

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EXPO-HM: LEARNING TO EXPLAIN-THEN-DETECT FOR HATEFUL MEME DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Hateful memes have emerged as a particularly challenging form of online abuse, motivating the development of automated detection systems. Most prior approaches rely on direct detection, producing only binary predictions. Such models fail to provide the context and explanations that real-world moderation requires. Recent Explain-then-Detect approaches, using Chain-of-Thought prompting or LMM agents, perform worse than simple SFT baselines, and even advanced post-training methods such as GRPO fail to close the gap. Our analysis identifies two key issues of such systems: important policy-relevant cues such as targets and attack types are not hypothesized by the model as a likely explanation; and the binary reward signal is insufficient to guide reasoning. To address these challenges, we propose ExPO-HM (Explain-then-Detect Policy Optimization for Hateful Memes), inspired by the training and evaluation process of human annotators. ExPO-HM combines SFT warmup, GRPO with curriculum learning, and Conditional Decision Entropy (CDE) as both metric and reward for reasoning quality. Across three hateful meme benchmarks, ExPO-HM achieves state-of-the-art performance on binary detection, fine-grained classification, and reasoning quality, with up to 15% and 17% F1 improvement over the GRPO and DPO baselines, respectively. By moving hateful meme detection from simple binary alarms to explanation-driven detection, ExPO-HM provides accurate, interpretable, and actionable moderation support.

This paper contains content for demonstration purposes that may be disturbing for some readers.

1 INTRODUCTION

The rise of social media has led to a surge in hateful content, notably in the form of memes. This has sparked growing research interest in automated hateful meme detection systems that aim at supporting human moderation (Kiela et al., 2020; Liu et al., 2022; Prakash et al., 2023; Shah et al., 2024). Most prior work focuses on direct detection, which only provides a binary classification as to whether a meme is hateful or benign (Cao et al., 2023; Mei et al., 2024; Su et al., 2025). However, recent studies show that moderators require additional information to improve efficiency (Calabrese et al., 2024), such as what type of attack is present, and why the system considers the meme harmful. Additionally, social media users may also benefit from understanding these explanations of harmfulness.

Interestingly, human annotators are not trained and evaluated on binary judgments; common practice is that they are guided by a detailed moderation policy manual that defines policy violations such as disparagement of protected groups (Singhal et al., 2023). It would be infeasible to train annotators by showing them only raw examples with binary labels; the fine-grained framework provides the necessary structure for both training and evaluation. This human analogy highlights a crucial gap: if humans require fine-grained guidelines and reasoning to make reliable judgments, automated systems could benefit from the same. We call this setting “Explain-then-Detect”, where the system first generates a natural language rationale and then produces a classification decision.

Recent work builds Explain-then-Detect Large Multimodal Model (LMM) systems using Chain-of-Thought (CoT) prompting (Wei et al., 2023; Pan et al., 2025) or agent-based frameworks (Huang et al., 2024), but these perform worse than direct Supervised Fine-tuning (SFT) baselines (Mei et al.,

Figure 1: Comparing previous methods with ExPO-HM.

2025). Reinforcement learning methods such as Group-Relative Policy Optimization (GRPO) (Shao et al., 2024) can strengthen model reasoning through post-training, yet we find that applying GRPO directly still underperforms SFT for hateful meme detection. Our study reveals two key challenges for Explain-then-Detect systems. First, model explanations often fail to identify the correct violated policy or target, leading to misleading predictions. Second, the binary reward signal in GRPO is too weak to guide reasoning, just as human annotators cannot learn from only yes/no labels.

To address these issues, we propose ExPO-HM (**E**xplain-then-**D**etect **P**olicy **O**ptimization for **H**ateful **M**emes), inspired by how human annotators are trained and evaluated. ExPO-HM first uses SFT warmup on a policy manual, mirroring the guideline-based training of human annotators. We then apply GRPO with curriculum learning, mimicking how annotators are first trained and evaluated on fine-grained categories before making binary judgments. We further introduce Conditional Decision Entropy (CDE) both as a metric for explanation quality and as a reward signal to encourage decisive reasoning. We summarize our contributions:

- **Paradigm.** We introduce the first Explain-then-Detect hateful meme detection that outperforms direct detection, enabling accurate and interpretable hateful meme understanding.
- **Methods.** ExPO-HM mimics human moderator training, combining policy manual SFT warmup, GRPO curriculum learning, and CDE-based reward optimization.
- **Evaluation.** We propose a comprehensive evaluation setup that reflects real-world moderation, extending beyond binary classification to fine-grained categories and hateful reasoning judged by LLMs, with extensive baseline comparisons.
- **Results.** ExPO-HM surpasses previous best systems, and achieves new state-of-the-art performance across binary, fine-grained, and reasoning benchmarks, with up to **15%** and **17%** F1 improvement over the GRPO and DPO baseline, respectively.

2 RELATED WORK

Direct Hateful Meme Detection Most existing approaches to hateful meme detection treat the task as binary classification. Numerous studies fine-tune CLIP-based models using only binary labels and train dedicated classifiers (Pramanick et al., 2021; Kumar & Nandakumar, 2022; Burbi et al., 2023; Cao et al., 2023; Ji et al., 2024; Mei et al., 2024). Decoder-based LMMs have also been fine-tuned for this task (Alayrac et al., 2022; Laurençon et al., 2023; Hu et al., 2024). In particular, Mei et al. (2025) trains a classifier and retriever on top of the LMM embeddings, achieving state-of-the-art binary detection performance.

In contrast, fine-grained classification, such as identifying attack types or target groups, has received far less attention, despite its importance in real-world moderation. Annotated datasets are available (Mathias et al., 2021a; Dimitrov et al., 2021; Fersini et al., 2022; Shah et al., 2024), and some earlier work has explored this problem (Zia et al., 2021; Mathias et al., 2021b), but recent progress has been limited. Mod-Hate (Cao et al., 2024) and IntMeme (Hee & Lee, 2025) leverage fine-grained annotations during training but do not report fine-grained results. MemeCLIP (Shah et al., 2024) addresses this by fine-tuning separate CLIP-based classifiers for each split. In this paper, we systematically evaluate models under different setups and extend the evaluation to fine-grained classification, addressing this important gap.

108 **Explain-then-Detect Hateful Meme Detection** Compared to direct hateful meme classification,
 109 research on explainable hateful meme detection is far more limited. With the rise of decoder-
 110 based language models, some Explain-then-Detect systems have emerged. For example, Lin
 111 et al. (2024) leverages a debate between two language models to decide meme harmfulness, while
 112 LOREHM (Huang et al., 2024) adopts a reasoning-agent framework with retrieval and reflection.
 113 However, these systems still primarily target binary classification.

114 A key challenge is the lack of annotated explanation data. Hatred (Hee et al., 2023), built on
 115 the Facebook Hateful Memes dataset (Kiela et al., 2020), remains the only open-source dataset
 116 with human-written rationales. Other efforts, such as the recent Arabic hateful meme dataset
 117 ArMeme (Kmainasi et al., 2025), are not yet publicly available. Moreover, reasoning tasks re-
 118 main difficult (Nguyen & Ng, 2024). Existing Explain-then-Detect systems not only struggle with
 119 reasoning but also underperform direct detection models in binary classification, underscoring the
 120 cost of requiring explanations without tailored optimization strategies. In this paper, we make two
 121 key contributions. First, we benchmark a comprehensive set of Explain-then-Detect systems using
 122 the Hatred dataset. Second, inspired by human moderator training, we develop ExPO-HM, the first
 123 Explain-then-Detect system that surpasses both prior explainable and direct detection approaches,
 124 delivering accurate and interpretable hateful meme detection.

125 3 EXPO-HM METHODOLOGY

126 3.1 PRELIMINARIES

127 **Problem Statement.** A common binary hateful memes classification dataset (Kiela et al., 2020)
 128 is $\mathcal{D} = \{(I_i, c_i^*)\}_{i=1}^N$, where $I_i \in \mathbb{R}^{C \times H \times W}$ is an image with overlaid text (C for channels, H
 129 for height, W for width), and the ground-truth label $c_i^* \in \{0, 1\}$ denotes benign / hateful. In
 130 addition, we consider annotations including fine-grained labels z_i^* (e.g., protected category, attack
 131 type) (Mathias et al., 2021a) and, when available, gold explanations (Hee et al., 2023) e_i^* . We
 132 thus define the three tasks for hateful meme detection: (1) predicting binary class c_i ; (2) predicting
 133 fine-grained class z_i ; (3) generating e_i . For text-based evaluation, we denote the textualized label
 134 prediction as d_i (from c_i or z_i) and the corresponding ground-truth text label as d_i^* .

135 **Large Multimodal Models (LMMs).** Given a meme I and a prompt p , we denote the input to
 136 LMM as $\mathbf{x} = (I, p)$. An LMM with parameters θ defines an auto-regressive policy over output text
 137 tokens $\mathbf{y} = (y_1, \dots, y_{|\mathbf{y}|})$:

$$138 \pi_{\theta}(\mathbf{y} \mid \mathbf{x}) = \prod_{t=1}^{|\mathbf{y}|} \pi_{\theta}(y_t \mid y_{<t}, \mathbf{x}), \quad (1)$$

139 where t indexes the output tokens. *Direct-Detection* methods decode labels directly, via answers like
 140 “yes” / “no” (Lin et al., 2024). In contrast, *Explain-then-Detect* first generates reasoning and then
 141 the label. Following the standard long CoT format (DeepSeek-AI et al., 2025), the output sequence
 142 is:

$$143 \mathbf{y} \equiv (\langle \text{think} \rangle \mathbf{e} \langle / \text{think} \rangle \langle \text{answer} \rangle \mathbf{d} \langle / \text{answer} \rangle), \quad (2)$$

144 where \mathbf{e} is the generated explanation and \mathbf{d} is the textualized label prediction.

145 **Supervised Fine-Tuning (SFT).** Given an input \mathbf{x} and a target output sequence \mathbf{y}^* , the model is
 146 trained by maximizing the likelihood of \mathbf{y}^* :

$$147 \mathcal{L}_{\text{SFT}}(\theta) = - \sum_{t=1}^{|\mathbf{y}^*|} \log \pi_{\theta}(y_t^* \mid \mathbf{y}_{<t}^*, \mathbf{x}). \quad (3)$$

148 This serves as the general form of SFT used in our baselines.

149 **Direct Preference Optimization (DPO).** We consider DPO (Rafailov et al., 2023) as a baseline
 150 fine-tuning method. Preference pairs $(\mathbf{y}^+, \mathbf{y}^-)$ are sampled on-policy from the reference model π_{ref}
 151 via the Explain-then-Detect prompting format. A response \mathbf{y} is selected as the preferred response
 152 \mathbf{y}^+ if its decision d matches the ground-truth label d^* ; otherwise, it is treated as the rejected response
 153 \mathbf{y}^- .

162 We optimize the DPO objective:
 163

$$164 \quad \mathcal{L}_{\text{DPO}}(\theta) = -\log \sigma \left(\beta \log \frac{\pi_\theta(\mathbf{y}^+|\mathbf{x})}{\pi_{\text{ref}}(\mathbf{y}^+|\mathbf{x})} - \beta \log \frac{\pi_\theta(\mathbf{y}^-|\mathbf{x})}{\pi_{\text{ref}}(\mathbf{y}^-|\mathbf{x})} \right), \quad (4)$$

166 where σ is the sigmoid function and π_{ref} is the reference model, i.e., the initial model before DPO
 167 fine-tuning.
 168

169 **Group Relative Policy Optimization (GRPO).** GRPO (Shao et al., 2024) is an online Policy Gradi-
 170 ent method that discards the critic model to save computation. To estimate the advantage, it samples
 171 a group of outputs $(\mathbf{y}_1, \dots, \mathbf{y}_G)$ from the old policy $\pi_{\theta_{\text{old}}}$ for each input \mathbf{x} . The advantage for the
 172 g -th sample in a group is computed by normalizing its reward against the group's reward distribution
 173 $\{r_1, \dots, r_G\}$:

$$174 \quad A_g = \frac{r_g - \text{mean}(\{r_1, \dots, r_G\})}{\text{std}(\{r_1, \dots, r_G\})}. \quad (5)$$

176 We consider verifiable reward functions in this paper. The policy is then optimized with the clipped
 177 objective:
 178

$$179 \quad \mathcal{L}_{\text{GRPO}}(\theta) = -\frac{1}{G} \sum_{i=1}^G \left[\min \left(\frac{\pi_\theta(\mathbf{y}_i|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}_i|\mathbf{x})} A_i, \text{clip} \left(\frac{\pi_\theta(\mathbf{y}_i|\mathbf{x})}{\pi_{\theta_{\text{old}}}(\mathbf{y}_i|\mathbf{x})}, 1-\epsilon, 1+\epsilon \right) A_i \right) - \beta D_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}) \right]. \quad (6)$$

183 3.2 CONDITIONAL DECISION ENTROPY

185 The reasoning quality is difficult to optimize in hateful meme detection, as there is no reliable
 186 reward model due to the scarce [rationale](#) corpora and [subjective](#) human judgements. To address
 187 this, we propose Conditional Decision Entropy (CDE) as a proxy measure. The principle of CDE is
 188 straightforward: good reasoning should lead to a sharp and correct decision, while poor reasoning
 189 produces confusion.
 190

191 **CDE Definition.** For an input \mathbf{x} , the LMM π_θ generates an explanation and decision response
 192 $\mathbf{y} = (\mathbf{e}, d) \sim \pi_\theta(\cdot \mid \mathbf{x})$ in the format of Eq. 2, where the final decision is sampled conditioned on the
 193 explanation and input $d \sim \pi_\theta(\cdot \mid \mathbf{e}, \mathbf{x})$. We define CDE as the entropy of the decision *conditioned*
 194 on the produced explanation:

$$195 \quad H(d \mid \mathbf{e}, \mathbf{x}) = -\mathbb{E}_{d \sim \pi_\theta(\cdot \mid \mathbf{e}, \mathbf{x})} [\log \pi_\theta(d \mid \mathbf{e}, \mathbf{x})]. \quad (7)$$

198 **Monte Carlo Estimator for CDE** To evaluate reasoning quality with CDE, we estimate the aver-
 199 age CDE over the validation set. For each example \mathbf{x}_i , we sample $K = 16$ explanations \mathbf{e}_{ik} with
 200 the policy π_θ and compute the entropy of the decision distribution. The estimator is

$$201 \quad \widehat{H}(d \mid \mathbf{e}, \mathbf{x}) = \frac{1}{K|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} \sum_{k=1}^K H(d \mid \mathbf{e}_{ik}, \mathbf{x}_i), \quad \mathbf{e}_{ik} \sim \pi_\theta(\cdot \mid \mathbf{x}_i). \quad (8)$$

205 In the binary classification case, we experimented with collapsing the decision vocabulary to
 206 $\mathcal{V} \in \{\text{Yes}, \text{No}\}$, making CDE equivalent to binary entropy. We observed no significant differ-
 207 ence compared to using the full vocabulary. For generalizability to fine-grained multi-class labels,
 208 we therefore adopt the full vocabulary formulation.

209 A full derivation is provided in Appendix G.
 210

211 3.3 EXPO-HM FRAMEWORK

213 Inspired by human moderator training, where annotators first study [annotation](#) guidelines and then
 214 practice applying them to tasks of increasing difficulty, ExPO-HM, as shown in Figure 2, first learn
 215 policy knowledge through SFT, then refines its reasoning via GRPO with curriculum learning, pro-
 216 gressing from fine-grained to binary classification.

Figure 2: Architecture of ExPO-HM. Our framework consists of three key components: ① **SFT-PM Warmup**. The VLM is first trained with SFT using structured policy manuals derived from fine-grained labels and dataset guidelines, teaching the model to align decisions with explicit moderation policies. ② **GRPO with Curriculum Learning**. Training follows a two-stage schedule: the first 50% of steps use fine-grained data only for reasoning exploration, and the remaining 50% use a balanced 50/50 mix of fine-grained and binary data. ③ **GRPO with CDE reward**. In addition to the format reward (r_{format}) and accuracy (r_{acc}) reward used in standard GRPO, we also add a Conditional Decision Entropy (r_{CDE}) reward.

SFT Warmup on Structured Policy Manuals (SFT-PM). We first teach the LMM moderation policy knowledge by converting each dataset’s fine-grained labels into a structured policy manual as the input prompt. Descriptions derived from the dataset annotation guidelines are added to each policy item in the policy manual. [Details of this conversion process are provided in Appendix B.2](#). We optimize the language modelling loss in Eq. 3 with this policy manual augmented input for each meme, and the target response \mathbf{y}^* is the fine-grained label d_i^* . Note that we do not use human-written gold hateful explanation e^* in the warmup stage, as they are off-policy and lead to worse performance, which we discuss in Sec 4.5.

GRPO with Curriculum Learning (GRPO-CL). After the SFT-PM warmup, we conduct GRPO curriculum learning. We begin with fine-grained classification to incentivize policy understanding through diverse reasoning exploration, then introduce binary classification for hateful vs. benign detection. We test various curriculum schedulers, switching after fine-grained accuracy plateaus, adjusting the budget split between stages, or adjusting the mixing ratio of the fine-grained and binary data in the second stage, and find similar performance as long as fine-grained reasoning precedes binary. We therefore adopt a simple 50/50/50 strategy: the first 50% of steps use fine-grained data only, and the remaining 50% use a balanced 50/50 mix of fine-grained and binary data.

We optimize the clipped surrogate loss in Eq. 6 using the group-relative advantage in Eq. 5. The reward r_{ig} corresponds to the g -th response in the sampled group for the i -th training example

$$r(\mathbf{y}_{ig}, d_i^*) = r_{\text{format}} + r_{\text{acc}} + w r_{\text{CDE}}, \quad (9)$$

where $r_{\text{format}} \in \{0, 1\}$ checks if the output obeys the correct template in Eq. 2. The accuracy reward $r_{\text{acc}} \in [0, 1]$ measures prediction correctness with partial credit for multi-class fine-grained classification and penalties for over-prediction. For binary classification, it requires an exact match and thus $r_{\text{acc}} \in \{0, 1\}$. For the GRPO baseline, we set $w = 0$, leaving only the format and accuracy rewards. Now let’s define CDE Reward r_{CDE} .

CDE as a Reward Although GRPO with curriculum learning improves over the naive GRPO baseline, it still falls short in producing reliable reasoning. As introduced in Sec. 3.2, CDE provides a proxy for reasoning quality. If the prediction is sharp and correct, the reasoning is helpful and should be rewarded; if it is wrong but confident, the reasoning is misleading and should be penalized. We therefore incorporate it as an additional reward to guide ExPO-HM.

270 For each group-sampled example \mathbf{y}_{ig} of each input \mathbf{x}_i , we denote the CDE as h_{ig} and correctness as
 271 δ_{ig} :

$$272 \quad h_{ig} = H(d \mid \mathbf{e}_{ig}, \mathbf{x}_i), \quad \delta_{ig} = \mathbf{1}[d_{ig} = d_i^*]. \quad (10)$$

274 We reward confident correctness, tolerate uncertainty when wrong, and penalize confident errors.
 275 The CDE reward for the example \mathbf{y}_{ig} is

$$276 \quad r_{\text{CDE}}(h_{ig}, \delta_{ig}) = \delta_{ig} \cdot \begin{cases} w, & h \leq a \\ w \frac{b - h_{ig}}{b - a}, & a < h_{ig} < b \\ 0, & h_{ig} \geq b \end{cases} + (1 - \delta_{ig}) \cdot \begin{cases} -\rho w, & h_{ig} \leq a \\ w \frac{h_{ig} - a}{b - a}, & a < h_{ig} < b \\ w, & h_{ig} \geq b \end{cases} \quad (11)$$

281 CDE rewards contribute a maximum of weight w , with ρ controlling the penalty strength for over-
 282 confident wrong predictions. Unless otherwise noted, we use default hyperparameters $a = 0.1$,
 283 $b = 0.5$, $w = 0.2$, and $\rho = 0.25$. A detailed hyperparameter analysis is provided in Appendix C.3.
 284 The r_{CDE} can thus be fed into Eq. 9 to obtain the reward to compute advantage to optimize the
 285 GRPO objective.

287 4 EXPERIMENTS

289 4.1 EXPERIMENTAL SETUP

291 **Dataset.** We evaluate the binary and fine-grained classification on three meme classification
 292 datasets: HatefulMemes (Kiela et al., 2020), MAMI (Fersini et al., 2022), and PrideMM (Shah
 293 et al., 2024).

295 **Tasks** We evaluate binary classification (hateful vs benign) on all three datasets. For fine-grained
 296 classification, we assess attack methods and target groups on HatefulMemes, attack methods on
 297 MAMI, and stance towards LGBTQ+, along with target group detection on PrideMM. Due to the
 298 scarcity of annotated hate rationales, we only evaluate reasoning quality on HatefulMemes, where
 299 gold human rationales are available (Hee et al., 2023). Detailed dataset descriptions and statistics
 300 are provided in Appendix B.

301 **Evaluation Metrics.** We evaluate classification tasks using macro F1 following prior work (Shah
 302 et al., 2024). For fine-grained classification, we use micro F1 due to a highly imbalanced class
 303 distribution. For reasoning quality, we adopt the LLM-as-a-judge method (Yang et al., 2023; Mei
 304 et al., 2025) to measure alignment between model-generated and human rationales. The detailed
 305 evaluation setup is provided in Appendix D. We further include different LLM judge experiments
 306 in Appendix E. In addition, we report CDE as a proxy to reasoning quality and verify its correlation
 307 with LLM-as-a-judge in Section 4.3. We also report human evaluation of the reasoning in Section 4.7

309 4.2 BASELINES

311 We compare ExPO-HM with comprehensive baselines on Qwen2.5-VL-3B and Qwen2.5-VL-
 312 7B (Bai et al., 2025) in Table 1. In this section, we describe the baseline setup briefly. Full im-
 313 plementation details are provided in Appendix C to ensure reproducibility.

314 **SFT.** In this paper, we consider two variants of SFT as baselines. *Direct-SFT* is trained with the
 315 ground-truth label as the target ($\mathbf{y}^* = d^*$ in Eq. 3), while *CoT-SFT* uses Explain-then-Detect prompt
 316 adopted in DPO and GRPO, where the target sequence is the chosen response in DPO sampling
 317 ($\mathbf{y}^* = \mathbf{y}^+$ in Eq. 3). In practice, we find that *Direct-SFT* consistently outperforms *CoT-SFT*, even
 318 when inference is performed with the Explain-then-Detect prompt. We therefore report *Direct-SFT*
 319 as the default baseline. For classification, we train and report separate models based on the binary
 320 and the fine-grained subset, and report the best results. Full results for each model are provided in
 321 Table 3, while Table 1 reports the best system.

322 **DPO & GRPO.** For DPO and GRPO, we initialize from the fine-grained SFT warmup, but with-
 323 out the policy-manual style augmentation. We sweep different β values in DPO to get the best
 performance on the validation set. The GRPO baseline is trained with the same compute budget

324 as ExPO-HM, using identical hyperparameter settings in both the warmup and GRPO fine-tuning
 325 stages.

326 **Best prior systems.** We compare ExPO-HM with the best prior systems. RA-HMD (Mei et al.,
 327 2025) is the state-of-the-art direct detection model, combining two-stage fine-tuning and retrieval-
 328 augmented classification. Although primarily designed for direct detection, it supports reasoning
 329 evaluation via prompting, so we report its LLM-as-a-judge scores. All RA-HMD results are based
 330 on Qwen2.5-VL-7B (Bai et al., 2025). For Explain-then-Detect, we compare two recent systems:
 331 LOREHM (Huang et al., 2024), a reflective reasoning agent with tool-calling capability built on
 332 LLaVA-Next-34B (Liu et al., 2024), and U-CoT+ (Pan et al., 2025), which uses human-guided CoT
 333 prompting with Qwen2-VL-7B (Wang et al., 2024a) for meme-to-text conversion and Qwen2.5-
 334 14B (Qwen et al., 2025) for answer generation. We can only report their results on the binary
 335 classification due to their prompt-based agent design, these systems cannot be directly adapted for
 336 fine-grained classification or structured reasoning tasks. Furthermore, we did not include closed-
 337 source reasoning LMMs such as the OpenAI o-series (OpenAI, 2024) as baselines, since over 30%
 338 of requests were blocked by the API server due to the harmful nature of the examples.

339 Table 1: Comparing ExPO-HM with baseline systems across three datasets. *B* stands for Binary
 340 and *R* stands for Reasoning. LLM refers to the LLM-as-a-judge score. Best results are in **bold**. \uparrow
 341 indicates higher is better, \downarrow lower is better.

# Model	HatefulMemes					MAMI			PrideMM				
	B F1 \uparrow	Attack F1 \uparrow	Target F1 \uparrow	R LLM \uparrow	CDE \downarrow	B F1 \uparrow	Attack F1 \uparrow	R CDE \downarrow	B F1 \uparrow	Stance F1 \uparrow	Target F1 \uparrow	R CDE \downarrow	
<i>Direct Detection Baselines</i>													
1 Qwen2.5-VL-3B													
2 <i>Zero-shot</i>	53.1	42.1	60.1	-	-	61.1	48.2	-	58.6	53.7	48.8	-	
3 <i>SFT</i>	71.9	64.3	69.3	-	-	77.9	61.8	-	74.3	58.6	53.2	-	
4 Qwen2.5-VL-7B													
5 <i>Zero-shot</i>	59.8	50.3	60.2	-	-	63.4	50.2	-	65.2	56.8	51.1	-	
6 <i>SFT</i>	75.0	64.7	71.1	-	-	78.1	63.1	-	75.6	60.2	61.0	-	
7 <i>RA-HMD</i>	80.2	-	-	5.4	-	81.0	-	-	77.8	-	-	-	
<i>Explain-then-Detect Systems</i>													
8 LOREHM (34B)	65.6	-	-	-	-	75.3	-	-	-	-	-	-	-
9 U-CoT+ (14B)	72.4	-	-	-	-	79.9	-	-	71.4	-	-	-	-
10 Qwen2.5-VL-3B													
11 <i>Zero-shot</i>	52.5	41.7	58.7	3.3	0.42	58.7	41.7	0.32	52.6	51.2	40.8	0.33	
12 <i>SFT</i>	62.3	62.7	63.3	3.6	0.40	69.2	60.1	0.34	63.2	56.6	49.8	0.29	
13 <i>DPO</i>	59.6	52.3	58.1	3.5	0.42	66.8	50.2	0.36	64.2	55.5	48.9	0.34	
14 <i>GRPO</i>	63.4	55.6	66.1	3.8	0.32	76.6	61.2	0.19	72.1	57.3	48.4	0.18	
15 <i>ExPO-HM</i>	74.7	71.5	73.7	5.1	0.16	80.7	70.4	0.08	75.6	66.5	62.1	0.12	
16 Qwen2.5-VL-7B													
17 <i>Zero-shot</i>	65.9	44.7	64.5	5.0	0.33	63.9	46.5	0.23	59.4	54.6	50.2	0.28	
18 <i>SFT</i>	74.5	58.4	69.4	5.0	0.33	72.8	62.6	0.19	68.3	58.0	50.9	0.28	
19 <i>DPO</i>	73.6	63.2	66.6	4.9	0.32	72.3	56.6	0.22	69.5	56.3	52.3	0.30	
20 <i>GRPO</i>	74.5	61.2	64.5	5.2	0.26	76.8	63.7	0.09	73.2	58.6	60.1	0.14	
21 <i>ExPO-HM</i>	81.1	75.6	77.2	6.2	0.03	82.3	73.0	0.04	78.7	68.4	65.1	0.08	

367 4.3 COMPARING EXPO-HM TO BASELINE SYSTEMS

370 Table 1 compares ExPO-HM with the aforementioned baseline post-training methods and state-of-
 371 the-art systems. [We report qualitative examples and error cases in Appendix J](#). Here, we summarize
 372 the key observations.

373 **Baseline Explain-then-Detect methods hurt classification performance.** Under *Explain-then-*
 374 *Detect*, post-training variants (SFT/DPO/GRPO, #18-#20 for Qwen2.5-VL-7B) consistently under-
 375 perform the Direct-Detection SFT baseline (#6), except for the comparable performance on the
 376 MAMI Attack classification. Larger agentic and CoT systems (LOREHM, U-CoT+, #8-#9) also
 377 fall short of strong Direct-Detection baselines like SFT and RA-HMD (#6-#7). For instance, the
 378 binary classification on HatefulMemes is 80.2 on RA-HMD vs 72.4 F1 with U-CoT+. On Hateful-

Memes binary classification, RA-HMD reaches 80.2 F1, compared to 72.4 with U-CoT+. Explain-then-Detect systems are crucial for building automatic moderation systems that can truly support real-world moderators, but these results highlight that simply adding explicit rationales through CoT prompting or standard post-training hurts classification accuracy. This motivates the design of ExPO-HM, which aims to improve Explain-then-Detect systems without sacrificing predictive performance.

Naive post-training barely improves performance. Explain-then-Detect post-training (#18–#20) improves classification over zero-shot (#17), but reasoning quality stagnates, failing to meet the goal of improving reasoning through post-training. On HatefulMemes with Qwen2.5-VL-7B, the zero-shot LLM-as-a-judge score is 5.0; DPO drops below this, while GRPO only nudges it to 5.2. Even with online RL, reasoning remains difficult to improve. Moreover, post-training still underperforms strong CoT systems specifically designed for hateful meme detection (#8–#9). This underscores the need for dedicated post-training methods like ExPO-HM, which are tailored to hateful meme detection and designed to improve not only classification accuracy but also the quality of explanations.

ExPO-HM consistently outperforms. ExPO-HM delivers the strongest performance across binary detection, fine-grained classification, and reasoning. On Qwen2.5-VL-7B, it surpasses RA-HMD and all post-training baselines, achieving large gains in fine-grained F1 (**+14.4** on HatefulMemes Attack, **+12.7** on Target, compared to GRPO with equal compute). Reasoning also improves markedly, with 6.2 on LLM-as-a-judge vs. 5.2 for GRPO. In Appendix E, we conduct additional evaluations using different LLM judges and paraphrased prompts, and ExPO-HM consistently outperforms all baselines under all settings. Appendix I further reports per-class metrics for Attack and Target detection on HatefulMemes, showing that ExPO-HM achieves consistent improvements, particularly on the most challenging categories. These results confirm ExPO-HM’s effectiveness across datasets and tasks.

Strong correlation between LLM-as-a-judge metric and CDE metric. On the HatefulMemes reasoning dataset, we observe a strong alignment between the LLM-as-a-judge score and the CDE score. To quantify this, we evaluate the correlation based on results from all the reported setups, with three random seeds each, yielding 60 data points. We find a strong negative correlation (Pearson $r = -0.78$, Spearman $\rho = -0.81$, both $p < 0.001$), confirming that lower CDE values, reflecting more confident and accurate reasoning, correspond to higher reasoning quality.

4.4 ABLATION STUDY OF EXPO-HM COMPONENTS

We conduct an ablation study to examine the contribution of the three key components in ExPO-HM. Results on HatefulMemes with Qwen2.5-VL-7B are reported in Table 2. Without SFT-PM, the warmup falls back to SFT with fine-grained labels without policy manual augmentation. Without GRPO-CL, GRPO is trained on a randomly mixed set of binary and fine-grained data. Without CDE, GRPO uses only the format and accuracy rewards.

Table 2: Ablation Study of ExPO-HM Components.

#	Components			HatefulMemes					R
	SFT-PM	GRPO-CL	CDE	B	Attack	Target	LLM ↑	CDE ↓	
				F1 ↑	F1 ↑	F1 ↑			
1	-	-	-	74.5	61.2	64.5	5.2	0.263	
2	✓	-	-	75.8	70.8	70.2	5.6	0.092	
3	✓	✓	-	78.4	74.3	76.1	5.8	0.056	
4	✓	✓	✓	81.1	75.6	77.2	6.2	0.026	

SFT-PM enhanced the fine-grained warmup. Compared to the baseline warmup without policy manual augmentation (#1), SFT-PM improves performance across all metrics. This indicates that fine-grained labels alone are insufficient for policy understanding, while policy manual augmentation substantially strengthens both classification and reasoning. In Sec. 4.5, we further present a systematic comparison of different warmup strategies.

GRPO-CL further improves performance. Building on SFT-PM, adding curriculum learning to GRPO (#3) yields further gains across the board. The key difference is ordering, GRPO-CL first lets the model explore reasoning over the fine-grained labels before binary classification. This order

432 Table 3: Comparing SFT warmup variants on HatefulMemes on Qwen2.5-VL-7B: no warmup (-),
 433 SFT on binary labels (SFT-B), SFT on gold reasoning (SFT-R), SFT on fine-grained labels (SFT-
 434 FG), and SFT with policy-manual augmentation (SFT-PM).

#	Warmup	SFT				w/ GRPO-CL and CDE			
		B F1 ↑	Attack F1 ↑	Target F1 ↑	R LLM ↑	B F1 ↑	Attack F1 ↑	Target F1 ↑	R LLM ↑
1	-	65.9	44.7	64.5	5.0	73.3	69.3	72.1	5.2
2	SFT-B	74.1	58.2	69.4	4.9	73.5	66.8	70.1	5.1
3	SFT-R	72.2	51.6	63.1	5.0	79.2	72.3	73.2	5.7
4	SFT-FG	72.5	58.4	67.7	4.9	78.9	73.4	73.4	5.6
5	SFT-PM	74.3	64.6	68.8	5.0	81.1	75.6	77.2	6.2

444
 445 proves crucial: standard GRPO produces short average responses (28 tokens) in binary classification,
 446 while GRPO-CL nearly doubles this (52 tokens), indicating not only higher quality but also more
 447 detailed reasoning is incentivized during training.

448 **CDE improves both accuracy and explanation quality.** Adding CDE on top of SFT-PM and
 449 GRPO-CL further improves the performance. Notably, LLM-judge score improved to 6.2, and a
 450 marked drop in CDE 0.026, suggesting that the model’s rationales become more aligned with sharp,
 451 correct decisions.

453 4.5 EFFECTS OF DIFFERENT WARMUP STRATEGY

455 Table 3 compares five warmup strategies for Qwen2.5-VL-7B on the HatefulMemes dataset. For
 456 each, we report the Explain-then-Detect performance after SFT and the performance after GRPO-
 457 CL with CDE reward.

459 **Good SFT does not necessarily transfer to good RL performance.** Although SFT-B performs
 460 better than SFT-R and SFT-FG at the SFT stage, its performance after GRPO-CL is comparably
 461 worse than its counterparts, even below the no-warmup baseline. This suggests that binary-only
 462 warmup fails to equip the model with the moderation concepts needed for reasoning-guided RL. In
 463 contrast, our proposed SFT-PM explicitly teaches such concepts via policy manual augmentation,
 464 yielding both stronger SFT performance and the best results after ExPO-HM training.

465 4.6 CDE ANALYSIS

468 **CDE Distribution Analysis.** Figure 3
 469 presents box-and-whisker plots of CDE dis-
 470 tributions for ExPO-HM and GRPO on the
 471 HatefulMemes validation set with Qwen2.5-
 472 VL-7B. ExPO-HM maintains very low CDE
 473 for correct predictions ($\mu = 0.019$) and
 474 higher CDE for wrong ones ($\mu = 0.048$),
 475 yielding a clear separation. In contrast, the
 476 GRPO baseline shows high CDE for both
 477 correct ($\mu = 0.278$) and wrong predictions
 478 ($\mu = 0.226$), showing weaker separation.
 479 This demonstrates that ExPO-HM produces
 480 reasoning that is not only more accurate but
 481 also better aligned with decision confidence.

482 **CDE for Decision Calibration.** The CDE re-
 483 ward penalizes confident wrong predictions and
 484 rewards confident correct decisions. This en-
 485 courages a well-behaved decision distribution: the model becomes confident only when it is likely
 to be correct, and becomes uncertain when the outcome is ambiguous.

486 Figure 3: Comparison of CDE distributions be-
 487 tween ExPO-HM and GRPO on the Hateful-
 488 Memes validation set with Qwen2.5-VL-7B.

486 To validate whether CDE reward improves calibration, we compute Expected Calibration Error
 487 (ECE) and Brier score using the model’s probability assigned to the final answer token, conditioned
 488 on the generated explanation under the Explain-then-Detect setup. We observe that ExPO-
 489 HM consistently improves calibration compared to the GRPO baseline. Notably, for Qwen2.5-VL-
 490 3B, ExPO-HM reduces the Brier score from 0.590 to 0.283, indicating substantially more reliable
 491 decision confidence. Full calibration results are reported in Appendix H.1. We additionally provide
 492 a derivation of the upper bound on the Brier score under the ideal ExPO-HM policy in Appendix H.2.
 493

494 **CDE and Policy Entropy.** We test whether adding the CDE reward causes policy entropy col-
 495 lapse, a phenomenon reported in prior RL work (Cui et al., 2025) when entropy bonuses are re-
 496 moved. Our results show that overall policy entropy remains comparable to the baseline GRPO
 497 system without CDE, confirming that the CDE reward, acting only on the decision part of the gen-
 498 eration, does not reduce exploration.

499 **CDE Hyperparameters.** For CDE hyperparameters, we conduct standard hyperparameter tuning
 500 via grid search on the HatefulMemes validation set. Once the optimal values were identified, we
 501 fixed these parameters and applied them directly to MAMI and PrideMM. We observe that as long
 502 as the hyperparameters fall within a reasonable range, the model performance remains highly stable.
 503 We provide the detailed insights of hyperparameter tuning in Appendix C.3.
 504

505 4.7 HUMAN EVALUATION OF MODEL-GENERATED REASONING

506 To assess the quality of the generated reasoning beyond LLM-as-a-judge evaluation, we further
 507 conduct two complementary human evaluations. Each example is independently evaluated by three
 508 crowd-sourced annotators with at least an undergraduate degree and demonstrated familiarity with
 509 internet meme culture. We evaluate both the GRPO baseline and our ExPO-HM model. The detailed
 510 evaluation setup and full results are provided in Appendix F.
 511

512 **Coherence Evaluation.** Annotators judge whether the model’s final decision is logically sup-
 513 ported by its rationale. The GRPO baseline achieves 96% coherent outputs, whereas ExPO-HM
 514 attains 100% coherence.
 515

516 **Helpfulness Evaluation.** Annotators also rate how helpful each rationale is for understanding
 517 why the meme is hateful or benign, using a 0–4 Likert scale following prior work (Wang et al.,
 518 2024b). We obtain average helpfulness scores of 1.6 for GRPO and 2.2 for ExPO-HM. After nor-
 519 malizing the scores to the same 0–10 scale used by the LLM-as-a-judge (4.1 vs. 5.5), we observe
 520 high agreement between human and LLM evaluations in the relative improvement from GRPO to
 521 ExPO-HM.
 522

523 5 CONCLUSION

525 We propose ExPO-HM, which combines SFT warmup on policy-manual-augmented data with
 526 GRPO curriculum learning, guided by a Conditional Decision Entropy reward to promote high-
 527 quality reasoning. Comprehensive experiments show that ExPO-HM achieves state-of-the-art per-
 528 formance on binary detection, fine-grained classification, and reasoning quality.
 529

530 ETHICAL STATEMENT

532 **Societal benefits.** Hateful meme detection systems such as ExPO-HM can help automatically
 533 identify and mitigate harmful online content, reducing the prevalence of hate speech. By provid-
 534 ing explanations in addition to predictions, our system not only supports safer digital environments
 535 for end-users but also alleviates the burden on human content moderators, improving their well-
 536 being. We believe such systems play an essential role in fostering respectful online communication
 537 and contributing to healthier digital communities.

538 **Intended use.** We will enforce strict access controls for releasing model checkpoints and artifacts.
 539 Access will be limited to researchers who agree to our terms of use, which explicitly restrict the

540 system to the detection and prevention of hateful speech. Any use that promotes, condones, or
 541 encourages hate speech or other harmful content is strictly prohibited.
 542

543 **Misuse potential.** Although ExPO-HM is not designed to introduce bias, it is trained on datasets
 544 that may reflect societal or annotator biases (Pramanick et al., 2021). These biases could propagate
 545 into model predictions. To mitigate risks of unfair or disproportionate moderation, human oversight
 546 remains essential when deploying such systems.
 547

548 **Deployment considerations.** Moderation of hateful content is inherently influenced by cultural
 549 norms and subjective judgments. Expressions considered benign in one context may be offensive
 550 in another. Since ExPO-HM is trained with policy manuals, its outputs depend critically on the
 551 underlying moderation policies. Careful review and adaptation of community guidelines are crucial
 552 to ensure responsible deployment across diverse cultural and linguistic contexts.
 553

554 **Usage of Datasets.** The datasets used in this study, HatefulMemes, MAMI, and PrideMM, were
 555 curated for research purposes to combat online hate speech. We strictly adhere to the terms of use
 556 established by the dataset authors.
 557

558 REPRODUCIBILITY STATEMENT

559 We provide detailed dataset usage and statistics in Appendix B, including all augmentation pro-
 560 cedures introduced in this paper. For the evaluation of reasoning, we detail the process in Appendix D.
 561 Experimental setups, implementation details including code base usage, software version, hardware
 562 configuration, and hyperparameter settings are described in Appendix C to facilitate reproducibil-
 563 ity. Upon publication, we will release the source code on GitHub and make all artifacts, including
 564 augmented data, sampled training sets, and trained checkpoints available to HuggingFace.
 565

566 REFERENCES

567 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 568 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
 569 Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L. Menick,
 570 Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikołaj Bińkowski,
 571 Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual
 572 language model for few-shot learning. *Advances in Neural Information Processing Systems*, 35:
 573 23716–23736, Dec 2022. URL <https://openreview.net/forum?id=EbMuimAbPbs>.
 574

575 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 576 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang
 577 Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie,
 578 Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl tech-
 579 nical report. (arXiv:2502.13923), February 2025. doi: 10.48550/arXiv.2502.13923. URL
 580 <http://arxiv.org/abs/2502.13923>. arXiv:2502.13923 [cs].

581 Giovanni Burbi, Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Alberto Del Bimbo.
 582 Mapping memes to words for multimodal hateful meme classification. In *2023 IEEE/CVF In-
 583 ternational Conference on Computer Vision Workshops (ICCVW)*, pp. 2824–2828, 2023. doi:
 584 10.1109/ICCVW60793.2023.00303.

585 Agostina Calabrese, Leonardo Neves, Neil Shah, Maarten W. Bos, Björn Ross, Mirella Lapata,
 586 and Francesco Barbieri. Explainability and hate speech: Structured explanations make social
 587 media moderators faster. (arXiv:2406.04106), 2024. doi: 10.48550/arXiv.2406.04106. URL
 588 <http://arxiv.org/abs/2406.04106>. arXiv:2406.04106 [cs].

589 Rui Cao, Ming Shan Hee, Adriel Kuek, Wen-Haw Chong, Roy Ka-Wei Lee, and Jing Jiang. Pro-
 590 cap: Leveraging a frozen vision-language model for hateful meme detection. In *Proceedings of
 591 the 31st ACM International Conference on Multimedia*, MM ’23, pp. 5244–5252. Association
 592 for Computing Machinery, 2023. ISBN 9798400701085. doi: 10.1145/3581783.3612498. URL
 593 <https://doi.org/10.1145/3581783.3612498>.

594 Rui Cao, Roy Ka-Wei Lee, and Jing Jiang. Modularized networks for few-shot hateful meme detection.
 595 In *Proceedings of the ACM Web Conference 2024*, WWW '24, pp. 4575–4584. Association
 596 for Computing Machinery, 2024. ISBN 9798400701719. doi: 10.1145/3589334.3648145. URL
 597 <https://doi.org/10.1145/3589334.3648145>.
 598

599 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
 600 Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,
 601 Bowen Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning
 602 language models, May 2025. URL <https://arxiv.org/abs/2505.22617v1>.
 603

604 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 605 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 606 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 607 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 608 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 609 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 610 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 611 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 612 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 613 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 614 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 615 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 616 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng
 617 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
 618 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
 619 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
 620 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 621 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
 622 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
 623 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
 624 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 625 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 626 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 627 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 628 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 629 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia
 630 Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu,
 631 Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via
 632 reinforcement learning. (arXiv:2501.12948), January 2025. doi: 10.48550/arXiv.2501.12948.
 633 URL <https://arxiv.org/abs/2501.12948>. arXiv:2501.12948 [cs].
 634

635 Dimitar Dimitrov, Bishr Bin Ali, Shaden Shaar, Firoj Alam, Fabrizio Silvestri, Hamed Firooz,
 636 Preslav Nakov, and Giovanni Da San Martino. Detecting propaganda techniques in memes. In
 637 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the*
 638 *11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*,
 639 pp. 6603–6617, Online, Aug 2021. Association for Computational Linguistics. doi: 10.18653/v1/
 640 2021.acl-long.516. URL <https://aclanthology.org/2021.acl-long.516>.
 641

642 Elisabetta Fersini, Francesca Gasparini, Giulia Rizzi, Aurora Saibene, Berta Chulvi, Paolo Rosso,
 643 Alyssa Lees, and Jeffrey Sorensen. Semeval-2022 task 5: Multimedia automatic misogyny iden-
 644 tification. In *Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)*,
 645 pp. 533–549, Seattle, United States, Jul 2022. Association for Computational Linguistics. doi:
 646 10.18653/v1/2022.semeval-1.74. URL <https://aclanthology.org/2022.semeval-1.74>.
 647

648 Ming Shan Hee and Roy Ka-Wei Lee. Demystifying hateful content: Leveraging large multimodal
 649 models for hateful meme detection with explainable decisions. 2025. doi: 10.48550/ARXIV.
 650 2502.11073. URL <https://arxiv.org/abs/2502.11073>.
 651

648 Ming Shan Hee, Wen-Haw Chong, and Roy Ka-Wei Lee. Decoding the underlying meaning of
 649 multimodal hateful memes. (arXiv:2305.17678), Jun 2023. URL <http://arxiv.org/abs/2305.17678>. arXiv:2305.17678 [cs].
 650

651 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 652 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-
 653 ference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.
 654

655 Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy Viswanathan, Kenji Hata, Enming Luo, Ran-
 656 jay Krishna, and Ariel Fuxman. Visual program distillation: Distilling tools and programmatic
 657 reasoning into vision-language models. In *2024 IEEE/CVF Conference on Computer Vision and
 658 Pattern Recognition (CVPR)*, pp. 9590–9601, Seattle, WA, USA, June 2024. IEEE. ISBN 979-8-
 659 3503-5300-6. doi: 10.1109/CVPR52733.2024.00916. URL <https://ieeexplore.ieee.org/document/10655837/>.
 660

661 Jianzhao Huang, Hongzhan Lin, Liu Ziyuan, Ziyang Luo, Guang Chen, and Jing Ma. Towards low-
 662 resource harmful meme detection with Imm agents. In Yaser Al-Onaizan, Mohit Bansal, and
 663 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural
 664 Language Processing*, pp. 2269–2293, Miami, Florida, USA, November 2024. Association for
 665 Computational Linguistics. URL <https://aclanthology.org/2024.emnlp-main.136>.
 666

667 Junhui Ji, Xuanrui Lin, and Usman Naseem. Capalign: Improving cross modal alignment via infor-
 668 mative captioning for harmful meme detection. In *Proceedings of the ACM Web Conference 2024*,
 669 pp. 4585–4594, Singapore Singapore, May 2024. ACM. ISBN 979-8-4007-0171-9. doi: 10.1145/
 670 3589334.3648146. URL <https://dl.acm.org/doi/10.1145/3589334.3648146>.
 671

672 Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ring-
 673 shia, and Davide Testuggine. The hateful memes challenge: Detecting hate speech in multimodal
 674 memes. In *Advances in Neural Information Processing Systems*, volume 33, pp. 2611–2624.
 675 Curran Associates, Inc., 2020. URL https://proceedings.nips.cc/paper_files/paper/2020/hash/1b84c4cee2b8b3d823b30e2d604b1878-Abstract.html.
 676

677 Mohamed Bayan Kmainasi, Abul Hasnat, Md Arid Hasan, Ali Ezzat Shahroor, and Firoj Alam.
 678 Memeintel: Explainable detection of propagandistic and hateful memes. (arXiv:2502.16612),
 679 February 2025. doi: 10.48550/arXiv.2502.16612. URL <http://arxiv.org/abs/2502.16612>. arXiv:2502.16612 [cs].
 680

681 Gokul Karthik Kumar and Karthik Nandakumar. Hate-CLIPper: Multimodal hateful meme classifi-
 682 cation based on cross-modal interaction of CLIP features. In *Proceedings of the Second Workshop
 683 on NLP for Positive Impact (NLP4PI)*, pp. 171–183, Abu Dhabi, United Arab Emirates (Hybrid),
 684 December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.nlp4pi-1.20.
 685 URL <https://aclanthology.org/2022.nlp4pi-1.20>.
 686

687 Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov,
 688 Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, and
 689 Victor Sanh. Obelics: An open web-scale filtered dataset of interleaved image-text docu-
 690 ments. (arXiv:2306.16527), August 2023. URL <http://arxiv.org/abs/2306.16527>.
 691 arXiv:2306.16527 [cs].
 692

693 Hongzhan Lin, Ziyang Luo, Wei Gao, Jing Ma, Bo Wang, and Ruichao Yang. Towards explainable
 694 harmful meme detection through multimodal debate between large language models. In *Proceed-
 695 ings of the ACM Web Conference 2024*, WWW '24, pp. 2359–2370, New York, NY, USA, 2024.
 696 Association for Computing Machinery. ISBN 9798400701719. doi: 10.1145/3589334.3645381.
 697 URL <https://doi.org/10.1145/3589334.3645381>.
 698

699 Chen Liu, Gregor Geigle, Robin Krebs, and Iryna Gurevych. Figmemes: A dataset for figura-
 700 tive language identification in politically-opinionated memes. In *Proceedings of the 2022 Con-
 701 ference on Empirical Methods in Natural Language Processing*, pp. 7069–7086, Abu Dhabi,
 702 United Arab Emirates, Dec 2022. Association for Computational Linguistics. URL <https://aclanthology.org/2022.emnlp-main.476>.
 703

702 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 703 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.
 704

705 Lambert Mathias, Shaoliang Nie, Aida Mostafazadeh Davani, Douwe Kiela, Vinodkumar Prab-
 706 hakaran, Bertie Vidgen, and Zeerak Waseem. Findings of the woah 5 shared task on fine grained
 707 hateful memes detection. *Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH*
 708 *2021*), pp. 201–206, 2021a. doi: 10.18653/v1/2021.woah-1.21.
 709

710 Lambert Mathias, Shaoliang Nie, Aida Mostafazadeh Davani, Douwe Kiela, Vinodkumar Prab-
 711 hakaran, Bertie Vidgen, and Zeerak Waseem. Findings of the WOAH 5 shared task on fine
 712 grained hateful memes detection. In Aida Mostafazadeh Davani, Douwe Kiela, Mathias Lam-
 713 bert, Bertie Vidgen, Vinodkumar Prabhakaran, and Zeerak Waseem (eds.), *Proceedings of the*
 714 *5th Workshop on Online Abuse and Harms (WOAH 2021)*, pp. 201–206, Online, August 2021b.
 715 Association for Computational Linguistics. doi: 10.18653/v1/2021.woah-1.21. URL <https://aclanthology.org/2021.woah-1.21/>.
 716

717 Jingbiao Mei, Jinghong Chen, Weizhe Lin, Bill Byrne, and Marcus Tomalin. Improving hateful
 718 meme detection through retrieval-guided contrastive learning. In Lun-Wei Ku, Andre Martins,
 719 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-*
 720 *putational Linguistics (Volume 1: Long Papers)*, pp. 5333–5347, Bangkok, Thailand, August
 721 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.291. URL
 722 <https://aclanthology.org/2024.acl-long.291>.
 723

724 Jingbiao Mei, Jinghong Chen, Guangyu Yang, Weizhe Lin, and Bill Byrne. Robust adapta-
 725 tion of large multimodal models for retrieval augmented hateful meme detection. In Christos
 726 Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), *Proceedings of*
 727 *the 2025 Conference on Empirical Methods in Natural Language Processing*, pp. 23817–23839,
 728 Suzhou, China, November 2025. Association for Computational Linguistics. ISBN 979-8-89176-
 729 332-6. URL <https://aclanthology.org/2025.emnlp-main.1215/>.
 730

731 Khoi P. N. Nguyen and Vincent Ng. Computational meme understanding: A survey. In
 732 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Con-*
 733 *ference on Empirical Methods in Natural Language Processing*, pp. 21251–21267, Miami,
 734 Florida, USA, November 2024. Association for Computational Linguistics. URL <https://aclanthology.org/2024.emnlp-main.1184>.
 735

736 OpenAI. Openai o1 system card. (arXiv:2412.16720), December 2024. doi: 10.48550/arXiv.2412.
 737 16720. URL <http://arxiv.org/abs/2412.16720>. arXiv:2412.16720 [cs].
 738

739 Fengjun Pan, Anh Tuan Luu, and Xiaobao Wu. Detecting harmful memes with decoupled under-
 740 standing and guided cot reasoning. (arXiv:2506.08477), 2025. doi: 10.48550/arXiv.2506.08477.
 741 URL <http://arxiv.org/abs/2506.08477>. arXiv:2506.08477 [cs].
 742

743 Nirmalendu Prakash, Ming Shan Hee, and Roy Ka-Wei Lee. Totaldefmeme: A multi-attribute
 744 meme dataset on total defence in singapore. In *Proceedings of the 14th Conference on ACM*
 745 *Multimedia Systems*, MMSys '23, pp. 369–375, New York, NY, USA, Jun 2023. Association for
 746 Computing Machinery. ISBN 9798400701481. doi: 10.1145/3587819.3592545. URL <https://dl.acm.org/doi/10.1145/3587819.3592545>.
 747

748 Shraman Pramanick, Shivam Sharma, Dimitar Dimitrov, Md. Shad Akhtar, Preslav Nakov, and
 749 Tanmoy Chakraborty. Momenta: A multimodal framework for detecting harmful memes and
 750 their targets. In *Findings of the Association for Computational Linguistics: EMNLP 2021*, pp.
 751 4439–4455, Punta Cana, Dominican Republic, Nov 2021. Association for Computational Lin-
 752 guistics. doi: 10.18653/v1/2021.findings-emnlp.379. URL <https://aclanthology.org/2021.findings-emnlp.379>.
 753

754 Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 755 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,

756 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report.
 757 (arXiv:2412.15115), January 2025. doi: 10.48550/arXiv.2412.15115. URL <http://arxiv.org/abs/2412.15115> [cs].
 759

760 Rafael Rafailev, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 761 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 762 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=HPuSIXJaa9>.
 763

764 Siddhant Bikram Shah, Shuvam Shiawakoti, Maheep Chaudhary, and Haohan Wang. Memeclip:
 765 Leveraging clip representations for multimodal meme classification. In Yaser Al-Onaizan, Mohit
 766 Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Meth-
 767 ods in Natural Language Processing*, pp. 17320–17332, Miami, Florida, USA, November 2024.
 768 Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.959. URL
 769 <https://aclanthology.org/2024.emnlp-main.959>.
 770

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 771 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of math-
 772 ematical reasoning in open language models. (arXiv:2402.03300), April 2024. doi: 10.48550/
 773 arXiv.2402.03300. URL <http://arxiv.org/abs/2402.03300>. arXiv:2402.03300 [cs].
 774

Mohit Singhal, Chen Ling, Pujan Paudel, Poojitha Thota, Nihal Kumaraswamy, Gianluca Stringhini,
 775 and Shirin Nilizadeh. Sok: Content moderation in social media, from guidelines to enforcement,
 776 and research to practice. pp. 868–895, 2023. doi: 10.1109/EuroSP57164.2023.00056. URL
 777 <https://ieeexplore.ieee.org/document/10190527/>.
 778

Xuanyu Su, Yansong Li, Diana Inkpen, and Nathalie Japkowicz. A context-aware contrastive learn-
 779 ing framework for hateful meme detection and segmentation. In Luis Chiruzzo, Alan Ritter,
 780 and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*,
 781 pp. 5201–5215, Albuquerque, New Mexico, April 2025. Association for Computational Lin-
 782 guistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.289. URL <https://aclanthology.org/2025.findings-naacl.289>.
 783

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 784 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 785 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
 786 perception of the world at any resolution. (arXiv:2409.12191), October 2024a. doi: 10.48550/
 787 arXiv.2409.12191. URL <http://arxiv.org/abs/2409.12191>. arXiv:2409.12191 [cs].
 788

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
 789 Olivier Delalleau, Jane Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev. Help-
 790 steer: Multi-attribute helpfulness dataset for steerlm. In Kevin Duh, Helena Gomez, and Steven
 791 Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the As-
 792 sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-
 793 pers)*, pp. 3371–3384, Mexico City, Mexico, 2024b. Association for Computational Lin-
 794 guistics. doi: 10.18653/v1/2024.naacl-long.185. URL <https://aclanthology.org/2024.naacl-long.185>.
 795

796 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 797 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
 798 (arXiv:2201.11903), Jan 2023. doi: 10.48550/arXiv.2201.11903. URL <http://arxiv.org/abs/2201.11903>. arXiv:2201.11903 [cs].
 799

Yongjin Yang, Joonkee Kim, Yujin Kim, Namgyu Ho, James Thorne, and Se-Young Yun. Hare:
 800 Explainable hate speech detection with step-by-step reasoning. In Houda Bouamor, Juan Pino,
 801 and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP*
 802 2023, pp. 5490–5505, Singapore, December 2023. Association for Computational Linguistics.
 803 doi: 10.18653/v1/2023.findings-emnlp.365. URL <https://aclanthology.org/2023.findings-emnlp.365>.
 804

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
 805 Evaluating text generation with bert. In *International Conference on Learning Representations*,
 806 2020. URL <https://openreview.net/forum?id=SkeHuCVFDr>.
 807

810 Haris Bin Zia, Ignacio Castro, and Gareth Tyson. Racist or sexist meme? classifying memes beyond
811 hateful. In Aida Mostafazadeh Davani, Douwe Kiela, Mathias Lambert, Bertie Vidgen, Vin-
812 odkumar Prabhakaran, and Zeerak Waseem (eds.), *Proceedings of the 5th Workshop on Online*
813 *Abuse and Harms (WOAH 2021)*, pp. 215–219, Online, August 2021. Association for Compu-
814 tational Linguistics. doi: 10.18653/v1/2021.woah-1.23. URL <https://aclanthology.org/2021.woah-1.23/>.

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A USE OF LARGE LANGUAGE MODELS**
865866 Our coding work was assisted by Github Copilot. OpenAI ChatGPT was only used for proofreading
867 and spell-checking. We claim that the content presented in this paper was fully original.
868869 **B DATASET DETAILS AND STATISTICS**
870871 **B.1 DATASET DETAILS AND PROMPT USED**
872873 **HatefulMemes.** Released by Meta in 2020, HatefulMemes (Kiela et al., 2020) contains 12,000
874 memes annotated as hateful or benign by trained experts. This benchmark dataset synthesizes memes
875 targeting religion, race, disability, and gender. It includes confounder examples where the benign
876 memes are generated by altering either the image or text to challenge models’ ability in multimodal
877 reasoning.878 In 2021, Meta further released an extended annotation set, the Fine-Grained Hateful Meme Clas-
879 sification dataset (Mathias et al., 2021a). This dataset augments the original HatefulMemes with
880 detailed labels for both attack types and target groups, enabling fine-grained classification.
881882 For fine-grained classification training and evaluation, except for the SFT-PM training, we adopt the
883 following prompts for *attack types*:884 Does this meme express hate or negative bias toward any of the following protected groups?
885 Religion, Race, Sex, Nationality, Disability
886 Please respond with one or more of the protected categories if applicable. If the meme does not contain
887 any hateful content, respond with Benign.
888889 For *target groups*:890 Does this meme use any of the following types of attack against a group?
891 Dehumanizing, Inferiority, Inciting violence, Mocking, Contempt, Slurs, Exclusion
892 Please respond with one or more of the attack types if applicable. If the meme does not contain any
893 hateful content, respond with Benign.
894895 **MAMI.** The MAMI dataset (Fersini et al., 2022) focuses on detecting misogynistic memes
896 sourced from various social media platforms, including Twitter and Reddit, as well as meme creation
897 and sharing websites, and even anti-women websites and forums. It contains annotations for two
898 tasks: (1) binary classification of misogyny and (2) categorization of misogyny types. In this work,
899 we use the binary task to detect whether a meme is misogynistic and treat the type categorization as
900 a fine-grained multi-class, multi-label classification problem. Each sample can take one or more of
901 four attack type labels: objectification, shaming, stereotype, and violence, or Benign if no harm is
902 present.
903904 For all fine-grained training and evaluation tasks on fine-grained classes except for the SFT-PM
905 training, we use the prompt:
906907 Does this meme use any of the following types of attack against a group?
908 objectification, shaming, stereotype, violence
909 Please respond with one or more of the attack types if applicable.
910 If the meme does not contain any hateful content, respond with Benign.
911912 **PrideMM.** PrideMM (Shah et al., 2024) contains LGBTQ+ themed memes annotated for four
913 tasks: hate speech detection, hate target identification, topical stance classification, and humor de-
914 tector. In this work, we use the hate speech classification annotations for the binary hateful meme
915 detection.
916917 We further use the hate target identification and topical stance classification in our fine-grained
918 classification setup. Both tasks are formulated as multi-class, single-label classification.

918 For all fine-grained training and evaluation tasks except for the SFT-PM training, we use the *Target*
 919 identification prompt:
 920

921 Based on the content and context of this meme, does this meme express hate or negative bias toward
 922 any of the following targets?
 923
 924 Choose from the following options: undirected individual community organization
 925
 926 If the meme does not contain any hateful content, respond with Benign.
 927 What is the target type?

928 *Stance* classification prompt:
 929

930 Based on the content and context of this meme, what is the stance towards LGBTQ+ individuals or
 931 communities?
 932
 933 Choose from the following options: neutral, support, oppose
 934
 935 What is the stance?

936
 937 **Explain-Then-Detect Prompt.** The above shows the prompt used for the direct detection setup.
 938 For the Explain-Then-Detect Prompt, we adapt the prompt from the VeRL training library:
 939

940 <BASE_PROMPT> Output the thinking process in <think> </think> and final answer in
 941 <answer> </answer> tags. The output format should be as follows: <think> ... </think>
 942 <answer>...</answer> Please strictly follow the format.
 943

944 The <BASE_PROMPT> is replaced with the specific prompts defined above.
 945

946 B.2 POLICY MANUAL CONSTRUCTION

947 For HatefulMemes, MAMI, and PrideMM, the dataset authors provide detailed annotation guidelines in prose, including lists of protected or offensive categories (e.g., ethnicity, race, violence) and their definitions. We extract this information and convert it into a concise bullet-point list, which we refer to as the policy manual. Below is an example of the original annotation guideline from (Kiela et al., 2020):

948
 949 *"A direct or indirect attack on people based on characteristics, including ethnicity,
 950 race, nationality... We define attack as violent or dehumanizing (comparing people
 951 to non-human things, e.g. animals) speech, statements of inferiority..."*
 952

953 Representing the annotation guidelines in the structured Policy Manual form makes it easier to
 954 create targeted instruction-following SFT data compared to using long-form prose descriptions. The
 955 conversion from guideline to policy manual is a one-time process performed by a human expert.
 956 Below, we detail the specific policy manuals for each dataset.

957
 958 **HatefulMemes.** For policy-manual SFT, we use the following prompts:
 959

960 Does this meme use any of the following types of attack against a group?
 961 - Dehumanizing: Presenting a group as subhuman, explicitly or implicitly
 962 - Inferiority: Claiming that a group is inferior, less worthy, or less important
 963 - Inciting violence: Calling for or encouraging harm—physical or otherwise—towards a group
 964 - Mocking: Belittling or making jokes about a group
 965 - Contempt: Expressing strong disgust, hatred, or intense negative emotion
 966 - Slurs: Using prejudicial or derogatory terms to describe a group
 967 - Exclusion: Advocating for removal, segregation, or marginalization of a group
 968 If the meme does not use any of these attack types, respond with Benign.
 969
 970
 971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Does this meme express hate or negative bias toward any of the following protected groups?

- Religion: A group defined by shared belief systems
- Race: A group defined by racialized physical characteristics
- Sex: A group defined by sexual attributes or sexual identification
- Nationality: A group defined by country or region of origin
- Disability: A group defined by conditions leading to permanent dependencies

If the meme does not target any protected group, respond with Benign.

MAMI. For policy-manual SFT, we use the following prompts:

Based on the content and context of this meme, does it use any of the following types of attack against a group?

Choose from the following options:

- objectification: The content reduces individuals or groups to objects, ignoring their personhood or agency
- shaming: The content ridicules, mocks, or publicly humiliates individuals or groups
- stereotype: The content attributes oversimplified, generalized, or exaggerated traits to individuals or groups
- violence: The content depicts or encourages physical harm, threats, or violent actions against individuals or groups

If the meme does not contain any hateful content, respond with Benign.

What is the attack type?

PrideMM. For policy-manual SFT, we use the following prompts:

Based on the content and context of this meme, does this meme express hate or negative bias toward any of the following targets?

Choose from the following options:

- undirected: General targeting without specific individuals or groups
- individual: Targeting specific individuals
- community: Targeting LGBTQ+ communities or groups
- organization: Targeting specific organizations or institutions

If the meme does not contain any hateful content, respond with Benign.

What is the target type?

Based on the content and context of this meme, what is the stance towards LGBTQ+ individuals or communities?

Choose from the following options:

- neutral: The content does not express clear support or opposition
- support: The content expresses positive attitudes or support
- oppose: The content expresses negative attitudes or opposition

What is the stance?

B.3 DATASET STATISTICS

Binary Classification statistics. Table 4 shows the data split for our binary evaluation datasets. For HatefulMemes, we use the `dev_seen` split as the validation set, `test_seen` as the test set.

Fine-grained Classification Statistics. Table 5 reports the detailed distribution of fine-grained attributes in the HatefulMemes dataset, covering both attack types and protected categories. Note that we use the `dev_unseen` split for final evaluation.

Table 6 provides the fine-grained label distributions for the MAMI dataset, focusing on Sub-task B (Type of Misogyny).

1026
1027
1028 Table 4: Statistical summary of binary classification datasets.
1029
1030
1031
1032

Datasets	Train		Test	
	#Benign	#Hate	#Benign	#Hate
HatefulMemes	5450	3050	500	500
MAMI	4500	4500	500	500
PrideMM	2581	2482	260	247

1033
1034 Table 5: Statistics of fine-grained attributes in the HatefulMemes dataset, showing attack types and
1035 protected categories across train, dev_unseen, and dev_seen splits.
1036

Fine-grained types	train	dev_unseen	dev_seen
Attack type	dehumanizing	1318	104
	inferiority	658	35
	inciting_violence	407	23
	mocking	378	29
	contempt	235	6
	slurs	205	4
Protected category	exclusion	114	8
	religion	1078	77
	race	1008	63
	sex	746	46
	nationality	325	20
	disability	255	17
			22

1049
1050
1051 Table 7 summarizes the fine-grained label distributions for the PrideMM dataset, including both
1052 target categories and stance annotations across the training and test splits.
10531054
1055 **Hateful Reasoning Corpus Statistics.** Table 8 presents the dataset statistics for Hatred, which
1056 only includes hateful memes paired with explanations. The test set corresponds to the original
1057 HatefulMemes dev_seen split.1058
1059

B.4 DATASET LICENSES

1060
1061 To access the Facebook HatefulMemes dataset, one must follow the license from Facebook¹.
1062 HarMeme and Harm-P are distributed for research purposes only, without a license for commer-
1063 cial use. MAMI is under Apache License 2.0. There is no specified license for PrideMM.
10641065

C EXPERIMENT SETUP AND IMPLEMENTATION DETAILS

1066
1067 **Software Environment.** PyTorch 2.5.1, CUDA 12.4, Huggingface Transformer
1068 4.45.0 and Python 3.10.12 were used for implementing the experiments. All the reported
1069 metrics were computed by TorchMetrics 1.0.1.
10701071 **Hardware Environment.** We conducted our GRPO and ExPO-HM experiments on a server
1072 equipped with 8 Nvidia H100 with 80GB of VRAM. For the DPO and SFT baselines, we use 1
1073 GPU.
10741075 **Training Details** We freeze the vision module throughout fine-tuning, following the standard
1076 LMM fine-tuning protocol. We conduct all training with LoRA (Hu et al., 2022), with LoRA
1077 rank=64, $\alpha = 128$. For DPO sampling and all the inference, we use vLLM inference engine 0.9.2.
10781079
1¹<https://hatefulmemeschallenge.com/#download>

1080 Table 6: Statistics of Sub-task B in the MAMI dataset: type of misogyny labels across training and
 1081 test sets. We treat this as a multilabel, multiclass fine-grained classification task.

Category	Training Set	Test Set
Shaming	1274 (25.48%)	146 (29.20%)
Stereotype	2810 (56.20%)	350 (70.00%)
Objectification	2202 (44.04%)	348 (69.60%)
Violence	953 (19.06%)	153 (30.60%)

1088 Table 7: Statistics of fine-grained attributes in the PrideMM dataset, showing target categories and
 1089 stance labels across training and test sets.

Fine-grained types	Train	Test
<i>Target</i>	Benign	2208
	Undirected	666
	Individual	219
	Community	986
	Organization	249
<i>Stance</i>	Neutral	1252
	Support	1645
	Oppose	1431

C.1 SFT AND DPO TRAINING

1104 For Qwen2.5-VL fine-tuning, we employ the officially recommended fine-tuning library
 1105 LLaMA-Factory 0.9.3² with official hyperparameter settings for all training tasks in both
 1106 the SFT and DPO, except for the LoRA config that we mentioned above. For DPO, we sweep
 1107 $\beta = 0.1, 0.3, 0.5, 0.7, 0.9$ and report the best results. For all runs, we train for 3 epochs, and then
 1108 select the best checkpoint based on validation performance.

C.2 GRPO TRAINING

1112 We use the VeRL library verl 0.4.1³. We use the default hyperparameter settings for all training
 1113 except for the LoRA configuration. For all runs, we train for 3 epochs, and then select the best
 1114 checkpoint based on validation performance. The run time for ExPO-HM is about 4 hours on 8
 1115 GPUs, which is the same for the baseline GRPO experiment.

C.3 CDE REWARD HYPERPARAMETER

1118 For CDE hyperparameters, we conduct standard hyperparameter tuning via grid search on the Hate-
 1119 Memes validation set. Once the optimal values were identified, we fixed these parameters and
 1120 applied them directly to MAMI and PrideMM.

1122 We observe that as long as the hyperparameters fall within a reasonable range, the model perfor-
 1123 mance remains highly stable. Based on our hyperparameter tuning, we recommend the following
 1124 default hyperparameters for new datasets: $a = 0.1$, $b = 0.5$, $w = 0.2$, and $\rho = 0.25$. The stable
 1125 ranges, within which performance differences remain small, are: $0.05 \leq a \leq 0.15$, $0.4 \leq b \leq 0.6$,
 1126 $0.15 \leq w \leq 0.25$, and $0.1 \leq \rho \leq 0.5$.

1127 The following observations summarize the sensitivity characteristics of each CDE hyperparameter:

1128 The following intuitions summarize the observed sensitivity patterns:

- **Low-entropy cutoff (a):** If a is too small (e.g., < 0.05), the reward provides limited
 1131 benefit and tends to encourage overconfident predictions, leading to larger KL divergence

1132²<https://github.com/hiyouga/LLaMA-Factory>

1133³<https://github.com/volgengine/verl/releases>

1134 Table 8: Statistics of the Hatred dataset, which only includes hateful memes with explanations. The
 1135 test set corresponds to the original HatefulMemes dev_seen split.

	train	test	total
#Hatred (hateful memes only)	2,982	246	3,228

1141 and reduced policy entropy. If a is too large (e.g., 0.20), the CDE reward becomes too easy
 1142 to satisfy, resulting in diminished improvement over the default value. A default value of
 1143 $a = 0.1$ consistently performs well.

- 1144 • **High-entropy cutoff (b):** A small value of b (e.g., 0.25) excessively narrows the confidence
 1145 band, pushing predictions into the overconfident region, significantly increasing KL diver-
 1146 gence, reducing policy entropy, and destabilizing training. Conversely, overly large values
 1147 make the reward too permissive and degrade performance. The recommended default value
 1148 of 0.5 achieves a balance between stability and effectiveness.
- 1149 • **CDE weight (w):** Large weights cause the CDE reward to dominate over the accuracy
 1150 reward, which degrades performance when $w > 0.5$ compared to the default value of 0.2.
 1151 Extremely small weights, on the other hand, yield only marginal improvements over the
 1152 baseline. A moderate value ($w = 0.2$) is most effective.
- 1153 • **Penalty rate (ρ):** Hyperparameter tuning for ρ shows relatively low sensitivity. The default
 1154 value works reliably across datasets. Performance degrades compared to the default setting
 1155 when the penalty is removed (values near zero) or when it becomes overly strong (e.g.,
 1156 $\rho = 1.0$).

1158 D EVALUATION OF MODEL-GENERATED REASONING

1160 Following prior work (Yang et al., 2023; Mei et al., 2025), we assess explanation quality using an
 1161 LLM judge. Specifically, we provide GPT-4o mini (gpt-4o-mini-2024-07-18) with refer-
 1162 ence explanations from (Hee et al., 2023). Following previous works (Mei et al., 2025), we adopt
 1163 the same prompt:

1164
 1165 Compare the model-generated reasoning with the reference human reasoning for this hateful
 1166 meme.
 1167
 1168 Reference: {reference_reasoning}
 1169 Model: {model_reasoning}
 1170 Model Prediction: {model_prediction}
 1171
 1172 Rate how well the model reasoning aligns with the reference on a scale of 0-10:
 1173 - 9-10: Excellent alignment, captures all key points
 1174 - 7-8: Good alignment, captures most key points
 1175 - 5-6: Satisfactory alignment, captures some key points
 1176 - 3-4: Poor alignment, misses many key points
 1177 - 1-2: Very poor alignment, minimal understanding
 1178 - 0: Completely wrong or unrelated
 1179
 1180 Score: [0-10]
 1181
 1182 Explanation: [1-2 sentences]

1183 E ADDITIONAL RESULTS ON MODEL-GENERATED REASONING 1184 EVALUATION

1185 In this section, we provide extended experiments and analysis for the LLM-as-a-judge evaluation
 1186 used in our work. While LLM-based evaluators are widely adopted for assessing explanation qual-

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

ity and reasoning consistency, concerns remain regarding reproducibility, prompt sensitivity, and potential model depreciation. We address these concerns through (1) evaluation across multiple open-source judges, (2) inclusion of prompt-free metrics, and (3) sensitivity analysis with paraphrased prompts.

E.1 EVALUATION ACROSS MULTIPLE LLM JUDGES

To ensure a fair comparison, we adopt the same judge model (gpt-4o-mini-2024-07-18) and the same evaluation prompt as prior work (Mei et al., 2025) in the main text. However, we acknowledge that evaluation with a commercial closed-source model may raise reproducibility concerns, particularly if the model is deprecated in the future. To address this, we conduct additional evaluations using open-source LLM judges with the same prompt for reproducibility, including Qwen3-4B-Instruct-2507, gpt-oss-20b, and gemma-3-4b-it. We further report scores using a newer and stronger closed-source judge GPT-5 (gpt-5-2025-08-07) for reference.

We also include BERTScore (Zhang* et al., 2020), which measures sequence-level semantic similarity between human rationales and model-generated explanations. Because BERTScore does not rely on prompts, it serves as a fully reproducible complement to LLM-based evaluations.

We compute BERTScore using the official implementation⁴. Following the same setup as our LLM-as-a-judge evaluation, we use the Hatred annotations from (Hee et al., 2023) as the reference rationales and compute the BERTScore for each model-generated explanation.

Table 9: Extended LLM-as-a-judge and BERTScore evaluation across models and training methods. Higher is better. The best-performing training method for each model is shown in **bold**.

Model	GPT-4o mini	GPT-5	Qwen3	Gemma-3	gpt-oss	BERTScore
Qwen2.5-VL-3B						
Zero-shot	3.3	1.5	2.0	2.9	2.4	0.52
SFT	3.6	2.0	2.4	3.8	2.6	0.53
DPO	3.5	2.2	2.3	3.7	3.0	0.53
GRPO	3.8	2.8	3.0	4.2	3.2	0.53
ExPO-HM	5.1	3.6	4.2	5.5	4.0	0.56
Qwen2.5-VL-7B						
Zero-shot	5.0	3.8	4.5	5.2	4.0	0.55
SFT	5.0	4.0	4.6	5.5	3.9	0.55
DPO	4.9	3.5	4.5	4.9	3.6	0.54
GRPO	5.2	4.1	4.7	5.9	4.6	0.59
ExPO-HM	6.2	5.0	5.5	7.0	5.3	0.65

Table 9 shows the detailed results.

We note that different LLM judges exhibit different scoring distributions. BERTScore is less sensitive to subtle performance differences, likely due to its limited semantic understanding compared to modern LLMs. GPT-5, Qwen3, and gpt-oss tend to be more strict, while Gemma-3 tends to be more generous. Nevertheless, ExPO-HM models are consistently rated as the best-performing system under all evaluation metrics with substantial margins over GRPO models. This further validates the effectiveness of ExPO-HM.

E.2 PROMPT SENSITIVITY ANALYSIS

To study prompt robustness, we manually paraphrased the evaluation prompt and re-evaluated all models using gpt-4o-mini-2024-07-18. As shown in Table 10, the results remain largely unchanged, suggesting that our evaluation is not sensitive to prompt phrasing.

Below is the paraphrased prompt for reference:

⁴https://github.com/Tiiiger/bert_score

Table 10: Prompt sensitivity analysis using GPT-4o mini as the judge. Higher is better.

Model	Original Prompt	Paraphrased Prompt
Qwen2.5-VL-3B		
Zero-shot	3.3	3.2
SFT	3.6	3.4
DPO	3.5	3.3
GRPO	3.8	3.9
ExPO-HM	5.1	5.1
Qwen2.5-VL-7B		
Zero-shot	5.0	5.0
SFT	5.0	5.2
DPO	4.9	5.0
GRPO	5.2	5.1
ExPO-HM	6.2	6.3

Evaluate how closely the model’s explanation matches the human reference rationale for this hateful meme.

Reference: {reference_reasoning}

Model: {model_reasoning}

Model Prediction: {model_prediction}

Rate how well the model reasoning aligns with the reference on a scale of 0-10:

- 9-10: Outstanding alignment, captures all major points
- 7-8: Strong alignment, captures most important points
- 5-6: Moderate alignment, includes some relevant points
- 3-4: Weak alignment, overlooks many key points
- 1-2: Very weak alignment, shows little understanding
- 0: Completely incorrect or unrelated

Score: [0-10]

Explanation: [1-2 sentences]

F HUMAN EVALUATION ON MODEL-GENERATED REASONING

To assess the quality of the reasoning beyond LLM-as-a-judge, we further conduct two complementary human evaluations. Each example is independently evaluated by three crowd-sourced annotators with at least an undergraduate degree and demonstrated familiarity with internet meme culture. We evaluate both the GRPO baseline and our ExPO-HM model, and we randomize the order in which model outputs are presented to mitigate ordering or anchoring biases. An illustration of the annotation interface is provided in Figure 4.

F.1 COHERENCE EVALUATION

Annotators judge whether the model’s final decision is logically supported by its rationale. For each example, we ask:

“Does the model’s final decision logically follow from its rationale? In other words, is the decision grounded in the explanation provided?”

Annotators answer Yes or No. The GRPO baseline achieves 96% coherent outputs, while ExPO-HM achieves 100% coherence.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Example 5

Image ID: 06491

Model A**Decision:** YES**Rationale:**

The meme uses the term "tranny," which is a derogatory and offensive term used to refer to transgender people. This language is hurtful and dehumanizing.

Model B**Decision:** YES**Rationale:**

The meme contains the text "tranny for sale," which is a derogatory term used to refer to transgender individuals. This language is offensive and promotes harmful stereotypes and discrimination against the transgender community. The use of such language in a meme is generally considered hateful and disrespectful.

Target Group(s): the lgbt community**Expert Reasoning:**

- dehumanizes the lgbt community as objects by suggesting that transgenders can be put on sale.

Your Evaluation**Task 1: Coherence - Does the decision logically follow from the rationale?****Model A:**

- Yes
- No

Model B:

- Yes
- No

Task 2: Helpfulness - How helpful is the rationale for understanding the meme?**Model A:**

0	1	2	3	4
Unrelated	Weakly Related	Partially Helpful	Mostly Helpful	Highly Helpful

Model B:

0	1	2	3	4
Unrelated	Weakly Related	Partially Helpful	Mostly Helpful	Highly Helpful

Optional: Additional Comments

Any additional observations or notes...

Figure 4: Human evaluation interface. Annotators assess the coherence and helpfulness of model-generated rationales, with access to the meme and ground-truth expert annotation.

1350 F.2 HELPFULNESS EVALUATION
13511352
1353 Annotators also rate how helpful the rationale is for understanding why the meme is hateful. For
1354 each example, we ask the annotator:1355
1356 *“How helpful is the model’s rationale for understanding why the meme is hateful
1357 or benign?”*
13581359
1360 We adopt a 0–4 Likert scale (adapted from prior work (Wang et al., 2024b)), defined as:
13611362
1363
1364 • **0 — Unrelated / Incorrect:** Rationale is irrelevant, incorrect, or unusable; provides no
1365 moderation value.
1366
1367 • **1 — Weakly Related:** Touches on the content but lacks specificity or clarity; cannot sup-
1368 port moderation.
1369
1370
1371 • **2 — Partially Helpful:** Contains some relevant entities or violation cues but is incomplete
1372 or partially incorrect; usable only with major edits.
1373
1374
1375 • **3 — Mostly Helpful:** Identifies target/violation with minor inaccuracies; usable with light
1376 editing.
1377
1378
1379 • **4 — Highly Helpful:** Fully accurate and specific; clearly identifies entities and violations;
1380 directly usable as a moderation rationale.
1381
1382
1383
13841385 Annotators are additionally given the gold human rationale for reference, consistent with the LLM-
1386 as-a-judge setup.1387 We obtain average helpfulness scores of 1.6 for GRPO and 2.2 for ExPO-HM. After normalizing
1388 the scores to the same 0–10 scale used by the LLM-as-a-judge, we observe high agreement between
1389 human and LLM evaluations in the relative improvement from GRPO to ExPO-HM. We provide a
1390 detailed comparison in Table 11. Inter-annotator agreement is strong, with Krippendorff’s $\alpha_{\text{ordinal}} =$
1391 0.71.1392
1393
1394 Table 11: Comparison of human and LLM evaluation of explanation quality. Human scores are
1395 reported in both the original 0–4 Likert scale and a normalized 0–10 scale for comparability with
1396 LLM-as-a-judge scores.
13971398
1399

Model	LLM (GPT-4o mini)	LLM (GPT-5)	Human (0–4, Raw)	Human (0–10, Scaled)
GRPO	5.2	4.1	1.6	4.1
ExPO-HM	6.2	5.0	2.2	5.5

1404 **G CDE DERIVATION AND ALTERNATIVE ESTIMATOR**
 1405

1406 **G.1 CDE DERIVATION**
 1407

1408 Here, we provide the full derivation for the CDE metrics estimation. We consider the CDE metrics
 1409 for a model parameter with θ over a dataset \mathcal{D} .

$$1410 H(d | \mathbf{e}, \mathbf{x}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{e} \sim \pi_\theta(\mathbf{x}), d \sim \pi_\theta(\mathbf{e}, \mathbf{x})} [-\log p_\theta(d | \mathbf{e}, \mathbf{x})]$$

1412 By Monte Carlo over the dataset

$$1413 \approx -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \mathbb{E}_{\mathbf{e} \sim \pi_\theta(\mathbf{x}), d \sim \pi_\theta(\mathbf{e}, \mathbf{x})} [\log p_\theta(d | \mathbf{e}, \mathbf{x})]$$

1416 By Monte Carlo sampling K times

$$1418 = -\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \sum_{i=1}^K p_\theta(\mathbf{e}_i | \mathbf{x}) \sum_d p_\theta(d | \mathbf{e}_i, \mathbf{x}) \log p_\theta(d | \mathbf{e}_i, \mathbf{x})$$

1421 Approximate $p_\theta(\mathbf{e}_i | \mathbf{x}) \approx \frac{1}{K}$

$$1423 \approx -\frac{1}{K|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \sum_{i=1}^K \underbrace{\sum_d p_\theta(d | \mathbf{e}_i, \mathbf{x}) \log p_\theta(d | \mathbf{e}_i, \mathbf{x})}_{H(d | \mathbf{e}_i, \mathbf{x})} \quad (12)$$

1427 For the entropy $H(d | \mathbf{e}_i, \mathbf{x})$, we by default compute it over the full decision vocabulary:

$$1429 H(d | \mathbf{e}_i, \mathbf{x}) = -\sum_{d \in \mathcal{V}} p_\theta(d | \mathbf{e}_i, \mathbf{x}) \log p_\theta(d | \mathbf{e}_i, \mathbf{x}), \quad (13)$$

1431 where \mathcal{V} denotes the output vocabulary. For practical efficiency, we do not compute entropy over
 1432 the entire vocabulary; instead, we approximate it using the top 10–50 tokens by likelihood, which
 1433 substantially reduces computation and memory costs. When a fine-grained class is represented by
 1434 multiple tokens, we compute the average token entropy similar to the policy entropy computation.

1435 For binary classification, one may collapse the vocabulary into Yes, No by grouping all tokens
 1436 semantically aligned with “yes/positive” or “no/negative,” and normalizing their probabilities.

1438 **G.2 ALTERNATIVE ESTIMATOR THROUGH CHAIN RULE**
 1439

1440 When considering the CDE, we can expand through: By the chain rule of entropy:

$$1442 \underbrace{H((\mathbf{e}, d) | \mathbf{x})}_{(1)} = \underbrace{H(\mathbf{e} | \mathbf{x})}_{(2)} + \underbrace{H(d | \mathbf{e}, \mathbf{x})}_{(3)} \quad (14)$$

- 1445 1. $H((\mathbf{e}, d) | \mathbf{x})$ Sequence entropy: the total entropy of generating both reasoning and decision.
- 1446 2. $H(\mathbf{e} | \mathbf{x})$ Reasoning entropy: measures the diversity of reasoning paths the model can
 1447 produce for an input.
- 1448 3. $H(d | \mathbf{e}, \mathbf{x})$ Conditional decision entropy (CDE): quantifies the uncertainty of the model’s
 1449 decision given its own on-policy reasoning path \mathbf{e} .

1452 Both (1) and (2) can be estimated directly via sequence-level sampling. Then CDE, (3) can be
 1453 obtained by subtraction, using the chain rule in Eq. 14.

1455 **G.3 ALTERNATIVE ESTIMATOR WHEN LOGITS IS NOT AVAILABLE**
 1456

1457 When model logits are not accessible, we approximate entropy by sampling $K = 16$ responses
 1458 directly from the LMM and measuring entropy over the final detection decisions.

1458

1459

1460

1461

$$H(d | \mathbf{x}) = - \sum_{d \in \text{Yes, No}} p_\theta(d | \mathbf{x}), \log p_\theta(d | \mathbf{x}), \quad (15)$$

1462 where $p_\theta(d | \mathbf{x})$ is estimated by counting the relative frequencies of positive vs. negative decisions
 1463 among the K sampled responses. This can similarly be applied towards fine-grained classes.

1464 To approximate full CDE without logits, one can fix a reasoning trajectory and resample K responses
 1465 \mathbf{y}_{ik} conditioned on that reasoning (e.g., by sampling with temperature 0.7–1.0). The Monte Carlo
 1466 estimator in Eq. 12 is then applied to obtain the CDE for each sampled reasoning path. Finally,
 1467 averaging across multiple such sampled reasonings provides an overall CDE estimate.

1468

H CDE FOR CONFIDENCE CALIBRATION

1469 Maximizing the CDE reward implicitly encourages better confidence calibration. By design, the
 1470 CDE reward penalizes confident wrong predictions and rewards confident correct decisions. This
 1471 encourages a well-behaved decision distribution: the model becomes confident only when it is likely
 1472 to be correct, and becomes uncertain when the outcome is ambiguous.

1473

H.1 CALIBRATION EVALUATION

1474 To validate whether CDE reward improves calibration, we compute Expected Calibration Error
 1475 (ECE) and Brier score using the model’s probability assigned to the final answer token, conditioned
 1476 on the generated explanation under the Explain-then-Detect setup. For ECE, we use 10 bins.

1477 We evaluate calibration for zero-shot, SFT, GRPO, and ExPO-HM across both 3B and 7B model
 1478 sizes. As shown in Table 12, ExPO-HM consistently achieves substantially better calibration than
 1479 all baselines by a large margin. Notably, for the 3B model, ExPO-HM reduces the Brier score from
 1480 0.590 → 0.283, indicating significantly improved decision reliability.

1481

1482 Table 12: Calibration metrics (ECE and Brier score) under the Explain-then-Detect setting. Lower
 1483 values indicate better calibration. ExPO-HM achieves the best calibration across all configurations.

1484

Model	Variant	ECE ↓	Brier ↓
Qwen2.5-VL-3B	Zero-shot	0.525	0.590
	SFT	0.486	0.534
	GRPO	0.394	0.441
	ExPO-HM	0.232	0.283
Qwen2.5-VL-7B	Zero-shot	0.301	0.335
	SFT	0.234	0.282
	GRPO	0.221	0.287
	ExPO-HM	0.160	0.214

1485

H.2 THEORETICAL ANALYSIS

1486

1487 We show that, under the ideal ExPO-HM policy, i.e., when the CDE reward is maximized, the
 1488 induced decision distribution admits a Brier score that is upper bounded by a small constant deter-
 1489 mined only by the CDE entropy thresholds a and b . This provides theoretical justification for why
 1490 optimizing CDE improves calibration.

1491

1492 **Setup.** Following the notation introduced in Sec. 3.1, let $d_i^* \in \{0, 1\}$ denote the ground-truth label.
 1493 Under our Explain-then-Detect formulation, the model produces a probability

1494

$$p'_i = \pi_\theta(d_i = 1 | \mathbf{x}_i, \mathbf{e}_i). \quad (16)$$

1495

1496 To simplify the derivation, we instead let

1497

$$p_i = \pi_\theta(d_i^* | \mathbf{x}_i, \mathbf{e}_i), \quad (17)$$

1512 which denotes the model probability assigned to the **correct** class.
 1513

1514 The binary Brier score for sample i can then be expressed as
 1515

$$1516 \quad \text{BS}_i = (p_i - 1)^2, \quad (18)$$

1517 For convenience, we define correctness by
 1518

$$1519 \quad t_i = \begin{cases} 1, & p_i \geq 0.5, \\ 0, & p_i < 0.5. \end{cases} \quad (19)$$

1521 We compute the binary entropy via
 1522

$$1523 \quad h_i = H_2(p_i) = -p_i \log p_i - (1 - p_i) \log(1 - p_i). \quad (20)$$

1525 where H_2 denotes binary entropy in bits.
 1526

1527 **Entropy thresholds imposed by CDE.** The CDE reward uses two entropy thresholds: Low-
 1528 entropy cutoff $a = 0.1$ and High-entropy cutoff $b = 0.5$, defining:
 1529

$$1530 \quad h_i \leq a \quad (\text{high confidence}), \quad h_i \geq b \quad (\text{low confidence}). \quad (21)$$

1532 Let the corresponding confidence thresholds be
 1533

$$1534 \quad p_a = H_2^{-1}(a), \quad p_b = H_2^{-1}(b). \quad (22)$$

1535 For brevity, we write H_2^{-1} for the inverse of H_2 on the relevant monotone branch (either $[0, 1/2]$ or
 1536 $[1/2, 1]$), depending on whether we are in the low- or high-confidence regime.
 1537

1538 **Optimal ExPO-HM policy under CDE.** Maximizing CDE encourages:
 1539

- 1540 • *high confidence* ($h_i \leq a$) for correct predictions ($t_i = 1$);
- 1541 • *high uncertainty* ($h_i \geq b$) for incorrect predictions ($t_i = 0$).

1543 The optimal CDE-maximizing decision distribution satisfies
 1544

$$1545 \quad t_i = 1 \Rightarrow 0.5 \leq p_i \leq 1.0 \quad \text{and} \quad p_i \geq p_a, \quad (23)$$

$$1546 \quad t_i = 0 \Rightarrow 0 \leq p_i < 0.5 \quad \text{and} \quad p_i \geq p_b. \quad (24)$$

1547 Thus, we obtain
 1548

$$1549 \quad p_i \in \begin{cases} [p_a, 1], & \text{if } t_i = 1 \quad (\text{correct prediction}), \\ [p_b, 0.5), & \text{if } t_i = 0 \quad (\text{incorrect prediction}). \end{cases} \quad (25)$$

1552 It is easy to find $p_a = 0.987, p_b = 0.110$ from Eq. 22.
 1553

1554 **Bounding the Brier score.** We bound the Brier score by considering the correct and incorrect
 1555 predictions separately using the probability constraints in Eq. 25.
 1556

1557 **Case 1: Correct predictions.** When $t_i = 1$,
 1558

$$1559 \quad \text{BS}_i = (p_i - 1)^2 \leq (p_a - 1)^2. \quad (26)$$

1560 **Case 2: Incorrect predictions.** When $t_i = 0$, similarly
 1561

$$1562 \quad \text{BS}_i = (p_i - 1)^2 \leq (p_b - 1)^2. \quad (27)$$

1563 Thus, for all samples,
 1564

$$1565 \quad \text{BS}_i \leq \begin{cases} (1 - p_a)^2, & t_i = 1, \\ (1 - p_b)^2, & t_i = 0. \end{cases} \quad (28)$$

1566 Table 13: Fine-grained *attack types* results on HatefulMemes. We report overall attack accuracy,
 1567 micro F1, and per-class F1 for each attack type. Due to space constraints, we use abbreviated labels
 1568 for attack types; the full names are provided in Table 5.

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619	1569										
	Overall Metrics (%)		Attack Types F1 (%)								
Model	Acc.	Micro F1	Benign	Dehum.	Infer.	Mock.	Incit.	Excl.	Contempt	Slurs	
Zero-shot	44.6	44.7	72.3	36.6	14.0	16.4	19.1	37.5	5.4	16.0	
SFT	57.8	58.4	78.7	43.6	5.6	12.2	18.6	22.2	9.5	22.2	
DPO	63.2	63.2	81.2	44.3	22.6	26.1	20.0	19.5	6.8	21.1	
GRPO	60.4	61.2	79.6	36.5	12.0	18.4	23.4	21.7	5.4	22.2	
ExPO-HM	74.8	75.6	84.6	62.1	46.0	60.0	59.5	61.2	53.3	66.7	

1578 Table 14: Fine-grained *Protected categories* results on HatefulMemes. We report overall accuracy,
 1579 micro F1, and per-class F1 for each protected category.

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619	1580							
	Overall Metrics (%)		Protected Categories F1 (%)					
Model	Acc.	Micro F1	Benign	Nationality	Religion	Race	Sex	Disability
Zero-shot	64.3	64.5	77.7	26.7	29.2	42.5	15.4	23.5
SFT	67.6	69.4	79.9	33.4	34.4	44.7	22.6	40.0
DPO	66.1	66.6	79.1	21.4	36.6	40.8	15.4	26.7
GRPO	64.1	64.5	75.5	23.1	64.0	49.1	54.9	35.7
ExPO-HM	76.5	77.2	84.7	61.1	67.1	51.5	58.8	51.9

Dataset-level bound. Let N_{corr} and N_{wrong} be the number of correct and incorrect predictions in a dataset of size N . We have

$$1593 \quad \text{BS} = \frac{1}{N} \sum_{i=1}^N \text{BS}_i \leq \frac{N_{\text{corr}}}{N} (1 - p_a)^2 + \frac{N_{\text{wrong}}}{N} (1 - p_b)^2. \quad (29)$$

In the extreme (and likely unrealistic) worst case where the model makes errors on all examples ($N_{\text{wrong}} = N$), the bound simplifies to

$$1599 \quad \text{BS} \leq (1 - p_b)^2 \approx 0.79. \quad (30)$$

1601 For a balanced binary classification scenario with 50% accuracy ($N_{\text{corr}} = N_{\text{wrong}} = N/2$), the
 1602 bound becomes

$$1603 \quad \text{BS} \leq \frac{(1 - p_a)^2 + (1 - p_b)^2}{2} \approx 0.40. \quad (31)$$

1606 These results show that, under the ideal ExPO-HM policy induced by maximizing the CDE reward,
 1607 the decision distribution is constrained to a region with substantially lower Brier loss compared to an
 1608 unconstrained policy. This provides theoretical support that ExPO-HM encourages more calibrated
 1609 probability estimates.

I FINE-GRAINED RESULTS

1613 In addition to the overall micro F1 reported in the main text, we provide detailed fine-grained results
 1614 on the HatefulMemes dataset for both attack types and protected categories using the Qwen2.5-VL-
 1615 7B models in Table 13 and Table 14. For both fine-grained setups, we observe that the benign class
 1616 achieves relatively high performance, whereas most fine-grained categories remain highly challenging
 1617 for existing baselines: many per-class F1 scores fall below 50%. Recognizing different attack
 1618 types is particularly difficult for all baselines, and certain protected categories, such as sex and na-
 1619 tionality, are especially difficult. Overall, ExPO-HM shows substantial improvements across all
 fine-grained categories, demonstrating strong gains over all baseline systems.

1620 **J COMPARING GRPO AND EXPO-HM PREDICTIONS**
1621
16221623 **J.1 CASE ANALYSIS**
16241625 Table 15 and Table 16 show examples where ExPO-HM corrects prediction errors made by the
1626 GRPO baseline on Qwen2.5-VL-7B, illustrating its ability to generate higher-quality explanations
1627 and leading to correct final prediction.
16281629 **Table 15: Part 1 of the Visualization of cases from GRPO Qwen2.5-VL-7B and ExPO-HM**
1630 **Qwen2.5VL-7B Models.**
1631

	Case 1	Case 2	Case 3
Meme	<p>and just like that... this sandwich maker doubles as an ironing board</p>	<p>a group of men</p>	<p>the hardest part to eat in a vegetable</p>
Ground Truth	#Hateful	#Hateful	#Hateful
GRPO Prediction	#Benign	#Benign	#Benign
ExPO-HM Prediction	#Hateful	#Hateful	#Hateful
GRPO Explanation	<p>The meme is a humorous observation about a sandwich maker that can be used as an ironing board. It does not contain any offensive or derogatory content directed at any specific group or individual. The joke is based on a practical use of a kitchen appliance and does not express any form of hate or discrimination.</p>	<p>The meme uses a visual pun by showing dogs and labeling them as “a group of men.” This is a common internet meme format that uses animals to represent a group of people, often for humorous effect. The image itself does not contain any explicit content or language that could be considered hateful. The use of animals to represent a group of people is a common meme trope and is generally not intended to be offensive.</p>	<p>The meme uses a wheelchair as a visual metaphor for the “hardest part to eat in a vegetable.” This is a play on words and is not intended to be offensive. The joke is based on a common phrase and the visual of a wheelchair, which is a tool for mobility, not a derogatory symbol. The meme is not targeting any specific group or race, and the humor is based on a general observation rather than any harmful stereotype.</p>
ExPO-HM Explanation	<p>The meme makes a derogatory comparison by using a woman’s body to represent an ironing board, which is a dehumanizing and objectifying portrayal. This type of humor is often used to degrade women and is considered dehumanizing.</p>	<p>The meme uses a derogatory term “vegetable” to refer to a person in a wheelchair, which is a form of dehumanizing and derogatory language. This type of language is considered hateful as it dehumanizes and degrades the person in the wheelchair</p>	

1674 **J.2 ERROR ANALYSIS**
1675

1676 During the analysis of the common error cases shared by both the GRPO baseline and ExPO-HM,
 1677 i.e., cases that ExPO-HM is still unable to correct, we observe two major categories of failures.
 1678 The first category consists of highly implicit memes, whose harmful intent can only be uncovered
 1679 through complex, multi-step reasoning. The second category includes memes that require external
 1680 world knowledge and/or subtle contextual linkage, making their interpretation dependent on
 1681 background information not explicitly contained in the meme itself. These examples are inherently
 1682 difficult, and even human annotators may misinterpret them Kiela et al. (2020). Table 17 presents
 1683 three representative cases.

1684 The first meme uses an apparently nonsensical statement (“potato is my favorite color of the alpha-
 1685 bet”) to implicitly portray the individual as extremely unintelligent. The models fail to (i) infer the
 1686 underlying stereotype associated with intellectual disability, and (ii) connect the negative depiction
 1687 of cognitive ability to the corresponding protected group defined in the policy manual.

1688 The second meme requires linking the reference to 9/11 with broader immigration discourse, yet the
 1689 models fail to associate the event with anti-immigrant sentiment or identify the targeted group.

1690 For the third meme, the models’ rationales focus narrowly on the absence of explicit slurs or group
 1691 identifiers and interpret “trash” as a generic political metaphor, thereby overlooking its dehumanizing
 1692 use toward the group depicted in the image.

1693 For future work, developing a larger corpus of implicit hate-speech examples with high-quality
 1694 chain-of-thought annotations may help pretrain models to better understand subtle and context-
 1695 dependent hateful content that requires complex reasoning. In addition, incorporating retrieval aug-
 1696 mented generation pipeline to supply relevant external knowledge, such as historical, geopolitical,
 1697 or stereotype-related context, may further improve the model’s ability to identify implicit hate that
 1698 is not directly observable from the meme alone.

1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728
 1729
 1730
 1731
 Table 16: Part 2 of the Visualization of cases from GRPO Qwen2.5-VL-7B and ExPO-HM
 1732 Qwen2.5VL-7B Models.
 1733

	Case 4	Case 5	Case 6	
1734				
1735	Meme			
1736				
1737				
1738				
1739				
1740				
1741				
1742				
1743				
1744				
1745	Ground Truth	#Hateful	#Hateful	#Hateful
1746	GRPO Prediction	#Benign	#Benign	#Benign
1747	ExPO-HM Prediction	#Hateful	#Hateful	#Hateful
1748				The meme appears to be a humorous take on a political situation, using exaggerated expressions and a juxtaposition of images to convey a message. The top image shows a person with a bearded face, possibly representing a political figure. The bottom image shows a person aiming a shotgun, which could be interpreted as a metaphor for taking back what was claimed. The use of such imagery and text is not inherently hateful but rather a form of political commentary or satire.
1749				
1750				
1751				
1752				
1753				
1754				
1755				
1756	GRPO Explanation	The meme depicts a person covered in soap suds, which is a common reaction to too much soap in a dishwasher. The text humorously suggests that someone has added too much soap to the dishwasher again. There are no elements in the image or text that indicate any form of discrimination or hate towards a specific group. The meme is a light-hearted joke about a common household issue.	The meme makes a claim about the existence of Muhammad based on a scientific discovery, which is a religious and historical topic. However, the meme does not use any offensive language or imagery that would be considered hate speech. It is a humorous and speculative statement, not a direct attack on any group or individual.	The meme contains a provocative statement and imagery that could be interpreted as threatening or aggressive towards muslims. The use of a religious figure and the phrase "we're taking it back" suggests a sense of reclaiming or asserting dominance, which can be seen as a form of hate speech.
1757				
1758				
1759				
1760				
1761				
1762				
1763				
1764				
1765				
1766				
1767				
1768				
1769				
1770				
1771				
1772				
1773				
1774				
1775				
1776				
1777				
1778				
1779				
1780				
1781				

1782
1783
1784
1785
1786

1787 Table 17: Visualization of error cases from GRPO Qwen2.5-VL-7B and ExPO-HM Qwen2.5VL-7B
1788 Models.

1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799

	Error Case 1	Error Case 2	Error Case 3
Meme			
Ground Truth	#Hateful	#Hateful	#Hateful
GRPO Prediction	#Benign	#Benign	#Benign
ExPO-HM Prediction	#Benign	#Benign	#Benign
GRPO Explanation	<p>The meme uses a play on words where “potato” is a pun on the letter “P” in the alphabet. It is a humorous and light-hearted joke that does not contain any offensive or harmful content.</p>	<p>The meme references a tragic event and makes a statement about the safety of allowing everyone into the US. It does not use any offensive language or imagery that would be considered hateful towards a specific group. The statement is a general observation about the balance between safety and freedom of entry, which is a topic of public debate and concern. The meme does not target any particular group or individual in a derogatory manner.</p>	<p>The meme does not contain any explicit hate speech or derogatory language towards a specific group. The content is a political commentary using a metaphor about trash and a garbage collector, which is a common way to express dissatisfaction with a group or situation. The meme does not target any particular race, religion, nationality, or other protected characteristics.</p>
ExPO-HM Explanation	<p>The meme does not contain any explicit or implicit content that is considered hateful. It is a humorous statement about a person’s preference for the letter ‘P’ in the alphabet, which is a common internet meme.</p>	<p>The meme appears to be a political statement, likely referencing the attire of the individuals in the image, which is all white. The meme does not contain any explicit or implicit hate speech directed at any specific group or individual. The context and intent of the meme seem to be political rather than hateful.</p>	

1831
1832
1833
1834
1835