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ABSTRACT

Hateful memes have emerged as a particularly challenging form of online abuse,
motivating the development of automated detection systems. Most prior ap-
proaches rely on direct detection, producing only binary predictions. Such mod-
els fail to provide the context and explanations that real-world moderation re-
quires. Recent Explain-then-Detect approaches, using Chain-of-Thought prompt-
ing or LMM agents, perform worse than simple SFT baselines, and even advanced
post-training methods such as GRPO fail to close the gap. Our analysis identi-
fies two key issues of such systems: important policy-relevant cues such as tar-
gets and attack types are not hypothesized by the model as a likely explanation;
and the binary reward signal is insufficient to guide reasoning. To address these
challenges, we propose ExPO-HM (Explain-then-Detect Policy Optimization for
Hateful Memes), inspired by the training and evaluation process of human an-
notators. ExPO-HM combines SFT warmup, GRPO with curriculum learning,
and Conditional Decision Entropy (CDE) as both metric and reward for reasoning
quality. Across three hateful meme benchmarks, ExPO-HM achieves state-of-
the-art performance on binary detection, fine-grained classification, and reasoning
quality, with up to 15% and 17% F1 improvement over the GRPO and DPO base-
lines, respectively. By moving hateful meme detection from simple binary alarms
to explanation-driven detection, ExPO-HM provides accurate, interpretable, and
actionable moderation support.

This paper contains content for demonstration purposes that may be disturbing for some readers.

1 INTRODUCTION

The rise of social media has led to a surge in hateful content, notably in the form of memes. This
has sparked growing research interest in automated hateful meme detection systems that aim at sup-
porting human moderation (Kiela et al., 2021; Liu et al., 2022; Prakash et al., 2023; Shah et al.,
2024). Most prior work focuses on direct detection, which only provides a binary classification as to
whether a meme is hateful or benign (Cao et al., 2023; Mei et al., 2024; Su et al., 2025). However,
recent studies show that moderators require additional information to improve efficiency (Calabrese
et al., 2024), such as what type of attack is present, and why the system considers the meme harm-
ful. Additionally, social media users may also benefit from understanding these explanations of
harmfulness.

Interestingly, human annotators are not trained and evaluated on binary judgments; common practice
is that they are guided by a detailed moderation policy manual that defines policy violations such as
disparagement of protected groups (Singhal et al., 2023). It would be infeasible to train annotators
by showing them only raw examples with binary labels; the fine-grained framework provides the
necessary structure for both training and evaluation. This human analogy highlights a crucial gap:
if humans require fine-grained guidelines and reasoning to make reliable judgments, automated
systems could benefit from the same. We call this setting “Explain-then-Detect”, where the system
first generates a natural language rationale and then produces a classification decision.

Recent work builds Explain-then-Detect Large Multimodal Model (LMM) systems using Chain-of-
Thought (CoT) prompting (Wei et al., 2023; Pan et al., 2025) or agent-based frameworks (Huang
et al., 2024), but these perform worse than direct Supervised Fine-tuning (SFT) baselines (Mei et al.,
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Figure 1: Comparing previous methods with ExPO-HM.

2025). Reinforcement learning methods such as Group-Relative Policy Optimization (GRPO) (Shao
et al., 2024) can strengthen model reasoning through post-training, yet we find that applying GRPO
directly still underperforms SFT for hateful meme detection. Our study reveals two key challenges
for Explain-then-Detect systems. First, model explanations often fail to identify the correct violated
policy or target, leading to misleading predictions. Second, the binary reward signal in GRPO is too
weak to guide reasoning, just as human annotators cannot learn from only yes/no labels.

To address these issues, we propose ExPO-HM (Explain-then-Detect Policy Optimization for
Hateful Memes), inspired by how human annotators are trained and evaluated. ExPO-HM first
uses SFT warmup on a policy manual, mirroring the guideline-based training of human annotators.
We then apply GRPO with curriculum learning, mimicking how annotators are first trained and eval-
uated on fine-grained categories before making binary judgments. We further introduce Conditional
Decision Entropy (CDE) both as a metric for explanation quality and as a reward signal to encourage
decisive reasoning. We summarize our contributions:

• Paradigm. We introduce the first Explain-then-Detect hateful meme detection that outper-
forms direct detection, enabling accurate and interpretable hateful meme understanding.

• Methods. ExPO-HM mimics human moderator training, combining policy manual SFT
warmup, GRPO curriculum learning, and CDE-based reward optimization.

• Evaluation. We propose a comprehensive evaluation setup that reflects real-world modera-
tion, extending beyond binary classification to fine-grained categories and hateful reasoning
judged by LLMs, with extensive baseline comparisons.

• Results. ExPO-HM surpasses previous best systems, and achieves new state-of-the-art
performance across binary, fine-grained, and reasoning benchmarks, with up to 15% and
17% F1 improvement over the GRPO and DPO baseline, respectively.

2 RELATED WORK

Direct Hateful Meme Detection Most existing approaches to hateful meme detection treat the
task as binary classification. Numerous studies fine-tune CLIP-based models using only binary
labels and train dedicated classifiers (Pramanick et al., 2021; Kumar & Nandakumar, 2022; Burbi
et al., 2023; Cao et al., 2023; Ji et al., 2024; Mei et al., 2024). Decoder-based LMMs have also been
fine-tuned for this task (Alayrac et al., 2022; Laurençon et al., 2023; Hu et al., 2024). In particular,
Mei et al. (2025) train a classifier and retriever on top of the LMM embeddings, achieving state-of-
the-art binary detection performance.

In contrast, fine-grained classification, such as identifying attack types or target groups, has received
far less attention, despite its importance in real-world moderation. Annotated datasets are avail-
able (Mathias et al., 2021a; Dimitrov et al., 2021; Fersini et al., 2022; Shah et al., 2024), and some
earlier work has explored this problem (Zia et al., 2021; Mathias et al., 2021b), but recent progress
has been limited. Mod-Hate (Cao et al., 2024) and IntMeme (Hee & Lee, 2025) leverage fine-
grained annotations during training but do not report fine-grained results. MemeCLIP (Shah et al.,
2024) addresses this by fine-tuning separate CLIP-based classifiers for each split. In this paper,
we systematically evaluate models under different setups and extend the evaluation to fine-grained
classification, addressing this important gap.
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Explain-then-Detect Hateful Meme Detection Compared to direct hateful meme classification,
research on explainable hateful meme detection is far more limited. With the rise of decoder-based
language models, some Explain-then-Detect systems have emerged. For example, Lin et al. (2024)
leverage a debate between two LMs to decide meme harmfulness, while LOREHM (Huang et al.,
2024) adopts a reasoning-agent framework with retrieval and reflection. However, these systems
still primarily target binary classification.

A key challenge is the lack of annotated explanation data. Hatred (Hee et al., 2023), built on
the Facebook Hateful Memes dataset (Kiela et al., 2021), remains the only open-source dataset
with human-written rationales. Other efforts, such as the recent Arabic hateful meme dataset
ArMeme (Kmainasi et al., 2025), are not yet publicly available. Moreover, reasoning tasks re-
main difficult (Nguyen & Ng, 2024). Existing Explain-then-Detect systems not only struggle with
reasoning but also underperform direct detection models in binary classification, underscoring the
cost of requiring explanations without tailored optimization strategies. In this paper, we make two
key contributions. First, we benchmark a comprehensive set of Explain-then-Detect systems using
the Hatred dataset. Second, inspired by human moderator training, we develop ExPO-HM, the first
Explain-then-Detect system that surpasses both prior explainable and direct detection approaches,
delivering accurate and interpretable hateful meme detection.

3 EXPO-HM METHODOLOGY

3.1 PRELIMINARIES

Problem Statement. A common binary hateful memes classification dataset (Kiela et al., 2021)
is D = {(Ii, c∗i )}Ni=1, where Ii ∈ RC×H×W is an image with overlaid text, and the ground-truth
label c∗i ∈ {0, 1} denotes benign / hateful. In addition, we consider annotations including fine-
grained labels z∗i (e.g., protected category, attack type) (Mathias et al., 2021a) and, when available,
gold explanations (Hee et al., 2023) e∗i . We thus define the three tasks for hateful meme detection:
(1) predicting binary class ci; (2) predicting fine-grained class zi; (3) generating ei. For text-based
evaluation, we denote the textualized label prediction as di (from ci or zi) and the corresponding
ground-truth text label as d∗i .

Large Multimodal Models (LMMs). Given a meme I and a prompt p, we denote the input to
LMM as x = (I, p). An LMM with parameters θ defines an auto-regressive policy over output text
tokens y = (y1, . . . , y|y|):

πθ(y |x) =

|y|∏
t=1

πθ(yt | y<t,x), (1)

where t indexes the output tokens. Direct-Detection methods decode labels directly, via answers like
“yes” / “no” (Lin et al., 2024). In contrast, Explain-then-Detect first generates reasoning and then
the label. Following the standard long CoT format (DeepSeek-AI et al., 2025), the output sequence
is:

y ≡
(
<think> e </think> <answer> d </answer>

)
, (2)

where e is the generated explanation and d is the textualized label prediction.

Supervised Fine-Tuning (SFT). Given an input x and a target output sequence y∗, the model is
trained by maximizing the likelihood of y∗:

LSFT(θ) = −
|y∗|∑
t=1

log πθ(y
∗
t |y∗

<t,x) . (3)

This serves as the general form of SFT used in our baselines.

Direct Preference Optimization (DPO). We consider DPO (Rafailov et al., 2023) as a baseline
fine-tuning method. Preference pairs (y+,y−) are sampled on-policy from the reference model πref

via the Explain-then-Detect prompting format. A response y is selected as the preferred response
y+ if its decision d matches the ground-truth label d∗; otherwise, it is treated as the rejected response
y−.
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We optimize the DPO objective:

LDPO(θ) = − log σ
(
β log

πθ(y
+|x)

πref(y+|x)
− β log

πθ(y
−|x)

πref(y−|x)

)
, (4)

where σ is the sigmoid function and πref is the reference model, i.e., the initial model before DPO
fine-tuning.

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) is an online Policy Gradi-
ent method that discards the critic model to save computation. To estimate the advantage, it samples
a group of outputs (y1, . . . ,yG) from the old policy πθold for each input x. The advantage for the
g-th sample in a group is computed by normalizing its reward against the group’s reward distribution
{r1, . . . , rG}:

Ag =
rg −mean({r1, . . . , rG})

std({r1, . . . , rG})
. (5)

We consider verifiable reward functions in this paper. The policy is then optimized with the clipped
objective:

LGRPO(θ) =
1

G

G∑
i=1

[
min

(
πθ(yi|x)
πθold(yi|x)

Ai, clip
( πθ(yi|x)
πθold(yi|x)

, 1− ϵ, 1+ ϵ
)
Ai

)]
− βDKL(πθ∥πref).

(6)

3.2 CONDITIONAL DECISION ENTROPY

The reasoning quality is difficult to optimize in hateful meme detection, as there is no reliable
reward model due to the scarce taionale corpora and subjectuive human judgements. To address
this, we propose Conditional Decision Entropy (CDE) as a proxy measure. The principle of CDE is
straightforward: good reasoning should lead to a sharp and correct decision, while poor reasoning
produces confusion.

CDE Definition. For an input x, the LMM πθ generates an explanation and decision response
y = (e, d) ∼ πθ(· | x) in the format of Eq. 2, where the final decision is sampled conditioned on the
explanation and input d ∼ πθ(· | e,x). We define CDE as the entropy of the decision conditioned
on the produced explanation:

H(d | e,x) = −Ed∼πθ(·|e,x)
[
log πθ(d | e,x)

]
. (7)

Monte Carlo Estimator for CDE To evaluate reasoning quality with CDE, we estimate average
CDE over the validation set. For each example xi, we sample K = 16 explanations eik with the
policy πθ and compute the entropy of the decision distribution. The estimator is

Ĥ(d | e,x) =
1

K|D|

|D|∑
i=1

K∑
k=1

H(d | eik,xi) , eik ∼ πθ(· | xi). (8)

In the binary classification case, we experimented with collapsing the decision vocabulary to
V ∈ {Yes,No}, making CDE equivalent to binary entropy. We observed no significant differ-
ence compared to using the full vocabulary. For generalizability to fine-grained multi-class labels,
we therefore adopt the full vocabulary formulation.

A full derivation is provided in Appendix E.

3.3 EXPO-HM FRAMEWORK

Inspired by human moderator training, where annotators first study policy guidelines and then prac-
tice applying them to tasks of increasing difficulty, ExPO-HM, as shown in Figure 2, first learn
policy knowledge through SFT, then refines its reasoning via GRPO with curriculum learning, pro-
gressing from fine-grained to binary classification.

iv
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Figure 2: Architecture of ExPO-HM. Our framework consists of three key components: 1 SFT-PM
Warmup. The VLM is first trained with SFT using structured policy manuals derived from fine-
grained labels and dataset guidelines, teaching the model to align decisions with explicit moderation
policies. 2 GRPO with Curriculum Learning. Training follows a two-stage schedule: the first
50% of steps use fine-grained data only for reasoning exploration, and the remaining 50% use a
balanced 50/50 mix of fine-grained and binary data. 3 GRPO with CDE reward In addition
to the format reward (rformat) and accuracy (racc) reward used in standard GRPO, we also add a
Conditional Decision Entropy (rCDE) reward.

SFT Warmup on Structured Policy Manuals (SFT-PM). We first teach the LMM moderation
policy knowledge by converting each dataset’s fine-grained labels into a structured policy manual
as the input prompt. Descriptions derived from the dataset annotation guidelines are added to each
policy item in the policy manual, where we provide details in Appendix B. We optimize the lan-
guage modelling loss in Eq. 3 with this policy manual augmented input for each meme, and the
target response y∗ is the fine-grained label d∗i . Note that we do not use human-written gold hateful
explanation e∗ in the warmup stage, as they are off-policy and lead to worse performance, which we
discuss in Sec 4.5.

GRPO with Curriculum Learning (GRPO-CL). After the SFT-PM warmup, we conduct GRPO
curriculum learning. We begin with fine-grained classification to incentivize policy understanding
through diverse reasoning exploration, then introduce binary classification for hateful vs. benign
detection. We test various curriculum schedulers, switching after fine-grained accuracy plateaus,
adjusting the budget split between stages, or adjusting the mixing ratio of the fine-grained and binary
data in the second stage, and find similar performance as long as fine-grained reasoning precedes
binary. We therefore adopt a simple 50/50/50 strategy: the first 50% of steps use fine-grained data
only, and the remaining 50% use a balanced 50/50 mix of fine-grained and binary data.

We optimize the clipped surrogate loss in Eq. 6 using the group-relative advantage in Eq. 5. The
reward rig corresponds to the g-th response in the sampled group for the i-th training example

r(yig, d
∗
i ) = rformat + racc + w rCDE, (9)

where rformat ∈ {0, 1} checks if the output obeys the correct template in Eq. 2. The accuracy
reward racc ∈ [0, 1] measures prediction correctness with partial credit for multi-class fine-grained
classification and penalties for over-prediction. For binary classification, it requires an exact match
and thus racc∈{0, 1}. For the GRPO baseline, we set w = 0, leaving only the format and accuracy
rewards. Now let’s define CDE Reward rCDE.

CDE as a Reward Although GRPO with curriculum learning improves over the naive GRPO
baseline, it still falls short in producing reliable reasoning. As introduced in Sec. 3.2, CDE provides
a proxy for reasoning quality. If the prediction is sharp and correct, the reasoning is helpful and
should be rewarded; if it is wrong but confident, the reasoning is misleading and should be penalized.
We therefore incorporate it as an additional reward to guide ExPO-HM.

v
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For each group-sampled example yig of each input xi, we denote the CDE as hig and correctness as
δig:

hig = H(d | eig,xi), δig = 1
[
dig = d∗i

]
. (10)

We reward confident correctness, tolerate uncertainty when wrong, and penalize confident errors.
The CDE reward for the example yig is

rCDE(hig, δig) = δig ·


w, h ≤ a

w
b− hig

b− a
, a < hig < b

0, hig ≥ b

+ (1−δig) ·


−ρw, hig ≤ a

w
hig − a

b− a
, a < hig < b

w, hig ≥ d

(11)

CDE rewards contribute a maximum of weight w, with ρ controlling the penalty strength for over-
confident wrong predictions. Unless otherwise noted, we use default hyperparameters a = 0.1,
b = 0.5, w = 0.2, and ρ = 0.25. The rCDE can thus be fed into Eq. 9 to obtain the reward to
compute advantage to optimize the GRPO objective.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset: We evaluate the binary and fine-grained classification on three meme classification
datasets: HatefulMemes (Kiela et al., 2021), MAMI (Fersini et al., 2022), and PrideMM (Shah
et al., 2024).

Tasks: We evaluate binary classification (hateful vs benign) on all three datasets. For fine-grained
classification, we assess attack methods and target groups on HatefulMemes, attack methods on
MAMI, and stance towards LGBTQ+ along with target group detection on PrideMM. Due to the
scarcity of annotated hate rationales, we only evaluate reasoning quality on HatefulMemes, where
gold human rationales are available (Hee et al., 2023). Detailed dataset descriptions and statistics
are provided in Appendix B.

Evaluation Metrics: We evaluate classification tasks using macro F1 following prior work (Shah
et al., 2024). For reasoning quality, we adopt the LLM-as-judge method (Yang et al., 2023; Mei
et al., 2025) to measure alignment between model-generated and human rationales. In addition,
we report CDE as a proxy to reasoning quality and verify its correlation with LLM-as-judge in
Appendix D.

4.2 BASELINES

We compare ExPO-HM with comprehensive baselines on Qwen2.5-VL-3B and Qwen2.5-VL-
7B (Bai et al., 2025) in Table 1. In this section, we describe the baseline setup briefly. Full im-
plementation details are provided in Appendix C to ensure reproducibility.

SFT. In this paper, we consider two variants of SFT as baselines. Direct-SFT is trained with the
ground-truth label as the target (y∗ = d∗ in Eq. 3), while CoT-SFT uses Explain-then-Detect prompt
adopted in DPO and GRPO, where the target sequence is the chosen response in DPO sampling
(y∗ = y+ in Eq. 3). In practice, we find that Direct-SFT consistently outperforms CoT-SFT, even
when inference is performed with the Explain-then-Detect prompt. We therefore report Direct-SFT
as the default baseline. For classification, we train and report separate models based on the binary
and the fine-grained subset, and report the best results. Full results for each model are provided in
Table 3, while Table 1 reports the best system.

DPO & GRPO. For DPO and GRPO, we initialize from the fine-grained SFT warmup, but with-
out the policy-manual style augmentation. We sweep different β values in DPO to get the best
performance on the validation set. The GRPO baseline is trained with the same compute budget
as ExPO-HM, using identical hyperparameter settings in both the warmup and GRPO fine-tuning
stages.

Best prior systems. We compare ExPO-HM with the best prior systems. RA-HMD (Mei et al.,
2025) is the state-of-the-art direct detection model, combining two-stage fine-tuning, and retrieval-
augmented classification. Although primarily designed for direct detection, it supports reasoning
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evaluation via prompting, so we report its LLM-as-judge scores. All RA-HMD results are based
on Qwen2.5-VL-7B (Bai et al., 2025). For Explain-then-Detect, we compare two recent systems:
LOREHM (Huang et al., 2024), a reflective reasoning agent with tool-calling capability built on
LLaVA-Next-34B (Liu et al., 2024), and U-CoT+ (Pan et al., 2025), which uses human-guided
CoT prompting with Qwen2-VL-7B (Wang et al., 2024) for meme-to-text conversion and Qwen2.5-
14B (Qwen et al., 2025) for answer generation. We can only report their results on the binary
classification due to their prompt-based agent design, these systems cannot be directly adapted for
fine-grained classification or structured reasoning tasks. Furthermore, we did not include closed-
source reasoning LMMs such as the OpenAI o-series (OpenAI, 2024) as baselines, since over 30%
of requests were blocked by the API server due to the harmful nature of the examples.

Table 1: Comparing ExPO-HM with baseline systems across three datasets. B stands for Binary and
R stands for Reasoning. LLM refer to the LLM-as-judge score. Best results are in bold. ↑ indicates
higher is better, ↓ lower is better.

HatefulMemes MAMI PrideMM
# Model B Attack Target R B Attack R B Stance Target R

F1 ↑ F1 ↑ F1 ↑ LLM ↑ CDE ↓ F1 ↑ F1 ↑ CDE ↓ F1 ↑ F1 ↑ F1 ↑ CDE ↓
Direct Detection Baselines

1 Qwen2.5-VL-3B
2 Zero-shot 53.1 42.1 60.1 - - 61.1 48.2 - 58.6 53.7 48.8 -
3 SFT 71.9 64.3 69.3 - - 77.9 61.8 - 74.3 58.6 53.2 -
4 Qwen2.5-VL-7B
5 Zero-shot 59.8 50.3 60.2 - - 63.4 50.2 - 65.2 56.8 51.1 -
6 SFT 75.0 64.7 71.1 - - 78.1 63.1 - 75.6 60.2 61.0 -
7 RA-HMD 80.2 - - 5.4 - 81.0 - - 77.8 - - -

Explain-then-Detect Systems

8 LOREHM (34B) 65.6 - - - - 75.3 - - - - - -
9 U-CoT+ (14B) 72.4 - - - - 79.9 - - 71.4 - - -

10 Qwen2.5-VL-3B
11 Zero-shot 52.5 41.7 58.7 3.3 0.42 58.7 41.7 0.32 52.6 51.2 40.8 0.33
12 SFT 62.3 62.7 63.3 3.6 0.40 69.2 60.1 0.34 63.2 56.6 49.8 0.29
13 DPO 59.6 52.3 58.1 3.5 0.42 66.8 50.2 0.36 64.2 55.5 48.9 0.34
14 GRPO 63.4 55.6 66.1 3.8 0.32 76.6 61.2 0.19 72.1 57.3 48.4 0.18
15 ExPO-HM 74.7 71.5 73.7 5.1 0.16 80.7 70.4 0.08 75.6 66.5 62.1 0.12
16 Qwen2.5-VL-7B
17 Zero-shot 65.9 44.7 64.5 5.0 0.33 63.9 46.5 0.23 59.4 54.6 50.2 0.28
18 SFT 74.5 58.4 69.4 5.0 0.33 72.8 62.6 0.19 68.3 58.0 50.9 0.28
19 DPO 73.6 63.2 66.6 4.9 0.32 72.3 56.6 0.22 69.5 56.3 52.3 0.30
20 GRPO 74.5 61.2 64.5 5.2 0.26 76.8 63.7 0.09 73.2 58.6 60.1 0.14
21 ExPO-HM 81.1 75.6 77.2 6.2 0.03 82.3 73.0 0.04 78.7 68.4 65.1 0.08

4.3 COMPARING EXPO-HM TO BASELINE SYSTEMS

Table 1 compares ExPO-HM with the aforementioned baseline post-training methods and state-of-
the-art systems. We report qualitative examples in Appendix E.4. Here, we summarize the key
observations.

Baseline Explain-then-Detect methods hurt classification performance. Under Explain-then-
Detect, post-training variants (SFT/DPO/GRPO, #18-#20 for Qwen2.5-VL-7B) consistently under-
perform the Direct-Detection SFT baseline (#6), except for the comparable performance on the
MAMI Attack classification. Larger agentic and CoT systems (LOREHM, U-CoT+, #8-#9) also
fall short of strong Direct-Detection baselines like SFT and RA-HMD (#6-#7 ). For instance, the
binary classification on HatefulMemes is 80.2 on RA-HMD vs 72.4 F1 with U-CoT+. On Hateful-
Memes binary classification, RA-HMD reaches 80.2 F1, compared to 72.4 with U-CoT+. Explain-
then-Detect systems are crucial for building automatic moderation systems that can truly support
real-world moderators, but these results highlight that simply adding explicit rationales through
CoT prompting or standard post-training hurts classification accuracy. This motivates the design
of EXPO-HM, which aims to improve Explain-then-Detect systems without sacrificing predictive
performance.
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Naive post-training barely improves performance. Explain-then-Detect post-training (#18–#20)
improves classification over zero-shot (#17), but reasoning quality stagnates, failing to meet the goal
of improving reasoning through post-training. On HatefulMemes with Qwen2.5-VL-7B, the zero-
shot LLM-as-judge score is 5.0; DPO drops below this, while GRPO only nudges it to 5.2. Even
with online RL, reasoning remains difficult to improve. Moreover, post-training still underperforms
strong CoT systems specifically designed for hateful meme detection (#8-#9). This underscores the
need for dedicated post-training methods like EXPO-HM, which are tailored to hateful meme de-
tection and designed to improve not only classification accuracy but also the quality of explanations.

ExPO-HM consistently outperforms. ExPO-HM delivers the strongest performance across binary
detection, fine-grained classification, and reasoning. On Qwen2.5-VL-7B, it surpasses RA-HMD
and all post-training baselines, achieving large gains in fine-grained F1 (+14.4 on HatefulMemes At-
tack, +12.7 on Target, compared to GRPO with equal compute). Reasoning also improves markedly,
with 6.2 on LLM-as-judge vs. 5.2 for GRPO. These results confirm ExPO-HM’s effectiveness across
datasets and tasks.

Strong correlation between LLM-as-judge metric and CDE metric. On the HatefulMemes rea-
soning dataset, we observe a strong alignment between the LLM-as-judge score and the CDE score.
To quantify this, we evaluate the correlation based on results from all the reported setups, with
three random seeds each, yielding 60 data points. We find a strong negative correlation (Pearson
r = −0.78, Spearman ρ = −0.81, both p < 0.001), confirming that lower CDE values, reflecting
more confident and accurate reasoning, correspond to higher reasoning quality.

4.4 ABLATION STUDY OF EXPO-HM COMPONENTS

Table 2: Ablation Study of ExPO-HM Components.

Components HatefulMemes
# SFT-PM GRPO-CL CDE B Attack Target R

F1 ↑ F1 ↑ F1 ↑ LLM ↑ CDE ↓
1 - - - 74.5 61.2 64.5 5.2 0.263
2 ✓ - - 75.8 70.8 70.2 5.6 0.092
3 ✓ ✓ - 78.4 74.3 76.1 5.8 0.056
4 ✓ ✓ ✓ 81.1 75.6 77.2 6.2 0.026

We conduct an ablation
study to examine the con-
tribution of the three key
components in ExPO-HM.
Results on HatefulMemes
with Qwen2.5-VL-7B are
reported in Table 2. With-
out SFT-PM, the warmup
falls back to SFT with fine-
grained labels without pol-
icy manual augmentation.
Without GRPO-CL, GRPO
is trained on a randomly
mixed set of binary and fine-grained data. Without CDE, GRPO uses only the format and accu-
racy rewards.

SFT-PM enhanced the fine-grained warmup. Compared to the baseline warmup without policy
manual augmentation (#1), SFT-PM improves performance across all metrics. This indicates that
fine-grained labels alone are insufficient for policy understanding, while policy manual augmenta-
tion substantially strengthens both classification and reasoning. In Sec. 4.5, we further present a
systematic comparison of different warmup strategies.

GRPO-CL further improves performance. Building on SFT-PM, adding curriculum learning to
GRPO (#3) yields further gains across the board. The key difference is ordering, GRPO-CL first let
the model explore on reasoning over the fine-grained labels before binary classification. This order
proves crucial: standard GRPO produces short average responses (28 tokens) in binary classification,
while GRPO-CL nearly doubles this (52 tokens), indicating not only higher quality but also more
detailed reasoning is incentivized during training.

CDE improves both accuracy and explanation quality. Adding CDE on top of SFT-PM and
GRPO-CL further immproves the perforamnce. Noteably, LLM-judge score improved to 6.2, and a
marked drop in CDE 0.026, suggesting that the model’s rationales become more aligned with sharp,
correct decisions.
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Table 3: Comparing SFT warmup variants on HatefulMemes on Qwen2.5-VL-7B: no warmup (-),
SFT on binary labels (SFT-B), SFT on gold reasoning (SFT-R), SFT on fine-grained labels (SFT-
FG), and SFT with policy-manual augmentation (SFT-PM).

SFT w/ GRPO-CL and CDE
# Warmup B Attack Target R B Attack Target R

F1 ↑ F1 ↑ F1 ↑ LLM ↑ F1 ↑ F1 ↑ F1 ↑ LLM ↑
1 - 65.9 44.7 64.5 5.0 73.3 69.3 72.1 5.2
2 SFT-B 74.1 58.2 69.4 4.9 73.5 66.8 70.1 5.1
3 SFT-R 72.2 51.6 63.1 5.0 79.2 72.3 73.2 5.7
4 SFT-FG 72.5 58.4 67.7 4.9 78.9 73.4 73.4 5.6
5 SFT-PM 74.3 64.6 68.8 5.0 81.1 75.6 77.2 6.2

4.5 EFFECTS OF DIFFERENT WARMUP STRATEGY

Table 3 compares five warmup strategies for Qwen2.5-VL-7B on the HatefulMemes dataset. For
each, we report the Explain-then-Detect performance after SFT and the performance after GRPO-
CL with CDE reward .

Good SFT does not necessarily transfer to good RL performance. Although SFT-B performs
better than SFT-R and SFT-FG at the SFT stage, its performance after GRPO-CL is comparably
worse than its counterparts, even below the no-warmup baseline. This suggests that binary-only
warmup fails to equip the model with the moderation concepts needed for reasoning-guided RL. In
contrast, our proposed SFT-PM explicitly teaches such concepts via policy manual augmentation,
yielding both stronger SFT performance and the best results after ExPO-HM training.

4.6 CDE ANALYSIS

Figure 3: Comparison of CDE distributions be-
tween ExPO-HM and GRPO on the Hateful-
Memes validation set with Qwen2.5-VL-7B.

Figure 3 presents box-and-whisker plots of
CDE distributions for ExPO-HM and GRPO
on the HatefulMemes validation set with
Qwen2.5-VL-7B. ExPO-HM maintains very
low CDE for correct predictions (µ = 0.019)
and higher CDE for wrong ones (µ = 0.048),
yielding a clear separation. In contrast, the
GRPO baseline shows high CDE for both
correct (µ = 0.278) and wrong predictions
(µ = 0.226), showing weaker separation. This
demonstrates that ExPO-HM produces reason-
ing that is not only more accurate but also better
aligned with decision confidence.

We also test whether adding the CDE reward
causes policy entropy collapse, a phenomenon
reported in prior RL work (Cui et al., 2025)
when entropy bonuses are removed. Our results
show that overall policy entropy remains comparable to the baseline GRPO system without CDE,
confirming that the CDE reward, acting only on the decision part of the generation, does not reduce
exploration.

5 CONCLUSION

We propose ExPO-HM, which combines SFT warmup on policy-manual–augmented data with
GRPO curriculum learning, guided by a Conditional Decision Entropy reward to promote high-
quality reasoning. Comprehensive experiments show that ExPO-HM achieves state-of-the-art per-
formance on binary detection, fine-grained classification, and reasoning quality.
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ETHICAL STATEMENT

Societal benefits. Hateful meme detection systems such as ExPO-HM can help automatically
identify and mitigate harmful online content, reducing the prevalence of hate speech. By provid-
ing explanations in addition to predictions, our system not only supports safer digital environments
for end-users but also alleviates the burden on human content moderators, improving their wellbe-
ing. We believe such systems play an essential role in fostering respectful online communication
and contributing to healthier digital communities.

Intended use. We will enforce strict access controls for releasing model checkpoints and artifacts.
Access will be limited to researchers who agree to our terms of use, which explicitly restrict the sys-
tem to detection and prevention of hateful speech. Any use that promotes, condones, or encourages
hate speech or other harmful content is strictly prohibited.

Misuse potential. Although ExPO-HM is not designed to introduce bias, it is trained on datasets
that may reflect societal or annotator biases (Pramanick et al., 2021). These biases could propagate
into model predictions. To mitigate risks of unfair or disproportionate moderation, human oversight
remains essential when deploying such systems.

Deployment considerations. Moderation of hateful content is inherently influenced by cultural
norms and subjective judgments. Expressions considered benign in one context may be offensive
in another. Since ExPO-HM is trained with policy manuals, its outputs depend critically on the un-
derlying moderation policies. Careful review and adaptation of community guidelines are therefore
crucial to ensure responsible deployment across diverse cultural and linguistic contexts.

Usage of Datasets. The datasets used in this study, HatefulMemes, MAMI, and PrideMM, were
curated for research purposes to combat online hate speech. We strictly adhere to the terms of use
established by the dataset authors.

REPRODUCIBILITY STATEMENT

We provide detailed dataset usage and statistics in Appendix 4, including all augmentation proce-
dures introduced in this paper. For the evaluation of reasoning, we detail the process in Appendix D.
Experimental setups, implementation details including code base usage, software version, hardware
configuration, and hyperparameter settings are described in Appendix C to facilitate reproducibil-
ity. Upon publication, we will release the source code on GitHub and make all artifacts, including
augmented data, sampled training sets, and trained checkpoints available to HuggingFace.
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A USE OF LARGE LANGUAGE MODELS

Our coding work was assisted by Github Copilot. OpenAI ChatGPT was only used in proofreading
and spell-checking. We claim that the content presented in this paper was fully original.

B DATASET DETAILS AND STATISTICS

HatefulMemes (Kiela et al., 2021) Released by Meta in 2020, HatefulMemes contains 12,000
memes annotated as hateful or benign by trained experts. This benchmark dataset synthesizes memes
targeting religion, race, disability, and gender. It includes confounder examples where the benign
memes are generated by altering either the image or text to challenge models’ ability in multimodal
reasoning.

In 2021, Meta released an extended annotation set, the Fine-Grained Hateful Meme Classification
dataset (Mathias et al., 2021a). This dataset augments the original HatefulMemes with detailed
labels for both attack types and target groups, enabling fine-grained classification.

For policy-manual SFT, we convert these fine-grained labels into structured moderation rules:

Does this meme use any of the following types of attack against a group?
- Dehumanizing: Presenting a group as subhuman, explicitly or implicitly
- Inferiority: Claiming that a group is inferior, less worthy, or less important
- Inciting violence: Calling for or encouraging harm—physical or otherwise—towards a group
- Mocking: Belittling or making jokes about a group
- Contempt: Expressing strong disgust, hatred, or intense negative emotion
- Slurs: Using prejudicial or derogatory terms to describe a group
- Exclusion: Advocating for removal, segregation, or marginalization of a group
If the meme does not use any of these attack types, respond with Benign.

Does this meme express hate or negative bias toward any of the following protected groups?
- Religion: A group defined by shared belief systems
- Race: A group defined by racialized physical characteristics
- Sex: A group defined by sexual attributes or sexual identification
- Nationality: A group defined by country or region of origin
- Disability: A group defined by conditions leading to permanent dependencies
If the meme does not target any protected group, respond with Benign.

For fine-grained classification, we adopt the following prompts for training and evaluation:

Does this meme express hate or negative bias toward any of the following protected groups?
Religion, Race, Sex, Nationality, Disability
Please respond with one or more of the protected categories if applicable. If the meme does not contain
any hateful content, respond with Benign.

Does this meme use any of the following types of attack against a group?
Dehumanizing, Inferiority, Inciting violence, Mocking, Contempt, Slurs, Exclusion
Please respond with one or more of the attack types if applicable. If the meme does not contain any
hateful content, respond with Benign.

MAMI (Fersini et al., 2022) The MAMI dataset focuses on detecting misogynistic memes sourced
from various social media platforms, including Twitter and Reddit, as well as meme creation and
sharing websites, and even anti-women websites and forums. It contains annotation for two tasks:
(1) binary classification of misogyny and (2) categorization of misogyny types. In this work, we
use the binary task to detect whether a meme is misogynistic and treat the type categorization as a
fine-grained multi-class, multi-label classification problem. Each sample can take one or more of
four attack type labels: objectification, shaming, stereotype, and violence, or Benign if no harm is
present.
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For policy-manual SFT, we convert these fine-grained labels into structured moderation rules:

Based on the content and context of this meme, does it use any of the following types of attack against
a group?
Choose from the following options:
- objectification: The content reduces individuals or groups to objects, ignoring their personhood or
agency
- shaming: The content ridicules, mocks, or publicly humiliates individuals or groups
- stereotype: The content attributes oversimplified, generalized, or exaggerated traits to individuals or
groups
- violence: The content depicts or encourages physical harm, threats, or violent actions against indi-
viduals or groups
If the meme does not contain any hateful content, respond with Benign.
What is the attack type?

For rest training and evaluation on fine-grained class:

Does this meme use any of the following types of attack against a group?
objectification, shaming, stereotype, violence
Please respond with one or more of the attack types if applicable.
If the meme does not contain any hateful content, respond with Benign.

PrideMM (Shah et al., 2024) PrideMM contains LGBTQ+-themed memes annotated for four
tasks: hate speech detection, hate target identification, topical stance classification, and humor de-
tection. In this work, we use the hate speech classification annotations for the binary hateful meme
detection.

We further use the hate target identification and topical stance classification in our fine-grained
classification setup. Both tasks are formulated as multi-class, single-label classification.

For the policy-manual SFT, we convert the fine-grained labels into structured moderation rules. For
the hate target identification task, the prompt enumerates the four categories—undirected, individ-
ual, community, organization—with descriptions derived from the dataset guidelines. For the stance
classification task, the policy manual lists the three categories, neutral, support, oppose, with corre-
sponding definitions and examples.

Target identification prompt for SFT-PM:

Based on the content and context of this meme, Does this meme express hate or negative bias toward
any of the following targets?

Choose from the following options:
- undirected: General targeting without specific individuals or groups
- individual: Targeting specific individuals
- community: Targeting LGBTQ+ communities or groups
- organization: Targeting specific organizations or institutions
If the meme does not contain any hateful content, respond with Benign.

What is the target type?

Stance classification prompt for SFT-PM:
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Based on the content and context of this meme, what is the stance towards LGBTQ+ individuals or
communities?

Choose from the following options:
- neutral: The content does not express clear support or opposition
- support: The content expresses positive attitudes or support
- oppose: The content expresses negative attitudes or opposition

What is the stance?

For all other fine-grained training and evaluation tasks, Target identification prompt:

Based on the content and context of this meme, Does this meme express hate or negative bias toward
any of the following targets?

Choose from the following options: undirected individual community organization

If the meme does not contain any hateful content, respond with Benign.
What is the target type?

Stance classification prompt:

Based on the content and context of this meme, what is the stance towards LGBTQ+ individuals or
communities?

Choose from the following options: neutral, support, oppose

What is the stance?

B.1 BINARY CLASSIFICATION STATISTICS

Table 4 shows the data split for our binary evaluation datasets. For hateful meme, we use the
dev seen split as the validation set, test seen as the test set.

Datasets Train Test
#Benign #Hate #Benign #Hate

HatefulMemes 5450 3050 500 500
MAMI 4500 4500 500 500
PrideMM 2581 2482 260 247

Table 4: Statistical summary of binary classification datasets.

B.2 FINE-GRAINED CLASSIFICATION STATISTICS

Table 5 reports the detailed distribution of fine-grained attributes in the HatefulMemes dataset, cov-
ering both attack types and protected categories. Note that we use the dev unseen split for final
evaluation.

Table 6 provides the fine-grained label distributions for the MAMI dataset, focusing on Sub-task B
(Type of Misogyny).

Table 7 summarizes the fine-grained label distributions for the PrideMM dataset, including both
target categories and stance annotations across the training and test splits.

B.3 HATEFUL REASONING CORPUS STATISTICS

Table 8 presents the dataset statistics for Haterd, which only includes hateful memes paired with
explanations. The test set corresponds to the original HatefulMemes dev seen split.
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Fine-grained types train dev unseen dev seen

Attack type

dehumanizing 1318 104 121
inferiority 658 35 49
inciting violence 407 23 26
mocking 378 29 35
contempt 235 6 10
slurs 205 4 6
exclusion 114 8 13

Protected category

religion 1078 77 95
race 1008 63 78
sex 746 46 56
nationality 325 20 26
disability 255 17 22

Table 5: Statistics of fine-grained attributes in the HatefulMemes dataset, showing attack types and
protected categories across train, dev unseen, and dev seen splits.

Category Training Set Test Set

Shaming 1274 (25.48%) 146 (29.20%)
Stereotype 2810 (56.20%) 350 (70.00%)
Objectification 2202 (44.04%) 348 (69.60%)
Violence 953 (19.06%) 153 (30.60%)

Table 6: Statistics of Sub-task B in the MAMI dataset: type of misogyny labels across training and
test sets. We treat this as a multilabel, multiclass fine-grained classification task.

B.4 DATASET LICENSES

To access the Facebook HatefulMemes dataset, one must follow the license from Facebook1.
HarMeme and Harm-P are distributed for research purposes only, without a license for commer-
cial use. MAMI is under Apache License 2.0. There is no specified license for PrideMM.

C EXPERIMENT SETUP AND IMPLEMENTATION DETAILS

SoftWare Environment. PyTorch 2.5.1, CUDA 12.4, Huggingface Transformer
4.45.0 and Python 3.10.12 were used for implementing the experiments. All the reported
metrics were computed by TorchMetrics 1.0.1.

Hardware Environment. We conducted our GRPO and ExPO-HM experiments on a server
equipped with 8 Nvidia H100 with 80GB of VRAM. For the DPO and SFT baselines, we use 1
GPU.

Training Details We freeze the vision module throughout fine-tuning, following the standard
LMM fine-tuning protocol. We conduct all training with LoRA (Hu et al., 2022), with LoRA
rank=64, α = 128. For DPO sampling and all the inference, we use vLLM inference engine 0.9.2.

C.1 SFT AND DPO TRAINING

For Qwen2.5-VL fine-tuning, we employ the officially recommended fine-tuning library
LLaMA-Factory 0.9.32 with official hyperparameter settings for all training tasks in both
the SFT and DPO, except for the LoRA config that we mentioned above. For DPO, we sweep
β = 0.1, 0.3, 0.5, 0.7, 0.9 and report the best results. For all runs, we train for 3 epochs, and then
select the best checkpoint based on validation performance.

1https://hatefulmemeschallenge.com/#download
2https://github.com/hiyouga/LLaMA-Factory
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Fine-grained types Train Test

Target

Benign 2208 260
Undirected 666 68
Individual 219 19
Community 986 122
Organization 249 38

Stance
Neutral 1252 140
Support 1645 182
Oppose 1431 185

Table 7: Statistics of fine-grained attributes in the PrideMM dataset, showing target categories and
stance labels across training and test sets.

train test total

#Haterd (hateful memes only) 2,982 246 3,228

Table 8: Statistics of the Haterd dataset, which only includes hateful memes with explanations. The
test set corresponds to the original HatefulMemes dev seen split.

C.2 GRPO TRAINING

We use verl library verl 0.4.1 3. We use the default hyperparameter settings for all training
except for the LoRA configuration. For all runs, we train for 3 epochs, and then select the best
checkpoint based on validation performance. The run time for ExPO-HM is about 4 hours on 8
GPUs, which is the same for the baseline GRPO experiment.

D EVALUATION OF MODEL GENERATED REASONING

Following prior work (Yang et al., 2023; Mei et al., 2025), we assess explanation quality using an
LLM judge. Specifically, we provide GPT-4o-mini (gpt-4o-mini-2024-07-18) with refer-
ence explanations from (Hee et al., 2023). Following previous works, we adopt the same prompt as
previous work:

Compare the model-generated reasoning with the reference human reasoning for this hateful
meme.

Reference: {reference reasoning}
Model: {model reasoning}
Model Prediction: {model prediction}

Rate how well the model reasoning aligns with the reference on a scale of 0-10:
- 9-10: Excellent alignment, captures all key points
- 7-8: Good alignment, captures most key points
- 5-6: Satisfactory alignment, captures some key points
- 3-4: Poor alignment, misses many key points
- 1-2: Very poor alignment, minimal understanding
- 0: Completely wrong or unrelated

Score: [0-10]

Explanation: [1-2 sentences]

3https://github.com/volcengine/verl/releases
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E CDE DERIVATION AND ALTERNATIVE ESTIMATOR

E.1 CDE DERIVATION

Here, we provide the full derivation for the CDE metrics estimation. We consider the CDE metrics
for a model parameter with θ over a dataset D.

H(d | e,x) = Ex∼D, e∼πθ(x), d∼πθ(e,x) [− log pθ(d | e,x)]

By Monte Carlo over the dataset

≈ − 1

|D|
∑
x∈D

Ee∼πθ(x), d∼πθ(e,x) [log pθ(d | e,x)]

By Monte Carlo sampling K times

= − 1

|D|
∑
x∈D

K∑
i=1

pθ(ei | x)
∑
d

pθ(d | ei,x) log pθ(d | ei,x)

Approximate pθ(ei | x) ≈ 1
K

≈ − 1

K|D|
∑
x∈D

K∑
i=1

∑
d

pθ(d | ei,x) log pθ(d | ei,x)︸ ︷︷ ︸
H(d|ei,x)

(12)

For the entropy H(d | ei,x), we by default compute it over the full decision vocabulary:

H(d | ei,x) = −
∑
d∈V

pθ(d | ei,x) log pθ(d | ei,x), (13)

where V denotes the output vocabulary. For practical efficiency, we do not compute entropy over
the entire vocabulary; instead, we approximate it using the top 10–50 tokens by likelihood, which
substantially reduces computation and memory costs. When a fine-grained class is represented by
multiple tokens, we compute the average token entropy similar to the policy entropy computation.

For binary classification, one may collapse the vocabulary into Yes, No by grouping all tokens
semantically aligned with “yes/positive” or “no/negative,” and normalizing their probabilities.

E.2 ALTERNATIVE ESTIMATOR THROUGH CHAIN RULE

When considering the CDE, we can expand through: By the chain rule of entropy:

H((e, d) | x)︸ ︷︷ ︸
(1)

= H(e | x)︸ ︷︷ ︸
(2)

+H(d | e,x)︸ ︷︷ ︸
(3)

(14)

1. H((e, d) | x) Sequence entropy: the total entropy of generating both reasoning and deci-
sion.

2. H(e | x) Reasoning entropy: measures the diversity of reasoning paths the model can
produce for an input.

3. H(d | e,x) Conditional decision entropy (CDE): quantifies the uncertainty of the model’s
decision given its own on-policy reasoning path e.

Both (1) and (2) can be estimated directly via sequence-level sampling. Then CDE, (3) can be
obtained by subtraction, using the chain rule in Eq. 14.

E.3 ALTERNATIVE ESTIMATOR WHEN LOGITS IS NOT AVAILABLE

When model logits are not accessible, we approximate entropy by sampling K = 16 responses
directly from the LMM and measuring entropy over the final detection decisions.
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H(d | x) = −
∑

d∈Yes,No

pθ(d | x), log pθ(d | x), (15)

where pθ(d | x) is estimated by counting the relative frequencies of positive vs. negative decisions
among the K sampled responses. This can similarly be applied towards fine-grained classes.

To approximate full CDE without logits, one can fix a reasoning trajectory and resample K responses
yik conditioned on that reasoning (e.g., by sampling with temperature 0.7–1.0). The Monte Carlo
estimator in Eq. 12 is then applied to obtain the CDE for each sampled reasoning path. Finally,
averaging across multiple such sampled reasonings provides an overall CDE estimate.

E.4 COMPARING GRPO AND EXPO-HM PREDICTIONS

Table 9 and Table 10 show examples where ExPO-HM corrects prediction errors made by the GRPO
baseline on Qwen2.5-VL-7B, illustrating its ability to generate higher-quality explanations.
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Case 1 Case 2 Case 3

Meme

Ground Truth #Hateful #Hateful #Hateful
GRPO Prediction #Benign #Benign #Benign
ExPO-HM Prediction #Hateful #Hateful #Hateful

GRPO Explanation

The meme is a humor-
ous observation about
a sandwich maker that
can be used as an iron-
ing board. It does not
contain any offensive or
derogatory content di-
rected at any specific
group or individual. The
joke is based on a prac-
tical use of a kitchen ap-
pliance and does not ex-
press any form of hate
or discrimination.

The meme uses a visual
pun by showing dogs
and labeling them as ä
group of men.T̈his is a
common internet meme
format that uses animals
to represent a group of
people, often for humor-
ous effect. The image
itself does not contain
any explicit content or
language that could be
considered hateful. The
use of animals to repre-
sent a group of people is
a common meme trope
and is generally not in-
tended to be offensive.

The meme uses a
wheelchair as a vi-
sual metaphor for the
ḧardest part to eat in
a vegetable.T̈his is a
play on words and is not
intended to be offensive.
The joke is based on a
common phrase and the
visual of a wheelchair,
which is a tool for mo-
bility, not a derogatory
symbol. The meme
is not targeting any
specific group or race,
and the humor is based
on a general observation
rather than any harmful
stereotype.”,

ExPO-HM Explanation

The meme makes a
derogatory comparison
by using a woman’s
body to represent an
ironing board, which
is a dehumanizing and
objectifying portrayal.
This type of humor is
often used to degrade
women and is consid-
ered dehumanizing.

The meme uses a
derogatory term to refer
to a group of men,
which is a form of de-
humanizing and can be
considered degrading.
The use of a dog to
represent a group of
men is also an example
of speciesism, which
is a form of prejudice
against non-human
animals. While the
meme is not explicitly
violent, it does contain
elements that can be
seen as dehumanizing
and degrading

The meme uses a
derogatory term
v̈egetableẗo refer to a
person in a wheelchair,
which is a form of
dehumanizing and
derogatory language.
This type of language
is considered hateful
as it dehumanizes and
degrades the person in
the wheelchair

Table 9: Visualization of cases from GRPO Qwen2.5-VL-7B and ExPO-HM Qwen2.5VL-7B Mod-
els.
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Case 4 Case 5 Case 6

Meme

Ground Truth #Hateful #Hateful #Hateful
GRPO Prediction #Benign #Benign #Benign
ExPO-HM Prediction #Hateful #Hateful #Hateful

GRPO Explanation

The meme depicts a
person covered in soap
suds, which is a com-
mon reaction to too
much soap in a dish-
washer. The text hu-
morously suggests that
someone has added too
much soap to the dish-
washer again. There are
no elements in the im-
age or text that indicate
any form of discrimi-
nation or hate towards
a specific group. The
meme is a light-hearted
joke about a common
household issue.

The meme makes a
claim about the exis-
tence of Muhammad
based on a scientific
discovery, which is a
religious and historical
topic. However, the
meme does not use any
offensive language or
imagery that would be
considered hate speech.
It is a humorous and
speculative statement,
not a direct attack on
any group or individual.

The meme appears to
be a humorous take on
a political situation, us-
ing exaggerated expres-
sions and a juxtaposi-
tion of images to convey
a message. The top im-
age shows a person with
a bearded face, possi-
bly representing a polit-
ical figure. The bottom
image shows a person
aiming a shotgun, which
could be interpreted as
a metaphor for taking
back what was claimed.
The use of such imagery
and text is not inherently
hateful but rather a form
of political commentary
or satire.

ExPO-HM Explanation

The meme uses a
derogatory term
d̈ishwasherı̈n a way
that could be seen as
dehumanizing, as it
reduces a person to a
machine. This type of
language can be con-
sidered dehumanizing
and is often used in a
derogatory manner.

The meme makes a
false and absurd claim
about the existence
of Muhammad based
on a fictional scenario
involving human DNA
in a goat carcass. This is
not a real scientific dis-
covery and is intended
to be humorous at the
expense of religious
beliefs. The content is
not respectful to any
religious group and can
be seen as mocking or
degrading.”,

The meme contains a
provocative statement
and imagery that could
be interpreted as threat-
ening or aggressive
towards muslims. The
use of a religious figure
and the phrase ẅe’re
taking it backs̈uggests
a sense of reclaiming
or asserting dominance,
which can be seen as a
form of hate speech.

Table 10: Part 2 of the Visualization.
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