
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENSEMBLING SPARSE AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse autoencoders (SAEs) are used to decompose neural network activations
into human-interpretable features. Typically, features learned by a single SAE are
used for downstream applications. However, it has recently been shown that SAEs
trained with different initial weights can learn different features, demonstrating
that a single SAE captures only a limited subset of features that can be extracted
from the activation space. Motivated by this limitation, we introduce and formalize
SAE ensembles. Furthermore, we propose to ensemble multiple SAEs through
naive bagging and boosting. In naive bagging, SAEs trained with different weight
initializations are ensembled, whereas in boosting SAEs sequentially trained to
minimize the residual error are ensembled. Theoretically, naive bagging and
boosting are justified as approaches to reduce reconstruction error. Empirically,
we evaluate our ensemble approaches with three settings of language models and
SAE architectures. Our empirical results demonstrate that, compared to the base
SAE and an expanded SAE that matches the number of features in the ensemble,
ensembling SAEs can improve the reconstruction of language model activations,
diversity of features, and SAE stability. Additionally, on downstream tasks such as
concept detection and spurious correlation removal, SAE ensembles achieve better
performance, showing improved practical utility.

1 INTRODUCTION

Sparse autoencoders (SAEs) have been shown to decompose neural network activations1 into a
high-dimensional and sparse space of human-interpretable features (Cunningham et al., 2023; Gao
et al., 2024; Lieberum et al., 2024; Rajamanoharan et al., 2024a). Recent work has focused on the
application of SAEs to language models with interpretability use cases such as detecting concepts (Gao
et al., 2024; Movva et al., 2025), identifying internal mechanisms of model behaviors (Marks et al.,
2024), and steering model behaviors (Farrell et al., 2024; Marks et al., 2024; O’Brien et al., 2024).
In practice, a single SAE is usually selected for downstream interpretability applications. However,
it has recently been shown that SAEs trained on the same activations learn different features while
differing only in their initial weights (Fel et al., 2025; Paulo and Belrose, 2025). This suggests that,
even with the same architecture and hyperparameters, each SAE captures a different and yet limited
subset of features that can be extracted from the activation space. This variability can be viewed as a
limitation of SAEs that undermines their reliability, and SAE architectures with additional constraints
have been proposed to address the instability of SAEs (Fel et al., 2025).

Here, we offer a different perspective by asking: Can we leverage the variability of SAEs to improve
performance? This perspective is motivated by ensemble methods in supervised learning that leverage
model variability to improve predictive performance, with classical examples such as bagging (boot-
strap aggregating) (Breiman, 1996; 2001) and boosting (Chen and Guestrin, 2016; Friedman, 2001).
Therefore, we propose to ensemble multiple SAEs and formalize SAE ensembles. Conceptually,
SAE ensembles are defined as methods for combining the outputs of SAEs in the activation space.
Nonetheless, we show that ensembling the outputs of SAEs corresponds to concatenating the SAE
features and feature coefficients. We instantiate two approaches for ensembling SAEs (Figure 1).
In naive bagging, SAEs differing only in their weight initializations are ensembled. In boosting,
the ensemble aggregates SAEs that are iteratively trained to reconstruct the residual from previous
iterations. In three settings of language models and SAE architectures, our empirical results show
that naive bagging and boosting can lead to better reconstruction of language model activations, more

1Activations from neural networks are often also described as embeddings or representations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a. Naive Bagging

Parallel

Sequential

SAEs with different initial weights

Average
𝑎

𝑊𝑑𝑒𝑐
(3)𝑊𝑒𝑛𝑐

(3)

ො𝑎(3)ො𝑎(1)𝑎

𝑊𝑑𝑒𝑐
(1)𝑊𝑒𝑛𝑐

(1)

𝑐(1)

𝑎

𝑊𝑑𝑒𝑐
(2)𝑊𝑒𝑛𝑐

(2)

ො𝑎(2)

𝑐(2) 𝑐(3)

Ensembling
Reconstructions
ො𝑎(1) ො𝑎(2) ො𝑎(3)

ො𝑎

Ensembling Features

𝑊𝑑𝑒𝑐
(1)

𝑊𝑑𝑒𝑐
(2)

𝑊𝑑𝑒𝑐
(3)

𝑊𝑑𝑒𝑐

Ensembling Feature
Coefficients

𝑐(1)

𝑐(2)

𝑐(3)

𝑐

b. Boosting

𝑎
−ො𝑎 1 − ො𝑎(2)

𝑊𝑑𝑒𝑐
(3)𝑊𝑒𝑛𝑐

(3)

ො𝑎(3)ො𝑎(1)𝑎

𝑊𝑑𝑒𝑐
(1)𝑊𝑒𝑛𝑐

(1)

𝑐(1)

𝑎 − ො𝑎(1)

𝑊𝑑𝑒𝑐
(2)𝑊𝑒𝑛𝑐

(2)

ො𝑎(2)

𝑐(2) 𝑐(3) ො𝑎(1) ො𝑎(2) ො𝑎(3)

ො𝑎

Sum

Ensembling
Reconstructions

c.

Figure 1: Overview of the proposed SAE ensembling strategies. a. Naive Bagging involves multiple
SAEs with different weight initializations, which can be trained in parallel. The ensembled recon-
struction is the average of reconstructions obtained from the individual SAEs. b. Boosting involves
sequential training of SAEs on the residual error left from the previous iterations. The ensembled
reconstruction is the sum of the reconstructions from the individual SAEs. c. For both approaches,
ensembling the features and feature coefficients involves a concatenation.

diverse features, and better stability. Finally, to demonstrate the practical utility of our ensemble
methods, we apply them to the tasks of concept detection and spurious correlation removal, where
ensembling multiple SAEs can outperform using only one SAE.

2 RELATED WORK

SAEs. SAEs have emerged as a scalable and unsupervised approach for extracting human-
interpretable features from neural network activations (Cunningham et al., 2023; Fel et al., 2023),
with recent work demonstrating their applications to language models (Gao et al., 2024; Lieberum
et al., 2024). An SAE decomposes neural network activations into sparse linear combinations of
features, which are vectors with the same dimensionality as the original activations. Overall, features
learned by an SAE can often be annotated with semantic interpretations (Cunningham et al., 2023;
Rao et al., 2024). Because the immediate goal of training an SAE is to decompose activations into
sparse combinations of features, intrinsic metrics such as the explained variance of reconstructions
and feature sparsity are used to evaluate SAEs (Gao et al., 2024; Rajamanoharan et al., 2024a;b). At
the same time, SAEs are usually trained with the end goal of interpreting language model behav-
iors, with downstream use cases such as concept detection (Gao et al., 2024; Movva et al., 2025),
mechanistic interpretability (Marks et al., 2024), and model steering (Farrell et al., 2024; Marks et al.,
2024; O’Brien et al., 2024). Therefore, metrics specific to downstream applications such as concept
detection accuracy and the SHIFT score have been proposed (Karvonen et al., 2025).

Variability of SAEs. In general, the variability of SAEs can come from several sources. First, SAEs
with different architecture designs can learn different features. For example, it has been shown that
the choice of SAE activation function corresponds to assumptions about the separability structure of
the features to be learned (Hindupur et al., 2025). The SAE size also has an impact on the types of
features learned—a smaller SAE tends to learn high-level features, while a larger SAE tends to learn
more specific features (Chanin et al., 2024). Second, given a fixed architecture, SAEs with different
training hyperparameters can also learn different features. For example, it has been found that lower
learning rates can help reduce the number of dead features that rarely activate (Gao et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Finally, it has been shown that SAEs can learn different features even with the same architecture and
hyperparameters, for example due to different initial weights (Fel et al., 2025; Paulo and Belrose,
2025). For the scope of this paper, we focus on the variability and ensembling of SAEs with the same
architecture and hyperparameters. In other words, our SAE ensemble approaches are considered
meta-algorithms compatible with any SAE architecture and hyperparameter configuration.

Model ensembling. Ensemble methods have been applied to leverage model variability for improving
performance, especially in supervised learning. In bagging (bootstrap aggregating), predictions from
models trained with bootstrapped data subsets are aggregated (Breiman, 1996; 2001). Boosting
algorithms train successive models by focusing on the errors made in the previous iterations (Chen
and Guestrin, 2016; Friedman, 2001). Stacking is an alternative framework that combines predictions
from models with different architectures and inductive biases (Wolpert, 1992). More recently, it
has been shown that averaging weights of models can lead to improved accuracy without additional
inference time (Wortsman et al., 2022a;b). For unsupervised learning, ensemble methods have
mostly been applied to form consensus for clustering and anomaly detection (Aggarwal, 2013;
Domeniconi and Al-Razgan, 2009; Fern and Brodley, 2004; Ghosh and Acharya, 2011; Zimek et al.,
2014). Motivated by the principle of ensembling, here we propose that SAEs can also be ensembled
with respect to their outputs in the activation space. We theoretically show that ensembling SAE
reconstructions corresponds to combining SAE features. We also demonstrate that ensembling SAEs
can lead to improved intrinsic performance and practical utility when applied to language models.

Our work makes the following contributions. (1) We propose ensembling SAEs as a formal frame-
work, showing that ensembling SAE reconstructions is equivalent to ensembling SAE features. (2)
We instantiate two practical ensemble approaches, naive bagging and boosting, with theoretical justi-
fications in relation to reconstruction performance. (3) We empirically demonstrate that ensembling
multiple SAEs can improve performance in intrinsic metrics and downstream applications.

3 FORMALIZING SAE ENSEMBLES

This section provides the notation used throughout this paper, the definition of an SAE ensemble, and
a theoretical result showing that ensembling SAEs is equivalent to concatenating their features.

3.1 NOTATION

In general, we consider a neural network that maps from a sample space X to a d-dimensional
activation space. An SAE is an autoencoder g : Rd → Rd that reconstructs neural network activations,
with the following form:

g(a;Wenc,Wdec,benc,bdec) = Wdech(Wenca+ benc) + bdec, (1)

where Wenc ∈ Rk×d,benc ∈ Rk,Wdec ∈ Rd×k,bdec ∈ Rd are the SAE weights and biases, and
h : Rk → Rk is an element-wise activation function such as the ReLU, JumpReLU, and TopK
functions (Cunningham et al., 2023; Gao et al., 2024; Lieberum et al., 2024). Unlike conventional
autoencoders, in an SAE we have k > d. Notably, the columns of the decoder matrix Wdec are
considered features learned by the SAE. Particularly, let Wdec[:, i] denote the ith column of the
decoder matrix. Then fi = Wdec[:, i] ∈ Rd is the ith feature of the SAE,2 for i ∈ [k]. Furthermore,
elements in c = h(Wenca + benc) ∈ Rk are considered coefficients for the features. Overall,
Equation (1) can be rewritten to highlight that an SAE decomposes an activation into features, as
follows:

g(a;Wenc,Wdec,benc,bdec) =

k∑
i=1

cifi + bdec. (2)

For conciseness, we let θ = (Wenc,Wdec,benc,bdec) denote all the SAE parameters. Finally, we use
â = g(a; θ) to denote the SAE reconstruction.

To train an SAE, a training set of activations {a(n)}Nn=1 are collected by passing a set of samples
{x(n)}Nn=1 through the neural network. Then the SAE parameters are trained to minimize the

2In the literature, the fi’s are associated with different terms such as feature directions and decoder vectors.
Here, we follow Cunningham et al. (2023) and call them features for brevity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

following empirical loss:

LSAE

(
{a(n)}Nn=1; θ

)
=

1

N

N∑
n=1

∥∥∥a(n) − g
(
a(n); θ

)∥∥∥2
2︸ ︷︷ ︸

reconstruction loss

+λ
∥∥∥c(n)∥∥∥

p︸ ︷︷ ︸
sparsity loss

 , (3)

where c(n) = h(Wenca
(n) + benc) corresponds to the feature coefficients for the nth sample, and

λ ≥ 0 is the penalty coefficient for the sparsity loss.

3.2 SAE ENSEMBLES

In this work we focus on ensembling SAEs with the same architecture. Specifically, given J SAEs
with model parameters θ(j) for j ∈ [J], an SAE ensemble has the form:

J∑
j=i

α(j)g
(
·; θ(j)

)
(4)

, where α(j) ≥ 0 is the ensemble weight for the jth SAE, and for generality the notation g(·; θ(j))
indicates that each SAE can take arbitrary inputs in Rd. This weighted-sum formulation is similar to
classical ensemble methods, where a weighted sum of outputs from base models is used to make a
prediction (Breiman, 1996; Friedman, 2001). With an SAE ensemble, the base model is now an SAE.

Different from classical ensembles, Equation (4) by itself does not fully specify an SAE ensemble,
since SAE features and their coefficients are also critical components for downstream analyses.
Interestingly, because the output of each SAE is a linear combination of its features, ensembling
SAEs is equivalent to concatenating their feature coefficients and their decoder matrices (feature
vectors). More formally, we have the following proposition, with the proof in Appendix A.

Proposition 1. Suppose there are J SAEs g(·; θ(1)), ..., g(·; θ(J)), with decoder matrices
Wdec

(1), ...,Wdec
(J) ∈ Rd×k and decoder biases bdec

(1), ...,bdec
(J) ∈ Rd. For a given neural

network activation a ∈ Rd, let c(1), ..., c(J) ∈ Rk denote the feature coefficients. Then ensembling
the J SAEs is equivalent to reconstructing a with:

â = Wdecc+ bdec =

kJ∑
i′=1

ci′fi′ + bdec, (5)

where

c =

α(1)c(1)

...
α(J)c(J)

 , Wdec =
[
Wdec

(1) · · ·Wdec
(J)

]
, bdec =

J∑
j=1

α(j)bdec
(j), (6)

and fi′ = Wdec[:, i
′], with c ∈ RkJ ,Wdec ∈ Rd×kJ ,bdec ∈ Rd.

Remark 1. The ensemble weights {α(j)}Jj=1 can be folded into either c or Wenc for Proposition 1
to hold. Since the columns of Wdec are often constrained to have unit norms to interpret the features
as direction vectors (Cunningham et al., 2023; Rajamanoharan et al., 2024a), the ensemble weights
are folded into c to retain the feature norms.

4 ENSEMBLE METHODS FOR SAES

In this section we describe naive bagging and boosting as two approaches for ensembling SAEs.

4.1 NAIVE BAGGING

Variability of SAEs due to weight initialization is utilized in naive bagging, motivated by prior work
showing that SAEs differing only in their initial weights can learn different features (Fel et al., 2025;
Paulo and Belrose, 2025). Note that we refer to this method as naive because, unlike classical bagging,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

bootstrapped data subsets are not used. This is to ensure that each SAE is trained on the same dataset
and isolate the effect of different initializations. Also, as SAEs are often trained on million- or even
billion-scale datasets (Gao et al., 2024; Lieberum et al., 2024), bootstrapping becomes impractical
due to memory and storage overhead. Concretely, given J SAEs with different initial weights, naive
bagging gives the following ensembled SAE:

gNB

(
a(∗); {θ(j)}Jj=1

)
=

1

J

J∑
j=1

g
(
a(∗); θ(j)

)
(7)

Conceptually, the uniform ensemble weight α(j) = 1/J is motivated by considering naive bagging
as a way to reduce reconstruction variance in the bias-variance decomposition (see Proposition 2 in
Appendix A for a formal justification).

4.2 BOOSTING

Since SAEs with different initial weights still learn some overlapping features (Paulo and Belrose,
2025), naive bagging can result in redundant features in the ensemble. To address this redundancy,
we propose a boosting-based ensemble strategy to encourage SAEs to capture different components
of a given activation through sequential training. Starting from an initial SAE, each subsequent SAE
is trained to capture the residual left from the previous iteration. Concretely, the jth SAE is trained
with the following loss:

LBoost

(
{a(n)}Nn=1; θ

(j)
)
=

1

N

N∑
n=1

[∥∥∥a(n,j) − g
(
a(n,j); θ(j)

)∥∥∥2
2
+ λ

∥∥∥c(n,j)∥∥∥
p

]
, (8)

where

a(n,j) =

{
a(n), if j = 1.
a(n) −

∑j−1
ℓ=1 g

(
a(n,ℓ); θ(ℓ)

)
, otherwise.

Here, the first iteration corresponds to training an initial SAE with the original activations. For j > 1,
a(n,j) is the residual left from the (j − 1)th iteration that the jth SAE should learn to reconstruct. It
is worth noting that the regularization parameters λ and p remain the same throughout the training
iterations. Intuitively, each SAE in boosting should learn features different from the previous SAEs
by capturing the residual. As another motivation, boosting can also lead to good reconstruction
performance by bounding the bias term in the bias-variance decomposition (see Proposition 3 in
Appendix A for a formal justification). Overall, given J SAEs trained with Equation (8), boosting
gives the following ensembled SAE:

gBoost

(
a(∗); {θ(j)}Jj=1

)
=

J∑
j=1

g
(
a(∗,j); θ(j)

)
. (9)

5 EXPERIMENTS

In this section, we quantitatively evaluate our ensemble approaches with intrinsic evaluation metrics
(Section 5.2) and demonstrate the utility of ensembling SAEs with two use cases (Section 5.3 and
Section 5.4).

5.1 BASELINES

As baselines for each experimental setting, we compare ensemble methods with the base SAE and
with an expanded SAE trained to have the same number of features as the ensembled SAEs. Since
sparsity can have an impact on SAE performance for a given SAE size (Gao et al., 2024), expanded
SAEs are trained to have sparsity comparable to the ensembled SAEs, enabling a fair comparison.
More details about the expanded SAE baseline are provided in Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.2 EVALUATING ENSEMBLED SAES WITH INTRINSIC METRICS

5.2.1 SETUP

We evaluate our ensemble approaches on SAEs trained with activations from three different language
models: GELU-1L, Pythia-160M, and Gemma 2-2B, which represent a range of model sizes. Follow-
ing prior work, ReLU, TopK, and JumpReLU SAEs are trained with the residual stream activations
from GELU-1L (Bricken et al., 2023), layer 8 from Pythia-160M (Gao et al., 2024), and layer 12
from Gemma 2-2B (Lieberum et al., 2024), respectively. Per-token activations are obtained from the
Pile (Gao et al., 2020) for each language model with the corresponding context size. For training the
SAEs, we use 800 million tokens from a version of the Pile with copyrighted contents removed.3 A
held-out test set of 7 million tokens is used for evaluation. Hyperparameters are swept for the base
SAE, and hyperparameters giving an explained variance closest to 90% are selected. This ensures
that the SAEs being ensembled are practically usable to explain the activations. All SAEs are trained
using the Adam optimizer (Kingma and Ba, 2014). Additional details about the language models
along with training times and hyperparameter selection are provided in Appendix F.

5.2.2 METRICS

We evaluate different aspects of the ensembled SAEs using six intrinsic metrics: Explained Variance,
Mean Squared Error (MSE), Relative Sparsity, Diversity, Connectivity, and Stability. Details about
each of the metrics are provided in Appendix B.

5.2.3 RESULTS

Figure 2 illustrates how the number of SAEs in the ensemble affects intrinsic performance for both
naive bagging and boosting on Gemma 2-2B. The first point in each plot represents the base SAE.
Consistent with prior work (Lieberum et al., 2024; Paulo and Belrose, 2025), the similarity threshold
is set to τ = 0.7 for the diversity metric. For completeness, we provide the results with additional
values for τ in Appendix G. Increasing the number of SAEs in the ensemble generally improves
performance for most metrics and maintains the performance for the others. Comparing the two
ensemble approaches, boosting outperforms naive bagging across all metrics except for stability. This
is consistent with the theoretical justification that naive bagging reduces variance (Section 4.1). On
the other hand, since boosting aims for bias reduction (Section 4.2), it can learn more specific and
low-level features, impacting stability. Also, boosting has a lower relative sparsity for >2 SAEs in
the ensemble, indicating that boosting requires fewer active features. The boosted SAE can discover
a higher number of diverse features, in terms of both feature directions and coefficients, as measured
in diversity and connectivity. Results for GELU-1L and Pythia-160M are provided in Appendix D,
where similar trends hold.

Detailed results for ensembles of 8 SAEs across all three language models are summarized in Table 1.
We ensemble 8 SAEs as most of the metrics begin to plateau by then. Compared to the base SAE,
ensembling performs better in all the intrinsic metrics. Compared to an expanded SAE, naive bagging
(NB) performs better in stability while worse in the other intrinsic metrics such as the reconstruction
metrics. This is expected due to the stability-reconstruction tradeoff (Fel et al., 2025). However, as
naive bagging improves both reconstruction and stability compared to the base SAE, it is reasonable
that naive bagging can also be applied to the expanded SAE as a way to gain both reconstruction
performance and stability. Notably, the stability of the expanded SAE is typically less than half of
the stability of ensembled SAEs, indicating that a larger SAE can result in unreliable features. More
importantly, boosting outperforms an expanded SAE in the reconstruction metrics, diversity, and
stability, while having similar connectivity scores. This comparison highlights that the gains from
ensembling are not just because the ensembled SAEs have more features. This comparison also
shows that boosting is a strong alternative to expanding SAE size, especially for its better stability
in applications that require interpretability tools to be reliable (Fel et al., 2025; Paulo and Belrose,
2025). Overall, we find that ensembling performs better than the base SAE and an expanded SAE on
the intrinsic metrics.

3https://huggingface.co/datasets/monology/pile-uncopyrighted

6

https://huggingface.co/datasets/monology/pile-uncopyrighted

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2 4 6 8
0.92

0.94

0.96

0.98

Ex
pl

ai
ne

d
Va

ria
nc

e
(

)

Naive Bagging
Boosting

2 4 6 8
0.02

0.03

0.04

0.05

0.06

Re
la

tiv
e

Sp
ar

sit
y

(
)

2 4 6 8

200

400

600

M
SE

 (
)

2 4 6 8
Number of SAEs

25000

50000

75000

100000

125000

Di
ve

rs
ity

 (
)

2 4 6 8
Number of SAEs

0.80

0.85

0.90

0.95

1.00

Co
nn

ec
tiv

ity
 (

)

2 4 6 8
Number of SAEs

0.58

0.59

0.60

0.61

0.62

0.63

St
ab

ilit
y

(
)

Figure 2: Effect of the number of SAEs in the ensemble for naive bagging and boosting on the intrinsic
evaluation metrics for Gemma 2-2B (Layer 12). The shaded regions indicate 95% confidence intervals
across 5 different experiment runs. For naive bagging, the different experiment runs correspond to
different sets of initial weights.

Table 1: Intrinsic evaluation metrics for the base SAE, an expanded SAE, naive bagging (NB), and
boosting (ensembling 8 SAEs). Means along with 95% confidence intervals are reported across 5
runs.

Ensembling Method Explained
Variance (↑)

Relative
Sparsity (↓)

MSE (↓) Diversity (↑) Connectivity (↑) Stability (↑)

GELU-1L

Base SAE 0.875 (0.0020) 0.023 (0.0002) 41.694 (0.536) 16276.7 (10.47) 0.307 (0.0057) 0.705 (0.0016)
Expanded SAE 0.946 (0.0003) 0.007 (0.0000) 17.893 (0.137) 130411.6 (21.18) 0.959 (0.0003) 0.372 (0.0022)
Ensembling (NB) 0.895 (0.0006) 0.023 (0.0000) 35.147 (0.210) 53087.0 (179.24) 0.307 (0.0009) 0.745 (0.0002)
Ensembling (Boosting) 0.961 (0.0018) 0.006 (0.0000) 12.542 (0.589) 130913.0 (5.48) 0.945 (0.0004) 0.707 (0.0014)

Pythia-160M

Base SAE 0.906 (0.0003) 0.008 (0.0000) 32.965 (0.077) 15804.5 (0.02) 0.912 (0.0013) 0.677 (0.0026)
Expanded SAE 0.987 (0.0041) 0.008 (0.0000) 4.387 (1.486) 127821.0 (113.7) 0.978 (0.0006) 0.204 (0.0006)
Ensembling (NB) 0.929 (0.0000) 0.008 (0.0000) 24.704 (0.019) 50390.0 (0.05) 0.912 (0.0006) 0.731 (0.0017)
Ensembling (Boosting) 0.998 (0.0021) 0.008 (0.0000) 0.845 (0.547) 117018.2 (0.09) 0.986 (0.0004) 0.680 (0.0025)

Gemma 2-2B

Base SAE 0.920 (0.0006) 0.059 (0.0002) 716.659 (5.875) 16013.0 (5.88) 0.768 (0.0016) 0.581 (0.0006)
Expanded SAE 0.948 (0.0012) 0.021 (0.0001) 472.330 (10.759) 127779.0 (69.33) 0.993 (0.0003) 0.268 (0.0021)
Ensembling (NB) 0.974 (0.0006) 0.059 (0.0000) 234.128 (6.228) 58859.6 (295.38) 0.769 (0.0007) 0.633 (0.0014)
Ensembling (Boosting) 0.995 (0.0003) 0.021 (0.0002) 46.538 (2.923) 128415.6 (114.89) 0.989 (0.0003) 0.583 (0.0009)

5.3 USE CASE 1: CONCEPT DETECTION

Interpretability use cases of SAEs such as debiasing, understanding sparse circuits, and hypothesis
generation often require individual SAE features to correspond to semantic concepts (Cunningham
et al., 2023; Marks et al., 2024; Movva et al., 2025). Therefore, here we apply our ensemble
approaches to detect semantic concepts across a range of domains. Specifically, per-token activations
are encoded using an ensembled SAE, and mean-pooling is applied to obtain a sequence-level
embedding. The SAE feature having the maximum mean difference between samples with and
without the concept in the training set is selected to train a logistic regression classifier. Finally,
accuracy on a held-out test set is used to evaluate the concept detection performance. We note that
this evaluation procedure follows prior work (Gao et al., 2024; Karvonen et al., 2025).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Setup. We train a ReLU SAE as the base SAE on the residual stream activations from layer 4 of
Pythia-70M, with 100 million tokens from the Pile (Gao et al., 2020). This setting is chosen since
it has been used for concept-level tasks (Karvonen et al., 2024; Marks et al., 2024). Our concept
detection use case encompasses four datasets: (1) Amazon Review (Sentiment): classifying the
sentiment of the review (1 vs. 5 stars), (2) GitHub Code: identifying the coding language from
source code, (3) AG News: classifying news articles by topics, and (4) European Parliament:
detecting the language of a document.

Results. Table 2 illustrates the results of the concept detection task for our ensemble approaches
(with 8 SAEs in each ensemble). Comparing the two ensemble approaches, naive bagging generally
performs better than boosting. One reason for the higher performance of naive bagging could be
that it identifies features at a conceptual hierarchy which is suitable for this task, while boosting can
potentially identify features that are too specific. However, multiple specific features can be combined
to detect a more general concept. Indeed, boosting can perform better than naive bagging when the
top 5 concept-associated features are considered instead of using only the top feature (Supplementary
Table 1). Therefore, naive bagging should be used for applications where each concept is mapped
to only one SAE feature, whereas boosting excels when each concept is mapped to multiple SAE
features. Overall, we observe that ensembling performs better than the base SAE and an expanded
SAE across all the concept detection tasks (Table 2).

Table 2: Test accuracy of the logistic regression classifier for the top concept-associated feature across
four concept detection tasks for ensembles with 8 SAEs. Means along with 95% confidence intervals
are reported across 5 experiment runs.

Amazon
Review

(Sentiment)

GitHub Code
(Language)

AG News
(Topic)

European
Parliament
(Language)

Base SAE 0.618 (0.030) 0.711 (0.020) 0.733 (0.021) 0.938 (0.016)
Expanded SAE 0.600 (0.032) 0.682 (0.025) 0.746 (0.021) 0.942 (0.009)
Ensembling (NB) 0.631 (0.036) 0.715 (0.012) 0.742 (0.037) 0.943 (0.016)
Ensembling (Boosting) 0.624 (0.037) 0.682 (0.021) 0.759 (0.021) 0.920 (0.015)

5.4 USE CASE 2: SPURIOUS CORRELATION REMOVAL

Neural networks have been previously shown to encode spurious correlations between non-essential
input signals (e.g. image background) and the target label, which can negatively impact their
generalization performance, robustness, and trustworthiness (DeGrave et al., 2021; Ye et al., 2024).
Such biases can get exacerbated in more complex networks like large language models (Kotek et al.,
2023; Navigli et al., 2023). Motivated by this, we consider the task of spurious correlation removal
(SCR), as proposed in Karvonen et al. (2024). The evaluation procedure here follows Karvonen
et al. (2025) and is an automated version of Sparse Human-Interpretable Feature Trimming (SHIFT)
by Marks et al. (2024).

Setup. The goal of SCR is to identify specific SAE features for the spurious signal and debias a
classifier by ablating those features. Here we use the Bias in Bios dataset (De-Arteaga et al., 2019),
which maps professional biographies to profession and gender. First, the dataset is filtered for a
pair of professions (e.g. professor and nurse) and then it is partitioned into two sets: one which
is balanced in terms of profession and gender, and the other with biased gender association for a
particular profession (e.g. male professors and female nurses). Then, a linear classifier Cb is trained
on the biased set using the activations from a language model. The goal is to debias this classifier to
improve the accuracy on classifying profession in an unbiased held-out set.

To achieve that, a set of top L SAE features is identified based on their probe attribution scores
for a probe trained to predict the spurious signal (i.e. gender) (Karvonen et al., 2025). We use the
same base SAE setup as the one used in the concept detection task – a ReLU SAE trained using
Pythia-70M activations with 100 million tokens. Then, a modified classifier Cm is trained after
removing the spurious signal by zero-ablating the L SAE features. The predictive performance of the
modified classifier Cm on profession for the held-out, balanced dataset indicates the SAE quality.
Following Karvonen et al. (2025), the normalized evaluation score SSHIFT is defined as:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

SSHIFT =
Aabl −Abase

Aoracle −Abase
,

where Aabl is the accuracy for Cm, Abase is the accuracy for Cb, and Aoracle is the oracle accuracy
with a classifier trained on a balanced dataset. It is worth noting that Abase and Aoracle do not depend
on SAEs.

Results. The (ensembled) SAEs from Section 5.3 are used here, with L = 20 features selected,
following prior work (Karvonen et al., 2025). Table 3 shows the performance of our ensemble
approaches for the SCR task across four pairs of profession, with the first profession biased towards
males and the second towards females. Comparing the ensemble approaches, naive bagging does
not perform as well as the baselines, which could be because in naive bagging there are more than L
similar features related to the spurious signal, and all of those features need to be ablated to observe
an improved Aabl. In contrast, boosting outperforms naive bagging and the baselines, suggesting that
it is more effective in isolating and removing gender-related features. Overall, these results show
that ensembling can outperform the base SAE and an expanded SAE across all pairs of professions.
Similar trends are observed as the number of top gender-related features L is further increased
(Supplementary Figure 4).

Table 3: SSHIFT scores for the spurious correlation removal task with the top 20 gender-related
features identified across four pairs of professions for ensembles with 8 SAEs. Means along with
95% confidence intervals are reported across 5 experiment runs.

Professor
vs. Nurse

Architect
vs. Journalist

Surgeon
vs. Psychologist

Attorney
vs. Teacher

Base SAE 0.039 (0.008) 0.004 (0.006) 0.027 (0.006) 0.017 (0.003)
Expanded SAE 0.047 (0.014) 0.006 (0.005) 0.037 (0.009) 0.021 (0.007)
Ensembling (NB) 0.021 (0.003) 0.004 (0.001) 0.014 (0.002) 0.003 (0.005)
Ensembling (Boosting) 0.066 (0.016) 0.013 (0.011) 0.045 (0.014) 0.029 (0.003)

6 DISCUSSION

In this work, we propose and formalize ensembling SAEs as a way to improve performance by
leveraging the feature variability of SAEs with the same architecture and hyperparameters. We
instantiate two ensembling approaches, naive bagging and boosting. Theoretically, we justify both
approaches as ways to improve reconstruction and show that ensembling in the output space of
SAEs is equivalent to concatenation in the feature space. Empirically, we show that ensembling
improves intrinsic performance, leading to better reconstruction of language model activations, more
diverse features, and improved stability. We also demonstrate the practical utility of our ensembling
approaches through quantitative validation on two downstream use cases, where ensembling can also
lead to performance improvement.

Our ensemble approaches do come with some limitations. Both naive bagging and boosting are
computationally more expensive than training the base SAE, since they require multiple SAEs to
be trained. While this can be run in parallel for naive bagging, boosting has to be run sequentially.
While ensembling performs better than a single SAE across all intrinsic metrics, this does not always
translate to better downstream performance. For example, naive bagging could result in redundant
features, causing a performance drop for tasks where multiple features are selected for ablation. On
the other hand, boosting could learn features too specific, leading to lower performance for detecting
high-level concepts with individual features. Thus, different ensemble approaches should be used
based on the specific goals and procedures of downstream applications.

As a framework, SAE ensembling can be considered a meta-algorithm, which can be extended to
different settings. We scope this work to focus on SAEs with the same architecture and hyperparame-
ters, but future directions can consider ensembling (stacking) different architectures such as SAEs
with different activation functions and sizes. Beyond language models, ensembling can also be used
for SAEs trained on activations from models of other input domains (e.g. activations from vision
models). Finally, future work can also explore ensembling from theoretical perspectives beyond
reconstruction, such as feature identification.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

The code to implement and evaluate the ensembling methods has been submitted as part of the
supplementary material. It includes a README that describes the steps to obtain the datasets, train the
base SAE, train the ensembling methods, and run the evaluations. Pseudocode for boosting is provided
in Algorithm 1. Implementation details about the data and compute, along with hyperparameter
selection curves are provided in Appendix F.

8 LLM USAGE

LLMs were used to identify and fix typos along with minor edits to improve presentation. No other
aspects of writing the manuscript used LLMs.

REFERENCES

Charu C Aggarwal. Outlier ensembles: position paper. ACM SIGKDD Explorations Newsletter, 14
(2):49–58, 2013.

Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level features
with matryoshka sparse autoencoders. arXiv preprint arXiv:2503.17547, 2025.

David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Bloom. A is
for absorption: Studying feature splitting and absorption in sparse autoencoders. arXiv preprint
arXiv:2409.14507, 2024.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman Kalai. Bias in bios: A
case study of semantic representation bias in a high-stakes setting. In proceedings of the Conference
on Fairness, Accountability, and Transparency, pages 120–128, 2019.

Alex J DeGrave, Joseph D Janizek, and Su-In Lee. Ai for radiographic covid-19 detection selects
shortcuts over signal. Nature Machine Intelligence, 3(7):610–619, 2021.

Carlotta Domeniconi and Muna Al-Razgan. Weighted cluster ensembles: Methods and analysis.
ACM Transactions on Knowledge Discovery from Data (TKDD), 2(4):1–40, 2009.

Nasrollah Etemadi. An elementary proof of the strong law of large numbers. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete, 55(1):119–122, 1981.

Eoin Farrell, Yeu-Tong Lau, and Arthur Conmy. Applying sparse autoencoders to unlearn knowledge
in language models. arXiv preprint arXiv:2410.19278, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Thomas Fel, Victor Boutin, Louis Béthune, Rémi Cadène, Mazda Moayeri, Léo Andéol, Mathieu
Chalvidal, and Thomas Serre. A holistic approach to unifying automatic concept extraction
and concept importance estimation. Advances in Neural Information Processing Systems, 36:
54805–54818, 2023.

Thomas Fel, Ekdeep Singh Lubana, Jacob S Prince, Matthew Kowal, Victor Boutin, Isabel Pa-
padimitriou, Binxu Wang, Martin Wattenberg, Demba Ba, and Talia Konkle. Archetypal sae:
Adaptive and stable dictionary learning for concept extraction in large vision models. arXiv
preprint arXiv:2502.12892, 2025.

Xiaoli Zhang Fern and Carla E Brodley. Solving cluster ensemble problems by bipartite graph
partitioning. In Proceedings of the twenty-first international conference on Machine learning,
page 36, 2004.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Joydeep Ghosh and Ayan Acharya. Cluster ensembles. Wiley interdisciplinary reviews: Data mining
and knowledge discovery, 1(4):305–315, 2011.

Sai Sumedh R Hindupur, Ekdeep Singh Lubana, Thomas Fel, and Demba Ba. Projecting assumptions:
The duality between sparse autoencoders and concept geometry. arXiv preprint arXiv:2503.01822,
2025.

Adam Karvonen, Can Rager, Samuel Marks, and Neel Nanda. Evaluating sparse autoencoders on
targeted concept erasure tasks. arXiv preprint arXiv:2411.18895, 2024.

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau,
Eoin Farrell, Callum McDougall, Kola Ayonrinde, et al. Saebench: A comprehensive benchmark
for sparse autoencoders in language model interpretability. arXiv preprint arXiv:2503.09532, 2025.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Hadas Kotek, Rikker Dockum, and David Sun. Gender bias and stereotypes in large language models.
In Proceedings of the ACM collective intelligence conference, pages 12–24, 2023.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse
feature circuits: Discovering and editing interpretable causal graphs in language models. arXiv
preprint arXiv:2403.19647, 2024.

Rajiv Movva, Kenny Peng, Nikhil Garg, Jon Kleinberg, and Emma Pierson. Sparse autoencoders for
hypothesis generation. arXiv preprint arXiv:2502.04382, 2025.

Roberto Navigli, Simone Conia, and Björn Ross. Biases in large language models: origins, inventory,
and discussion. ACM Journal of Data and Information Quality, 15(2):1–21, 2023.

Kyle O’Brien, David Majercak, Xavier Fernandes, Richard Edgar, Jingya Chen, Harsha Nori, Dean
Carignan, Eric Horvitz, and Forough Poursabzi-Sangde. Steering language model refusal with
sparse autoencoders. arXiv preprint arXiv:2411.11296, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gonçalo Paulo and Nora Belrose. Sparse autoencoders trained on the same data learn different
features. arXiv preprint arXiv:2501.16615, 2025.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders. arXiv preprint arXiv:2404.16014, 2024a.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders. arXiv preprint arXiv:2407.14435, 2024b.

Sukrut Rao, Sweta Mahajan, Moritz Böhle, and Bernt Schiele. Discover-then-name: Task-agnostic
concept bottlenecks via automated concept discovery. In European Conference on Computer
Vision, pages 444–461. Springer, 2024.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pages 23965–23998. PMLR,
2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 7959–7971, 2022b.

Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, and Aidong Zhang. Spurious correlations in
machine learning: A survey. arXiv preprint arXiv:2402.12715, 2024.

Arthur Zimek, Ricardo JGB Campello, and Jörg Sander. Ensembles for unsupervised outlier detection:
challenges and research questions a position paper. Acm Sigkdd Explorations Newsletter, 15(1):
11–22, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A THEORETICAL RESULTS

Here we (re-)state and prove our results from Section 3.2, Section 4.1, and Section 4.2.

Proposition 1. Suppose there are J SAEs g(·; θ(1)), ..., g(·; θ(J)), with decoder matrices
Wdec

(1), ...,Wdec
(J) ∈ Rd×k and decoder biases bdec

(1), ...,bdec
(J) ∈ Rd. For a given neural

network activation a ∈ Rd, let c(1), ..., c(J) ∈ Rk denote the feature coefficients. Then ensembling
the J SAEs is equivalent to reconstructing a with:

â = Wdecc+ bdec =

kJ∑
i′=1

ci′fi′ + bdec, (10)

where

c =

α(1)c(1)

...
α(J)c(J)

 , Wdec =
[
Wdec

(1) · · ·Wdec
(J)

]
, bdec =

J∑
j=1

α(j)bdec
(j), (11)

and fi′ = Wdec[:, i
′], with c ∈ RkJ ,Wdec ∈ Rd×kJ ,bdec ∈ Rd.

Proof. Based on the definition of an SAE ensemble in Equation (4) and the definition of feature
coefficients, we have

â =

J∑
j=1

α(j)
(
Wdec

(j)c(j) + bdec
(j)

)
(12)

=
[
Wdec

(1) · · ·Wdec
(J)

] α(1)c(1)

...
α(J)c(J)

+

J∑
j=1

α(j)bdec
(j) (13)

= Wdecc+ bdec, (14)

where Equation (13) follows from observing that the sum of matrix-vector product is equivalent to
the product of the concatenated matrix and vector.

Here, we provide a lemma showing the bias-variance decomposition for reconstructing a neural
network activation with an ensembled SAE (Section 3.2).

Lemma 1. Given a neural network activation a(∗), and the ensembled SAE gEns(·; {θ(j)}Jj=1) trained
on activations {a(n)}Nn=1, the expected reconstruction error can be decomposed into a bias term and
a variance term. That is,

E{θ(j)}J
j=1|{a(n)}N

n=1

[∥∥∥a(∗) − gEns(a
(∗); {θ(j)}Jj=1)

∥∥∥2
2

]
(15)

=
∥∥∥a(∗) − E{θ(j)}J

j=1|{a(n)}N
n=1

[gEns(a
(∗); {θ(j)}Jj=1)]

∥∥∥2
2︸ ︷︷ ︸

bias term

(16)

+E{θ(j)}J
j=1|{a(n)}N

n=1

[∥∥∥E{θ(j)}J
j=1|{a(n)}N

n=1
[gEns(a

(∗); {θ(j)}Jj=1]− gEns(a
(∗); {θ(j)}Jj=1)

∥∥∥2
2

]
︸ ︷︷ ︸

variance term

.

(17)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. Since all the expectations are taken with respect to the same randomness, their subscripts are
dropped for notational ease. Also, let Θ(J) = {θ(j)}Jj=1. We have

E
[∥∥∥a(∗) − gEns(a

(∗); Θ(J))
∥∥∥2
2

]
(18)

=E
[∥∥∥a(∗) − E[gEns(a

(∗); Θ(J))] + E[gEns(a
(∗); Θ(J))]− gEns(a

(∗); Θ(J))
∥∥∥2
2

]
(19)

=E
[∥∥∥a(∗) − E[gEns(a

(∗); Θ(J))]
∥∥∥2
2

]
(20)

+ E
[∥∥∥E[gEns(a

(∗); Θ(J))]− gEns(a
(∗); Θ(J))

∥∥∥2
2

]
(21)

+ 2E
[(

a(∗) − E[gEns(a
(∗); Θ(J))]

)⊤ (
E[gEns(a

(∗); Θ(J))]− gEns(a
(∗); Θ(J))

)]
. (22)

Because a(∗) and E[gEns(a
(∗); Θ(J))] are constants with respect to the expectation, for (20) we have

E
[∥∥∥a(∗) − E[gEns(a

(∗); Θ(J))]
∥∥∥2
2

]
=

∥∥∥a(∗) − E[gEns(a
(∗); Θ(J))]

∥∥∥2
2
, (23)

which is the stated bias term.

For the last term in (22), we have

E
[(

a(∗) − E[gEns(a
(∗); Θ(J))]

)⊤ (
E[gEns(a

(∗); Θ(J))]− gEns(a
(∗); Θ(J))

)]
(24)

=
(
a(∗) − E[gEns(a

(∗); Θ(J))]
)⊤ (

E[gEns(a
(∗); Θ(J))]− E[gEns(a

(∗); Θ(J))]
)
= 0, (25)

again because a(∗) and E[gEns(a
(∗); Θ(J))] are constants with respect to the expectation. Taken

together, we have

E
[∥∥∥a(∗) − gEns(a

(∗); Θ(J))
∥∥∥2
2

]
(26)

=
∥∥∥a(∗) − E[gEns(a

(∗); Θ(J))]
∥∥∥2
2
+ E

[∥∥∥E[gEns(a
(∗); Θ(J))]− gEns(a

(∗); Θ(J))
∥∥∥2
2

]
, (27)

where the first term is the stated bias term, and the second term is the stated variance term.

We now show that naive bagging (Section 4.1) can reduce the reconstruction variance above. Formally,
we have the following proposition.

Proposition 2. Given a neural network activation a(∗) and the ensembled SAE gNB(·; {θ(j)}Jj=1)

obtained through naive bagging trained on activations {a(n)}Nn=1, the variance term in Lemma 1
goes to zero almost surely as J →∞.

Proof. For notational ease, let A = {a(n)}Nn=1, and Θ(J) = {θ(j)}Jj=1. By the definition of naive
bagging, we have

gNB(a
(∗); Θ(J)) =

1

J

J∑
j=1

g(a(∗); θ(j)). (28)

It follows that the variance term in Lemma 1 can be written as

EΘ(J)|A


∥∥∥∥∥∥EΘ(J)|A

 1

J

J∑
j=1

g(a(∗); θ(j))

− 1

J

J∑
j=1

g(a(∗); θ(j))

∥∥∥∥∥∥
2

2

 (29)

=EΘ(J)|A

∥∥∥∥∥∥Eθ|A[g(a(∗); θ)]− 1

J

J∑
j=1

g(a(∗); θ(j))

∥∥∥∥∥∥
2

 , (30)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where (30) follows from the linearity of expectation, and from the fact that θ(1), ..., θ(J) are identically
distributed when conditioned on A.

For practical neural networks and SAEs, we can assume that

Eθ|A

[
gq(a

(∗); θ)
]
<∞, (31)

for each dimension q ∈ [d]. Furthermore, conditioned on A, the trainings of θ(1), ..., θ(J) are
identically and independently distributed. Therefore, we can apply the strong law of large num-
bers (Etemadi, 1981), obtaining

1

J

J∑
j=1

gq(a
(∗); θ(j)) = Eθ|A

[
gq(a

(∗); θ)
]

(32)

almost surely as J →∞. It then follows that

1

J

J∑
j=1

g(a(∗); θ(j)) = Eθ|A

[
g(a(∗); θ)

]
, (33)

and for the variance term in Lemma 1:

EΘ(J)|A


∥∥∥∥∥∥Eθ|A[g(a(∗); θ)]− 1

J

J∑
j=1

g(a(∗); θ(j))

∥∥∥∥∥∥
2

2

 (34)

=EΘ(J)|A

[∥∥∥Eθ|A[g(a(∗); θ)]− Eθ|A[g(a(∗); θ)]
∥∥∥2
2

]
= 0, (35)

almost surely as J →∞.

Remark 2. We note that all the expectations in the bias-variance decomposition in Lemma 1 are
conditioned on the specific training set {a(n)}Nn=1. This conditioning is needed for Proposition 2 to
hold. Otherwise separate training runs of the SAE are dependent through the training set.

We now discuss the two assumptions needed for bounding the bias term in Lemma 1 for boosting
(Section 4.2).
Assumption 1. For a given neural network activation a(∗) and the ensembled SAE gBoost(·; {θ(j)}Jj=1)

obtained through boosting trained on the activations {a(n)}Nn=1, we assume that∥∥∥a(∗) − E{θ(j)}J
j=1|{a(n)}N

n=1
[gBoost(a

(∗); {θ(j)}Jj=1)]
∥∥∥2
2

(36)

≤ 1

N

N∑
n=1

∥∥∥a(n) − E{θ(j)}J
j=1|{a(n)}N

n=1
[gBoost(a

(n); {θ(j)}Jj=1)]
∥∥∥2
2
+ εG, (37)

for some constant εG > 0.
Remark 3. Assumption 1 is essentially a generalization bound on the reconstruction performance
for boosting. Intuitively, this assumption can hold because SAEs are regularized. However, note that
this assumption can break down when a(∗) is much different from {a(n)}Nn=1, which is a general
pitfall for generalization bounds.

Assumption 2. For the ensembled SAE gBoost(·; {θ(j)}Jj=1) obtained through boosting trained on the
activations {a(n)}Nn=1, we assume that as J →∞,

1

N

N∑
n=1

∥∥∥a(n) − E{θ(j)}J
j=1|{a(n)}N

n=1
[gBoost(a

(n); {θ(j)}Jj=1)]
∥∥∥2
2
≤ εI , (38)

for some constant εI > 0.
Remark 4. Assumption 2 formalizes the intuition that boosting should be able to overfit almost
perfectly to the training set. However, there is some irreducible error εI because SAEs are simple
and regularized models. This intuition is empirically verified in Supplementary Figure 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We now present the proposition showing that boosting with more iterations can lead to a bounded
bias term in Lemma 1.

Proposition 3. For a given neural network activation a(∗) and the ensembled SAE gBoost(·; {θ(j)}Jj=1)

obtained through boosting trained on the activations {a(n)}Nn=1, under Assumption 1 and Assump-
tion 2 we have, as J →∞,∥∥∥a(∗) − E{θ(j)}J

j=1|{a(n)}N
n=1

[gBoost(a
(∗); {θ(j)}Jj=1)]

∥∥∥2
2
≤ ε, (39)

for some constant ε > 0.

Proof. The proof follows immediately under the assumptions. We have∥∥∥a(∗) − E{θ(j)}J
j=1|{a(n)}N

n=1
[gBoost(a

(∗); {θ(j)}Jj=1)]
∥∥∥2
2

(40)

≤ 1

N

N∑
n=1

∥∥∥a(n) − E{θ(j)}J
j=1|{a(n)}N

n=1
[gBoost(a

(n); {θ(j)}Jj=1)]
∥∥∥2
2
+ εG (41)

≤εI + εG, (42)

where (41) uses Assumption 1, and (42) uses Assumption 2. Setting ε = εI + εG completes the
proof.

Remark 5. Proposition 3 is not surprising given Assumption 1 and Assumption 2. However, this
formalization gives us insights about reasons why boosting may fail to reduce the bias term in the
generalization region. That is, Assumption 1 or Assumption 2 may not hold (e.g. due to distribution
shift or having too many constraints on the SAE, respectively).

Remark 6. Finally, we note that Proposition 2 and Proposition 3 are both asymptotic results with
respect to the number of SAEs in the ensemble, primarily serving to motivate naive bagging and
boosting from the perspective of the reconstruction error. Future work that relates reconstruction
to the identifiability of human-interpretable features would be more directly useful for downstream
interpretability tasks.

Ite
rat

ion
 1

Ite
rat

ion
 2

Ite
rat

ion
 3

Ite
rat

ion
 4

Ite
rat

ion
 5

Ite
rat

ion
 6

Ite
rat

ion
 7

Ite
rat

ion
 8

15

20

25

30

35

40

M
SE

GELU-1L

Ite
rat

ion
 1

Ite
rat

ion
 2

Ite
rat

ion
 3

Ite
rat

ion
 4

Ite
rat

ion
 5

Ite
rat

ion
 6

Ite
rat

ion
 7

Ite
rat

ion
 8

0

5

10

15

20

25

30
Pythia-160M

Ite
rat

ion
 1

Ite
rat

ion
 2

Ite
rat

ion
 3

Ite
rat

ion
 4

Ite
rat

ion
 5

Ite
rat

ion
 6

Ite
rat

ion
 7

Ite
rat

ion
 8

100

200

300

400

500

600

700

Gemma 2-2b

Supplementary Figure 1: MSE loss at the last training step for each iteration of a boosting ensemble
with 8 SAEs. Reconstruction performance improves with each boosting iteration.

B EVALUATION METRICS

We evaluate our ensembling methods across six different evaluation metrics as described below. Here
N refers to the total number of per-token activations used for evaluation, and m the total number of
SAE features (e.g. m = kJ for ensembled SAEs and m = k for the base SAE).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Reconstruction performance. We use two standard metrics, mean squared error (MSE) and
explained variance, to evaluate the reconstruction of activations:

MSE =
1

N

N∑
n=1

∥∥∥a(n) − â(n)
∥∥∥2
2

, and

Explained Variance =
1

d

d∑
q=1

[
1−

∑N
n=1(a

(n)
q − â

(n)
q)2∑N

n=1(a
(n)
q − āq)2

]
,

where d is the activation dimensionality, and āq is the mean activation for the qth dimension.

Relative sparsity. Since SAEs with different number of features are compared (e.g., across different
ensemble sizes), we use a measure of sparsity relative to the total number of features:

Relative Sparsity =
1

N

N∑
n=1

∥∥c(n)∥∥
0

m
.

Diversity. This metric counts the number of dissimilar features in an SAE in terms of the maximum
consine similarity:

Diversity =

m∑
i=1

1

[
max
i̸=j
|⟨fi, fj⟩| ≤ τ

]
,

where τ > 0 is a threshold. Note that this metric does not depend on the evaluation tokens.

Connectivity. This metric, proposed in (Fel et al., 2025), measures the number of distinct pairs of
SAE feature coefficients that are activated together across samples. It quantifies the diversity of the
feature coefficients, with a high score indicating that a broad range of activations can be combined.

Connectivity = 1−
(

1

m2

∥∥C⊤C
∥∥
0

)
,

where C ∈ RN×m is the matrix of feature coefficients across all samples, and here ∥·∥0 counts the
number of non-zero elements in a matrix.

Stability. This metric, adapted from (Paulo and Belrose, 2025), measures the maximum cosine
similarity of the features that can be obtained across multiple runs of SAE training (with or without
ensembling). Higher stability corresponds to the discovery of features that are similar across different
runs. Note that this metric does not depend on the evaluation tokens. Given a total of S training runs,
the stability for the sth run is:

Stability =
1

m

m∑
i=1

max
s′∈[S]\s,j∈[m]

⟨f (s)i , f
(s′)
j ⟩.

C DETAILS ON THE EXPANDED SAE BASELINE

For the expanded TopK SAE with Pythia-160M, we set K to the L0 norm of the ensembled SAEs.
For SAE architectures without direct control over sparsity, we choose the sparsity achieved by
boosting as the target L0. The sparsity of boosting instead of naive bagging is chosen for two reasons.
Conceptually, naive bagging results in some redundant features, which contribute to higher L0 but do
not reflect more diverse feature directions. Therefore, comparing with the L0 of boosting provides
a more representative baseline when assessing whether the expanded SAE can match or exceed
the performance of an ensemble. Empirically, we observe that it is impractical to obtain an L0
comparable to naive bagging. For JumpReLU SAEs with Gemma 2-2B, even a very small sparsity
coefficient (1e-7) gives a lower L0 for the expanded SAE (around 3124) compared to the L0 of naive
bagging (around 7648).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D RESULTS FOR GELU-1L AND PYTHIA-160M

Here we show the results for the intrinsic evaluations of GELU-1L (Supplementary Figure 2) and
Pythia-160M (Supplementary Figure 3), with τ = 0.7 for the diversity metric. Overall, the trend
is similar to that of Gemma 2-2B; performance on most of the metrics improves as more SAEs
are added to the ensemble, although it saturates for some of them around 8 SAEs. Also, boosting
outperforms naive bagging in all metrics except for stability.

2 4 6 8

0.88

0.90

0.92

0.94

0.96

Ex
pl

ai
ne

d
Va

ria
nc

e
(

)

2 4 6 80.005

0.010

0.015

0.020

Re
la

tiv
e

Sp
ar

sit
y

(
)

2 4 6 8

20

30

40

M
SE

 (
)

2 4 6 8
Number of SAEs

25000

50000

75000

100000

125000

Di
ve

rs
ity

 (
)

2 4 6 8
Number of SAEs

0.4

0.6

0.8

Co
nn

ec
tiv

ity
 (

)

2 4 6 8
Number of SAEs

0.71

0.72

0.73

0.74

0.75

St
ab

ilit
y

(
)

ReLU SAE, gelu-1l
Naive Bagging Boosting

Supplementary Figure 2: Intrinsic evaluation of the ensembling approaches for GELU-1L. The
shaded regions indicate 95% confidence intervals across 5 experiment runs.

2 4 6 8

0.92

0.94

0.96

0.98

1.00

Ex
pl

ai
ne

d
Va

ria
nc

e
(

)

2 4 6 8
0.0076

0.0078

0.0080

0.0082

0.0084

Re
la

tiv
e

Sp
ar

sit
y

(
)

2 4 6 8
0

10

20

30

M
SE

 (
)

2 4 6 8
Number of SAEs

20000

40000

60000

80000

100000

120000

Di
ve

rs
ity

 (
)

2 4 6 8
Number of SAEs

0.92

0.94

0.96

0.98

Co
nn

ec
tiv

ity
 (

)

2 4 6 8
Number of SAEs

0.68

0.70

0.72

St
ab

ilit
y

(
)

TopK SAE, pythia-160m, Layer 8
Naive Bagging Boosting

Supplementary Figure 3: Intrinsic evaluation of the ensembling approaches for Pythia-160M. The
shaded regions indicate 95% confidence intervals across 5 experiment runs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS FOR DOWNSTREAM USE CASES

Here we provide additional results for the downstream use cases (Section 5.3 and Section 5.4).

Supplementary Table 1 shows the test accuracy of a classifier trained using the top-5 concept-
associated features identified by the ensembling methods across four tasks. The results are slightly
different from those in Section 5.3, with boosting outperforming naive bagging and the base SAE
for four out of the five tasks. This suggests that, while boosting does not identify the top feature,
additional features from boosting can be selected to improve concept detection.

Supplementary Table 1: Test accuracy of the logistic regression classifier for the top-5 concept-
associated feature across five concept detection tasks. SAE Ensembles consist of 8 SAEs. Means
along with 95% confidence intervals are reported across 5 experiment runs.

Amazon
Review

(Sentiment)

GitHub Code
(Language)

AG News
(Topic)

European
Parliament
(Language)

Base SAE 0.702 (0.015) 0.805 (0.004) 0.851 (0.005) 0.981 (0.003)
Expanded SAE 0.703 (0.005) 0.786 (0.012) 0.862 (0.011) 0.986 (0.001)
Ensembling (NB) 0.689 (0.015) 0.728 (0.005) 0.783 (0.023) 0.952 (0.004)
Ensembling (Boosting) 0.708 (0.016) 0.795 (0.016) 0.863 (0.008) 0.988 (0.000)

Supplementary Figure 4 shows the SSHIFT scores for the spurious correlation removal task as the
number of top gender-related features is varied. The trend is similar to what is observed in Section 5.4,
with boosting outperforming naive bagging and the baselines for different numbers of ablated gender-
related SAE features. The performance generally increases as the number of ablated features increases,
indicating that there are multiple gender related features which are correctly identified by all the
methods. This is especially worth noting for naive bagging, as increasing the number of ablated
features might lead to all the redundant features related to the spurious signal getting ablated.

25 50 75 100
Number of Ablated

SAE Features

0.02

0.04

0.06

0.08

0.10

0.12

0.14

SH
IF

T
Sc

or
e

Professor vs. Nurse

25 50 75 100
Number of Ablated

SAE Features

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Architect vs. Journalist

25 50 75 100
Number of Ablated

SAE Features

0.02

0.04

0.06

0.08

Surgeon vs. Psychologist

25 50 75 100
Number of Ablated

SAE Features

0.00

0.02

0.04

0.06

0.08

Attorney vs. Teacher
Base SAE Expanded SAE Ensembling (NB) Ensembling (Boosting)

Supplementary Figure 4: SSHIFT scores for the spurious correlation removal task vs. various numbers
of top gender-related features identified across four pairs of professions. SAE ensembles consist of 8
SAEs. Means across 5 experiment runs are shown.

F IMPLEMENTATION DETAILS

Here we provide additional details about the data, compute, and hyperparameter selection.

F.1 DATASET AND MODELS

The Pile dataset (Gao et al., 2020) (with copyrighted contents removed) used for training the SAEs is
a large, diverse, and open-source English text dataset curated specifically for training general-purpose
language models. Its diverse components include academic papers (e.g., arXiv, PubMed Central),

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

books (e.g., Books3, BookCorpus2), code (from GitHub), web content (e.g., a filtered version of
Common Crawl called Pile-CC, OpenWebText2), and other sources like Wikipedia, Stack Exchange,
and subtitles. Beyond training, the Pile also serves as a benchmark for evaluating language models.
More recently, the Pile has become the standard dataset for training sparse autoencoders (Bussmann
et al., 2025; Cunningham et al., 2023; Lieberum et al., 2024; Marks et al., 2024; Paulo and Belrose,
2025).

All the language models we use have been previously used for training and evaluating sparse
autoencoders (Bricken et al., 2023; Gao et al., 2024; Lieberum et al., 2024; Paulo and Belrose, 2025).
Supplementary Table 2 provides additional details on the language models and the corresponding
SAE architectures.

Supplementary Table 2: Overview of the language models and SAE architectures used for intrinsic
evaluation and downstream use cases.

Language Model Num.
Params

Num.
Layers

Context
Size

Activation
Dimension

Layer
Used

SAE Arch.

Intrinsic Evaluation
GELU-1L 3.1M 1 1024 512 1 ReLU
Pythia-160M 162.3M 12 2048 768 8 TopK
Gemma 2-2B 2.1B 26 8192 2304 12 JumpReLU

Downstream Use Cases
Pythia-70M 70.4M 6 2048 512 4 ReLU

F.2 TRAINING

Our ensembling algorithms are implemented in PyTorch4 by adapting the SAELens library.5 The
pseudocode for boosting is summarized in Algorithm 1. For naive bagging, the training procedure for
each SAE in the ensemble is the same as the standard SAE training. All the SAEs and the ensembles
are trained on either an A100 GPU with 80GB of memory or an H100 NVL GPU with 93 GB of
memory using a batch size of 10000. Supplementary Table 3 shows the time taken for a single
experiment run on a single H100 GPU for ensembles with 8 SAEs. It is worth noting that naive
bagging can be parallelized across multiple GPUs, bringing down the training time to that of the base
SAE when the number of GPUs is equal to the number of SAEs in the ensemble.

Supplementary Table 3: Training times for the base SAE and one experiment run for ensembles with
8 SAEs on a single H100 GPU.

GELU-1L Pythia-160M Gemma 2-2B Pythia-70M
Base SAE 3h 2m 5h 43m 11h 7m 21m
Naive Bagging 1d 0h 16m 1d 21h 44m 3d 16h 56m 3h 56m
Boosting 1d 8h 26m 2d 0h 17m 5d 5h 26m 5h 35m

4https://pytorch.org/
5https://github.com/jbloomAus/SAELens/tree/main

20

https://pytorch.org/
https://github.com/jbloomAus/SAELens/tree/main

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Supplementary Table 4: Selected hyperparameter values for the base SAE. These hyperparameters
are held constant for all SAEs in the ensemble.

Language Model Learning Rate Expansion Factor TopK Sparsity Coefficient
GELU-1L 0.0003 32 – 0.75
Pythia-160M 0.0003 21 128 –
Gemma 2-2B 0.0003 7 – 0.75

Algorithm 1: Training algorithm for the jth iteration of boosting. Gradient descent with a
mini-batch size of 1 is shown as an illustration.
Input: Training activations {a(n)}Nn=1, learning rate α, sparsity coefficient λ, sparsity norm

coefficient p, activation function h(·), previous SAEs [g(·; θ(1)), ..., g(·; θ(j−1))]
Output: Trained SAE g(·; θ(j))
// Randomly initialize weights

initialize parameters θ(j) (i.e. Wenc
(j),benc

(j),Wdec
(j),bdec

(j))
initialize n = 0

while n < N do
// Determine residual from previous SAEs

initialize e = zeros_like(a(n))

for ℓ ∈ [j − 1] do
update e← e+ g(a(n) − e; θ(ℓ))

end
// Leftover residual

set r = a(n) − e
// Determine predicted residual and feature coefficients

calculate r̂ = g(r; θ(j))

calculate c = h(Wenc
(j)r + benc

(j))
// Calculate loss

set LBoost
(
a(n); θ(j)

)
= ∥r− r̂∥22 + λ ∥c∥p

// Gradient step

update θ(j) ← θ(j) − α∇θ(j)LBoost
(
a(n); θ(j)

)
// update n
update n← n+ 1

end

F.3 HYPERPARAMETER SELECTION

For the smallest model (GELU-1L), we conduct an extensive hyperparameter search across the
learning rate, sparsity coefficient, and the expansion factor (Supplementary Figure 5), where the
expansion factor refers to the multiplicative factor for the input activation dimensionality to get the
SAE’s hidden dimensionality (k = d× Expansion Factor). We select the hyperparameters that get
closest to 90% explained variance while having the smallest L0 to ensure that the reconstructions are
faithful to the original activations and the SAE decompositions are sparse.

For the larger Pythia-160M and Gemma 2-2B, we use the same learning rate from GELU-1L and
consider expansion factors which give SAEs with a similar dimensionality (k) as the SAE for GELU-
1L. We perform a sweep over the hyperparameter which controls the sparsity of the SAE (TopK
value for Pythia-160M and the L0 coefficient for Gemma 2-2B) and select the values that give us
an explained variance closest to 90% (Supplementary Figure 6). The final selected hyperparameter
values are provided in Supplementary Table 4.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000
L0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d
Va

ria
nc

e
LR = 3e-05

Expansion Factor
4
8
16
32

0 500 1000 1500 2000 2500
L0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d
Va

ria
nc

e

LR = 0.0001

0 500 1000 1500
L0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d
Va

ria
nc

e

LR = 0.0003

0 100 200 300 400 500
L0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d
Va

ria
nc

e

LR = 0.001

Hyperparameter curves for GELU-1L (ReLU SAE)

Supplementary Figure 5: Hyperparameter sweep performed for the GELU-1L activations with the
ReLU SAE across different learning rates, expansion factors, and sparsity coefficients.

100 200 300 400 500
L0

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Ex
pl

ai
ne

d
Va

ria
nc

e

Pythia-160M, Layer 8 (TopK SAE)

500 750 1000 1250 1500 1750 2000
L0

Gemma 2-2b, Layer 12 (JumpReLU SAE)

Supplementary Figure 6: Hyperparameter sweep performed for the Pythia-160M and Gemma 2-2B
activations with the TopK and JumpReLU SAEs, respectively. For Pythia-160M, the sweep is across
different values of K, and for Gemma 2-2B it is across different sparsity coefficients.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G ADDITIONAL THRESHOLDS FOR FEATURE DIVERSITY

Here we show how the diversity metric changes for different thresholds τ (Supplementary Figures 7,
8, 9) with the number of SAEs in the ensemble across all three language models. Overall the trend
remains the same as τ = 0.7, with boosting learning a higher number of dissimilar features than
naive bagging with each added SAE. Also, as expected, a smaller number of diverse features are
learned for lower thresholds.

2 4 6 8
0

20000

40000

60000

80000

100000

120000

Di
ve

rs
ity

 = 0.2
Naive Bagging
Boosting

2 4 6 8

 = 0.3

2 4 6 8

 = 0.4

2 4 6 8

 = 0.5

2 4 6 8
Number of SAEs

0

20000

40000

60000

80000

100000

120000

Di
ve

rs
ity

 = 0.6

2 4 6 8
Number of SAEs

 = 0.7

2 4 6 8
Number of SAEs

 = 0.8

2 4 6 8
Number of SAEs

 = 0.9

GELU-1L (ReLU SAE)

Supplementary Figure 7: Diversity metric evaluation for boosting and naive bagging across various
similarity thresholds for GELU-1L. Shaded regions indicate 95% confidence intervals across 5
experiment runs.

2 4 6 8
0

20000

40000

60000

80000

100000

120000

Di
ve

rs
ity

 = 0.2
Naive Bagging
Boosting

2 4 6 8

 = 0.3

2 4 6 8

 = 0.4

2 4 6 8

 = 0.5

2 4 6 8
Number of SAEs

0

20000

40000

60000

80000

100000

120000

Di
ve

rs
ity

 = 0.6

2 4 6 8
Number of SAEs

 = 0.7

2 4 6 8
Number of SAEs

 = 0.8

2 4 6 8
Number of SAEs

 = 0.9

Pythia-160M (TopK SAE)

Supplementary Figure 8: Diversity metric evaluation for boosting and naive bagging across various
similarity thresholds for Pythia-160M. Shaded regions indicate 95% confidence intervals across 5
experiment runs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2 4 6 80

20000

40000

60000

80000

100000

120000

Di
ve

rs
ity

 = 0.2
Naive Bagging
Boosting

2 4 6 8

 = 0.3

2 4 6 8

 = 0.4

2 4 6 8

 = 0.5

2 4 6 8
Number of SAEs

0

20000

40000

60000

80000

100000

120000

Di
ve

rs
ity

 = 0.6

2 4 6 8
Number of SAEs

 = 0.7

2 4 6 8
Number of SAEs

 = 0.8

2 4 6 8
Number of SAEs

 = 0.9

Gemma 2-2B (JumpReLU SAE)

Supplementary Figure 9: Diversity metric evaluation for boosting and naive bagging across various
similarity thresholds for Gemma 2-2B. Shaded regions indicate 95% confidence intervals across 5
experiment runs.

24

	Introduction
	Related Work
	Formalizing SAE Ensembles
	Notation
	SAE Ensembles

	Ensemble Methods for SAEs
	Naive Bagging
	Boosting

	Experiments
	Baselines
	Evaluating Ensembled SAEs with Intrinsic Metrics
	Setup
	Metrics
	Results

	Use Case 1: Concept Detection
	Use Case 2: Spurious Correlation Removal

	Discussion
	Reproducibility Statement
	LLM Usage
	Theoretical Results
	Evaluation Metrics
	Details on the Expanded SAE Baseline
	Results for GELU-1L and Pythia-160M
	Additional Results for Downstream Use Cases
	Implementation Details
	Dataset and Models
	Training
	Hyperparameter Selection

	Additional Thresholds for Feature Diversity

