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ABSTRACT

Test-time adaptation (TTA) typically involves adaptation delays due to self-training,
which conflict with real-time deployment where inference cannot pause for adap-
tation. We introduce Test-Real-Time Adaptation (TRTA), which requires unin-
terrupted prediction while adaptation runs in the background, leaving few update
opportunities. In TTA, later reliable signals enable error correction and steady
knowledge accumulation, whereas in TRTA, such signals are rare, so knowledge
growth stalls. We term this the sparse-knowledge bottleneck, where limited updates
hinder error correction and increase the risk in self-training. To solve this chal-
lenge, we propose a novel method, dubbed Agreement- and Uncertainty-Guided
Reweighting (AUGR). AUGR fuses two complementary evidence sources: (i)
inter-model agreement, defined as the concordance of predicted class rankings
between the base and the reference models on each sample, revealing common
knowledge with consensus predictions; and (ii) inner-model uncertainty, repre-
senting the reliability of such knowledge, which balance the agreement evidence
by discounting low-confidence cases. By integrating both sources of evidence,
AUGR emphasizes the learning of consistent, reliable samples and suppresses
conflicting or uncertain ones, thereby promoting robust knowledge accumulation.
Extensive experiments on ImageNet-C/R/K demonstrate the effectiveness of AUGR
combating sparse-knowledge bottleneck in TRTA. Code will be released.

1 INTRODUCTION

Test-time adaptation (TTA) (Wang et al., 2021; 2022) adapts a pre-trained model to distribution shifts
during inference, typically following a predict-then-adapt routine. This sequential scheme requires
pausing inference between consecutive inputs, which undermines real-time responsiveness. Such
latency is unacceptable in many practical applications, such as autonomous driving (Hu et al., 2023)
or online video analytics (Chen et al., 2024b), where every frame must be processed without delay. To
address this limitation, we consider a real-time variant of TTA, termed Test-Real-Time Adaptation
(TRTA), which follows a predict-and-adapt routine, meaning that prediction for the current input
and adaptation of the model proceed simultaneously without synchronization pauses. As illustrated
in Fig. 1, TRTA (c) eliminates the waiting overhead of TTA (a), while retaining adaptability absent in
direct inference (b). Its throughput thus matches direct inference but with online updates, making
TRTA more suitable for time-critical scenarios.

In practice, adaptation typically requires several times more computation than forward inference,
for example due to backpropagation steps. As a result, under TRTA the number of model up-
dates is much smaller than the number of predictions, leading to a sparse adaptation regime.
This mismatch severely limits the model’s capacity to correct early mistakes and creates what
we call a sparse-knowledge bottleneck. Consequently, applying conventional TTA methods in
this setting becomes inherently inadequate because they rely on frequent updates to accumulate
reliable pseudo-labels over time. In Fig. 2, we track predictive mutual information (PMI) on target-
stream outputs, which captures simultaneous uncertainty reduction and preservation of label-space
diversity (Tishby et al., 2000; Houlsby et al., 2011; Kendall & Gal, 2017). The results show
that PMI grows steadily under TTA, reflecting continuous knowledge acquisition, whereas under
TRTA the curve is significantly compressed and often flattens, which indicates stalled learning.
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Figure 1: TTA: predict-then-adapt with adaptation pauses between inferences. DI: prediction only.
TRTA: predict-and-adapt, inference runs without pauses while adaptation runs concurrently.
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Figure 2: Changing trends in predictive mu-
tual information on ImageNet-C (Gaussian
Noise), where k denotes adaptation delay.

This observations highlight that a central challenge
of TRTA is how to extract and preserve useful do-
main knowledge when adaptation opportunities are
extremely sparse. One possible way to mitigate this
bottleneck is to design faster adaptation routines so
that more updates can be executed, but this often re-
duces compatibility with existing methods. In this
work, we instead focus on improving the effectiveness
of existing TTA algorithms under nearly the same ef-
ficiency, enabling them to adapt better to TRTA with
only simple modifications.

Sparse updates in TRTA make parameter adaptation
highly vulnerable to noise, since each update has dis-
proportionate influence on the model trajectory. To counteract this, the model must prioritize signals
that reflect common knowledge, which are generally robust against individual noisy samples (Li &
Hoiem, 2017; Zhang et al., 2018; Han et al., 2018; Zhu & Li, 2021). Building on this, we propose
Agreement- and Uncertainty-Guided Reweighting (AUGR). AUGR leverages a reference model (e.g.,
a historical or foundation model) and measures its consensus with the base model, integrating two
complementary evidence sources: (i) inter-model agreement, defined as the concordance of predicted
class rankings between the base and reference models, which highlights knowledge consistently
supported by both; and (ii) inner-model uncertainty, which evaluates the reliability of such agreement
by down-weighting low-confidence predictions. By combining agreement as a proxy for common
knowledge with uncertainty as a safeguard against unreliable cases, AUGR selectively emphasizes
stable, trustworthy samples and suppresses conflicting or ambiguous ones. This design directly
addresses the sparse-knowledge bottleneck by ensuring that each limited update contributes to robust
knowledge accumulation. Extensive experiments demonstrate the effectiveness of AUGR, e.g., a
9.03% , 3.88% , and 5.50% improvement on ImageNet-C/R/K, respectively. Moreover, AUGR shows
flexibility as a plug-and-play module, enabling existing methods to operate under TRTA.

The contributions of this work can be summarized as follows:

(1) We propose a new Test-Real-Time Adaptation (TRTA) paradigm, which align with the timeliness
requirements of real-world applications.

(2) We reveal a new challenge in TRTA, i.e., the sparse knowledge bottleneck, and propose a novel
Agreement- and Uncertainty-Guided Reweighting (AUGR) method to mitigate this challenge
from converging evidence from multiple sources.

(3) AUGR demonstrates effectiveness across various benchmarks and shows flexibility as a plug-
and-play module, enabling existing methods to operate under TRTA.
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2 RELATED WORK

Test-Time Adaptation. Test-time adaptation (TTA) mitigates performance degradation under
source–target distribution shifts by adapting a pre-trained model with only unlabeled online data.
Existing works have demonstrated strong success through diverse self-training techniques, including
sample selection and reweighting (Niu et al., 2022; Lee et al., 2024; Marsden et al., 2024), uncertainty
estimation (Zhang et al., 2025), sample augmentation with consistency regularization (Zhang et al.,
2022; Wang et al., 2022; Chen et al., 2022), cross-model co-learning (Chen et al., 2024c), and
sharpness-aware optimization (Niu et al., 2023). Although several works have studied efficient TTA,
they typically reduce cost by performing backpropagation on only a subset of data (Chen et al.,
2024c;a) or by selectively skipping adaptation steps (Colomer et al., 2023; Chen et al., 2024a), while
still adhering to a predict-then-adapt workflow. Despite their efficacy, their inevitable adaptation
delays conflict with the timeliness requirements of real-world applications. In contrast, TRTA differs
a parallel paradigm, as it operates under asynchrony between inference and adaptation.

Asynchronous Inference and Training. Real-time systems (Tosi et al., 2024) favor a predict-and-
update paradigm, where inference continues while parameters are updated in the background; this
pattern is widely adopted in edge–cloud collaborative learning (Gan et al., 2023; Zhuang et al., 2024;
Li et al., 2025), online continual learning (Ghunaim et al., 2023), and federated learning (Duan et al.,
2022). However, these systems typically assume ample labeled source/target data for supervision,
whereas TTA operates without labels at test time (and often without access to source data). Unlike
those real-time systems, we study a more challenging test-real-time adaptation (TRTA) setting that
couples real-time constraints with label-free adaptation, serving as a complementary regime to prior
real-time work.

3 METHOD

3.1 PROBLEM DEFINITION

Both TTA and TRTA consist of two objectives: prediction and adaptation. The key difference lies in
how these two steps are scheduled. TTA follows a predict-then-adapt routine, where inference is
paused until adaptation is completed. In contrast, TRTA enforces a predict-and-adapt routine, where
inference and adaptation proceed in parallel without synchronization waits. Formally, let FΘ denote
the base model, and let Xt be the t-th incoming online batch. The model produces predictions

ŷ(Xt) = argmax(p(Xt)) , (1)

where p(X ) = softmax(FΘ(X )) is the softmax output logits. The parameters Θ are updated using
self-supervised loss objectives, such as entropy loss:

H(Xt) = − p(Xt) logp(Xt) . (2)

To ensure real-time inference, TRTA introduces a parallel inference model FΩ, initialized with
Ω ← Θ0, which continuously serves predictions on the input stream. Let k denote the adaptation
delay measured in batches, i.e., the number of subsequent inference batches processed while that
adaptation runs. As shown in Fig. 1 (c), the parameters of FΩ are synchronized with FΘ according to

Ω =

{
Θn, if the n-th adaptation has completed,

Θn−1, otherwise,
(3)

where n ∈ N+ indexes completed adaptations, and each adaptation requires approximately k time
units to finish. In this way, FΩ always continues serving predictions without waiting, and switches to
the newly adapted parameters once FΘ finishes its update.

This formulation highlights the structural difference between TTA and TRTA. TTA performs dense
updates (i.e., one update per batch), enabling subsequent reliable pseudo-labels to correct earlier
mistakes. TRTA, however, performs sparse updates due to adaptation delays k, leaving FΩ to infer
with outdated parameters and FΘ to adapt with limited feedback. This mismatch restricts knowledge
accumulation and results in the sparse-knowledge bottleneck, motivating the methods we propose in
the following sections.

3
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3.2 AGREEMENT AND UNCERTAINTY-GUIDED REWEIGHTING

Sparse updates in TRTA make adaptation highly sensitive to noise, since each erroneous pseudo-label
may persist for a long time with few opportunities for correction. To address this issue, we propose
Agreement- and Uncertainty-Guided Reweighting (AUGR), which constructs reliable supervision
signals by combining two complementary sources of evidence. First, agreement-guided reweighting
extracts inter-model agreement between the base and reference models to capture common knowledge.
Second, uncertainty-guided reweighting calibrates this consensus by evaluating prediction confidence,
reducing the impact of unreliable agreements. Finally, the two signals are fused into a unified
reweighting factor that drives both adaptation and knowledge distillation losses. We describe each
component in detail below.

3.2.1 AGREEMENT-GUIDED REWEIGHTING.

Under TRTA, sparse updates leave the model highly sensitive to noisy signals, since early errors
cannot be promptly corrected. To reduce error propagation, it is crucial to emphasize robust knowledge
rather than noise-prone cues. Such knowledge is difficult to identify with a single predictor, but can
be more reliably extracted by exploiting agreement across models with distinct parameter states (Li &
Hoiem, 2017; Zhang et al., 2018; Han et al., 2018; Zhu & Li, 2021), such as foundation or historical
models. Inspired by this, we introduce a reference model GΦ alongside the base model FΘ and use
their consensus to elevate reliable supervision and suppress noisy predictions.

Specifically, let the softmax output logits of the base and reference models be denoted as pb and pr,
respectively. For each pair of predictions, we first extract their respective TopK predicted classes as:

Zb = TopK(pb), Zr = TopK(pr), (4)

where Z ∈ RB×C and B is the batch size. For classes appearing in both sets, M = Zb ∩ Zr, reliable
consensus should not only predict the same label but also rank it similarly. We therefore compute a
rank-alignment score:

scorealign(pb,pr) =
1

|M |
∑
c∈M

(
1− ||rankZb

(c)− rankZr (c)||
K− 1 + ϵ

)
, (5)

where ϵ is a small constant for numerical stability. rankZb
(c) and rankZr (c) denote the positions of

class c in the TopK predictions of the base and reference models, respectively.

However, rank alignment alone cannot capture cases where the two TopK sets barely overlap. For
instance, if the base model predicts “animals” while the reference predicts “vehicles”, their rank
consistency within the tiny intersection may be high, but the overall disagreement is still large. To
penalize such mismatches, we further compute the Jaccard index:

scoreJaccard(pb,pr) =
|Zb ∩ Zr|
|Zb ∪ Zr|

. (6)

This term measures the degree of overlap between the two TopK sets. A small or empty intersection
yields a low Jaccard score, thereby down-weighting samples where the two models disagree strongly.

The final agreement score is obtained by a linear mixup of rank alignment and set overlap, where a
coefficient α ∈ [0, 1] balances their contributions:

scorea(pb,pr) = α · scorealign(pb,pr) + (1− α) · scoreJaccard(pb,pr). (7)

By combining rank alignment, which captures fine-grained consistency within overlapping predictions,
with Jaccard overlap, which measures the breadth of shared evidence, the agreement score provides
a balanced and reliable estimate of inter-model agreement. This calibrated signal ensures that only
strong and broad agreements are emphasized, thereby suppressing spurious correlations and helping
the model accumulate stable knowledge under TRTA’s sparse update regime.

3.2.2 UNCERTAINTY-GUIDED REWEIGHTING

4
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Figure 3: Complementarity of AGR & UGR.

While agreement offers a useful consensus signal, it
does not by itself guarantee correctness. Two models
may still agree on an incorrect label or disagree on a
correct one. As shown in Fig. 3, predictions can be
visualized on a normalized agreement–certainty grid,
where color encodes correctness. This reveals two
critical cases: (i) strong agreement accompanied by
high entropy (Area 4) versus low-entropy agreement
(Area 2), and (ii) weak agreement accompanied by
low entropy (Area 1) versus high-entropy disagree-
ment (Area 3). Empirically, samples in Area 4 have
lower mean accuracy than those in Area 2 and should
not be weighted equally, whereas samples in Area 1
are more accurate than those in Area 3 and deserve greater emphasis.

Therefore we complement agreement with uncertainty to better separate reliable from noisy evidence.
Low-entropy samples are likely to be correct even with modest agreement, while high-entropy
samples remain unreliable even with strong agreement. To capture this, we define an entropy-based
weight

scoreu(p) =
1

exp{H(p)−m}
, (8)

whereH denotes the entropy and m is a pre-defined margin. Eq. (8) defines an exponential weighting
function anchored at m. Predictions with lower entropy receive larger weights, while predictions with
higher entropy are progressively downweighted.
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Figure 4: (a) and (b) present the sample distri-
butions across entropy and label correctness
in TTA and TRTA; each block shows its pro-
portion among all adapted samples.

Discussion. The entropy-based weighting in Eq. (8)
allows us to softly adjust the contribution of each sam-
ple according to its confidence. However, existing
uncertainty-based reweighting strategies in TTA (Niu
et al., 2022; 2023; Lee et al., 2024) adopt a hard selec-
tion scheme that discards high-entropy samples and
reweights only those retained. While effective under
TTA, this strategy becomes problematic in TRTA. As
shown in Fig. 4, samples are partitioned by entropy
using margin m and by pseudo-label correctness, and
each cell reports its share of the population. From
(a) TTA to (b) TRTA, the proportion of low-entropy
true positives (Area 1) decreases, and false positives
(Area 2) take a larger share among the low-entropy group. At the same time, true but high-entropy
samples (Area 4) increase but are discarded since sparse knowledge prevents their entropy from
dropping below the margin. These shifts show that directly reusing uncertainty-based reweighting
under TRTA fails to preserve enough reliable supervision. In contrast, UGR replaces hard gating
with soft per-sample weighting, which enables fuller use of informative samples and strengthens
the consensus signal to provide more reliable guidance. Empirical results (Tables 1–3) confirm the
effectiveness of this design and highlight its necessity for adapting existing methods to TRTA across
diverse distribution shifts.

3.2.3 AGREEMENT AND UNCERTAINTY-GUIDED REWEIGHTING

We combine the agreement and uncertainty scores into a unified reweighting factor (AUGR):

wπ = λa scorea(pb,pr) + λu scoreu(pπ), π ∈ {b, r}, (9)

where λa and λu control the scale of agreement and uncertainty scores, respectively. We apply AUGR
to the widely used entropy minimization and further incorporate the cross-entropy loss LCE for
knowledge distillation, formulated as:

L(X ) =
{
wb · Hb(X ) + wb · LCE(pb(X ) ; ŷr(X )), for the base model,
wr · Hr(X ), for the reference model,

(10)

For clarity of our design, we summarize TRTA and AUGR in Algorithms 1 and 2, respectively.
The inference model continuously predicts online data using the most recently updated weights

5
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Algorithm 1 TRTA

Inputs: Inference Model: IΩ, Ω← Θ0

Inputs: Global Ready← True, Num n← 0
Inputs: Training Batches: {X1,X2, · · · ,XT }

1: for t← 1 to T do (Main)
2: Get Predictions via Eq. (1), Check Ready
3: if Ready then (Parallel)
4: Θn ← AUGR(Xt), Ω← Θn, n← n+1
5: end if
6: end for

Outputs: Predictions

Algorithm 2 AUGR

Inputs: Base & Reference Models: FΘ, GΦ

Inputs: Θ← Θ0, Φ← Φ0

Inputs: Training Batch: Xt

1: Set Ready← False
2: Compute AUGR scores using Eq. (5)-(9)
3: Update the base and reference models us-

ing Eq. (10)
4: Get Θn

5: Set Ready← True
Outputs: Θn

and switches to new weights as soon as they are ready. The inference and adaptation procedure is
parallel, forming a predict-and-adapt workflow. In summary, agreement-guided reweighting exploits
cross-model agreement, and uncertainty-guided reweighting further complements it to prevent low-
confidence predictions from dominating. Each strategy is effective on its own, yet their combination
yields further improvements (see Table 5). AUGR integrates both to provide reliable weighting
signals for self-training, thereby mitigating the sparse-knowledge bottleneck.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. To adequately evaluate our method, we conduct experiments on popular test-time
adaptation benchmarks covering both synthetic (ImageNet-C (Hendrycks & Dietterich, 2019)) and
real-word distribution shifts (ImageNet-R (Hendrycks et al., 2021) and ImageNet-K (Wang et al.,
2019)). See details in Appendix B.

Baselines. We compare our method with state-of-the-art (SOTA) methods, including Tent (Wang
et al., 2021), ETA (Niu et al., 2022), SAR (Niu et al., 2022), COME (Zhang et al., 2025) and
CEMA (Chen et al., 2024c). We equip the cross-entropy loss for Tent, ETA, SAR and COME to
distillate knowledge from the reference model for fair comparison. See details in Appendix C.

Implementation Details. By default, we set the architecture of the base and reference models as
ResNet-50 (He et al., 2016) and VitBase (Dosovitskiy et al., 2021), respectively. And we adopt the
official checkpoints from Pytorch library and timm repository following existing methods (Niu
et al., 2023). We use SGD optimizers with a learning rate of 0.00025 and 0.001 with a momentum
of 0.9 for collaborative models and tune the parameters of their normalization layers. The batch
size is set to 64. For hyper-parameters, we set the TopK in Eq. (4), the coefficient α in Eq. (7),
the entropy margin m in Eq. (8), the scale factors λa and λu in Eq. (9) as 50, 0.9, 0.4× log(C), 5,
and 3, respectively. We report the average accuracy across 5 random seeds. All experiments are
conducted on a server with NVIDIA 3090 GPU and Intel(R) Xeon(R) Gold 6330 CPU. See details in
Appendix C.

4.2 COMPARISON WITH SOTAS

We present results on ImageNet-C (severity level 5) and ImageNet-R/K in Table 1 and Table 2,
respectively. Both the classification accuracy and the number of model updates are reported to
comprehensively assess the performance of the baseline methods. In these tables, ✓ indicates the
performance when combined with our method. By default, we set the base and reference models as
ResNet-50 and VitBase, respectively.

Performance on ImageNet-C/R/K. From Table 1, we have the key observations:
(a) Adaptation delay plays a critical role in TRTA, as higher efficiency in each adaptation step allows
more frequent updates and generally yields better performance. For example, SAR requires more time
per update than other methods because each adaptation step involves two backward passes, which
reduces its overall update times. This exacerbates the sparse knowledge bottleneck and ultimately
degrades its performance.

6
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Table 1: Accuracy comparisons in TRTA on ImageNet-C.

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG #Updates

ResNet-50 2.21 2.93 1.85 17.92 9.82 14.78 22.49 16.89 23.30 24.43 58.93 5.43 16.95 20.60 31.64 18.01 0
VitBase 46.86 47.59 46.88 42.73 34.21 50.45 44.70 56.87 52.63 56.52 76.06 31.79 46.72 65.49 66.03 51.04 0

Tent
21.88 22.92 22.20 21.32 20.76 33.18 42.79 40.61 38.03 52.15 66.37 24.67 47.82 53.75 46.42 36.99 79

✓ 34.14 36.16 35.45 32.16 32.43 44.44 49.13 49.58 44.77 57.85 66.83 39.97 54.65 59.04 53.67 46.02 79
△ 12.26↑ 13.24↑ 13.25↑ 10.84↑ 11.67↑ 11.26↑ 6.34↑ 8.97↑ 6.74↑ 5.70↑ 0.46↑ 15.30↑ 6.83↑ 5.29↑ 7.25↑ 9.03↑ 0

SAR
16.40 18.01 17.80 16.75 17.45 28.26 40.42 36.03 34.78 48.99 65.95 13.95 45.31 50.36 41.87 32.82 36

✓ 24.59 28.59 26.63 23.00 24.75 36.09 45.84 43.42 39.93 54.40 66.70 24.50 51.02 55.65 48.85 39.60 36
△ 8.19↑ 10.58↑ 8.83↑ 6.25↑ 7.30↑ 7.83↑ 5.42↑ 7.39↑ 5.15↑ 5.41↑ 0.75↑ 10.55↑ 5.71↑ 5.29↑ 6.98↑ 6.78↑ 0

COME
24.03 26.16 24.74 22.79 23.11 36.58 45.38 43.75 40.36 54.04 66.93 29.80 50.58 55.82 48.70 39.52 79

✓ 33.30 35.09 33.67 31.41 31.21 43.96 49.22 49.12 44.34 57.66 67.62 40.18 54.42 59.15 53.16 45.57 79
△ 9.27↑ 8.93↑ 8.93↑ 8.62↑ 8.10↑ 7.38↑ 3.84↑ 5.37↑ 3.98↑ 3.62↑ 0.69↑ 10.38↑ 3.84↑ 3.33↑ 4.46↑ 6.05↑ 0

ETA
25.57 28.11 26.73 24.01 24.78 37.42 46.40 44.47 40.99 54.95 67.07 30.76 51.62 56.46 49.42 40.58 79

✓ 33.37 35.25 33.85 31.44 31.17 43.72 49.15 49.26 44.39 57.67 67.47 39.72 54.59 59.03 53.04 45.54 79
△ 7.80↑ 7.14↑ 7.12↑ 7.43↑ 6.39↑ 6.30↑ 2.75↑ 4.79↑ 3.40↑ 2.72↑ 0.40↑ 8.96↑ 2.97↑ 2.57↑ 3.62↑ 4.96↑ 0

CEMA
24.06 34.00 33.68 21.64 25.73 37.02 46.63 42.84 41.17 51.77 64.88 19.13 50.54 55.42 50.45 39.93 66

✓ 29.28 36.36 34.89 26.78 28.47 40.72 47.32 45.60 42.26 54.29 65.47 33.50 51.44 56.56 51.69 42.98 49
△ 5.22↑ 2.36↑ 1.21↑ 5.14↑ 2.74↑ 3.70↑ 0.69↑ 2.76↑ 1.09↑ 2.52↑ 0.59↑ 14.37↑ 0.90↑ 1.14↑ 1.24↑ 3.05↑ 17↓

Table 2: Accuracy comparisons on ImageNet-R/K.
“X(Y)” denotes Acc(#Updates).

AUGR Tent SAR COME ETA CEMA

IN
-R

41.83 (94) 40.16 (53) 43.19 (94) 43.31 (94) 46.36 (94)
✓ 45.71 (94) 42.09 (53) 46.60 (94) 46.69 (94) 47.63 (79)
△ 3.88↑ (0) 1.93↑ (0) 3.41↑ (0) 3.38↑ (0) 1.27↑ (15↓)

IN
-K

31.78 (199) 27.89 (133) 34.12 (199) 34.05 (199) 36.73 (199)
✓ 37.28 (199) 32.82 (133) 38.01 (199) 38.01 (199) 37.08 (160)
△ 5.50↑ (0) 4.93↑ (0) 3.89↑ (0) 3.96↑ (0) 0.35↑ (39↓)

Table 3: Accuracy Comparisons on mixed
distribution shifts.

AUGR Tent SAR COME ETA CEMA

S-
5 36.08 31.95 37.31 38.35 47.11

✓ 41.87 37.05 43.69 43.41 47.21
△ 5.79↑ 5.10↑ 6.38↑ 4.96↑ 0.10↑

S-
3 55.68 56.48 55.10 52.12 61.85

✓ 60.26 60.72 60.56 56.05 62.18
△ 4.58↑ 4.24↑ 5.46↑ 3.93↑ 0.33↑

(b) Existing methods only partially alleviate the sparse knowledge bottleneck. In TRTA, noisy
self-supervised signals cannot be easily corrected due to the scarcity of subsequent reliable ones.
As illustrated in Fig. 4, they lack enough knowledge to lower the entropy of data below the margin,
and consequently fails to produce more reliable self-supervised signals. As a result, the bottleneck
becomes more pronounced, further undermining the effectiveness of prior TTA methods.
(c) It is possible to accumulate robust knowledge even with fewer updates. For example, CEMA
achieves competitive performance with only 66 updates by training the model on buffered samples,
where reliable data are retained. This strategy mitigates the impact of noisy signals from new data and
provides a viable way to accumulate robust knowledge in TRTA. However, its effectiveness remains
limited, since the retained samples capture only a partial view of the target domain.
(d) Our AUGR method consistently improves existing methods by a large margin. Specifically,
AUGR mitigates the sparse knowledge bottleneck by promoting reliable common knowledge while
suppressing noisy uncommon knowledge, thereby strengthening self-training. The results in Table 2
further validate the effectiveness of our method, showing that it generalizes well beyond synthetic
noise to real-world domain shifts.

Performance under mixed distribution shifts. In real-world applications, incoming data may
exhibit heterogeneous distribution shifts (Niu et al., 2023; Yuan et al., 2023). To assess robustness
to such heterogeneity, we evaluate the comparison methods on a mixture of 15 corruption types at
severity levels 5 and 3, with results summarized in Table 3. For reference, the standalone performance
of the base and reference models is reported in Table 4. From Table 3, we observe that AUGR
consistently improves the baselines, with an average gain of 3.47% and 3.71% at severity levels 5
and 3, respectively. For scenarios with extremely few updates, such as SAR (Niu et al., 2023), AUGR
still alleviates the sparse-knowledge bottleneck and delivers stable gains. CEMA (Chen et al., 2024c)
shows excellent performance on this task, probably profits from its additional buffer that contain
reliable samples.

Performance under online imbalanced label distribution shifts. We consider a challenging real-
world streaming setting in which incoming labels exhibit temporal correlation. Following prior
works (Niu et al., 2023; Chen et al., 2024c), we use a ResNet-50 with Group Normalization (GN)
as the base model to avoid collapse caused by biased batch-normalization statistics. The results
are summarized in Table 4, we omit the number of updates since they are identical as in Table 1.
We observe that baseline methods degrade more under imbalanced label-distribution shifts than
under balanced ones, primarily because each update sees only a subset of classes, which exacerbates
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Table 4: Accuracy comparisons in TRTA on ImageNet-C (online imbalanced label distribution shifts).

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG

ResNet-50-GN 19.12 20.48 18.9 19.18 10.85 20.91 24.47 38.73 48.07 38.31 68.81 32.28 17.97 27.58 52.9 30.57
VitBase 46.86 47.59 46.88 42.73 34.21 50.45 44.7 56.87 52.63 56.52 76.06 31.79 46.72 65.49 66.03 51.04

Tent 23.42 33.3 36.89 20.69 18.35 26.8 33.22 39.82 47.14 47.95 68.8 43.37 26.82 46.03 57.00 37.97
✓ 33.43 45.84 46.69 24.76 30.28 38.16 43.48 47.95 53.71 56.45 70.45 51.26 42.26 55.94 60.77 46.76

SAR 19.00 21.33 21.29 19.94 12.57 23.02 25.69 39.99 43.7 41.36 68.79 37.34 18.76 36.46 54.05 32.22
✓ 21.96 34.32 38.59 17.61 19.69 22.44 29.57 37.59 44.00 46.76 67.98 43.13 26.48 43.71 54.61 36.56

COME 23.57 32.25 35.24 20.72 16.12 24.73 31.77 42.01 50.21 47.49 69.58 41.62 26.75 41.55 55.3 37.26
✓ 32.93 45.55 46.25 25.45 31.07 38.69 44.62 47.06 52.88 56.13 70.16 51.16 43.69 56.92 60.41 46.86

ETA 25.34 38.44 40.96 21.61 21.48 29.35 37.24 40.48 48.5 49.11 67.52 46.94 30.88 48.79 57.88 40.30
✓ 34.30 46.28 46.95 26.27 32.33 39.67 44.94 48.06 53.81 56.83 70.32 51.36 45.06 56.89 60.68 47.58

CEMA 28.34 47.82 48.43 25.42 36.79 40.79 47.09 48.00 54.44 57.55 69.46 14.36 0.36 0.55 0.87 34.68
✓ 34.34 48.12 48.71 25.03 36.33 41.07 46.04 48.10 53.84 57.85 69.18 49.90 46.22 57.73 60.1 48.17

Table 5: Accuracy comparisons on the key components.

Methods Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.

Tent 21.88 22.92 22.20 21.32 20.76 33.18 42.79 40.61 38.03 52.15 66.37 24.67 47.82 53.75 46.42 36.99

AGR 28.05 29.71 28.63 26.98 26.89 39.21 46.43 45.65 41.72 55.61 67.12 34.01 52.03 57.04 50.62 41.98
UGR 29.51 31.38 30.61 27.94 26.85 40.56 46.32 46.89 42.68 55.79 67.38 34.63 52.03 57.83 51.75 42.81
AUGR 34.14 36.16 35.45 32.16 32.43 44.44 49.13 49.58 44.77 57.85 66.83 39.97 54.65 59.04 53.67 46.02

the sparse-knowledge bottleneck and hinders robust knowledge accumulation. However, AUGR
still improves Tent, SAR, COME, ETA, and CEMA by 8.79%, 4.34%, 9.60%, 7.28%, and 13.49%,
respectively. Notably, AUGR remedies CEMA’s failure cases on such “Elastic” (0.36%→46.22%),
“Pixel”(0.55%→57.73%), and “JPEG”(0.87%→60.1%), indicating that it successfully mitigates the
sparse-knowledge bottleneck and thereby achieves the best performance.

4.3 ABLATION STUDY AND ANALYSIS

All experiments in this subsection are performed on ImageNet-C (severity level 5).

Contribution of key components. To analyze the importance of each component, we evaluate the pro-
posed agreement and uncertainty-guided reweighting (AUGR) in Table 5. Applying agreement-guided
reweighting (AUG) or uncertainty-guided reweighting (UGR) alone already outperforms the baseline
by 5.75% and 5.82%, indicating that they are beneficial to combat sparse knowledge bottleneck.
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Figure 5: Comparison of mutual information
between Tent and AUGR.

The combination of them (AUGR) results in further
improvements, supporting our design that emphasizes
robust common knowledge while suppressing noisy
uncommon ones. Moreover, we visualize the trends
in mutual information for Tent and AUGR in Fig.
5, which reflect whether the model is accumulating
useful knowledge. Tent is more vulnerable to noisy
signals, making it harder to accumulate meaningful
knowledge. In contrast, AUGR, with only about one-
tenth of the updates (79 vs 728), nearly matches the
knowledge accumulated by Tent using all data, fur-
ther demonstrating its effectiveness in overcoming
the sparse knowledge bottleneck.

Effect of adaptation delays. In practice, communication further influence the adaptation delays.
To emulate this constraint, we set equalize the adaptation delay across all methods, and summarize
the results in Fig. 6. Baseline methods drop significantly with increasing adaptation latency because
the sparse-knowledge bottleneck intensifies. Nevertheless, AUGR keeps them more robust even at
extreme latency, improving Tent, ETA, and CEMA by 2.8%, 2.6%, and 3.4%, respectively. Detailed
results are listed in Table 9 - 12.

Effect of different model pairs. In real-world applications, such as edge-cloud collaborative learning,
small-capacity base models are favored for efficiency and flexibility, whereas high-capacity reference
models are hosted in the cloud. To evaluate the applicability of AUGR, we further consider different
model pairs with various capacities and present the results in Fig. 7. We observe consistent gains
over all baselines, demonstrating that AUGR is architecture-agnostic. See Table 13 - 15 for details.
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Figure 6: Accuracy comparisons on different adaptation delays.
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Figure 7: Accuracy comparisons on different model pairs.
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Figure 8: Hyper-parameters experiments of AUGR.

Hyper-parameter Analysis. We ablate the effect of hyperparameters in Fig. 8, including the
coefficient α (Eq. 6), the TopK (Eq. 4), and the scale factors λa and λu (Eq. 9). Performance generally
increases as these values grow, while excessively large velues can degrade the accuracy slightly. From
Figs. 8 (b) and (c), we notice that using a large scale and setting λa > λu yields better performance,
highlighting the importance of the agreement-guided reweighting. Overall, our method is robust to
hyper-parameters.

VitBase

LAME

T3A

FOA

Ours

Accuracy (%) Time Cost (seconds)

51.04 121.7

50.44 127.5

51.58 239.8

59.6 255.0

64.0 121.7

Figure 9: Ours vs training-free approaches.

Comparison with training-free approaches.
Training-free approaches achieve competitive perfor-
mance while maintaining high efficiency. (Iwasawa
& Matsuo, 2021; Boudiaf et al., 2022; Niu et al.,
2024). We report the mean classification accuracy
on full ImageNet-C and the average wall-clock time
to process 50,000 samples (with Gaussian Noise)
in Fig. 9. Experiments are conducted on a single
ViTBase following (Niu et al., 2024). We find that
training-free approaches do not necessarily reduce end-to-end latency. Concretely, T3A incurs
substantial overhead for per-class support-set selection, so its cost scales with the number of classes;
FOA’s runtime scales with the number of forward passes, and more passes directly increase latency.
In contrast, our method attains superior accuracy while maintaining efficiency, suggesting that TRTA
is a realistic paradigm for TTA.

5 CONCLUSION

In this paper, we propose a realistic TTA paradigm, Test-Real-Time Adaptation (TRTA), in which
prediction on the current input and model adaptation proceed simultaneously without synchroniza-
tion pauses. TRTA inherently entails sparse adaptation, leaving few opportunities to correct earlier
errors and thereby triggering a sparse-knowledge bottleneck. To mitigate this challenge, we propose
Agreement- and Uncertainty-Guided Reweighting (AUGR), which integrates AGR and UGR as
complementary signals to produce reliable self-training supervision, thereby enabling existing TTA
methods to operate effectively under TRTA. AGR measures inter-model agreement via the concor-
dance of predicted class rankings between the base and reference models, highlighting knowledge
consistently supported by both; UGR then calibrates this signal by down-weighting low-confidence
predictions. Extensive experiments on ImageNet-C/R/K validate the effectiveness of AUGR in
addressing the sparse-knowledge bottleneck under TRTA.
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classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
Tianwei Lin, Wenhai Wang, et al. Planning-oriented autonomous driving. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 17853–17862, 2023.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
domain generalization. In Advances in Neural Information Processing Systems, volume 34, pp.
2427–2440, 2021.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in Neural Information Processing Systems, volume 30, 2017.

Jonghyun Lee, Dahuin Jung, Saehyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang, and Sungroh
Yoon. Entropy is not enough for test-time adaptation: From the perspective of disentangled factors.
In International Conference on Learning Representations, 2024.

Senyao Li, Haozhao Wang, Wenchao Xu, Rui Zhang, Song Guo, Jingling Yuan, Xian Zhong, Tianwei
Zhang, and Ruixuan Li. Collaborative inference and learning between edge slms and cloud llms:
A survey of algorithms, execution, and open challenges. arXiv preprint arXiv:2507.16731, 2025.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, 2017.
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Appendix

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used exclusively for language polishing, such as grammar, clarity, and readability. They
were not used for ideation, methodology, data handling, analysis, code, or results. This manuscript
was reviewed and approved by the authors, who take full responsibility for the content. LLMs are not
authors.

B BENCHMARK DETAILS

ImageNet-C. ImageNet-C (Hendrycks & Dietterich, 2019) augments the ImageNet validation set
with 15 common corruption types, including Gaussian, Shot, and Impulse noise, Defocus, Glass,
Motion, Zoom blur, Snow, Frost, Fog, Brightness, Contrast, Elastic transform, Pixelate, and JPEG
compression. Each corruption is processed at five severity levels, yielding 50,000 images per type
and 750,000 images in total across 1,000 classes.

ImageNet-Rendition (R). ImageNet-R (Hendrycks et al., 2021) contains artistic renditions of
ImageNet categories, including cartoons, paintings, origami, embroidery, toys, and sculptures,
covering 200 classes with 30,000 images.

ImageNet-Sketch (K). ImageNet-K (Wang et al., 2019) provides hand-drawn sketch depictions of
objects from the ImageNet label space. The dataset comprises 50,000 sketches spanning the 1,000
ImageNet categories.

C IMPLEMENTATION DETAILS

TENT. TENT (Wang et al., 2021) adapts a model by minimizing the entropy of target samples.
Implementation follows the official code.

ETA. ETA (Niu et al., 2022) selects a subset of incoming target data and performs sample-wise
weighted entropy minimization. The exponential moving average (EMA) factor, cosine-similarity
threshold, and entropy threshold are set to 0.9, 0.05, and 0.4× log(C), respectively, where C is the
number of classes. Implementation follows the official code.

SAR. SAR (Niu et al., 2023) improves stability by using batch-agnostic normalization (group/layer
norm) and a sharpness-aware reliable entropy loss: it filters noisy samples with large gradients and
encourages the weights to converge to a flatter minimum. The same entropy threshold is identical
to ETA. Trainable parameters are the affine parameters of layer normalization in blocks 1–8 for
ViT-Base, and the batch/group normalization layers in layer 1–3 for ResNet-50. Implementation
follows the official code.

COME. COME (Zhang et al., 2025) regularizes confidence to be conservative on unreliable samples
by recovering logits under an ℓp constraint. COME has two hyper-parameters: p (the p-norm) and τ
(the magnitude of recovered logits), which we set to p = 2 and τ = 1. Implementation follows the
official code.

CEMA. CEMA (Chen et al., 2024c) is an edge–cloud TTA baseline: the edge model actively selects
a small set of online samples to upload to a cloud buffer; the cloud model is optimized by entropy
minimization, and a copy of the edge model is updated using entropy minimization plus a KL term.
We set the EMA factor to 0.9, the cosine-similarity threshold to 0.05, and the entropy threshold to
0.4× log(C). The remaining hyper-parameters are α = 3, β = 3, γ = 1, temperature= 1, and buffer
size= 2000. Implementation follows the official code.

LAME. LAME (Boudiaf et al., 2022) adopts adjusts the output logits using an efficient concave-
convex procedure. For the hyper-parameters: k in the kNN affinity matrix is set to 5. Implementation
follows the official code.

T3A. T3A (Iwasawa & Matsuo, 2021) maintains a memory-based classifier from selected, l2-
normalized features and, after each update, adjusts the output logits with this classifier. The size of
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support set for each class is chosen from {1, 5, 20, 50, 100}. We fix it to 20 for the optimal results.
Implementation follows the official code.

FOA. FOA (Niu et al., 2024) designs an activation shifting scheme that directly tunes the model
activations for shifted target-domain data, making it align with the source domain. The number of
forward k is set to 2. Implementation follows the official code.

AUGR. To evaluate AUGR in isolation, Tent’s original loss is omitted and Eq. (10) is applied alone.
Moreover, AUGR can be seamlessly plugged into existing TTA methods by appending its loss term
to the baseline objectives. For the experiments in Table 1, TopK in Eq. 4, the coefficient α in Eq. 7,
the entropy margin m in Eq. 8, the scale factors λa and λu in Eq. 9 are 50, 0.9, 0.4× log(C), 5, and 3,
respectively. When integrated with baseline methods, λa and λu are reduced to 2 and 1.

Pre-trained model. In line with previous works (Niu et al., 2022; 2023), we use ResNet-50 with
batch/group normalization and vision transformers as the architecture of the pre-trained models for
most cases. To prove the applicability of our method, we additionally test it on ResNet-18 with batch
normalization and EfficientVit (Cai et al., 2022). Specifically, ResNet-18-BN and ResNet-50-BN are
obtained from Pytorch library; ResNet-50-GN , VitBase and EfficientVit are obtained from timm
repository.

Optimizer. We use SGD optimizer with a momentum of 0.9 for the base and reference models. For
ResNet-50 and VitBase, the learning rates are 0.00025 and 0.001, respectively. The batch size is 64.
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C.1 MORE EXPERIMENTAL RESULTS

Results on VitBase. In this case, we use a historical base-model checkpoint as the reference. Results
appear in Table 6.

Detailed results. This subsection contains detailed results for figures or tables in the main manuscript.
Tables 9, 10, 11, 12 correspond to Fig. 6. Tables 13, 14, 15 correspond to Figure 7.

Table 6: Accuracy comparisons in TRTA on ImageNet-C with a single VitBase.

Methods XXX Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG #Updates

VitBase ✗ 46.86 47.59 46.88 42.73 34.21 50.45 44.70 56.87 52.63 56.52 76.06 31.79 46.72 65.49 66.03 51.04 0

Tent
✗ 55.08 55.75 55.68 52.82 46.63 56.63 52.45 62.41 57.59 62.87 77.43 56.82 55.23 69.24 67.54 58.94 196
✓ 57.91 58.98 58.91 57.33 55.48 61.52 58.35 67.29 65.58 69.45 79.44 60.16 64.44 73.60 71.53 64.00 156
△ 2.83↑ 3.23↑ 3.23↑ 4.51↑ 8.85↑ 4.89↑ 5.90↑ 4.88↑ 7.99↑ 6.58↑ 2.01↑ 3.34↑ 9.21↑ 4.36↑ 3.99↑ 5.06↑ 40↓

SAR
✗ 53.49 54.63 54.27 51.53 44.92 55.34 50.81 61.10 57.82 60.74 77.02 48.37 52.99 68.36 66.94 57.22 131
✓ 57.63 59.07 58.61 56.54 53.73 61.02 57.66 66.34 64.63 67.39 79.07 56.52 62.81 73.04 70.86 62.99 112
△ 4.14↑ 4.44↑ 4.34↑ 5.01↑ 8.81↑ 5.68↑ 6.85↑ 5.24↑ 6.81↑ 6.65↑ 2.05↑ 8.15↑ 9.82↑ 4.68↑ 3.92↑ 5.77↑ 19↓

COME
✗ 56.64 57.84 57.80 56.82 54.94 61.26 58.33 65.99 65.00 69.47 79.05 53.90 64.76 72.89 70.74 63.03 196
✓ 58.39 59.77 59.21 58.05 57.28 63.01 60.32 68.30 66.44 70.58 79.45 60.72 66.88 74.29 72.11 64.99 156
△ 1.75↑ 1.93↑ 1.41↑ 1.23↑ 2.34↑ 1.75↑ 1.99↑ 2.31↑ 1.44↑ 1.11↑ 0.40↑ 6.82↑ 2.12↑ 1.40↑ 1.37↑ 1.96↑ 40↓

ETA
✗ 58.12 58.83 59.11 57.64 55.27 61.52 58.94 66.84 65.22 68.75 79.12 61.30 65.11 73.03 71.03 63.99 196
✓ 58.94 60.16 59.77 58.38 57.33 62.91 60.42 68.25 66.67 70.92 79.49 61.29 67.85 74.23 72.38 65.27 156
△ 0.82↑ 1.33↑ 0.66↑ 0.74↑ 2.06↑ 1.39↑ 1.48↑ 1.41↑ 1.45↑ 2.17↑ 0.37↑ 0.01↓ 2.74↑ 1.20↑ 1.35↑ 1.28↑ 40↓

Table 7: Accuracy comparisons in TRTA. A historical base model serves as the reference model.

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG #Updates

ResNet-50 ✗ 2.21 2.93 1.85 17.92 9.82 14.78 22.49 16.89 23.30 24.43 58.93 5.43 16.95 20.60 31.64 18.01 0

Tent
✗ 22.12 23.39 22.88 21.58 21.37 34.12 45.27 41.29 38.06 54.17 66.35 24.83 50.02 54.88 47.60 37.86 196
✓ 27.13 28.97 27.82 25.76 25.93 40.22 48.92 46.89 41.61 57.65 67.20 27.07 54.60 58.46 51.87 42.01 156
△ 5.01↑ 5.58↑ 4.94↑ 4.18↑ 4.56↑ 6.10↑ 3.65↑ 5.60↑ 3.55↑ 3.48↑ 0.85↑ 2.24↑ 4.58↑ 3.58↑ 4.27↑ 4.15↑ 40↓

SAR
✗ 19.24 20.89 19.67 19.09 19.24 31.35 42.76 38.36 36.35 51.76 65.87 22.54 47.28 52.39 44.66 35.43 98
✓ 24.54 26.88 25.90 24.54 24.32 37.77 47.61 44.24 40.34 56.43 67.16 30.19 52.59 57.20 50.29 40.67 87
△ 5.30↑ 5.99↑ 6.23↑ 5.45↑ 5.08↑ 6.42↑ 4.85↑ 5.88↑ 3.99↑ 4.67↑ 1.29↑ 7.65↑ 5.31↑ 4.81↑ 5.63↑ 5.24↑ 11↓

COME
✗ 25.36 27.42 27.54 24.56 26.06 40.17 48.48 46.04 41.76 56.60 67.09 36.48 53.41 57.46 51.14 41.97 196
✓ 29.40 31.51 29.97 26.92 27.15 42.52 50.01 48.30 43.03 58.16 67.32 38.49 55.37 59.18 52.84 44.01 156
△ 4.04↑ 4.09↑ 2.43↑ 2.36↑ 1.09↑ 2.35↑ 1.53↑ 2.26↑ 1.27↑ 1.56↑ 0.23↑ 2.01↑ 1.96↑ 1.72↑ 1.70↑ 2.04↑ 40↓

ETA
✗ 27.28 31.22 29.98 27.61 28.13 41.29 49.64 47.17 42.64 57.46 67.39 37.89 54.48 58.41 52.09 43.51 196
✓ 30.22 32.13 29.91 27.51 27.66 42.92 49.83 48.33 42.85 58.22 67.04 37.90 55.38 58.98 52.72 44.11 156
△ 2.94↑ 0.91↑ 0.07↓ 0.10↓ 0.47↓ 1.63↑ 0.19↑ 1.16↑ 0.21↑ 0.76↑ 0.35↓ 0.01↑ 0.90↑ 0.57↑ 0.63↑ 0.60↑ 40↓

Table 8: Accuracy comparisons in TRTA. A frozen VitBase serves as the reference model.

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG #Updates

Tent
✗ 24.11 25.62 24.23 22.70 21.79 34.96 43.81 42.40 38.96 52.99 66.62 26.22 48.54 54.80 48.03 38.38 112
✓ 34.05 35.55 34.54 30.89 30.21 43.82 48.13 49.56 44.21 57.04 67.72 36.79 52.94 59.26 53.68 45.23 112
△ 9.94↑ 9.93↑ 10.31↑ 8.19↑ 8.42↑ 8.86↑ 4.32↑ 7.16↑ 5.25↑ 4.05↑ 1.10↑ 10.57↑ 4.40↑ 4.46↑ 5.65↑ 6.85↑ 0

SAR
✗ 17.81 19.63 19.37 17.37 18.81 29.91 41.84 37.71 36.09 50.42 66.13 17.44 46.51 51.68 43.65 34.29 72
✓ 28.47 31.07 29.89 24.37 26.62 39.19 47.36 46.35 41.38 55.92 67.05 20.05 52.84 57.52 50.95 41.27 72
△ 10.66↑ 11.44↑ 10.52↑ 7.00↑ 7.81↑ 9.28↑ 5.52↑ 8.64↑ 5.29↑ 5.50↑ 0.92↑ 2.61↑ 6.33↑ 5.84↑ 7.30↑ 6.98↑ 0

COME
✗ 26.46 28.62 26.60 23.74 23.85 38.49 46.58 45.38 41.15 55.20 67.09 30.78 51.25 56.69 50.38 40.82 112
✓ 33.16 34.69 33.83 29.76 29.35 43.36 47.59 48.84 43.68 56.45 67.56 35.77 51.99 59.14 53.57 44.58 112
△ 6.70↑ 6.07↑ 7.23↑ 6.02↑ 5.50↑ 4.87↑ 1.01↑ 3.46↑ 2.53↑ 1.25↑ 0.47↑ 4.99↑ 0.74↑ 2.45↑ 3.19↑ 3.76↑ 0

ETA
✗ 28.02 30.12 28.11 25.49 25.98 39.70 47.42 46.32 41.91 55.99 67.24 32.21 52.45 57.21 50.95 41.94 112
✓ 33.66 35.22 34.08 30.40 30.23 43.47 48.01 49.26 43.94 56.83 67.69 36.23 52.50 59.21 53.57 44.95 112
△ 5.64↑ 5.10↑ 5.97↑ 4.91↑ 4.25↑ 3.77↑ 0.59↑ 2.94↑ 2.03↑ 0.84↑ 0.45↑ 4.02↑ 0.05↑ 2.00↑ 2.62↑ 3.01↑ 0

CEMA
✗ 25.29 34.37 33.19 20.84 25.62 38.20 46.84 43.40 40.92 51.40 65.04 18.32 48.76 54.91 50.62 39.85 71
✓ 30.90 36.37 34.46 27.29 28.19 40.74 47.81 46.40 42.92 54.23 65.43 30.09 50.89 56.83 52.37 42.99 56
△ 5.61↑ 2.00↑ 1.27↑ 6.45↑ 2.57↑ 2.54↑ 0.97↑ 3.00↑ 2.00↑ 2.83↑ 0.39↑ 11.77↑ 2.13↑ 1.92↑ 1.75↑ 3.14↑ 15↓
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Table 9: Accuracy comparisons in TRTA on ImageNet-C with different adaptation delays (k=5).

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG

ResNet-50 ✗ 2.21 2.93 1.85 17.92 9.82 14.78 22.49 16.89 23.30 24.43 58.93 5.43 16.95 20.60 31.64 18.01
VitBase ✗ 46.86 47.59 46.88 42.73 34.21 50.45 44.70 56.87 52.63 56.52 76.06 31.79 46.72 65.49 66.03 51.04

Tent ✗ 25.05 26.58 25.63 24.30 23.37 36.14 44.84 43.32 39.77 53.66 66.73 30.79 49.85 55.44 48.62 39.61
✓ 34.40 36.57 35.79 33.21 32.10 45.09 49.65 50.26 45.27 58.07 67.85 42.50 54.96 59.79 54.09 46.64

ETA ✗ 29.03 30.91 30.50 27.70 27.80 40.37 48.11 47.09 42.52 56.64 67.34 36.12 53.72 57.81 51.57 43.15
✓ 35.08 37.34 36.69 34.03 33.22 46.00 50.99 50.95 45.77 58.73 67.89 43.74 55.99 60.03 54.55 47.40

CEMA ✗ 27.87 37.57 35.86 23.75 31.22 42.09 48.88 46.06 43.19 54.35 65.24 24.27 53.09 57.10 52.45 42.87
✓ 33.77 39.19 38.08 31.99 34.10 44.62 49.89 48.70 44.93 56.42 65.62 39.91 54.63 58.36 53.75 46.26

Table 10: Accuracy comparisons in TRTA on ImageNet-C with different adaptation delays (k=10).

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG

Tent 21.33 22.37 21.44 20.53 20.07 32.67 42.53 40.31 37.46 51.83 66.39 24.28 47.49 53.42 45.95 36.54
✓ 30.83 32.34 31.03 28.54 27.77 41.18 47.64 47.82 42.96 56.16 67.70 37.06 52.36 58.04 52.16 43.57

ETA 25.11 27.35 26.19 22.09 24.79 37.13 46.03 44.22 40.47 54.63 66.95 28.61 51.17 56.07 49.15 40.00
✓ 31.68 33.57 32.40 29.50 29.95 42.65 48.96 48.87 43.63 56.80 67.75 37.99 53.92 58.65 52.69 44.60

CEMA 24.51 34.80 33.69 21.71 26.71 38.10 47.86 42.97 41.18 52.66 64.39 18.28 49.97 55.33 50.89 40.20
✓ 30.79 37.63 35.55 28.12 30.89 42.03 49.03 47.25 42.77 55.06 65.19 35.42 52.34 57.20 52.55 44.12

Table 11: Accuracy comparisons in TRTA on ImageNet-C with different adaptation delays (k=20).

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG

Tent 18.32 19.03 18.58 17.58 17.45 29.14 40.83 37.46 35.52 49.71 66.01 18.41 45.57 51.50 43.28 33.89
✓ 25.79 27.04 25.78 23.93 22.96 36.28 44.65 44.21 40.17 53.88 66.93 28.89 49.48 55.93 49.00 39.66

ETA 22.05 22.74 20.81 19.20 20.41 32.44 43.18 40.75 37.78 52.43 66.46 22.69 48.10 53.73 46.11 36.59
✓ 27.31 28.68 27.22 25.06 24.91 37.90 46.08 45.39 41.28 54.83 67.11 31.64 51.06 56.58 49.96 41.00

CEMA 21.78 30.67 30.20 19.59 23.81 31.11 42.63 40.56 39.20 49.94 64.64 18.23 48.61 53.97 48.09 37.53
✓ 27.05 33.63 33.15 25.13 27.16 36.74 46.62 44.53 41.12 52.53 65.21 29.88 50.90 56.05 50.75 41.36

Table 12: Accuracy comparisons in TRTA on ImageNet-C with different adaptation delays (k=50).

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG

Tent 16.25 16.83 16.66 15.57 15.94 27.09 39.38 35.28 34.19 48.16 65.80 14.08 44.37 49.67 40.93 32.01
✓ 19.45 20.33 19.44 18.19 17.76 30.63 41.38 38.88 36.30 50.54 66.19 18.43 46.35 52.78 44.73 34.76

ETA 17.41 18.50 18.02 16.21 16.77 28.51 40.73 36.50 35.18 49.77 65.99 16.57 45.76 50.66 42.54 33.28
✓ 20.44 21.97 20.94 19.00 18.94 31.99 42.39 39.95 37.29 51.58 66.35 21.15 47.72 53.49 45.63 35.92

CEMA 16.84 17.74 17.61 17.47 19.91 29.66 40.86 38.47 37.75 47.17 64.72 17.17 46.95 51.28 43.75 33.82
✓ 22.04 22.91 26.84 21.51 22.88 32.82 41.90 40.55 38.87 49.60 65.10 22.81 48.40 53.96 47.27 37.16

C.2 MORE ABLATION STUDIES.

The choice of reference model. To analyze the effect of the reference model, we consider two
additional ablations: single-model adaptation and collaborative adaptation with a frozen foundation
model, reported in Table. 7 and Table 8, respectively. In the first case, we use a historical version of the
base model as the reference to provide agreement assessment, which aligns with our design principle
of highlighting robust common knowledge. The reference requires no backward computation, but
obtaining its logits incurs an extra forward pass and thus reduces the total number of updates.
Nevertheless, as shown in Table 7, our method still consistently improves existing approaches across
most domain shifts.

In the second case, the overall updates increase compared to Table 1, since the frozen reference model
saves one backward pass. As shown in Table 8, additional updates provide marginal improvements
for the baseline methods, suggesting they accumulate knowledge ineffectively. In contrast, our
method significantly enhances their robustness under diverse domain shifts. The above empirical
results demonstrate that our method does not rely on a specific reference model and highlight
the effectiveness of our design, which promotes robust common knowledge to combat the sparse
knowledge bottleneck.
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Table 13: Accuracy comparisons in TRTA on ImageNet-C with ResNet-18&VitBase.

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG

ResNet-18 1.16 1.80 1.00 11.44 8.68 11.16 17.65 10.87 16.45 14.29 51.30 3.44 16.78 3.12 29.64 14.59
VitBase 46.86 47.59 46.88 42.73 34.21 50.45 44.7 56.87 52.63 56.52 76.06 31.79 46.72 65.49 66.03 51.04

Tent 17.11 18.29 17.14 14.99 16.14 26.84 35.75 32.93 30.99 43.53 58.58 17.04 40.52 46.72 41.25 30.52
✓ 25.23 27.14 24.95 22.04 22.92 33.29 39.74 39.14 35.91 48.65 59.56 27.91 45.53 51.21 46.33 36.64

SAR 13.84 15.74 14.36 12.06 13.33 23.74 33.90 30.11 29.03 40.77 58.29 9.56 38.59 43.97 37.74 27.67
✓ 18.35 22.02 19.31 15.83 17.15 28.72 37.79 34.79 32.32 45.66 58.97 16.04 42.84 48.36 42.68 32.06

COME 19.36 21.09 19.76 16.56 17.90 28.75 37.44 35.09 32.78 45.36 58.86 18.35 42.65 48.57 43.07 32.37
✓ 26.21 27.88 26.18 22.81 24.07 34.43 40.67 39.75 36.50 49.17 59.82 28.99 46.63 51.64 46.76 37.43

ETA 20.60 22.28 20.74 16.31 18.96 29.61 38.15 35.73 33.37 46.14 59.10 19.07 43.32 48.98 43.60 33.06
✓ 26.47 28.27 26.41 23.14 24.43 34.34 40.86 39.90 36.78 49.31 59.69 29.40 46.77 51.65 46.84 37.62

CEMA 22.01 29.70 28.50 17.84 20.03 30.89 39.23 35.39 34.55 44.15 57.32 11.18 43.23 48.48 44.66 33.81
✓ 25.21 31.11 29.58 21.27 23.24 33.44 40.70 38.01 35.87 45.72 57.57 22.91 44.70 50.29 46.31 36.39

Table 14: Accuracy comparisons in TRTA on ImageNet-C with ResNet50-GN&VitBase.

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG

ResNet-50-GN 19.12 20.48 18.9 19.18 10.85 20.91 24.47 38.73 48.07 38.31 68.81 32.28 17.97 27.58 52.9 30.57
VitBase 46.86 47.59 46.88 42.73 34.21 50.45 44.7 56.87 52.63 56.52 76.06 31.79 46.72 65.49 66.03 51.04

Tent 23.35 25.25 24.05 19.97 14.02 24.58 27.04 40.39 45.82 37.65 69.19 36.89 22.06 39.45 53.73 33.56
✓ 33.76 35.71 34.95 26.56 22.72 33.48 34.79 48.04 49.44 51.32 70.89 44.42 35.90 51.82 55.89 41.98

SAR 19.00 20.90 19.34 18.96 11.30 21.54 24.86 38.24 46.38 36.40 68.80 33.60 18.08 29.34 53.10 30.66
✓ 22.98 27.49 25.71 17.62 14.82 25.88 27.78 39.67 44.03 37.34 69.68 37.24 22.06 42.62 54.24 33.94

COME 23.68 25.16 24.36 20.53 13.41 23.94 26.61 41.14 48.74 42.54 69.05 35.98 22.20 35.85 53.50 33.78
✓ 33.99 37.04 35.58 25.91 24.61 34.98 36.57 47.63 47.36 48.25 71.31 46.44 38.17 54.40 56.47 42.58

ETA 25.73 28.68 26.10 22.13 17.38 27.83 29.11 42.32 44.63 40.22 69.57 39.67 27.42 42.71 54.28 35.85
✓ 34.93 37.02 36.06 28.16 25.11 35.03 36.35 49.00 49.91 49.74 71.16 46.06 38.64 53.21 56.52 43.13

CEMA 30.94 39.35 38.32 22.90 18.62 32.33 37.59 46.63 52.04 49.36 71.94 45.86 30.64 46.26 59.00 41.45
✓ 36.97 41.52 40.79 26.85 24.01 36.62 40.03 49.52 51.77 53.42 72.33 46.56 39.88 54.12 59.01 44.89

Table 15: Accuracy comparisons in TRTA on ImageNet-C with EfficientViT-B1&VitBase.

Methods AUGR Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elast. Pixel JPEG AVG

EfficientViT-B1 10.20 12.50 8.98 8.87 10.60 13.79 18.96 19.78 28.65 20.90 61.16 0.26 20.88 47.36 49.92 22.19
VitBase 46.86 47.59 46.88 42.73 34.21 50.45 44.7 56.87 52.63 56.52 76.06 31.79 46.72 65.49 66.03 51.04

Tent 18.27 20.52 17.92 22.66 27.08 40.93 46.91 47.32 49.09 59.02 70.64 33.76 55.83 56.65 52.24 41.26
✓ 27.94 29.19 27.79 30.38 32.97 46.33 50.24 50.41 51.97 61.59 71.23 40.65 58.44 60.49 56.37 46.40

SAR 13.93 15.71 13.79 19.66 24.43 38.68 45.80 44.28 47.52 57.74 70.39 29.37 54.73 54.48 49.37 38.66
✓ 20.82 25.80 22.22 24.78 29.46 42.47 49.20 48.91 49.92 60.12 70.65 34.74 57.47 57.93 53.79 43.22

COME 16.47 18.82 15.87 21.48 25.68 39.58 46.21 45.51 47.75 57.77 70.32 31.72 53.90 54.71 50.19 39.73
✓ 30.89 32.58 30.80 33.00 36.21 48.84 51.55 53.87 53.09 62.67 70.56 44.06 60.00 61.57 57.27 48.46

ETA 17.20 20.65 17.43 24.64 28.40 42.48 48.93 49.89 50.19 60.27 70.90 34.72 57.66 58.07 53.82 42.35
✓ 23.46 29.13 23.13 31.76 34.66 47.60 51.33 53.56 52.46 62.11 71.31 43.34 59.60 60.89 56.67 46.73

CEMA 14.27 16.19 14.76 24.36 30.98 46.06 51.53 51.11 49.56 60.32 70.10 32.03 57.37 58.95 56.64 42.28
✓ 27.18 37.00 34.47 15.34 33.45 47.29 52.26 53.11 52.81 61.12 69.53 22.48 58.55 60.99 57.77 45.56

Effect on loss functions. We conduct a comprehensive ablation of AGR/UGR placement across the
two losses (Table 16). AGR alone consistently improves accuracy; for example, enabling AGR in
both losses increases performance from 38. 43% to 41. 98%. Combining AGR with UGR yields
additional gains; With only one loss active, accuracy increases from 36.99% to 41.63%. The best
result occurs when AGR and UGR are applied to both losses, reaching 46.02%, indicating that
agreement and uncertainty are complementary and that applying them across all objectives is the
most effective under TRTA.

Effect on entropy margin. The entropy margin m controls the confidence threshold for weighting
samples based on predictive uncertainty. As shown in Figure 10, a small m imposes an overly
strict threshold and downweighting informative signals from moderately confident samples, while a
large margin introduces more noisy signals from unreliable predictions. Our method achieves strong
performance across a broad range of values and peaks near e, indicating its relative insensitivity to this
hyperparameter. Following the common practice in ETA (Niu et al., 2022), we set m = 0.4× logC,
which performs close to the optimum.
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Table 16: Ablation on AGR and UGR. The best
and second best results are highlighted.

Ent CE ACC △
AGR UGR AGR UGR

✗ ✗ ✗ ✗ 36.99 -
✓ ✗ ✗ ✗ 38.43 1.44↑
✓ ✗ ✗ ✓ 42.40 5.41↑
✓ ✗ ✓ ✗ 41.98 4.99↑
✓ ✗ ✓ ✓ 45.15 8.16↑
✓ ✓ ✗ ✗ 41.63 4.64↑
✓ ✓ ✗ ✓ 45.82 8.83↑
✓ ✓ ✓ ✗ 42.42 5.43↑
✓ ✓ ✓ ✓ 46.02 9.03↑
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Figure 10: Ablation study on the margin.

D LIMITATIONS

Our proposed test-real-time adaptation (TRTA) is a new challenge in TTA, with many facets still
open. While our proposed method demonstrates strong performance in the challenging TRTA setting,
we acknowledge several limitations. Our reliance on an auxiliary reference model, while essential
for providing a stable and high-quality adaptation process, involves considerations of computational
overhead, and the base model’s effectiveness is tied to the capacity of the reference model. Moreover,
our work focused on image classification, extending our framework to dense prediction tasks (e.g.
semantic segmentation) remains an important direction for future work.
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