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Abstract

Reward models are central to aligning LLMs with human preferences, but they are
costly to train, requiring large-scale human-labeled preference data and powerful
pretrained LLM backbones. Meanwhile, the increasing availability of high-quality
synthetic instruction-following datasets raises the question: can simpler, reference-
based metrics serve as viable alternatives to reward models during RL-based
alignment? In this paper, we show first that BLEU, a basic string-matching metric,
surprisingly matches strong reward models in agreement with human preferences
on general instruction-following datasets. Based on this insight, we develop BLEU-
BERI,1 a method that first identifies challenging instructions and then applies Group
Relative Policy Optimization (GRPO) using BLEU directly as the reward function.
We demonstrate that BLEUBERI-trained models are competitive with models
trained via reward model-guided RL across four challenging instruction-following
benchmarks and three different base language models. A human evaluation further
supports that the quality of BLEUBERI model outputs is on par with those from
reward model-aligned models. Moreover, BLEUBERI models generate outputs
that are more factually grounded than competing methods. Overall, we show
that given access to high-quality reference outputs (easily obtained via existing
instruction-following datasets or synthetic data generation), string matching-based
metrics are cheap yet effective proxies for reward models during alignment. We
release our code and data at https://github.com/lilakk/BLEUBERI.2

1 Introduction

Modern LLM alignment often relies on reinforcement learning with a reward model that guides the
LLM to follow instructions according to human preferences [40]. Reward models are expensive
to train, requiring large-scale human preference data and powerful backbone models [39, 55, 60].
Meanwhile, the emergence of high-quality instruction-following datasets (e.g., OpenHermes, Magpie,
LIMA) has enabled cheaper reference-based alignment via supervised fine-tuning (SFT) [57, 73, 80].

1BLEUBERI stands for “BLEU-based reward for instruction following.”
2Correspondence to yapeic@umd.edu.
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This contrast raises a natural question: can we align language models with simple reference-based
metrics in place of learned reward models?

Challenges with reference-based rewards: On the surface, replacing reward models with
reference-based metrics seems problematic. Obtaining high-quality references for complex, open-
ended tasks can be even more expensive than collecting preference judgments, and many instructions
(e.g., creative writing) lack a single ground-truth answer. Furthermore, aligning an LLM requires
balancing multiple criteria (e.g., helpfulness, harmlessness, factuality) [4], that a single reference
may not fully capture. Finally, automatic metrics that score LLM responses against references rely
on unreliable and gameable methods like n-gram matching or embedding similarity, which has
historically discouraged their use in LLM alignment.

BLEU is surprisingly effective at modeling human preferences: Despite these limitations,
we find that BLEU [41], a simple string-matching metric long deemed inadequate for open-
ended language generation [70, 10, 58, 44, 12, 33, 5], rivals large reward models in model-
ing human preferences. In experiments on general instruction-following tasks in the LMSYS
chatbot_arena_conversations dataset, BLEU with five synthetic references achieves almost the
same agreement (74.2%) with human preferences as a powerful 27B-parameter reward model
(75.6%). We observe that reference quality is critical: references generated by powerful LLMs (e.g.,
Claude-3.7-Sonnet, GPT-4o) yield significantly higher agreement than those from weaker models.
Our analysis reveals that BLEU’s strong alignment signal comes from rewarding properties like
factuality and proper formatting that are critical to instruction following tasks.

BLEUBERI: directly using BLEU as a reward for RL-based alignment. Motivated by the
unexpectedly high agreement between BLEU and human preferences, we propose BLEUBERI,
which uses RL to optimize BLEU on general instruction-following data. Previous efforts that used
n-gram metrics like BLEU as rewards [43, 68, 16] faced obstacles such as unstable training [3, 45]
and degraded output quality [30, 19, 21]. We revisit this line of work using modern LLMs within
the paradigm of reinforcement learning with verifiable rewards (RLVR) [24, 62], which shows the
effectiveness of simple, transparent rewards. BLEUBERI treats BLEU as a verifiable reward for
general instruction-following tasks, using group relative policy optimization (GRPO) [50] to optimize
a pretrained base LLM. We apply GRPO with BLEU rewards on a subset of challenging instructions
for which the base model’s outputs initially have low BLEU.

Figure 1: Human agreement rates for BLEU (with vary-
ing numbers of references), two reward models, and
other reference-based metrics (with a single Claude ref-
erence). BLEU becomes more competitive with reward
models as more references are provided, and combining
BLEU with a reward model outperforms either alone.

Strong instruction-following per-
formance without a reward model:
Across three different base models and
four diverse instruction-following bench-
marks, including ArenaHard[26] and
WildBench[28], BLEUBERI matches
(and sometimes exceeds) the performance
of reward model-guided RL and SFT
according to both automatic and human
evaluations. This is a striking result, given
the simplicity and cost-effectiveness of
BLEUBERI compared to training and
deploying large reward models for RLHF.
Human evaluators find that BLEUBERI-
trained models are just as good as those
from models aligned with reward models.
Furthermore, BLEUBERI models produce
more factually-grounded responses than
those aligned with either reward models or
SFT. Taken as a whole, ours is the first
work to show that optimizing BLEU–far
from overfitting to superficial n-gram
matches–actually promotes helpful,
factual, and well-formatted responses
on general-domain instruction-following
tasks. Given access to high-quality
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synthetic references (readily available via
existing datasets or generated from powerful LLMs), our BLEUBERI method presents a novel
alternative to alignment that entirely avoids training large, complex reward models.

2 How well do simple reference-based metrics capture human preferences?

In this section, we first investigate how well reference-based string matching metrics correlate with
with human preference judgments on publicly available instruction-following datasets. To do so,
we generate synthetic references for a subset of examples, and we find that BLEU is surprisingly
competitive with state-of-the-art reward models in terms of agreement with human preferences.
Moreover, BLEU’s agreement with human preferences improves with more synthetic references
(especially those from more powerful LLMs).

2.1 BLEU: an n-gram matching metric

BLEU (Bilingual Evaluation Understudy) [41] is a widely-used metric for machine translation
evaluation. It measures the overlap between a predicted translation and one or more reference
translations using modified n-gram precision (n ∈ 1, 2, 3, 4), combined with a brevity penalty (BP)
to penalize overly short outputs:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
, BP =

{
1 if c > r

exp(1− r
c ) if c ≤ r

Here, pn is the modified n-gram precision, wn are their weights, and BP adjusts for length differences
between the prediction (c) and the closest reference (r).3 When multiple references are available,
BLEU computes n-gram matches and takes the maximum count across all references for each n-gram.

2.2 How well does BLEU align with human preferences in single- and multi-reference setups?

To explore this question, we perform an analysis on the LMSYS chatbot_arena_conversations
dataset [79], which contains conversations evaluated by real users on Chatbot Arena. Each instance
includes an instruction, two model-generated outputs (OX and OY ) and a human preference label.
We randomly select a subset of 900 instances from this dataset (more details in §A.1),4 then evaluate
the following metrics on each pair of model outputs (OX , OY ):

• Length baseline: Prior work has found that humans tend to bias towards longer responses [6, 64,
46], and that RLHF post-training may implicitly optimize for length over quality [51]. To quantify
the impact of output length, we implement a simple baseline that always prefers the longer output.

• Reward models: We use two strong reward models trained on well-curated preference data:
Skywork-Reward-Gemma-2-27B-v0.2 (RM-27B) and Skywork-Reward-Llama-3.1-8B-v0.2 (RM-
8B). These models assign scalar scores to responses based on a given instruction, without needing
reference answers. They rank 4th and 11th, respectively, on RewardBench [25].

• BLEU: Since the Chatbot Arena dataset lacks ground-truth responses, we construct a set of
synthetic reference responses from a diverse set of LLMs.5 For each instruction, we compute
BLEU for OX and OY using one or more references for this instruction. The response with the
higher BLEU score is considered the winner. We evaluate both single- and multi-reference setups.

3In our experiments, we use the huggingface implementation with tokenizer_13a, and we apply smoothing
to prevent zero scores for higher-order n-gram precisions when no matches are found. However, the SacreBLEU
implementation is much faster and is therefore recommended for future use.

4We do not evaluate on the full 33K dataset to reduce costs associated with collecting synthetic reference
outputs from a variety of LLMs. In addition, later in our training experiments, we need to collect such synthetic
references at a much larger scale, so we choose to minimize costs for this analysis.

5These reference models include: Gemini-2.5-Pro [13], Claude-3.7-Sonnet [2], o4-mini [38], Deepseek-
V3 [9], Qwen-Max [42], GPT-4o [37], Llama-3-8B-Instruct [1], OLMo2-7B-Instruct [36], and Qwen2.5-0.5B-
Instruct [42]. During the reference collection process, some closed-source models like Gemini would refuse to
respond to certain prompts due to built-in safety filters. For our analysis, we only include prompts that received
valid responses from all reference models. This results in a final set of 889 prompts.
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• Other reference-based metrics: We also evaluate ROUGE [29] and BERTScore [78], two other
popular reference-based metrics, later in this section.

BLEU agreement increases with more references. As established in §2.1, BLEU is a multi-
reference metric. Figure 1 shows that increasing the number of references used by BLEU (up to five)
improves its human agreement, reaching 74.2%. For comparison, the length baseline achieves 65.1%
agreement, whereas RM-8B and RM-27B respectively reach 76.7% and 77.6%. To better understand
BLEU’s behavior, we show in §A.3 that both n-gram precision and the brevity penalty are necessary
to achieve high human agreement.

Reference quality matters. Using a single reference and varying the reference model, we find
that stronger models like Claude-3.7-Sonnet and GPT-4o yield over 72% agreement, while weaker
models like Qwen2.5-0.5B-Inst perform worse (60.9%), even falling below the length baseline. More
verbose models tend to yield lower agreement—e.g., Gemini-2.5-Pro scores only 69.5% likely due to
generating references 4.5x longer than outputs (OX /OY ), compared to Claude’s 1.6x. We observe a
strong negative Pearson correlation (-0.78) between the absolute difference in length (between the
reference and the outputs OX /OY ) and BLEU’s agreement with human preferences. We hypothesize
that this is because the number of unmatched n-grams increases as the responses get longer, washing
out any distinguishing signal. See §A.4 for more analysis on length effects.

Figure 2: The highlighted matching n-
grams in this example show that BLEU
can capture correct instruction-following
behavior as well as the factuality of the
response.

Other reference-based metrics also exhibit high
agreement. We also evaluate ROUGE [29], which
measures n-gram recall, and BERTScore [78], which
computes contextual embedding similarity. We also
evaluate BLEU+RM, a combined metric integrating
BLEU with reward models via z-score normalization
and averaging.6 As shown in Figure 1, ROUGE-L (with
stemming),7 BERTScore, and BLEU-ROUGE harmonic
mean all exhibit human agreement comparable to BLEU.
Notably, BLEU+RM (with a single Claude reference)
reaches higher agreement than either BLEU or the re-
ward model alone, suggesting that they each focus on
different aspects of the response. While all of these other
rewards are promising to explore, we focus on BLEU
for the remainder of this paper due to its simplicity and
our limited computational resources.

Types of n-grams that contribute to BLEU’s agree-
ment: When BLEU makes a pairwise judgment that
aligns with human preferences, which n-grams con-
tribute to that decision? We show one such example
in Figure 2. Here, the presence of Ukrainian and
English headers, along with the value 6.1, contribute
to its higher BLEU score, showing that BLEU can effectively capture both format and factuality
(additional examples in §A.5).

2.3 Domain-specific agreement analysis

To assess BLEU’s effectiveness across domains, we analyze 18,219 filtered examples from the
Chatbot Arena dataset using Claude-3.7-Sonnet as the reference model. Examples are grouped into
six domains: QA, Code, Writing, Math/Reasoning, Multilinguality, and Planning. Figure 7 shows
BLEU aligns best with reward models in Writing and Code, but performs poorly in Math/Reasoning,
likely due to surface-level variation in mathematically equivalent expressions. Limitations may also
stem from tokenizer_13a’s handling of equations and non-whitespace-delimited languages. Full
figure and additional details on this analysis are in §A.6.

6We apply z-score standardization to both scores across all examples, then average them to compute a
combined score per example.

7Without stemming, we observe a drop of 1.8 in agreement with human preferences.
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3 BLEUBERI: aligning language models to follow instructions with BLEU

Having established that BLEU agrees with human judgments at a similar rate to powerful reward
models, we turn to actually using BLEU as a reward during LLM alignment. Below, we describe our
experiment setups and results. In total, all our training experiments (including main and exploratory
runs) cost 1357 Nvidia GH200 hours. Across four benchmarks, models trained with BLEUBERI
perform comparably to those trained with SFT or GRPO-RM. To our knowledge, this is the first work
to demonstrate that reinforcement learning using BLEU directly as the reward can be surprisingly
effective for general instruction following.

Training methods for alignment: Besides standard SFT, we also train models using Group Relative
Policy Optimization (GRPO) [50], which fine-tunes a language model by sampling K candidate
responses yk for a prompt x, scoring them with R(yk, x), and computing the group-normalized
advantage. We instantiate the reward function R(yk, x) in two ways:

1. GRPO-RM: R(yk, x) = RRM(yk, x), where the reward is provided by RM-8B.8 While reward
models are often used in methods like PPO [47], they can also be directly used in GRPO to score
and rank outputs within a group [50, 74].

2. BLEUBERI: R(yk, x) = BLEU(yk,Ref(x)), where the reward is the BLEU score computed
against one or more reference responses for x.

We use GRPO with a reward model to enable a controllable comparison to BLEUBERI, which uses
GRPO with a BLEU reward. GRPO has been shown to be just as effective as other algorithms
like PPO [47] when used with a reward model [17, 63]. Scoring outputs with BLEU can be up to
48 times faster than using RM-8B (more in §B.1). Although GRPO has been widely applied to
reasoning-intensive tasks [8, 71], our experiments enforcing reasoning behavior did not yield strong
results (more in B.12).

3.1 Training data

In preliminary experiments, we find that while BLEUBERI can work with randomly-selected data, it
performs best when trained on data with low initial rewards. Specifically, we first construct a data
pool of prompts, run the base model on each, and compute the BLEU score of its outputs against
the reference responses. Prompts with the lowest BLEU scores are treated as “hard” examples. Full
experimental details on the data difficulty ablation are provided in §B.2. While the selection of hard
data requires collecting references for a larger pool, obtaining them (via existing datasets or LLMs) is
still generally cheaper than collecting human preference data and training large reward models.

Creating a data pool: We draw from the Tulu3 SFT mixture [24], which contains 939K examples
across 18 data sources covering diverse tasks. Motivated by the strong human agreement of BLEU
on writing tasks from §2.3, we filter and sample 50K prompts to form our final data pool, where the
majority of examples are related to writing. See more details in §B.4.

Training on hard examples: To ensure consistency in our main experiments, we train all methods
on the 5,000 hardest examples as ranked by BLEU. While this strategy might seem biased against
GRPO-RM, we also train GRPO-RM on hard negatives selected by RM-8B in §B.3 and show similar
performance, indicating that hard negatives do not matter as much when using a reward model.
Concurrent work also highlights the benefits of training on difficult data: the GRPO pipeline in the
recently released Qwen3 report trains exclusively on 4,000 samples selected to be as challenging as
possible [56].

Collecting references for BLEUBERI: Unlike the Chatbot Arena dataset used in §2, Tulu3
includes ground-truth responses for each instruction, which we refer to as Tulu3 references. Within
our 50K data pool, 45.2% of the Tulu3 references are human-written responses sourced from previous
datasets, while the remaining half are synthetic outputs from LLMs like ChatGPT. In addition, to
evaluate the effectiveness of using completely synthetic references from different LLMs, we collect

8We do not train with RM-27B due to computational constraints. As shown in §2, both RM-27B and RM-8B
achieve comparable agreement with human preferences.
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outputs from Claude-3.7-Sonnet, Gemini-2.5-Pro, o4-mini, Deepseek-V3, and Llama-3.1-8B-Instruct
(more details in §B.10), and refer to them as additional synthetic references. In our main experiments
(Table 1), we use Tulu3 references for hard data selection and training, and discuss results using
additional synthetic references later in §3.3.

3.2 Training and evaluation setup

Base models and hyperparameters: We conduct our experiments using four base models:
Qwen2.5-14B, Qwen2.5-7B, Qwen2.5-3B, and Llama-3.1-8B.9 Compared to Qwen, Llama-3.1-
8B is a significantly weaker base model, having likely seen minimal or no instruction-following data
during pretraining. To address this limitation, we train Llama-3.1-8B on the 50K data pool for one
epoch to equip it with a basic ability to handle chat-style prompts. We refer to this SFT-initialized
version of Llama as the “Llama base model” in the remainder of this work. This setup aligns with
prior observations that effective GRPO training requires a sufficiently capable base model [31]. For
details about GRPO on Qwen after SFT initialization, see §B.5. For all methods, we train for one
full epoch on the BLEU-selected 5K data.10 Note that GRPO and SFT use fundamentally different
optimization strategies, so it is hard to ensure a completely fair comparison. More discussion on this
and results for multi-epoch SFT training are in §B.7.

Benchmarks: We evaluate our models using four benchmarks: MT-Bench [79], a set of 80
manually curated, high-quality multi-turn questions; ArenaHard v1 and v2 [26], two distinct sets
of 500 challenging prompts drawn from real-world user queries. ArenaHard v2, released in April
2025, contains an updated collection with more difficult prompts than v1; and WildBench [28],
comprising 1,024 complex real-world queries. Inference on these benchmarks are run using vLLM
[23] with greedy coding. We also report 95% confidence intervals computed from bootstrapping.
More details on running each benchmark are in §B.8. All benchmarks are evaluated using the
LLM-as-a-judge framework. To balance cost and performance, we select gpt-4.1-mini as the judge
for all benchmarks.

3.3 Experimental results

BLEUBERI performs on par with GRPO-RM and SFT across all benchmarks. Across four
base models and four benchmarks, BLEUBERI achieves performance comparable to GRPO-RM
(Table 1), as indicated by their closely matched scores and frequently overlapping 95% confidence
intervals. This aligns with the human agreement analysis presented in the previous section.

BLEUBERI does not compromise creativity. One potential concern with BLEUBERI’s single-
reference optimization is that it could lower performance on open-ended or creative tasks where
a single instruction has many valid responses. To evaluate this, we examine performance on the
WildBench Creative Tasks split. The results show that Qwen2.5-7B models trained with BLEUBERI
(66.7), GRPO-RM (67.2), and SFT (60.4) perform similarly, indicating that BLEU-based optimization
does not hinder creative capabilities. See detailed results in §B.9.

BLEUBERI with fully synthetic references also shows strong performance. In §2.2, we analyze
how well BLEU aligns with human judgments in a single-reference setting, varying the reference
model. To investigate whether stronger BLEU-human agreement translates into better training
outcomes, we train Qwen2.5-7B using the additional synthetic references collected earlier. We
observe a Pearson correlation of 0.34 between each reference model’s human agreement and the
resulting trained model’s performance, indicating a moderately strong relationship. Among these,
Claude and o4-mini produce the best results, matching the performance of GRPO-RM. We also
experiment with a 5-reference training setup and find that the resulting model outperforms most of

9We do not use the instruct (officially post-trained) versions of these models, as they have already undergone
extensive post-training optimization for instruction following.

10For SFT, we use a learning rate of 5e-6 with a global batch size of 32 and set max tokens (covering both
input and output) to 1024. For GRPO, we set the learning rate to 1e-6, group size of 8, max prompt length
and max generation length to 512 tokens, and maintain the same global batch size of 32—meaning each batch
consists of 8 generations for each of 4 unique prompts. All training runs are performed on single GH200 GPUs
using TRL with DeepSpeed-ZeRO3 (https://www.deepspeed.ai/2021/03/07/zero3-offload.html).
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Table 1: Results on four instruction-following benchmarks with 95% confidence intervals. For
each model, the “Base” row represents its pretrained checkpoint (for Llama-3.1-8B, this is our
SFT-initialized model described in §3.2), while the Instruct row is the official post-trained checkpoint.
Despite the limitations of n-gram matching, BLEUBERI remains competitive with both SFT and
GRPO-RM across all models and benchmarks, as indicated by the closely aligned scores and
frequently overlapping confidence intervals.

Model Variant MT-Bench ArenaHard v1 ArenaHard v2 WildBench Average

Qwen2.5-14B

Base 66.3 ±3.8 20.9 ±2.1 8.0 ±1.0 57.2 ±1.4 38.1
↪→ SFT 70.7 ±3.9 29.0 ±2.5 13.6 ±1.3 63.5 ±1.3 44.2
↪→ GRPO-RM 78.6 ±4.0 36.0 ±2.5 16.3 ±1.4 68.4 ±1.2 50.5
↪→ BLEUBERI 74.2 ±3.8 32.8 ±2.2 16.5 ±1.4 66.7 ±1.2 47.6

Instruct 84.6 ±3.0 58.5 ±2.7 29.7 ±1.8 75.7 ±0.9 62.1

Qwen2.5-7B

Base 63.5 ±4.1 16.2 ±1.6 5.6 ±0.8 51.8 ±1.6 34.3
↪→ SFT 67.5 ±3.9 22.1 ±2.1 9.9 ±1.1 60.5 ±1.3 40.0
↪→ GRPO-RM 76.9 ±3.5 29.8 ±2.2 12.2 ±1.2 64.8 ±1.1 45.9
↪→ BLEUBERI 70.8 ±3.7 29.3 ±2.2 12.9 ±1.3 65.4 ±1.3 44.6

Instruct 78.8 ±3.4 37.9 ±2.7 16.8 ±1.4 71.0 ±1.1 51.1

Qwen2.5-3B

Base 61.1 ±3.8 7.0 ±1.0 3.1 ±0.6 49.0 ±1.3 30.1
↪→ SFT 59.6 ±4.2 9.8 ±1.1 4.0 ±0.7 55.6 ±1.4 32.2
↪→ GRPO-RM 67.8 ±4.1 12.8 ±1.4 5.1 ±0.8 59.2 ±1.2 36.2
↪→ BLEUBERI 64.6 ±4.0 11.0 ±1.3 3.7 ±0.6 56.1 ±1.2 33.8

Instruct 70.0 ±3.9 16.8 ±1.5 6.7 ±0.9 63.0 ±1.2 39.7

Llama-3.1-8B
(SFT init.)

Base 52.9 ±4.0 6.8 ±1.1 2.1 ±0.4 55.0 ±1.3 29.2
↪→ SFT 56.7 ±4.5 12.6 ±1.6 3.0 ±0.6 60.3 ±1.3 33.2
↪→ GRPO-RM 57.2 ±4.3 9.7 ±1.4 1.6 ±0.5 57.8 ±1.4 31.6
↪→ BLEUBERI 56.9 ±4.3 10.1 ±1.5 2.3 ±0.5 59.5 ±1.2 32.2

Instruct 65.8 ±3.8 24.9 ±2.4 5.8 ±0.9 64.2 ±1.2 40.2

the models trained using only a single reference from the same set. Further experimental details and
discussion are provided in §B.10.

Training with reward functions beyond BLEU: Due to computational constraints, our experi-
ments primarily focus on BLEU as the reward function. Nevertheless, we find that GRPO training
with alternative rewards—such as BERTScore and BLEU-ROUGE harmonic mean—can achieve
performance comparable to BLEU. We provide details on our experiments with these alternative
rewards in §B.11, and hope our findings can encourage more comprehensive explorations of other
reward functions in future work.

Random rewards do not yield meaningful gains on general instruction following. Shao et al.
[49] show that random rewards improve math reasoning in Qwen2.5-Math models [74], but not in
Llama [1] or OLMo [36], by eliciting latent reasoning strategies. We test whether this signal also aids
general instruction following by training Qwen2.5-7B and Qwen2.5-3B with GRPO using a random
reward defined as R(yk, x) ∼ Uniform(0, 1), and report results in §B.6. Unlike Shao et al. [49], who
find large gains in math reasoning, we observe no improvement on instruction-following benchmarks
as we see no meaningful change for Qwen2.5-7B and degraded performance for Qwen2.5-3B. This
suggests that BLEUBERI’s benefits are domain-specific, and extending RLVR beyond math remains
an open challenge.

4 Analysis and human evaluation of model outputs

In this section, we extend beyond benchmark numbers and look into various qualitative properties of
model-generated outputs. Our qualitative observation is that the GRPO-trained model notably follows
instructions, whereas the base model often fails to do so. We also find that SFT-trained models tend
to generate more verbose and repetitive text compared to BLEUBERI, while GRPO-trained models
more frequently use markdown formatting (see §C.1 for detailed example and results). Outputs
generated by BLEUBERI are also more factually accurate than GRPO-RM and SFT, while a human
evaluation shows that BLEUBERI’s outputs are rated similarly to those of GRPO-RM.
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4.1 Surface-level qualitative characteristics

In Table 14, we show that SFT models tend to produce more verbose and repetitive outputs. GRPO-
RM models exhibit a slightly higher refusal rate (i.e., where the model refuses to follow the user
instruction). Both BLEUBERI and GRPO-RM models use markdown formatting more frequently
than SFT models, with GRPO-RM showing the highest usage. In §C.1, we explain how these statistics
are computed and provide example outputs.

Figure 3: Factuality results for trained
Qwen2.5-7B models across three QA datasets
evaluated using VERISCORE [53]. The K
values (in parentheses on the x-axis) used for
each dataset follow the original paper.

Qwen models trained with GRPO frequently
use affirmative openers. BLEUBERI-trained
Qwen models frequently begin responses with
Certainly!” (51.6% for Qwen2.5-3B, 27.1% for
Qwen2.5-7B), while GRPO-RM models often use
Sure!” (70.6% and 35.2%). These phrases are rare
in Qwen base models and all Llama variants.11 The
frequent use of “Certainly!” is unlikely to be
reward hacking, as the phrase appears in under 1%
of the Tulu3 references used in our main training
experiments. A more plausible explanation is that
GRPO amplifies subtle biases latent in Qwen’s
pretraining, even if absent in base model outputs.
This tendency has been observed previously: for
instance, the system prompt for a previous version
of Claude explicitly states: Specifically, Claude
avoids starting responses with the word
“Certainly” in any way. 12 See more details on
this analysis in §C.2.

4.2 Factuality of model outputs

While BLEU has often been criticized for its weak correlation with factual accuracy due to its lack of
sensitivity to semantic content [18, 72, 65, 48], recent studies have explored more effective ways to
leverage BLEU for factual text generation [59, 15, 34]. Building on this line of work, we evaluate the
factual accuracy of variants of Qwen2.5-7B models, using VERISCORE [53]—an automatic metric
that evaluates factuality in long-form generation tasks.13 We use three datasets covering different
domains and report F1@K as defined in VERISCORE where recall is relative to a median number of
claims K for a given dataset. Figure 3 shows that BLEUBERI consistently outperforms GRPO-RM
and SFT on LONGFACT and ASKHISTORIANS and performs on par with GRPO-RM on FRESHQA.
These results suggest that optimizing for BLEU using RL can guide models toward more factually
grounded generations. See example outputs in Figure 4 and § C.3 for more evaluation details.

4.3 Human evaluation of BLEUBERI and GRPO-RM model outputs

Although BLEUBERI models performs competitively with GRPO-RM models on benchmarks, a
valid concern is that its reliance on n-gram matching could lead to reward hacking, as such matches
are relatively easy to exploit. To assess whether BLEUBERI produces outputs that align with human
preferences, we conduct a human evaluation comparing outputs from Qwen2.5-7B models trained
with GRPO-RM and BLEUBERI. We sample 120 examples (30 from each benchmark) and asked
two annotators to compare the outputs from the BLEU-trained and RM-trained models, denoted OB

and OR respectively.14 To prevent implicit bias, we remove affirmative openers for each model if

11SFT models often begin with To... (e.g., To address your query...) in ∼20–25% of responses, similar
to base models, suggesting this is not learned during SFT.

12https://docs.anthropic.com/en/release-notes/system-prompts, specifically the system prompt
for Claude-3.5-Sonnet, July 12th, 2024.

13VERISCORE measures the factuality within the response itself at a claim level; It does not necessarily
indicate whether the response correctly answers the question.

14These annotators are co-authors of this paper, but they did not participate in setting up the annotation task
and had no prior exposure to any model outputs.
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Figure 4: An example instruction from FreshQA, where red highlights indicate factually incorrect
claims. For this instruction, BLEUBERI produces a more factually precise output than GRPO-RM.

they exist in the outputs (see §4.1). For each pair, we anonymize the model identity and randomize
their order. In addition to direct preferences, we also allow a “tie” option.

Humans judge BLEUBERI outputs to be equally as good as those from GRPO-RM. We
compute a soft preference rate, defined as the proportion of times an annotator judges OB to be at
least as good as OR.15 While this metric provides a coarse measure of overall favorability toward
OB , it should not be interpreted as equivalent to a strict preference rate, since ties do not necessarily
indicate endorsement. The results are visualized in Figure 11. We observe a soft preference for OB

in 67.5% of Annotator 1’s judgments and 52.5% of Annotator 2’s. Out of the 63 cases where both
annotators express a clear preference (i.e., not a tie), the Cohen’s Kappa agreement is 0.34, indicating
fair agreement.16 These results suggest that human evaluators generally view BLEUBERI outputs as
roughly comparable to those of GRPO-RM. More details in §C.4.

5 Related work

Prior approaches to training with BLEU optimization: A substantial body of prior work has
explored sequence-level reinforcement learning for tasks such as machine translation, using BLEU as
a reward signal. One line of research centers on Minimum Risk Training [35, 52, 76, 27, 20], which
directly minimizes expected task-specific loss, enabling optimization of non-differentiable metrics
like BLEU. Another line, grounded in policy gradient methods such as REINFORCE [67], faces
well-known challenges including high-variance gradient estimates [3, 45] and degraded output quality
[30, 19, 21]. To mitigate exposure bias, Ranzato et al. [43] proposed the MIXER algorithm, which
also directly optimizes BLEU through a mixed objective. Despite their prevalence, BLEU and other
n-gram-based metrics have been shown to correlate poorly with human judgments across multiple
domains, including machine translation [5, 44, 33, 12, 66], summarization [22], code generation [11],
and question answering [69, 61]. In this context, our work is the first to investigate the use of BLEU
as a training signal for general instruction following with modern LLMs.

RLVR with simple metrics in other domains: Recent work has found that in mathematical
reasoning tasks, reinforcement learning with simple rule-based rewards can be surprisingly effective
even without the use of reward models [8, 62, 75, 71]. Beyond math, similar efforts have extended to
other domains such as story generation [14], visual perception [32], and medical reasoning [77]. Of
particular relevance to our work is that of Lambert et al. [24], which introduces the term “RLVR” and
investigates verifiable rewards for synthetically-constrained tasks; we build on this work by using
BLEU as a form of verifiable reward for general instruction following.

15Soft preference rate = OB wins + ties.
16Our annotation task required subjective judgments on highly similar, high-quality responses to complex

prompts from four benchmarks (MT-Bench, ArenaHard v1/v2, WildBench). These often involved technical or
domain-specific content, making clear preferences difficult. The frequent use of the “tie” option by one annotator
further suggests the closeness in output quality.
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6 Conclusion

In this paper, we revisit reference-based metrics for aligning LLMs and demonstrate that BLEU—a
simple n-gram overlap metric—correlates surprisingly well with human preference judgments on
general instruction-following tasks. While earlier attempts to directly optimize BLEU with RL ran
into challenges with unstable training and generated artifacts, our results show that BLEU is indeed a
practical reward signal for modern alignment. Our BLEUBERI approach, which optimizes BLEU on
open-weight language models using the recently-developed GRPO algorithm, achieves performance
on par with reward model-guided RL across diverse instruction-following benchmarks and model
scales. Additionally, human evaluations and factuality analyses confirm that BLEUBERI’s outputs
are as helpful and often more factually grounded than those from comparable LLMs aligned with
reward models. BLEUBERI’s success is enabled by stronger base language models, high-quality
synthetic reference outputs, and better training algorithms, which collectively address the pitfalls that
undermined earlier BLEU-based RL efforts. Overall, BLEUBERI is a lightweight, cost-effective
alternative to reward model-guided alignment, and we hope it facilitates future work in reward design
and alignment strategies without expensive human preference supervision.

7 Limitations

While BLEUBERI demonstrates promising results as a lightweight alternative to reward model-based
alignment, our study has several limitations. First, our experiments are limited in scope, covering
only two model scales, a moderate-scale data pool (50K examples), and one string-overlap metric
(BLEU). We do not fully explore the effects of scaling model size, data volume, training time, or
training with other alternative metrics. Second, we do not perform extensive hyperparameter tuning
for each model and setup due to computational constraints. Third, BLEU’s reliance on surface-form
n-gram overlap makes it sensitive to reference quality and vulnerable in domains with high lexical
variation, such as mathematical reasoning and multilingual tasks.
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A Chatbot Arena human preference analysis

A.1 Obtaining the 900 subset

To obtain the 900 subset we use for our human preference analysis, we first filter out all examples
where human preference label is “tie”, and/or the instruction or either of OX and OY are shorter than
10 words or longer than 512 tokens. Then, we randomly sample 1,000 prompts and classify them
using the approach described in A.6, then filter out 100 examples that receive a “N/A” label to reduce
noise.

A.2 Multi-reference configurations

Below are the configurations we use for BLEU’s multi-reference setups:

1. 2 ref: Gemini-2.5-Pro, Deepseek-V3

2. 3 ref: Gemini-2.5-Pro, Deepseek-V3, o4-mini

3. 4 ref: Gemini-2.5-Pro, Deepseek-V3, o4-mini, Claude-3.7-Sonnet

4. 5 ref: Gemini-2.5-Pro, Deepseek-V3, o4-mini, Claude-3.7-Sonnet, Qwen-Max

5. 6 ref: Gemini-2.5-Pro, Deepseek-V3, o4-mini, Claude-3.7-Sonnet, Qwen-Max, GPT-4o

A.3 Ablation on components of BLEU

We separately show the effect of n-gram precision and brevity penalty in Figure 7. Neither component
alone achieves high agreement with human labels.

A.4 Impact of reference length on human agreement

In Figure 5, we show the average number of tokens in the reference outputs generated by different
LLMs, compared to the average tokens in OX and OY .

Figure 5: Token counts for difference reference model outputs, prompts, and the two model outputs
to be scored.

A.5 Additional example for BLEU’s n-gram attribution

Please see Figure 6 for another example. Here, BLEU captures both formatting (e.g., JSON structure)
and factual accuracy (i.e., providing the correct answer based on reasoning). This suggests that the
BLEU score can serve as a useful signal for learning factual accuracy and format consistency.

A.6 Human agreement rates across different domains

We classify the 18K filtered examples into six broad domains using Llama-3.1-8B-Instruct: QA
(information seeking, advice seeking, document QA, data analysis), Writing (writing, role-playing,
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Figure 6: Additional example for BLEU’s n-gram attribution on cases where it agrees with human
preferences.

Table 2: Hierarchy table of domains and their subcategories, grouped by characteristics. Each
subcategory is sourced from [28].

Domain Subcategory # of examples

QA

Information seeking 6516
Advice seeking 824
Document QA 411
Data analysis 189

Writing

Writing 2565
Roleplaying 1112

Summarization 390
Editing 132

Math and Reasoning
Math 1302

Reasoning 1064
Classification 662

Code Coding and Debugging 2095

Multilingual Multilingual 278

Planning Planning 257
brainstorming 399

summarization, editing), Math/Reasoning (math, reasoning, classification), Code (coding/debugging),
Multilinguality, and Planning (planning, brainstorming). See Table 2 for the full taxonomy and the
number of examples in each subcategory.

These domains are derived by first assigning fine-grained labels based on the WildBench taxon-
omy [28], and then consolidating them into six higher-level groups for more interpretable analysis.
Figure 7 shows the human agreement rates with different metrics across all defined domains.
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Figure 7: Agreement rates of each individual metric—Length, BLEU precision, Brevity Penalty (BP),
BLEU, RM-8B, and RM-27B–with human judgment across domains in our 18K filtered Chatbot
Arena dataset.

B Training

B.1 Runtime comparison between BLEU and reward models

See Table 3 for details on the runtimes of two different BLEU implementations and the two reward
models. These values were obtained by running each method on a single example, averaged over 100
runs. While our training experiments use the HuggingFace implementation, SacreBLEU can allow
for a much bigger speedup, offering considerable benefits over reward computation using reward
models.

Table 3: Average inference time of BLEU and reward models over 100 runs on one example.
Metric Time (s)

HF BLEU 0.0048
SacreBLEU 0.0008
RM-8B 0.0393
RM-27B 0.0732

B.2 Data difficulty ablation

In Table 4, we present results on training BLEUBERI on data with varying initial rewards. These
experiments were run on the 1K hardest examples selected by BLEU. While BLEUBERI does
effectively improve upon the base model in all setups, its improvements are most pronounced on hard
data.

B.3 Training GRPO-RM on RM-selected hardest data

In Table 5, we report results on running GRPO-RM on the 5K data where the base models score the
lowest according to RM-8B. We find these to be similar in values reported in Table 1, suggesting that
GRPO-RM is not as sensitive to data difficulty.
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Table 4: Difficulty ablation results on 1K data. BLEUBERI benefits the most from hard data.
Base model Variant MT-Bench ArenaHard v1 ArenaHard v2 WildBench Average

Qwen2.5-7B

BLEUBERI-random 68.6 22.5 10.4 61.2 40.7
BLEUBERI-easy 62.4 12.9 4.8 53.7 33.4
BLEUBERI-medium 67.4 21.1 7.8 58.8 38.8
BLEUBERI-hard 73.0 30.9 13.3 64.0 45.3

Table 5: GRPO-RM model performance when trained on the 5K hardest data selected by RM-8B.
Base model Variant MT-Bench ArenaHard v1 ArenaHard v2 WildBench Average

Qwen2.5-7B GRPO-RM 76.3 30.1 14.0 62.9 45.8
Qwen2.5-3B GRPO-RM 66.3 11.6 5.3 58.3 35.4
Llama-3.1-8B (SFT init.) GRPO-RM 45.3 7.4 1.7 56.8 27.8

B.4 Processing Tulu3

Obtaining the 50K pool Among all 18 data sources in Tulu3, we focus on the five instruction-
following data sources within this mixture: FLAN v2, No Robots, OpenAssistant Guanaco, Tulu 3
Persona IF, and WildChat GPT-4. A full list of all 18 sources is available at https://huggingface.
co/datasets/allenai/tulu-3-sft-mixture. From these, we filter out examples with instructions
or responses shorter than 10 tokens or greater than 512 tokens (based on Qwen2.5-7B tokenizer), and
those that are not in English (labaled by langdetect). Then, we sample 50K examples, trying to
balance between the 5 instruction-following data sources. In Table 6, we provide detailed counts for
examples from each source in this 50K pool.

Table 6: 50K data pool source distribution.
Dataset Num. examples

FLAN v2 13,706
No Robots 7,403
OpenAssistant Guanaco 1,479
Tulu 3 Persona IF 13,706
WildChat GPT-4 13,706

Tulu3 50K data pool task type distribution Please see Figure 8 for the distribution of task types
in the Tulu3 50K data pool, labeled by Llama-3.1-8B-Instruct.

B.5 Initializing Qwen base models with SFT before GRPO training

While Llama-3.1-8B benefits from SFT initialization, we find that this does not hold universally
across all model families: applying SFT to the Qwen models before GRPO actually results in worse
performance than applying GRPO directly. Similar findings have been reported in recent work [7].

B.6 Training with random rewards

Please refer to Table 7 for training results with random rewards.

B.7 Multi-epoch SFT training

In our main experiments, we train both GRPO and SFT on our 5K hardest examples for one epoch.
While this setup allows for a controlled comparison, one might argue it is unfair to SFT, as the two
methods involve different numbers of training steps. Specifically, GRPO uses a group size of 8 and a
global batch size of 32, resulting in 1250 training steps per epoch. To match this step count for SFT,
we would need to train it for 9 epochs. We address this in Table 8, where we extend our main results
table to include three rows for SFT models trained for 1250 steps. These models perform significantly
better than their 1-epoch counterparts. Nevertheless, BLEUBERI remains largely competitive with
them. That said, it is important to note that there is no strictly fair setup for comparing GRPO and
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Table 7: Results on training with random rewards.
Model Variant MT-Bench ArenaHard v1 ArenaHard v2 WildBench Average

Qwen2.5-7B GRPO-random 65.0 17.5 5.6 53.2 35.3

Qwen2.5-3B GRPO-random 52.7 5.8 3.1 41.7 25.8

Table 8: Results on four instruction-following benchmarks, extended to include SFT models trained
for the same number of steps (rather than epoch) as the GRPO models.

Model Variant MT-Bench ArenaHard v1 ArenaHard v2 WildBench Average

Qwen2.5-7B

Base 63.5 16.2 5.6 51.8 34.3
↪→ SFT (1 epoch) 67.3 22.1 9.9 60.5 40.0
↪→ SFT (1250 steps) 72.1 31.4 13.0 66.7 45.8
↪→ GRPO-RM 76.8 29.8 12.2 64.9 45.9
↪→ BLEUBERI 70.8 29.3 12.8 65.4 44.6

Qwen2.5-3B

Base 61.0 7.0 3.2 49.1 30.1
↪→ SFT (1 epoch) 59.6 9.8 4.0 55.5 32.2
↪→ SFT (1250 steps) 66.9 15.6 5.7 62.7 37.7
↪→ GRPO-RM 67.8 12.8 5.1 59.2 36.2
↪→ BLEUBERI 64.5 11.0 3.8 56.1 33.8

Llama-3.1-8B

Base (SFT init.) 52.8 6.8 2.0 54.9 29.1
↪→ SFT (1 epoch) 56.8 12.6 3.1 60.3 33.2
↪→ SFT (1250 steps) 51.9 12.9 3.0 60.4 32.1
↪→ GRPO-RM 57.1 9.7 1.6 57.8 31.6
↪→ BLEUBERI 56.8 10.1 2.4 59.5 32.2

SFT, as the two rely on fundamentally different optimization procedures. Any direct comparison
necessarily involves trade-offs in fairness and equivalence.

B.8 Benchmark evaluation setup

For ArenaHard v1, we use gpt-4-0314 as the baseline model, which is the default for that benchmark.
For ArenaHard v2, we instead use gpt-4-turbo-2024-04-09 as the baseline, since the default (o3-
mini) is too strong, making it difficult to meaningfully distinguish the performance of our models. For
WildBench, we report the WB score.macro using their v2.0625 setup. As the original score ranges
from -100 to 100, we rescale it to a 0–100 range in all our tables for consistency.

Bootstrapping: For WildBench and MT-Bench, we run full-size bootstrap per model over item-
level scores (n = valid prompts) with 1000 replicates. For Arena v1 and v2, we report the CI computed
with their official code base.

B.9 Performance on creative tasks

In Table 9, we show detailed results for different models on creative tasks.

B.10 Training BLEUBERI using different synthetic references

Obtaining the additional synthetic references: See Table 11 for detailed breakdown of costs
associated with collecting additional synthetic references for our 50K data pool. In total, collecting
them cost around $352.48 USD.

Training results: In §2.2, we measure BLEU’s agreement with human judgments in a single-
reference setup, varying the choice of reference model. This raises a natural question: if we use outputs
from these reference models for BLEUBERI training, does higher agreement with human preferences
predict better training outcomes? To explore this, we train Qwen2.5-7B separately in a single-
reference setup using synthetic references from each of five models: Claude-3.7-Sonnet, Gemini-2.5-
Pro, o4-mini, Deepseek-V3, and Llama-3.1-8B-Instruct. We observe a Pearson correlation of 0.34
between each reference model’s human agreement score and the performance of the resulting trained
model, suggesting a moderately strong positive relationship. Among these, Claude and o4-mini
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Table 9: WB creativity scores across base models and variants.
Base model Variant WB creativity

Qwen2.5-7B

Base 51.3
SFT 60.4
GRPO-RM 67.2
GRPO-BLEU 66.7

Instruct 74.4

Qwen2.5-3B

Base 47.2
SFT 54.1
GRPO-RM 61.5
GRPO-BLEU 58.4

Instruct 66.5

Llama-3.1-8B (SFT init.)

Base 61.9
SFT 66.8
GRPO-RM 63.3
GRPO-BLEU 66.4

Instruct 76.1

Table 10: Reference ablation on Qwen2.5-7B. The 5-reference setup uses Tulu3, o4-mini, Claude,
Deepseek, and Gemini as references.

Base model Variant MT-Bench ArenaHard v1 ArenaHard v2 WildBench Average

Qwen2.5-7B GRPO-RM 72.6 28.5 11.8 63.7 44.1
Qwen2.5-7B BLEUBERI-Tulu3 73.0 30.9 13.3 64.0 45.3
Qwen2.5-7B BLEUBERI-5ref 71.9 28.2 11.9 64.9 44.2
Qwen2.5-7B BLEUBERI-o4mini 72.5 25.1 11.6 62.6 42.9
Qwen2.5-7B BLEUBERI-claude 70.4 24.8 10.7 63.8 42.4
Qwen2.5-7B BLEUBERI-llama 68.7 23.9 11.9 63.2 41.9
Qwen2.5-7B BLEUBERI-deepseek 71.4 19.1 9.7 64.7 41.2
Qwen2.5-7B BLEUBERI-gemini 60.3 10.1 6.3 61.8 34.6

references yield the two best-performing models that are on par with GRPO-RM. In 10, we show
detailed results on Qwen2.5-7B, trained on 1K hardest data selected by BLEU. The 5-reference setup
uses references from Tulu3, o4-mini, Claude, Deepseek, and Gemini. Interestingly, the model trained
on Tulu3 references performs the best—even surpassing the model trained with a 5-reference setup.
As noted in §3.2, half of the Tulu3 references are generated by powerful LLMs like ChatGPT, and
half are drawn from existing datasets with human-written responses. While the presence of human
annotations likely contributes to its strong performance, the success of models trained purely on
synthetic data (e.g., using Claude or o4-mini) indicates that synthetic references alone can also be
highly effective.

Table 11: Comparison of model configurations, costs, and estimated runtimes over 50k prompts.
Llama-3.1-8B-Instruct is not included here because it is not an API model.

Model Name Arena Rank (SC) Avg. Input Tokens Avg. Output Tokens Cost ($) Time Estimate

gemini-2.5-pro-exp-03-2517 1 80 670 0.00 45h
claude-3-sonnet@2025021918 11 80 300 237.00 15h
deepseek-chat-v3-032419 4 80 400 23.08 21h
o4-mini-2025-04-1620 N/A 80 400 92.40 10h

B.11 Training with other types of rewards

In Table 12, we show training results on Qwen2.5-7B using rewards other than BLEU (on 1K hardest
data). “BRF1” refer to the BLEU-ROUGE-L harmonic mean, while “BLEU+RM” refers to the
combined metric of BLEU and RM-8B, both evaluated in 2.2. All these metrics demonstrate similar
performance as the BLEUBERI-trained model.
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Table 12: Results on models trained with different types of rewards.
Base model Variant MT-Bench ArenaHard v1 ArenaHard v2 WildBench Average

Qwen2.5-7B BLEUBERI-Tulu3 73.0 30.9 13.3 64.0 45.3
Qwen2.5-7B GRPO-BLEU+RM-Tulu3 74.0 26.4 11.3 63.9 43.9
Qwen2.5-7B GRPO-BERTSCORE-5ref 73.1 29.6 10.0 64.1 44.2
Qwen2.5-7B GRPO-BRF1-5ref 68.1 24.0 11.7 62.5 41.6

Table 13: Impact of training with reasoning (trained on 1K hardest data). We observe a drop in
performance.

Base model Variant MT-Bench ArenaHard v1 ArenaHard v2 WildBench Average

Qwen2.5-7B BLEUBERI 73.0 30.9 13.3 64.0 45.3
Qwen2.5-7B BLEUBERI (reason) 68.0 24.0 2.7 59.6 38.6

B.12 Training BLEUBERI with reasoning

On reasoning-intensive tasks like math, prior work has found that directly running GRPO to induce
reasoning can be very effective, even without any supervision on the reasoning chain produced. Will
enforcing reasoning help in our setting of general instruction following? To explore this, we modify
the training setup to encourage chain-of-thought (CoT) reasoning. Specifically, we introduce a system
prompt and a format reward that enforce the use of <think> and <answer> tokens. We also increase
max generation length from 512 to 1024,21 and compute BLEU scores on the final answers during
training. Under this configuration, we observe a performance decline compared to training without
enforced reasoning. See Table 13. This is consistent with Sprague et al. [54], who find that while
CoT reasoning improves performance on math and symbolic tasks, it has limited or even detrimental
effects on others.

C Qualitative analysis

C.1 Qualitative statistics and example

To investigate the characteristics of model responses, we analyze qualitative statistics across all
four benchmarks, as shown in Table 14. To compute the repetition rate, we split each response into
lowercase words and calculate how often 1- to 4-word phrases (n-grams) are repeated. We then
compute the repetition rate for each n-gram size and take their average to quantify redundancy in the

21To prevent out-of-memory errors, we also reduce batch size from 32 to 16.

Figure 8: Distribution of task types in the Tulu3 50K data pool, labeled by Llama-3.1-8B-Instruct.
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Table 14: Qualitative statistics for model outputs across all four benchmarks.
Base model Variant Avg. tokens Repetition (%) Refusal (%) Markdown usage (%)

Qwen2.5-7B
SFT 947.3 20.1 3.4 48.3
GRPO-RM 554.1 13.2 4.3 90.8

BLEUBERI 686.1 15.5 2.3 71.2

Qwen2.5-3B
SFT 1259.8 22.6 1.5 57.8
GRPO-RM 701.4 15.9 3.7 84.9

BLEUBERI 922.4 19.5 0.6 70.9

Llama-3.1-8B
SFT 675.4 17.4 3.3 42.4
GRPO-RM 763.8 16.0 2.4 90.9

BLEUBERI 577.5 18.9 2.5 62.1

text. To compute the refusal rate, we check whether the response contains common refusal phrases
such as “I’m sorry, but” or “As an AI...”. For Markdown usage, we use regular expressions to detect
the presence of Markdown syntax elements such as bold, italics, headers, or code blocks. The usage
rate is defined as the proportion of responses that include at least one such element.

Example responses: Figure 9 shows example responses from three models: Qwen2.5-7B base,
GRPO-RM, and BLEUBERI. While the base model generates an irrelevant response to the
prompt—including a code snippet mixed with Korean—both GRPO-RM and BLEUBERI/ follow the
instruction appropriately.

Figure 9: Outputs from Qwen base, GRPO-RM, and BLEUBERI. While GRPO-RM and BLEU-
BERIgenerate responses that follow the instruction well, Qwen produces an irrelevant response

Please see Table 15 for qualitative statistics for model outputs.

C.2 Emergence of affirmative openers in GRPO-trained Qwen models

We visualize the usage of affirmative openers in trained models in Figure 10.

C.3 Evaluation on factuality

We evaluate the factuality of model responses using the VERISCORE framework [53], which consists
of two steps: (1) extracting verifiable claims from generated responses, and (2) verifying each claim
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Table 15: Qualitative statistics for model outputs by benchmark. Each cell shows “Avg. Tokens /
Refusal Rate (%) / Markdown Usage (%) / N-gram Repetition Rate (%)”.

Model Variant MT-Bench ArenaHard v1 ArenaHard v2 WildBench

Qwen7B
SFT 257.6 / 1.3 / 33.8 / 11.0 747.0 / 1.2 / 74.8 / 18.5 1242.0 / 2.9 / 45.5 / 22.0 883.1 / 5.1 / 38.5 / 20.2
RM 336.4 / 0.0 / 92.5 / 11.2 492.7 / 0.8 / 98.2 / 12.9 622.9 / 4.4 / 92.7 / 14.3 550.7 / 6.3 / 85.6 / 12.8
BLEU 319.9 / 2.5 / 51.3 / 11.4 619.6 / 1.0 / 93.4 / 14.9 746.4 / 2.3 / 66.7 / 15.8 703.1 / 3.0 / 65.2 / 15.9

Qwen3B
SFT 347.5 / 0.0 / 43.8 / 16.2 1002.1 / 0.8 / 85.4 / 19.9 1587.3 / 1.3 / 53.1 / 24.6 1217.2 / 2.1 / 48.8 / 23.0
RM 316.0 / 2.5 / 86.3 / 12.0 648.5 / 0.6 / 97.6 / 14.7 771.2 / 4.1 / 85.9 / 16.1 706.2 / 5.1 / 77.9 / 16.7
BLEU 288.1 / 0.0 / 60.0 / 12.1 746.0 / 0.8 / 92.6 / 17.6 1176.6 / 0.4 / 67.1 / 20.8 871.9 / 0.7 / 64.1 / 20.0

Llama8B
SFT 269.9 / 8.8 / 21.3 / 13.3 579.8 / 2.6 / 63.6 / 16.8 785.6 / 1.1 / 41.7 / 18.7 673.1 / 4.9 / 34.2 / 17.1
RM 283.7 / 0.0 / 81.3 / 11.4 577.1 / 0.4 / 96.0 / 14.3 988.8 / 2.0 / 88.5 / 18.4 727.7 / 3.9 / 90.8 / 15.4
BLEU 252.2 / 1.3 / 37.5 / 15.3 494.3 / 1.4 / 85.4 / 18.3 637.8 / 0.4 / 57.9 / 20.3 599.4 / 4.6 / 55.7 / 18.5

Figure 10: Frequency of starting phrases for each model and training method. For Qwen, BLEUBERI
models begin with “Certainly!” a lot, and GRPO-RM models begin with “Sure!” very often.
Numbers are averaged over responses for the four benchmarks.

using retrieved evidence from the web via the Google Search via the Serper API 22. For this purpose,
we use VeriScore’s fine-tuned claim extractor23 and verifier24.

The original VERISCORE paper evaluates on 11 datasets, but to reduce costs incurred by using the
Serper API for Google Search, we focus on three datasets. We apply VeriScore on the full 200
FRESHQA and sampled 100 examples from each of ASKHISTORIANS and LONGFACT which require
long-form answers.

We set the claim extractor’s maximum input/output length to 1024/1000 tokens, and the verifier’s to
2048/500 tokens. Each claim is verified using the top 10 retrieved search results.

To quantify factuality, we adopt the F1@K metric, which balances precision (the proportion of
supported claims) and recall (whether a sufficient number of supported claims are included). The
recall cutoff K is defined as the median number of extracted claims across responses in each dataset,
consistent with the original VeriScore setup. We use three labels: supported, contradicted, and
inconclusive. Claims that are too general or lack verifiable connections are labeled as inconclusive.
We follow the labeling guidelines of VERISCORE, which treat both contradicted and inconclusive
claims as unsupported. Let M be a language model and X a set of prompts. For each x ∈ X , let
r = Mx be the model’s response and C the set of extracted claims. Let support(c, Ec) ∈ {0, 1}
indicate whether claim c is supported by retrieved evidence Ec. Define:

S(r) =
∑
c∈C

support(c, Ec), P (r) =
S(r)

|C|
, R(r) = min

(
S(r)

K
, 1

)
22https://serper.dev/
23https://huggingface.co/SYX/mistral_based_claim_extractor
24https://huggingface.co/SYX/llama3_based_claim_verifier
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Table 16: Factual consistency results for trained Qwen2.5-7B models across three QA datasets
evaluated using VERISCORE [53]. The K values used for each dataset follow the original paper.

Dataset (K) Variant Avg. tokens Total claims F1@K Precision Recall

FRESHQA (4)
SFT 87.3 836 45.0 57.2 44.3
GRPO-RM 234.2 1838 60.7 56.0 73.6

BLEUBERI 124.8 1330 60.5 63.9 64.0

LONGFACT (32)
SFT 505.1 4240 81.6 82.6 85.0
GRPO-RM 478.0 4364 87.0 81.6 93.8

BLEUBERI 583.1 4964 89.0 84.9 94.2

ASKHISTORIANS (21)
SFT 441.2 2882 51.4 48.4 60.8
GRPO-RM 437.4 2962 50.5 45.0 61.2

BLEUBERI 454.1 3014 54.2 49.4 64.8

F1@K(r) =

{
2P (r)R(r)
P (r)+R(r) if S(r) > 0

0 otherwise

VERISCORE(M) =
1

|X|
∑
x∈X

F1@K(Mx)

Table 16 presents detailed VERISCORE results, and Table 17 illustrates examples of extracted
verifiable claims and their verification using VeriScore.

Table 17: Example of extracted claims using VeriScore
Question How old is the world’s oldest verified living person?

SFT

Response The world’s oldest verified living person is Kane Tanaka, who was born on
March 5, 1903. As of my last update in 2023, she is 120 years old. Kane
Tanaka is a Japanese woman who has been living in the city of Fukuoka,
Japan. She is known for her longevity and has been a subject of interest for
researchers studying the factors that contribute to long life.

1. Kane Tanaka is the world’s oldest verified living person. ✓
2. Kane Tanaka was born on March 5, 1903. ✗
3. Kane Tanaka was 120 years old in 2023. ✗

Claim List 4. Kane Tanaka is a Japanese woman. ✓
5. Kane Tanaka lives in Fukuoka, Japan. ✓
6. Kane Tanaka is known for her longevity. ✗
7. Kane Tanaka has been studied by longevity researchers. ✗

GRPO-RM
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Response To find the age of the world’s oldest verified living person, we need to consider
the most recent data available. As of my last update in October 2023, the
world’s oldest verified living person is Kane Tanaka from Japan. She was born
on March 21, 1903, and as of October 2023, she was 120 years old.
Here’s a step-by-step breakdown of how I arrived at this answer:
1. **Identify the Oldest Person**: The Guinness World Records and other
reliable sources maintain records of the oldest living people. As of my last
update, Kane Tanaka is recognized as the oldest verified living person.
2. **Determine Birth Date**: Kane Tanaka was born on March 21, 1903.
3. **Calculate Age**: To find her age in October 2023, we subtract her
birth year from the current year (2023) and adjust for her birthday not having
occurred yet in the current year.

Age = 2023− 1903 = 120 years
4. **Verify Status**: It’s important to note that this information is based on
the most recent data available up to October 2023. If you are looking for the
most current information, it would be best to check the latest Guinness World
Records or official health records for updates.
Therefore, as of October 2023, the world’s oldest verified living person, Kane
Tanaka, is 120 years old.

Claim List 1. As of October 2023, Kane Tanaka is the world’s oldest verified living
person. ✗
2. Kane Tanaka is from Japan. ✓
3. Kane Tanaka was born on March 21, 1903. ✗
4. As of October 2023, Kane Tanaka was 120 years old. ✗
5. The Guinness World Records maintains records of the oldest living people.
✓
6. Other reliable sources maintain records of the oldest living people. ✓
7. As of October 2023, Kane Tanaka is recognized as the oldest verified living
person. ✓
8. To find the age of the world’s oldest verified living person in October 2023,
one subtracts their birth year from the current year. ✗
9. Kane Tanaka was born in 1903. ✗
10. The information about the world’s oldest verified living person is based on
the most recent data available up to October 2023. ✗
11. Kane Tanaka was the world’s oldest verified living person as of October
2023. ✓
12. Kane Tanaka was 120 years old as of October 2023. ✗

BLEUBERI

Response The world’s oldest verified living person is Kane Tanaka, a Japanese woman
who was born on July 2, 1903. As of my last update in October 2023, she is
still alive and has been recognized by Guinness World Records as the oldest
living person. However, it’s important to note that the status of the world’s
oldest person can change as individuals pass away and new centenarians reach
the age of 110.
Kane Tanaka has lived through significant historical events, including World
War I, World War II, and the Great Depression. She has also seen numerous
technological advancements and social changes throughout her long life.
It’s worth mentioning that there are other individuals who have claimed to be
the world’s oldest person, but their claims have not been verified by Guinness
World Records or other official organizations. The age of the world’s oldest
person is a subject of ongoing interest and debate, and it’s possible that new
records will be set in the future.

Claim List 1. Kane Tanaka is the world’s oldest verified living person. ✓
2. Kane Tanaka was born on July 2, 1903. ✗
3. Kane Tanaka is a Japanese woman. ✓
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Figure 11: Human preference results. For each annotator, the bar on the right represents the soft
preference rate for BLEUBERI. Based on these evaluations, BLEUBERI outputs are often on par
with GRPO-RM outputs.

4. Kane Tanaka was recognized by Guinness World Records as the oldest
living person as of October 2023. ✓
5. Kane Tanaka was still alive as of October 2023. ✗
6. The status of the world’s oldest person can change as individuals pass away.
✓
7. The status of the world’s oldest person can change as new centenarians
reach the age of 110. ✓
8. Kane Tanaka lived through World War I. ✓
9. Kane Tanaka lived through World War II. ✓
10. Kane Tanaka lived through the Great Depression. ✓
11. Kane Tanaka has lived through significant historical events. ✓
12. Kane Tanaka has lived through World War I. ✓
13. Kane Tanaka has lived through World War II. ✓
14. Kane Tanaka has lived through the Great Depression. ✗
15. Kane Tanaka has seen numerous technological advancements throughout
her life. ✓
16. Kane Tanaka has seen social changes throughout her life. ✓
17. There have been individuals who have claimed to be the world’s oldest
person. ✓
18. The claims of individuals to be the world’s oldest person have not been
verified by Guinness World Records. ✓
19. The claims of individuals to be the world’s oldest person have not been
verified by other official organizations. ✓

C.4 Human evaluation details

We show detailed distribution of each annotator’s labels in Figure 11.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the abstract and §1. We clearly outline our contributions without exagger-
ating their significance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See §7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
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Justification: We do not have theoretical proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See §3.1 and §3.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We submit our data and code to facilitate reproduction of our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See §3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not run our evaluations multiple times due to resource constraints, as
these are LLM-based evaluations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See 3.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we comply with these requirements.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work does not have such societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: This paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we provide proper citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide detailed documentation on these assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve any hired human annotators. Annotations were
done by co-authors.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The project was reviewed by an IRB board and deemed exempt from federal
regulations that govern human subject research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: This work does not use LLMs in the described ways.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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