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Abstract

While they are some of the few computa-
tional models that directly capture pragmatic
processes underlying language reasoning, cur-
rent Rational Speech Act (RSA) models of
metaphor are (1) not easily scalable, and (2)
do not align well with contemporary accounts
of metaphor comprehension. The following
research project leverages GloVe word vec-
tors to capture pragmatic language reason-
ing in metaphoric utterances using an updated
RSA framework. This updated framework bet-
ter aligns model predictions with Relevance
Theoretic and Construction Grammatical the-
ories of metaphor semantics. The model
yields high posterior probabilities for attributes
of metaphors that humans deem relevant in
metaphoric utterances over erroneous ones in
89% of all cases, validating the methodol-
ogy to generate prior probabilities for a RSA
framework. When presented with biased priors
like listeners are in many naturalistic conver-
sations, the model accurately matches human
judgements of the most topical attribute of a
topic/target indicated by a metaphoric utterance
90% of the time.

1 Introduction

Metaphor serves as an incredibly poignant com-
municative device allowing speakers to highlight
the specific attributes of a topic of conversation,
or a target, by means of referencing a seem-
ingly unrelated category or object in the world,
or what’s called the source (Lakoff and Johnson,
1980; Glucksberg et al., 1982). For example, if in
the midst of an argument I wanted to pejoratively
call my younger brother big, I could call him a
“whale”. While the statement is not literally true, a
listener sufficiently tuned into the context of our ar-
gument would be able to infer that the word “whale”
is here used to reference my brother’s corporeal
size.

Because of the complexity underlying metaphor
comprehension, computational descriptions of

metaphor comprehension are uncommon. Work
in Natural Language Processing (NLP) is often
more concerned with identifying whether or not an
utterance contains metaphor at all (Stowe et al.,
2019; Stowe and Palmer, 2018; Shaikh et al.,
2014; Mosolova et al., 2018; Rai and Chakraverty,
2020; Shutova, 2010), and such models are un-
perturbed by questions of comprehension more
broadly. Additionally, the few computational mod-
els of metaphor comprehension that do exist are
either only useful in analyzing small, hand-curated
datasets (Kao et al., 2014), or ignore the prag-
matic processes and factors that are important to
real-world metaphor comprehension (Dodge et al.,
2015; Huang and Arnold, 2016; Rosen, 2018; Biz-
zoni and Lappin, 2018; Mohler et al., 2014; Bolle-
gala and Shutova, 2013).

One way to scale computational models of lan-
guage processes in domains outside of metaphor
comprehension has been to leverage what are
known as word vectors. Word Vectors have been
a staple of NLP applications for some time. Word
vectors represent the semantic meaning of a word
by projecting words into an N-dimensional word
vector space (Mikolov et al., 2013; Pennington
et al., 2014; Levy and Goldberg, 2014). These vec-
tors are generated using the correlation of words
to their contexts—either a statistical model or an
artificial neural network (ANN) is used to predict a
word conditioned on its surrounding context, and a
portion of the output of that model is then used to
represent the meaning of that word as a vector of
numbers.

Despite their ubiquity in NLP applications, quan-
titative models that map word vectors to actual
human understanding are rare, making direct ap-
plication of word vectors to psycholinguistic mod-
els onerous. One study conducted by Grand et al.
shows that it is possible to arrange word vectors for
adjectives into dipole dimensions of meaning, and
then leverage these dimensions to extract judge-



ments about adjective associations to nouns that
are subsequently projected onto these dimensions.
The basic intuition being that if one were to take
a word and its antonym, and then two synonyms
for each of these two, one could subtract the GloVe
word vectors for each set of synonyms from the
set of antonyms, average these subtractions, and
create a stable dimension of meaning. From there,
one can project the word vectors for various nouns
onto these dimensions and their relative positions
on the dimension of meaning will correlate with
human judgements for adjective-noun pairings in
the real world. This makes Grand et al.’s dimen-
sions of meaning potentially useful in tasks where
one needs to map word vector semantics to human
judgements.

The Rational Speech Act (RSA) framework is
a well attested framework for modeling pragmatic
language comprehension broadly (Goodman and
Frank, 2016; Frank and Goodman, 2012). In an
RSA model, the process of language reasoning
is described in terms of a pragmatic listener who
assumes that a speaker will rationally select an
utterance that is maximally informative and easy
to unpack based on the assumed shared context
between the speaker and listener. As an additional
source of reasoning, in Question Under Discussion
RSA (QUD-RSA) models, the listener also brings
to bear their prior knowledge of what are the likely
questions that a speaker might be trying to answer
with their utterance, based on observations about
the state of the world.

Within the QUD-RSA framework, one model of
metaphor comprehension already exists. Due to
myriad constraints it is difficult to “scale” beyond
its single, experimental use-case, however. Fur-
thermore it makes strong assumptions about how
speakers and listeners reason about adjectives given
an utterance that make it difficult to align with
the most contemporary theories of metaphor com-
prehension. For example, in the model described
in Kao et al., the utterance “whale” is associated
specifically with three adjectives—*“large”, “grace-
ful” and “majestic”’, which are in turn organized
into a closed set of worlds containing a combina-
tion of 1-3 of these adjectives. Because of this,
it is assumed that when reasoning about “whale”,
that all three of these adjectives need be jointly rea-
soned about, and results in the model assigning the
highest probability to situations in which worlds
containing more than 1 of these specific adjectives

are almost always more likely. However, work in
both Construction Grammatical (CG) descriptions
of metaphor (Sullivan, 2009, 2014; Sikos et al.,
2008) and Relevance Theoretic (RT) approaches
to comprehension (Moreno, 2004; Carston, 2015)
provide a slew of evidence that the adjectives in-
voked by a metaphor are much more variable than
the assumptions made in Kao et al. (2014), highly
context dependent, and are reasoned about inde-
pendently from one another. Knowing this, static
mappings of adjectives to a metaphoric source like
those described in Kao et al. are insufficiently
flexible to capture the ways that people reason
about metaphoric utterances in daily communica-
tion. People do not seem to reason about “worlds”
in a way that aligns well with the assumptions un-
derlying the model proposed in (Kao et al., 2014).
If people are reasoning about worlds at all, those
worlds are certainly not composed of discrete, pre-
determined sets of adjectives.

So to recap: existing computational models of
metaphor comprehension all appear to bite one of
the following critiques: they either (1) do not fac-
tor in the pragmatic processes underlying metaphor
comprehension in the real world, (2) can’t be scaled
to more than a few examples, or (3) make assump-
tions about how humans associate relative adjec-
tives and descriptors with metaphor source domains
that are not supported by empirical and contempo-
rary theoretic accounts of metaphor comprehen-
sion.

While I agree that QUD-RSA models like Kao
et al.’s are the best starting point for capturing the
core, pragmatic reasoning that underlies human
metaphor comprehension, it is imperative to up-
date this existing framework to better match how
humans reason about metaphors—with relaxed as-
sumptions about how features are associated with
metaphor source domains, and are more broadly
generalizable (read: scalable). I believe that it is
possible to accomplish this by retooling the frame-
work to reason about features along dimensions of
meaning like those described in Grand et al., while
simultaneously relaxing the model to reason about
what dimensions of meaning are relevant as the
actual QUD. The result is a model that avoids the
restrictive constraints that the original (Kao et al.,
2014) model requires, and better matches what we
know about metaphor comprehension from RT and
CG perspectives. It also allows us to leverage NLP
based tools like word vectors to scale such a model-



a welcome bonus for myriad reasons.

In section 2, I’'ll describe the various sources
of data used in this study. Then, in section 3, I’ll
describe the the formal model I’ve built, and the
results of applying the novel model to the original
data from Kao et al. (2014). I’ll conclude this report
with a discussion of the results in section 4 as well
as possible future extensions for this work.

2 Data Used

In total, three distinct sources of data were used in
this research project. First and foremost, I used the
same animal names as those described in Kao et al..
Second, from the same study I used the experimen-
tal data collected by the researchers in experimental
conditions in experiment 2. In it, participants were
presented with a simple, single sentence sentence
scenario, followed by a single sentence contain-
ing a metaphor in which a fictional protagonist
was called one of the animal names from the ex-
perimental stimuli. Participants were then asked
to provide slider bar values for how much they
believed one of six adjectives was being invoked
by the metaphor—3 of those words were adjectives
found to be associated with the animal name in a
previous experiment, and the remaining 3 adjec-
tives were antonyms of the associated ones. The
values for the slider bars were then recorded as
percentages indicating how relevant participants
thought each of the provided adjectives were to the
intended meaning of the metaphoric utterance. In
some conditions (condition 2, also referred to as the
uniform prior condition) no context was provided
simulating a uniform prior on adjectives, whilst in
others (condition 4, also refferred to as the biased
prior or QUD condition) the researchers heavily
implied through the scenario that one of the adjec-
tives might be more relevant given the metaphor
simulating a biased prior towards the relevance of
one of the features. Note: all Person Identifying
Information(PII) was scrubbed by the original col-
lectors (Kao et al., 2014) prior to my accessing
it.

Finally, not all of the adjectives used in Kao
et al. (2014) correlated with one of the described
dimensions of meaning in Grand et al. (2018). To
augment the number of dimensions, then, I relied
on synonyms and antonyms for adjectives scraped
from thesaurus.com using a web scraper built in the
ScraPy python package. With the web scraped syn-
onyms and antonyms, I augmented the dimensions

of meaning described in Grand et al. (2018) with
new ones to cover all the adjectives and antonyms
described in Kao et al. (2014).

3 The Cognitive Model

The model as described in this paper extends the
logic described in Kao et al. (2014) to a distributed
model of lexical semantics, and relaxes the re-
striction on the model from reasoning about dis-
crete worlds containing a finite number of adjec-
tives, to reasoning about dimensions of meaning
relevant to an ongoing and potentially dynamic
discourse. It does so by leveraging the opera-
tion of semantic projection onto dimensions of
meaning as described in Grand et al. (2018). The
model was implemented in PyTorch, though the
GloVe embeddings leveraged were loaded in man-
ually from a pre-trained GloVe repository (Pen-
nington et al., 2014). The full code can be
found at https://github.com/zaqari/NAACL2022-
RSAMetaphor

To help visualize how this extension works, let’s
begin with a visualization. Let’s pretend that we
have projected word vectors for the names of ani-
mals onto a set of dimensions of meaning derived
using the same methods described in Grand et al.
(2018). This operation can be organized to yield a
matrix of values where every row is coincides with
one of the various animals in our data, and each
column coincides with a particular dimension of
meaning (i.e. large-small, majestic-inferior, etc.).
Let us also assume that we have projected a set
of adjectives onto each axis. On any axis, only a
subset of all adjectives in our vocabulary will be
useful on any axis. For simplicity we’ll assume that
the adjectives that are useful on an axis are a closed
set and are restricted to only the six adjectives used
to construct the axis as described in Grand et al.
(2018). Our “game” is to get the listener to select
the correct adjective from our vocabulary, using an
animal name as a stimulus, and their prior knowl-
edge of what dimensions of meaning are at play
in a given dialogue. Visually, this is the same as
selecting the correct rows from our matrix of adjec-
tives projected onto dimensions of meaning based
on the difference between the adjective f and utter-
ance u on that dimension of meaning D, and our
prior belief on which dimensions of meaning D are
relevant.
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The Literal Listener

Formally, the literal listener reasons about the error
between the value for an adjective f on a dimension
of meaning D and an utterance u on the same di-
mension of meaning. It is assumed that the smaller
the error, the more probable is that the adjective f
is part of the implied meaning of the utterance wu.
This process requires us to do the following: (1)
Quantify the error between animals and adjectives
on an adjective’s respective dimension of mean-
ing, and (2) quantify our belief that the distance of
the animal to the adjective is significant in some
meaningful way. To accomplish (1), we take the
squared percent error of the utterance/animal term
projected onto a dimension of meaning D, and
an adjective on the same dimensions of meaning
Dy, and (2) to quantify our belief that this dis-
tance is meaningful we use a half-Gaussian from
range [0, oo, with 1 = 0, and a single tune-able
hyper-parameter for the scale of the half-Gaussian,
o. The half-Gaussian in this case is useful in that
it directly captures the intuition that if the percent
error between an animal and an adjective on the
adjective’s dimension of meaning is zero, then we
would have maximum confidence that the animal
is a good, easily understandable substitution for
that specific adjective. We formalize these opera-
tions in equation 1. Let D be an the word vector
for adjective in question projected on a dimension
of meaning D and D,, be the word vector for the
animal name/utterance projected onto the same di-
mension. We use the Dirac-delta function to return
either a 1 or a O if the adjective f is useful on di-
mension of meaning D (with f being useful if it
was used to construct D per Grand et al. (2018)).
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Note: in the remainder of this paper, I set the value
of o = 1.25. This value was found using a simpli-
fied grid-search algorithm to maximize the poste-
rior probabilities output in section 3.

Utility and the Pragmatic Speaker

As mentioned in the overview the goal of the
speaker is to convey an adjective f. The utility
of an utterance u in evoking an adjective f on a
dimension of meaning D is the negative surprisal
that a listener would experience upon hearing v in
lieu of f when reasoning about D. In other words,

dfreD

the utility is how expected an utterance u might
be in lieu of an adjective f on the dimension of
meaning D.

A rational speaker wants to conjure up the cor-
rect adjective in the mind of a literal listener. It’s
assumed then that out of their vocabulary of utter-
ances that they would pick the specific utterance
u that has the highest utility in accomplishing this
goal. We model the way a speaker would choose an
utterance with the highest utility by using a softmax
decision rule, which has been shown to describe
an approximately rational agent (Sutton and Barto,
1998) in multi-choice tasks with varying rewards
per choice.

Si(ulf, D) oc err(lFD) 3)

Note: A is an optimality parameter that sets the
contrast between possible choices of alternative
utterances.

The Pragmatic Listener

Now, recall that the goal of a rational speaker is
to coerce a listener to select an appropriate adjec-
tive from a matrix of possible adjectives. However,
the listener has prior knowledge that the topic of
conversation is not literally whatever source the ut-
terance refers to. If I refer to my younger brother as
a “whale”, I do not mean that my younger brother is
literally a whale, but I do want the listener to pick
some relevant adjective or descriptor associated
with whales. The pragmatic listener thus needs to
keep track of the following four bits of information
to accomplish this—the first two have already been
previously discussed at the top of this description.

1. Their belief about what conditions would lead
a speaker to select the utterance w that the
listener heard.

2. What dimensions of meaning D are rele-
vant/probable during a dialogue.

3. The probability that the topic of conversation
is either literally an example of the source
evoked by u, or some other salient category.

4. The probability that an adjective f is a good
descriptor for an entity that belongs to the
source matching the utterance u and the actual
category that the topic of conversation belongs
to.



To formalize all these points, I need to introduce
one final variable—the formal category c that can
be either the source evoked by the utterance (i.e.
literally a “whale” in “my younger brother is a
whale”) or some other category which the topic
of conversation (i.e. my younger brother who I
called a “whale”) actually belongs to. We can thus
formalize a pragmatic listener that outputs a pos-
terior probability for adjectives f conditioned on
categories c as shown in equation 4.

Li(f,clu,D) x P(c ZP
4

3.1 Results

I test the model’s output on the original human data
collected in experiment 2 described in Kao et al.
(2014). Specifically, I look to conditions 2 (the uni-
form prior condition) and 4 (the biased prior/QUD
condition) from that experiment, corresponding to
the uniform prior condition where none of the ad-
jectives f are rendered more salient than another,
and the QUD-biased condition where the top most
popular adjective f is rendered more salient in ex-
perimental stimuli.

Identically to (Kao et al., 2014) in all instances,
the model correctly predicts the correct category
c—in zero instances does the model erroneously
predict that the topic under discussion is literally
an example of an animal as evoked by the utterance.
This simple qualitative observation confirms that
the model is indeed capable of figurative language
reasoning.

As a sanity check to validate the underlying
logic of the literal listener and speaker functions,
I tested the percentage of instances in which the
model yields a higher probability—both in terms
of prior probabilities in Ly and posterior proba-
bilities in L;—for adjectives attested to be associ-
ated with a metaphor source domain, as opposed
to their antonyms on a dimension of meaning for
which both are relevant. The literal listener yields
higher probability for the correctly attributed over
the antonym in 89% of all cases. This number is
significant-randomly permuting the word vectors
used to generate dimensions of meaning and source
term locations on those dimensions yields O per-
mutations out of 1000 that have higher accuracy
(p < le™°). This holds true as well for posterior
probabilities generated by L, both uniform and

biased prior conditions. Figure 1 shows plots for
probabilities assigned to the correct adjective and
its antonym for the literal listener, Pragmatic Lis-
tener in the uniform prior condition, and Pragmatic
listener in the biased prior condition respectively.

For both uniform and biased prior conditions I
tested model fit to participant data using the fol-
lowing three tests. (1) The percent time that the
model’s prediction for the most probable adjective
f matched human judgements for the most relevant
f as identified from a participant’s slider responses.
(2) The mean error between the rank for the proba-

P(f, D|e)S1(ulf, D) pilities of each adjective f generated by the model

for a given condition, compared to the rank for
the slider responses of adjectives f provided by a
participant in the same condition. (3) The Pearson
Correlation of the probabilities for all adjectives
f provided by the model in a given condition and
the slider-value probabilities for participants in the
same condition.

With a uniform prior belief on dimensions of
meaning, the model matches the adjective f that
human annotators indicated as being the most rele-
vant adjective 34% of the time. This is low, but not
surprising. As noted in (Kao et al., 2014) “The pre-
dicted reliability of participants’ ratings using the
Spearman-Brown prediction formula is 0.828 (95%
CI =[0.827, 0.829]), suggesting first that people
do not agree perfectly on metaphorical interpreta-
tions”. This may have been a significant confound
to model results in the uniform prior condition—
similarly to the results reported in (Kao et al., 2014).
I then tested the error between ranks assigned to
all adjectives f conditioned on an utterance/animal
name v by the model when compared to the ranks
assigned to the same f conditioned on u by hu-
man participants. The average error between the
model rankings and participant rankings is .915
(median: 1.) indicating that on average the rank
for the model’s predicted values differs from the
rank for participants’ slider values by 1. Pearson
R between adjective probabilities predicted by the
model and slider values indicated by participants
in the uniform condition indicates no relationship
(r(1175) = —0.03,p = .24).

In the biased prior condition the model performs
exceptionally well. Following the example set in
(Kao et al., 2014), I set the model’s prior on the
correct dimension of meaning to be higher than all
other dimensions of meaning (P(Dcorrect) = -7)s
and allowed other dimensions of meaning to share
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Figure 1: Plots for probabilities assigned to the correct adjective and its antonym for the literal listener, Pragmatic
Listener in the uniform prior condition, and Pragmatic listener in the QUD/biased-prior condition respectively. Note
that in the QUD condition, that correct adjectives that are not on the biased dimension of meaning have probabilities
that are pushed closer to zero (though are still greater than that of the antonyms), whilst correct adjectives that are
on the biased dimension of meaning get a boost beyond the max probabilities observed for correct adjectives in the
uniform prior condition.



a uniform, non-zero prior probability for the re-
maining probability mass. The model’s prediction
for the most probable adjective f matched that of
participants 90% of the time. The average error be-
tween the ranked probabilities for adjectives f pro-
vided by the model compared to the ranked slider
values for adjectives f indicated by participants is
.62. There is moderate, but statistically significant
correlation between the model’s posterior probabil-
ities for adjectives f and the slider values indicated
by participants (r(1175) = .45, p < le™).
LMPLots showing the distribution and slope of
outputs from L;(f, ¢|u, D) for both uniform and
biased prior conditions as well as summary table of
results for both conditions is provided in in table 1.

4 Discussion

The results paint an interesting picture of the ef-
ficacy of the model. My objective in this section
is to break down what the model tells us, as well
as point to some potential confounds in the model.
I’ll conclude this section with a brief discussion of
future directions for this line of research.

To begin with, the model qualitatively matches
human judgements in the QUD condition (i.e.
when there was a biased prior on what dimension
of meaning was at play) and does so quite well.
This is particularly heartening. As previously men-
tioned, treating metaphor comprehension as reason-
ing about a static, closed set of worlds doesn’t align
with current explanations of human metaphoric rea-
soning (Moreno, 2004; Carston, 2015; Sullivan,
2009, 2014; Sikos et al., 2008). The model I've
described still leverages the QUD-RSA framework
using utterances and prior beliefs to project onto
relevant dimensions of meaning, but by reasoning
about those dimensions of meaning directly rather
than a static set of worlds it better matches what
we know about human behavior in this regard. It
does so reliably (based on its correlation and mean
rank error) and with excellent accuracy.

The model performed below my expectations in
the uniform prior condition however. Again, this
isn’t entirely shocking. Kao et al. described in
their original write-up that there was indeed varia-
tion between participants themselves in how they
assigned relevance to the adjectives they were pre-
sented with in the uniform prior condition, and this
lead to confounds with their results as well. Why
might this be the case at all? What explains the
variation in human responses? Additional empiri-

cal research is required to adequately answer these
questions.

I believe another potential confound in this case
as well is the loose link between GloVe word vec-
tors used and human reasoning. While Grand et al.
show that their use of dimensions of meaning is in-
deed reliable at better matching human judgements
of adjective attribution using word vectors, even
they note that the correlation between the two is
not perfect—correlation varied a lot between vari-
ous conditions the researchers tested, ranging from
.15 to .94. Similar to Kao et al., they also note
that there is significant variation in individual re-
sponses provided by human participants. In sum,
even when using the method for deriving dimen-
sions of meaning described in Grand et al. (2018),
mapping of word vectors to human judgement is
messy for a multitude of reasons.

Despite the model’s poor performance in match-
ing participant’s slider values in the uniform prior
condition, the model did accurately prescribe
higher probability for the correct adjectives as at-
tested in (Kao et al., 2014) over their antonyms,
however. Taken on balance, then, despite the fact
that the model did not completely replicate human
judgements, it did replicate human judgements that
the correct adjectives were more likely than their
antonyms. In a way, the model performs almost
like another participant in this regard—its responses
are as variable when compared to any study partici-
pant as the agreement would be between any two
participants picked at random.

The model I’ve proposed is significantly more
scalable than the original model proposed in (Kao
et al., 2014). By using word vectors to generate
prior probabilities for adjectives—however messy
the mapping between word vectors and human
judgements might be—there is feasibly no upper
limit to the application of the model to new sets
of source domains, adjectives, or even dimen-
sions of meaning. A researcher need only define
what source domains they’re interested in studying
(which is common already in studies of metaphor
in humans), as well as a number of dimensions of
meaning. Dimensions of meaning can be generated
quickly either by hand or by using a simple web
scraper to generate sets of adjectives that can be
used to construct them. In fact, one could even ex-
tend this model to other languages—as long as you
can generate a word vector model for that language,
you have all that you need to leverage this model.
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Table 1: From left to right: LM-Plots for the correlation of posterior probabilities provided by Lq(f, c|u, D) for
the uniform and biased conditions respectively. X-axis value correspond to human slider values and Y-axis values
correspond with model posterior probabilities. On bottom: Summary table of relevant statistics for evaluating model

performance in the two conditions discussed.

To recap, the model I’ve described (1) captures
the pragmatic roots of metaphor comprehension,
(2) can be easily scaled to look at much broader sets
of source domains, and (3) does not make the same
hard assumptions about how one reasons about
“worlds” as previous RSA models have (and thus
aligns with what we know about human metaphor
reasoning better).

At the same time, I genuinely believe that more
work can be done to extend this model’s utility. To
start, in what ways could we make the model more
context savvy? Using GloVe word vectors and
dimension of meaning may capture some useful
information about human judgements—the current
model appears to demonstrate such. However, is
it possible to retool how prior probabilities on ad-
jectives (given an utterance) are generated using
more contemporary, transformer models of lexical
semantics? Models like BERT and GPT-3 both
capture an exquisite amount of detail already about
context (Devlin et al., 2019; Brown et al., 2020).
Finding a means of leveraging these models to gen-
erate prior probabilities would decrease the need
to worry about the prior on dimensions of meaning

by already representing that information to some
degree in the word vectors themselves.

While I focus on animal terms in this study,
the model described can be efficiently applied to
myriad other source domains. My decision to use
the source domains I did was solely based on the
availability of data and the need to validate that
my model usefully extends Kao et al.’s existing
QUD-RSA model. But extending this model fur-
ther to look at non-animal metaphors in other so-
cial scenarios would be fascinating. As an exam-
ple, it would be interesting to apply this model to
metaphors surrounding the gun control or immigra-
tion debate in US politics as a means of capturing
the subtle implicatures in political metaphor usage.

Plato once stated that “the greatest thing by far is
to have command of metaphor. This alone cannot
be imparted by another.” But if the current research
has shown anything, it is that it is not enough to
have an “eye for resemblances” as Plato put it, but
that part of the magic of a good metaphor is in the
way that context mixes with those resemblances to
render metaphor comprehensible and relevant.
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