al., 2023) for evaluating
the statistical relational learning ability and the scalability of reasoning algorithms. We use five
different sizes of the dataset for evaluating its run time efficiency and parameter scalability, namely
Kinship-S1/S2/S3/S4/S5, respectively.

Table 6: Statistics of real-world knowledge base datasets.

Dataset #Ent #Rel #Train/Valid/Test #Rules
CodeX-s 2,034 42 32,888/1,827/1,828 35
CodeX-m 17,050 51 185,584/10,310/10,311 52
CodeX-l 77,951 69 551,193/30,622/30,622 57

YAGO3-10 123,182 37 1,079,040/5,000/5,000 22
WN18 40,943 18 141,442/ 5,000/ 5,000 140

WN18RR 40,943 11 86,835/ 3,034/ 3,134 51

Table 7: Statistics for Kinship datasets of varied sizes (S1-S5).

S1 S2 S3 S4 S5
Number of rules containing 1 premise atom 12 12 12 12 12
Number of rules containing 2 premise atoms 9 9 9 9 9

Number of predicates 15 15 15 15 15
Number of entities 52 106 158 202 267

B.2 Probabilistic logic reasoning on Kinship Dataset

We assess performance on the Kinship dataset across five different sizes. Due to the full confidence
of rules, we only perform inference in this experiment and do not need to update weights. We include
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Table 8: Comparative evaluation of reasoning performance on the Kinship dataset.
Ground AUC-ROC

Algorithms iteration S1 S2 S3 S4 S5
PSL - .976±.011 .980±.005 .991±.003 .982±.005 .972±.004
ExpressGNN - .957±.002 .921±.001 .959±.004 .940±.001 .989±.004

1 .841±.005 .895±.001 .922±.001 .901±.001 .903±.000
DiffLogic-RotatE 2 .931±.005 .994±.001 .998±.001 .985±.001 .993±.001

3 .937±.005 .987±.001 .995±.001 .978±.001 .989±.001
1 .567±.099 .537±.041 .507±.024 .503±.018 .504±.014

DiffLogic-MLP 2 .956±.032 .997±.002 .999±.003 .999±.001 .999±.000
3 .982±.014 .997±.001 .999±.001 .999±.000 .999±.000

DiffLogic using two different embedding models, i.e., RotatE and MLP, and evaluate their reasoning
performance using RGIG with varied iterations (i.e., 1, 2, 3) for grounding. We include PSL and
ExpressGNN as baselines, but we exclude pLogicNet due to its inability to utilize handcrafted rules.
Given that the Kinship dataset lacks a validation set, we run each model ten times and report the
AUC-ROC statistics from the final epoch of each run on the test set. The results are presented in
Table 8, with the best results shown in bold.

B.3 Comparing inference time on Kinship

We evaluate the inference time on the Kinship dataset across five different sizes. We include models
in Appendix B.2 for this experiment. For two DiffLogic variants, we only evaluate their inference
time when using 3 iterations of RGIG for grounding. All the runtime experiments are conducted in
the same machine with configurations as in Table 9. All of these models are implemented in Python,
thereby ensuring a fair comparison. The inference time results are displayed in Table 10, with the
best results shown in bold.

Table 9: Machine configuration.
Component Specification

GPU NVIDIA GeForce RTX 3090
CPU Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz

Table 10: Comparison of runtime of inference on Kinship.
Grounding Runtime

Algorithms iteration S1 S2 S3 S4 S5
PSL - ∼3.6min ∼7.9min ∼12.9min ∼13.5min ∼32min
ExpressGNN - ∼18.4min ∼19.1min ∼18.9min ∼19.4min ∼20.2min
DiffLogic-RotatE 3 37s ∼1.5min ∼3.2min ∼3.6min ∼4min
DiffLogic-MLP 3 21.8s 41.5s 45s 54.4s ∼1.2min
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