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UniGO: A Unified Graph Neural Network for Modeling Opinion
Dynamics on Graphs
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ABSTRACT

Polarization and fragmentation in social media amplify user biases,
making it increasingly important to understand the evolution of
opinions. Opinion dynamics provide interpretability for studying
opinion evolution, yet incorporating these insights into predictive
models remains challenging. This challenge arises due to the in-
herent complexity of social interactions, the diversity of opinion
fusion rules, and the difficulty in capturing equilibrium states while
avoiding over-smoothing. This paper introduces UniGO, a unified
framework for modeling opinion evolution on graphs. By abstract-
ing various opinion dynamics models into a unified graph-based
structure, UniGO captures both common features and complex fu-
sion rules. Using a coarsen-refine mechanism, UniGO efficiently
models opinion dynamics through a graph neural network, miti-
gating over-smoothing while preserving equilibrium phenomena.
Additionally, UniGO leverages pretraining on synthetic datasets,
which enhances its ability to generalize to real-world scenarios,
providing a viable paradigm for large-scale applications of opinion
dynamics. Experimental results on both synthetic and real-world
datasets demonstrate UniGO’s effectiveness in capturing complex
opinion formation processes and predicting future evolution. The
pretrained model also shows strong generalization capability, val-
idating the benefits of using synthetic data to boost real-world
performance.
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1 INTRODUCTION

Polarization in online social media fosters user bias and hostility,
exacerbating societal divisions and undermining social cohesion. In
recent years, the formation of opinions on social media platforms
has emerged as an increasingly important issue. Opinion dynamics
quantify individual views and model group opinion evolution dur-
ing interactions using methods such as agent-based models and or-
dinary differential equations [18]. As shown in fig. 1a, in large-scale
online social media scenarios, opinion interactions are constrained
by an underlying graph topology. Opinion dynamics over graph
structures have been extensively applied in such contexts, play-
ing a significant role in social network analysis [7, 30], marketing
[29, 40], recommendation systems [19], and various other domains.

In contrast to data-driven opinion prediction models, opinion
dynamics models focus on interpretability, providing mechanisms
for opinion formation. Opinion dynamics explore the mechanisms
of group opinion evolution by designing specific opinion fusion
rules [2, 8, 22], such as the Friedkin-Johnsen (FJ) model, which
considers individuals’ stubbornness towards their own opinions
[21], and the Hegselmann-Krause (HK) model, which is based on a
confidence threshold for others’ opinions [24]. Additionally, opinion
dynamics investigate equilibrium phenomena within the system,
such as consensus, polarization, and fragmentation, implying that
opinions cease to change over time [5]. Opinion dynamics offer deep
insights into the process of opinion formation. However, integrating
these insights into data-driven prediction models remains an open
challenge.

Inspired by works such as physics-guided neural networks and
graph ODEs [26, 39, 44], recent research has explored the integra-
tion of neural networks with opinion dynamics [36]. Graph neural
networks (GNNs) have emerged as a natural choice for learning
opinion dynamics on graphs. As shown in fig. 1b, there are no-
table similarities between the opinion update process in single-step
dynamics and node embedding updates in single-layer GNNs. How-
ever, integrating insights from opinion dynamics into GNNs faces
two primary challenges: (1) Learning diverse opinion fusion
rules. Unlike dynamical systems in the physical world, opinion
evolution data in social media is sparse and limited in availability.
Using synthetic data generated from theoretical models to enhance
model generalization has become an important research direction
for data-driven methods in recent years. Different models design
different opinion fusion rules based on distinct assumptions, allow-
ing them to study the evolution of group opinions under specific
rules. Integrating each of these assumptions into a single model is
considerably limited. (2) Capturing specific equilibrium phe-
nomena. Through multiple rounds of opinion updates, opinion
dynamics effectively describe equilibrium phenomena during opin-
ion evolution, while GNNs may encounter over-smoothing with a
high number of layers [35]. Learning the equilibrium of opinions
while avoiding over-smoothing remains a significant challenge.
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Figure 1: (a) Opinion Interactions in Different Scenarios. (b) A simple example illustrating the similarity between opinion
update in opinion dynamics (Degroot model) and node embedding update in graph neural networks.

To address the aforementioned challenges, this paper proposes
a unified opinion dynamics to enhance model performance. By
incorporating the characteristics of various opinion dynamics, the
unified framework constructs opinion fusion rules based on four
aspects: node attributes, edge attributes, community structure, and
noise. Unlike traditional opinion dynamics models, this approach
learns the complex intrinsic relationships between initial opinion
formation and graph topology, enabling better predictions of future
opinion evolution. Although the unified model does not directly
analyze the impact of individual properties on opinion evolution, it
facilitates the learning of complex opinion fusion rules by neural
networks.

In addition, this paper addresses the second challenge using
a coarsen-refine mechanism that applies graph neural networks
on the skeleton of the underlying graph. We utilize graph pool-
ing to construct a skeleton structure from the original nodes to
supernodes, and use graph neural networks on this skeleton to
capture the equilibrium phenomena of opinions. Subsequently, a
refine operation is used to reconstruct the features of the skeleton
nodes back to the original nodes. This approach captures the equi-
librium phenomena of opinion dynamics while ensuring that nodes
remain distinguishable, thereby avoiding over-smoothing. In this
manner, the gap between theoretical models of opinion dynamics
and real-world opinion evolution is bridged.

In this paper, UniGO is proposed as a unified framework for
modeling opinion evolution on graphs. The framework extracts
supernodes from social media graphs through graph pooling, using
information from the original nodes to construct a topological skele-
ton for the supernodes. A graph neural network is then employed to
effectively model unified opinion dynamics on this skeleton. Finally,
a refine module is used to lift the opinion information from the
skeleton back to the original nodes, maintaining equilibrium phe-
nomena while avoiding over-smoothing in large-scale networks. By
constructing a unified opinion dynamics model, synthetic data with
complex fusion rules is generated to enhance model performance.
The main contributions are as follows:

(1) We propose a unified opinion dynamic to generate complex
synthetic data, enhancing the model’s ability to learn the

complex intrinsic relationships between opinion formation
and graph topology, while incorporating complex opinion
fusion rules.

(2) We introduce UniGO, a graph nerual network model for
modeling opinion evolution on graphs. By leveraging the
coarsen-refine framework, we balance the equilibrium phe-

nomena of opinion evolution while avoiding the over-smoothing

problem commonly faced by graph neural networks.
(3) We conduct experiments on both synthetic and real-world
network datasets.

2 RELATED WORKS

2.1 Opinion dynamics model

Opinion dynamics investigates the formation process of agent opin-
ions in social systems over time by setting up fusion rules. The
format of opinions, fusion rules, and underlying structures are piv-
otal components of opinion dynamics [18]. This paper primarily
concentrates on dynamic models grounded in continuous opinion
forms, which offer a closer alignment with the real-world social
systems[5].

Different opinion dynamics models assume different fusion rules
and study the phenomena of opinion formation based on these
rules [42]. Based on the assumption of opinion assimilation, the
DeGroot model [16] sets the fusion rule as a simple averaging form.
Friedkin-Johnsen (FJ) model [21] introduces agent stubbornness
to model situations where agent persist in their opinions in real-
world scenarios. The Deffuant-Weisbuch (DW) [15] model and
Hegselmann-Krause (HK) [24] model consider the phenomenon of
bias assimilation [20], where agents tend to accept opinions they
are inclined to believe, introducing confidence thresholds where
agents can only interact with others whose opinions are within
a certain range. Subsequent research delves into more intricate
fusion rules, including randomness in opinion fusion [10, 17, 38],
deceptive interactions in social networks [4], group influence [25],
and so forth.

In recent years, many studies have increasingly focused on the in-
fluence of underlying topology on opinion dynamics [32, 34, 37, 41].
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UniGO: A Unified Graph Neural Network for Modeling Opinion Dynamics on Graphs

Unlike face-to-face offline social systems, agents in online social
systems often only interact with a subset of agents. Through simple
transformations, the above theoretical models can be effectively
transferred to graph structures. These models utilize synthetic
graphs and real-world graph data to study the impact of topologies
on opinion dynamics.

These theoretical models have played a significant role in an-
alyzing social systems. However, most opinion dynamics models
can only capture certain aspects of opinion fusion in real-world
scenarios and fail to model the complexity of opinion evolution. In-
tegrating insights from opinion dynamics into data-driven models
can effectively combine perspectives from both theory and empiri-
cal data.

2.2 Data-driven methods for modeling opinion
dynamics

Benefiting from the data-driven paradigm, many researchers have
studied learning the formation patterns of opinions from data. Some
machine learning methods have recognized the importance of graph
topology. The work [13] uses a linear model to capture transient
changes in opinions to adapt to complex opinion scenarios. The
work [9] extends the k-means method to social graphs, investigating
the formation of opinion equilibrium from a community cluster-
ing perspective. AsLM [12] proposed a linear influence model that
explores how to estimate the influence strength of links in social
graphs by observing the opinions evolving over time at the nodes.
Additionally, this work considers the limitations of the interaction
range of nodes, indirectly introducing the underlying topology.
SLANT [14] describes users’ latent opinions as continuous-time
stochastic processes, where each expression of an opinion by a user
is a noisy estimate of their current latent opinion. SLANT+ [28] is
a point-process-based framework for capturing the nonlinear dy-
namics of opinion fusion. It processes users’ opinions and message
timings as a temporal point process, influenced by the opinions and
message timings of their neighbors. Some methods are inspired by
the fusion rules in opinion dynamics. SINN [36] incorporates the
idea of [26, 44] and uses opinion dynamics to assist model training.

These approaches partially integrate knowledge from opinion
dynamics models but fail to fully incorporate this knowledge into
the internal mechanisms of the model. Additionally, these methods
do not explicitly incorporate graph topology into the opinion fu-
sion process, which is inconsistent with the interaction patterns
observed in large-scale social media. A unified opinion dynam-
ics model is proposed to integrate interaction rules from various
classical opinion dynamics models. Furthermore, this work delves
into learning opinion dynamics on graphs using graph neural net-
works and applies them to real-world data, further bridging the gap
between theoretical models of opinion dynamics and real-world
applications.

3 BACKGROUND

This section introduces the concept of opinion dynamics on graphs,
along with several significant theoretical models of opinion dynam-
ics. Furthermore, the discussion covers the opinion fusion rules
that each of these models focuses on. Then, in section 3.2, the con-
nections between graph neural networks and opinion dynamics on
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graphs are explored, and the key challenges in learning opinion
dynamics on graphs are summarized.

3.1 Opinion dynamics models on graphs

Opinion dynamics models describe the formation process of opin-
ions in social systems. Classical opinion dynamics models are often
formulated as difference equations to describe specific opinion fu-
sion rules. The opinions of agents evolve over time steps, where
the opinion at time ¢ + 1 is based on the fusion of opinions within
the agents at time t. With continuous iterations, the opinions of
agents eventually converge to certain values, a process also known
as equilibrium. By proposing more complex opinion fusion rules,
opinion dynamics can effectively describe opinion formation phe-
nomena in the real world, including consensus, polarization, and
fragmentation.

In large-scale social systems in the real world, nodes can only
interact with a small subset of others. Therefore, graph-based opin-
ion dynamics are proposed to address such opinion formation
constrained by underlying graph topology. Given a social graph
G = (V,&,X), where YV is the set of nodes with |'V| = n repre-
senting the number of nodes, each node represents an agent. & is
the set of edges, with e;; € & representing an edge between nodes
0; and v; (such as friendships, follow relationships, etc.), and X
represents the opinions held by each node.

Node Attributes. Some opinion dynamics models assume that
nodes possess specific attributes that influence opinion fusion. For
example, in the FJ model, each agent has a stubbornness coefficient,
which represents the extent of the node’s adherence to its own
opinion.

xi(t+1)=(1-2)x;(0) + A; Z wijxj(t). (1)
v;eN(v;)

Here, A; € [0, 1] represents the weight assigned to social influences
during opinion fusion, and 1 — A; is the weight assigned to the
agent’s initial opinion value, i.e., the stubbornness of the nodes
towards their initial opinion x; (0).

Edge Attributes. Opinion dynamics based on confidence thresh-
olds control the range of node interactions, essentially modifying
the state of edges between nodes. For example, the HK model de-
scribes the influence of all neighbors’ opinions within each agent’s
trust range. The condition for nodes to interact is that the difference
in opinions between the two nodes must fall within a certain range,
known as the confidence threshold d. Specifically, agent v; can
interact with nodes whose opinion values lie within the interval
[xi — d, x; + d], which is referred to as the confidence interval of v;.
When |x;(t) — x;(t)| < d, interaction occurs.

xi(t+1):m 3 x. @)

JEN; (1)

Here, Ni’ (t) represents the set of nodes within the confidence
threshold in the neighborhood of v; at time ¢, including v; itself,
and | N (t)| represents the number of elements in set N/ (t).
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Community Structure. Building on the aforementioned work,
some opinion dynamics models consider the influence of commu-
nity structure on opinion fusion. For example, certain models as-
sume that the stubbornness coefficients and confidence thresholds
are structurally correlated, meaning that nodes in different commu-
nities within the graph may have distinct stubbornness coefficients
and confidence thresholds.

Ai =Ae,di =de Vuj € Cr 3)

Here, Cy. represents the k-th community, while A. and d. denote the
stubbornness coefficient and confidence threshold of nodes within
the community, respectively.

Noise. In real social media, the formation of user opinions is
often influenced by various sources of noise. This noise may origi-
nate from algorithmic biases or the uncertainties of user behavior.
To better simulate these effects, some opinion dynamics models
introduce noise terms. In noise-considering models of opinion fu-
sion [38], individuals may randomly change their opinions based
on a certain probability, rather than merely fusing the opinions of
their neighbors. Such noise can introduce new collective behaviors,
making the model’s behavior more complex and realistic.

Randomly select an x € [0,L] with probability m

[(t+1) =
xi(t+1) { with probability 1 — m
4
Here, each individual has a probability m to make a random jump,
after which the new opinion x;(n + 1) is randomly selected within

the entire range [0, L].

TR 2N () % (1)

3.2 Learning opinion dynamics on graphs

When we aim to learn opinion dynamics on graphs, graph neu-
ral networks (GNNs) naturally become the preferred method for
capturing this inductive bias. In this subsection, we explore the
connections and differences between GNNs and graph-based opin-
ion dynamics, and describe the key challenges in learning opinion
dynamics on graphs.

Opinion updates and node representation updates. Consider a
typical graph neural network, where node representations are up-
dated by aggregating the information from neighboring nodes. The
(k + 1)-th layer can be defined as:

k! = AGGHH! ({Msck“(h’?, h)[o; e N(vi)}), )

where AGG(-) is the aggregation function at layer k + 1, MSG(-)
is the message passing function at layer k + 1, N'(v;) is the neigh-
borhood of node v;, and h{.‘“ is the representation of node v; at
layer k + 1. Similarly, opinion dynamics on graphs can be written
in a similar form:

xi(t +1) = FUS (x; (1), x; (1)]j € N (v1)), (6)

where x; represents the opinion of v; at time ¢ + 1, and FUS(-)

is the fusion function, computed based on the opinions of the node
and its neighbors at time ¢. This formal consistency indicates the
close connection between GNNs and opinion dynamics on graphs.
From the perspective of GNNs, each iteration of opinion dynam-
ics allows nodes to receive information from an additional hop of

Anon.

their neighborhood. Graph-based opinion dynamics often require
dozens to hundreds of steps to reach equilibrium, meaning each
node eventually receives global information. Similarly, from the
perspective of opinion dynamics, each layer of network updates can
be seen as an iterative process in one time step. This also implies
that the ’time steps’ in opinion dynamics do not correspond to the
real-world concept of time, allowing the use of static graph neural
networks for research.

Equilibrium and over-smoothing. Equilibrium is a crucial aspect
studied in opinion dynamics theoretical models, referring to the
state where, after multiple iterations, the opinions of nodes no
longer change with each time step. In GNNs, over-smoothing refers
to the phenomenon where, as the number of network layers in-
creases, node representations become increasingly similar, even-
tually becoming indistinguishable and thus making it difficult to
differentiate between different nodes [35]. The similarity between
the two lies in the convergence of node states (representations).
The fundamental difference is that equilibrium in opinion dynam-
ics is related to the graph structure and fusion rules, reflecting the
characteristics of the dynamic system, whereas over-smoothing is
an undesirable effect during the training process.

The greatest challenge in using GNNs, which update based on
local information, to learn opinion dynamics on graphs with global
structural properties is learning a pattern of node convergence
while avoiding the issue of over-smoothing.

4 METHOD

To address the aforementioned issues, we propose UniGO, a unified
framework based on graph neural networks for modeling opinion
evolution on graphs. As illustrated in fig. 2, UniGO is trained on
synthetic datasets generated under unified opinion dynamics and
tested on real-world datasets. The data synthesis module consists
of two components: graph construction and dynamics construc-
tion. Graph construction generates graph structures using various
random graph generation methods, while dynamics construction
generates evolutionary data based on unified opinion dynamics on
the graph structure.

The UniGO model comprises three parts: coarsening, dynamics
simulation, and refinement. The coarsening module uses graph
pooling methods to generate a skeleton of the original graph and
construct aggregated representations of the supernodes. Then, in
the dynamics simulation module, graph neural networks are em-
ployed to simulate the dynamics evolution on the supernodes. Fi-
nally, in the refinement module, the supernode representations are
refined back to the original nodes to complete the simulation of
opinion evolution on the graph. The coarsen-refine architecture
allows learning the equilibrium results of opinion dynamics on
graphs while avoiding over-smoothing.

4.1 Problem definition

Given a graph G = (V, &, Xj), where V is the set of nodes, &
is the set of edges, and X; € R™*! represents the opinions of n
nodes at the initial #; time steps, with values in the range [0, 1]. The
objective is to learn a function F to predict the node opinions for
the subsequent #;, time steps, X, € R"¥%,
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Figure 2: The framework of MOGO.

4.2 Data Synthesis Module

The data synthesis module generates synthetic datasets that include
various graph structures and opinion dynamics processes, address-
ing the scarcity of real-world opinion evolution data. Specifically,
the dataset consists of two components: graph construction and dy-
namics construction. The graph construction component includes
several random graph generation methods, such as ER random
graphs, WS small-world graphs, and BA scale-free graphs[3, 6, 45],
with each node receiving an initial opinion randomly. In the dynam-
ics construction component, the unified opinion dynamics runs on
the random graphs to generate the opinion evolution process:

1
xl.(“r ) = aixét) +(1-a) Z wile.(jt)xJ(.t) + y,-r]i(t). ™)
JEN;
Here, xét) represents the initial opinion of node i . a; is the stub-
bornness coefficient of node i, N; represents the set of neighboring

nodes of node i, w;; is the weight of the edge between nodes i and
g
1
nodes i and j can interact in terms of opinion exchange, and is
defined as follows:

j,and 5.’ is the noise for node i at time ¢. Ml.(jt) indicates whether

m® 1, if |xl.(t) —x](-t)| <d;
ij 0,

otherwise. ®
Here, d; is the confidence threshold of node i. Nodes i and j interact
if the difference in their opinions is less than d;.

In this way, traditional dynamics models can be effectively com-
bined. For instance, when wijMi(jt) =1and Yi’hm = 0, the model
reduces to the FJ model. If the stubbornness coefficients and confi-
dence thresholds of nodes vary according to the community struc-
ture, the model represents an FJ and HK model that considers graph
structure. Furthermore, by designing different noise functions, the
model can flexibly simulate the process of opinion evolution under
varying noise conditions.
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More importantly, this framework comprehensively incorpo-
rates different opinion fusion rules from various dynamics models,
generating more realistic synthetic datasets for opinion dynamics.
Although this framework cannot analyze equilibrium states and
other properties in the traditional opinion dynamics paradigm, it
can be used to train graph neural network-based models for pre-
dicting opinion evolution. Details of the data synthesis approach
are provided in the appendix A.1.

4.3 UniGO Model

The UniGO model, under a coarsen-refine mechanism, uses graph
neural networks to simulate the dynamics evolution on supern-
odes. The coarsening module coarsens the original graph through
pooling methods to obtain the skeleton and construct aggregated
representations of the skeleton supernodes. The dynamics evolution
is simulated using a mean-aggregating graph neural network. The
refinement module refines the supernode representations back to
the original nodes to complete the simulation of opinion evolution
on the graph.

Coarsening Module. Graph pooling methods are used to coarsen
the original negraphtwork, obtaining the skeleton and construct-
ing aggregated representations of the skeleton supernodes. First, a
graph neural network is used to aggregate the dynamic representa-
tions of the nodes:

xkH = AGGHH! ({Msck“(xf,xfnu ;e N(o,-)}), ©)

here, AGG(-) is the aggregation function at layer k + 1, MSG(-)
is the dynamic representation function at layer k + 1, and N (v;)
represents the set of neighboring nodes of node v;. The initial node
feature XEO) corresponds to the opinions from the first ¢; time steps.

Subsequently, following [1], the coarsened node representations
are learned based on soft clustering. The core algorithm of this
pooling layer is based on calculating distances from nodes to cluster

centers and performing soft assignments. For each node x; and
cluster center k;.h) , the distance d;; is computed using the Euclidean
distance, with a temperature parameter 7 introduced to adjust the
influence of the distance:

1+
-
% = k2|

di = , (10)

T

here, x; € RF represents the feature vector of node i, and k;.h) €
RF represents the feature vector of cluster center j for the h-th
head. 7 is a temperature parameter that controls the influence of the
distance. The probability that node x; belongs to different clusters
Jj is calculated by normalizing the distances. The probability Sl.(;i)
of each node being assigned to different clusters is expressed as:

(h)
(h) ij
S = ————, (11)
iy K 4(h)
Loy Dy
here, Sl.(jh) represents the probability that node i is assigned to
cluster j. In the multi-head attention mechanism, the final soft

Anon.

assignment matrix S is further processed through a convolution
operation:

S= softmax(Conde(llles(h))) € RNXK, (12)
Finally, the node features X are weighted and combined accord-

ing to the assignment matrix S, resulting in the new node features
H:

H=S"XW e RKXF (13)
Here, X € RNVXF represents the input node feature matrix, and

W e RF¥F' is the linear transformation matrix used to map the
node features to the output space.

Dynamics Evolution Module. A mean-aggregating graph neu-
ral network is used to simulate the dynamics evolution process.
Specifically, a graph neural network is employed to compute the
dynamics evolution for each node, and these dynamics are then
used to update the node features. A weighted mean aggregation
approach is selected, with the specific formula given as follows:

k+1 k k
hi+ =W1hi +Wj ~meanj€N(i)hj, (14)
Here, W1 and W, are learnable weight matrices. Finally, a linear
layer is used to expand the supernodes to t; time steps:

Z = HXW, +b,, (15)

here, K represents the number of layers in the graph neural

network. HX is the evolved representation of the supernodes, W, €

R%! is the weight matrix, and be € R is the bias vector. Through

this linear transformation, the time dimension of the supernodes is
expanded from t; to ty,, resulting in Z € RKX%

Refinement Module. A refiner is used to refine the supernode
representations back to the original nodes. First, the supernode
representations are restored to the original nodes through the as-
signment matrix S:

Z' =57 (16)

Here, S € RNXK is the assignment matrix, and Z € RK*%

represents the evolved supernode representations. Subsequently,

the original node representations X and the restored representations

Z’ are passed through a shared refiner and concatenated to obtain
the final node representations:

Y= U((wa”Z/WZ)Wy) (17)
Here, Wy and W, are the weight matrices corresponding to X and
Z’, respectively. W is the weight matrix of the refiner, o is the
activation function, and Y represents the final model prediction
result.

4.4 Training

The training loss of the model consists of two parts: the KL diver-
gence of the assignment matrix and the mean squared error (MSE)
of the node opinion prediction. The loss function is formulated as
follows:

L=ALxr + Lysk (18)
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Here, L represents the KL divergence of the assignment ma-
trix, A is the weight of the KL divergence, and Lysg represents the
mean squared error (MSE) of the node opinion prediction.

5 EXPERIMENTS

This section comprehensively evaluates UniGO’s performance on
both synthetic and real-world datasets. First, we introduce the syn-
thetic and real-world datasets used in the experiments. In section 5.2,
the evaluation focuses on UniGO’s ability to fit opinion evolution
on synthetic datasets. In section 5.3, the evaluation covers UniGO’s
ability to predict opinion formation on real-world datasets. The
findings show that pretrained models on synthetic datasets can ef-
fectively predict opinions in real-world datasets, providing a viable
paradigm for applying opinion dynamics to large-scale real-world
scenarios.

5.1 Experimental Setup

Datasets. The synthetic dataset UniSyn is generated using the
unified opinion dynamics. This synthetic dataset includes three
types of random graph structures, and the dynamics involve vari-
ous parameter combinations. The details of the synthetic dataset
are presented in Table 1, with the detailed construction process
provided in appendix A.1.

A real-world dataset related to the Delhi elections [13] and four
other datasets obtained from social media were used: Rumor, Food
Safety, COVID, and U.S. Election. Corporate and bot accounts as
well as irrelevant information were filtered out. The criteria for
identifying active users varied by topic: the threshold for the U.S.
election dataset was 50, for the food safety dataset it was 8, for
the Israel-Palestine conflict rumor dataset it was 8, and for the
COVID dataset it was 100. Edges were constructed based on retweet
or comment relationships, and the largest connected component
was retained. Detailed information on the real-world datasets is
provided in appendix A.2.

Table 1: Synthetic datasets information.

Dataset Number of Average Average
Graphs Nodes Edges
UniSyn 3878 1652.4 16336.11

Baselines. In this experiment, there is a key difference between
synthetic and real-world data: the graph structure in the synthetic
dataset is not fixed, whereas the graph structure in the real-world
dataset is fixed. Therefore, for the synthetic dataset, baselines that
can handle flexible graph structures are selected, including GCN
[27], GAT [43], GIN [47], GraphSAGE [23], SGC [46], and ODNET
[33]. For the real-world dataset, several state-of-the-art dynamics
prediction models are added, including NCDN [48], SINN [36], and
DiskNet [31]. Detailed information about these models is provided
in appendix A.3.
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5.2 Learning opinion formation on synthetic
datasets

Experimental setup. In this subsection, UniGO’s ability to learn
opinion dynamics on UniSyn is evaluated. In this experiment, #;
is set to 10, and ¢ty is set to 90. For each dataset, only the first
100 time steps are used for the experiment. Unlike using a sliding
window to construct multiple datasets, each graph structure and
its corresponding dynamics evolution are sampled only once to
learn the impact of graph structure and dynamics on evolution.
For each graph, the mean squared error (MSE) of all nodes and the
mean Wasserstein distance (MWD) are used to evaluate the model’s
performance.

Table 2: Results on synthetic datasets (x1073).

Methods MSE MWD
GCN 26.5+3.2 153.6 £2.3
GAT 153 +3.3 102.6 £ 5.6
GIN 18.6 £ 2.6 903 +4.2
GraphSage 71+12 647+1.2
SGC 20.7 £ 1.8 1234+ 2.7
ODNET 253 +£3.4 1771+ 25
UniGO-c 8.0+18 66822
UniGO 32+£08 27+1.5

Results. Table table 2 shows the MSE and MWD for different
methods on the synthetic dataset. Bold text indicates the best result.
UniGO-c refers to UniGO without using the coarsen-refine archi-
tecture. UniGO effectively captures the opinion evolution process
on synthetic data. Although ODNET adopts the confidence inter-
val assumption from opinion dynamics, it fails to capture changes
brought about by other opinion fusion rules, resulting in inferior
performance compared to some common graph neural networks,
such as GAT and GIN. It is noted that GraphSage’s performance is
second only to UniGO. One possible reason is that both UniGO-c
(without the coarsen-refine architecture) and GraphSage use mean
aggregation, but GraphSage employs a sampling technique when
aggregating neighbor information. This allows GraphSage to better
avoid overfitting during training, resulting in improved perfor-
mance. The comparison between UniGO and UniGO-c also demon-
strates the necessity of the coarsen-refine architecture.

5.3 Learning opinion formation on real datasets

Experimental Setup. Furthermore, the generalization ability and
opinion formation prediction capability of UniGO are analyzed on
real-world datasets. For real datasets, a sliding window approach
is used to construct the dataset. Similarly, t; is set to 10, and t},
is set to 90. Unlike synthetic datasets, the graph structure in real
datasets is fixed, allowing multiple datasets to be constructed using
the sliding window approach. This also makes the data suitable for
most baselines. The dataset is split into training, validation, and
test sets in a ratio of 0.7, 0.1, and 0.2, respectively.

Additionally, to validate the effectiveness of UniGO under a
pretrain-finetune framework, the UniGO model trained on the
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Table 3: Results on real datasets (x1073).

Method Delhi Election U.S. Election Rumor Food Safety COVID
MSE MWD MSE MWD MSE MWD MSE MWD MSE MWD

GNN 10.6 £ 1.8 80.5+0.5 11.2+ 1.2 826 +1.9 356 +£0.7 125.6 £ 1.4 156 £0.3 95.2+ 1.6 9.6 +1.1 50.7+0.8
GAT 105+04 797+ 1.7 11.2+ 0.9 81.9+ 0.6 369+ 1.51235+0.2 168+ 1.8 89.5+13 13.5+£0.7 79419
GIN 124 +£1.6 85708 95+13 84.7+1.1 37.8+0.5115.6+1.7 20.8+0.9 87.9+04 121+ 1.4 48.6 0.6
GraphSage 86+0.7 54615 74+£03 723+1.8 21.5+1.2100.2+0.9 123 +£1.6 704+£05 86+1.0 309=+13
ODNET 15,6 £1.1 90.5+0.6 11.6 =19 782+ 0.8 31.8 +0.4 1054 +1.517.0+1.2 759+ 1.7 139+ 0.3 38.1+£0.9
SINN 65+14 421+0.7 64+1.0 39.0+1.6 198+0.8 97.7+13 95%+05 595+19 59+11 334+0.2
NCDN 10.6 £0.9 786+ 1.2 9.7+06 595+14 187+ 18 81.7+03 10015 743 +£0.7 46+1.0 222+ 1.6
DiskNet 101 £05 76.4+18 10.6 =13 745+04 168+ 1.7 724+09 84+11 429+15 52+06 422+1.2
UniGOg 7416 50408 68+12 435+05 8.7+x19 38.6x10 74+03 308+17 42+09 318+14
UniGO 40+11289+0.7 52+15305+18113+04 422+13 76+0.6 359+1.0 4.0+1.9 25.7+0.2

UniSyn dataset is directly tested on the real-world dataset to eval-
uate its generalization capability. UniGOjs represents the UniGO
model trained on the UniSyn dataset.

Results. Table table 3 shows the MSE and MWD for different
methods on the real-world dataset. Bold text indicates the best
result, and underline indicates the second-best result. From the
experimental results, it can be seen that UniGO performs well
on smaller datasets, consistently achieving the best results, while
UniGOg performs better on relatively larger datasets. This is pri-
marily because UniGO; was not fine-tuned on the real-world data
but directly tested on it, which led to suboptimal performance on
smaller datasets. SINN, as an opinion dynamics-informed neural
network model, performs well on most tasks, demonstrating the
advantages of incorporating opinion dynamics into opinion predic-
tion.

It is also observed that the time span and size of the dataset have
a certain impact on the results. For the Delhi Election dataset, which
has a shorter time span and smaller data volume, UniGOg may have
overfitted, resulting in less ideal performance. Almost all methods
perform relatively worse on larger datasets. However, UniGOy
shows more stable performance. Similarly, under the coarsen-refine
mechanism, the Graph Neural ODE-based model DiskNet performs
worse than SINN on smaller datasets, possibly due to overfitting
caused by the more complex Graph Neural ODE model compared
to the MLP used in SINN.

Overall, the UniGO model shows good performance across dif-
ferent datasets. The UniGO model pretrained on synthetic data
demonstrates stable performance across datasets of different sizes,
also showing good generalization ability.

6 CONCLUSION

This paper proposes UniGO, a unified opinion dynamics-based
model for predicting opinion evolution on graphs, aiming to simu-
late and predict dynamic opinion formation. The unified opinion
dynamics for neural network learning considers various opinion
fusion rules to overcome the limitations of traditional opinion dy-
namics, which cannot simulate complex opinion fusion processes.
By pretraining on synthetic datasets, UniGO effectively generalizes
to real-world datasets, providing a viable paradigm for applying

opinion dynamics in practical applications. This approach addresses
challenges such as sparse real data, simplistic theoretical model
assumptions, and over-smoothing in graph neural networks, com-
bining the interpretability of theoretical models with the fitting
ability of data-driven models, and offering a new direction for fu-
ture research. Experimental results show that UniGO achieves good
performance in opinion prediction tasks on both synthetic and real
datasets.

Limitations: (1)Limitations of the Unified Opinion Dynamics.
Although the proposed unified opinion dynamics can be applied
to various opinion fusion rules, it still has certain limitations, such
as the inability to handle coupled opinion dynamics or changes
in the underlying graph structure over time. Future work will ex-
plore more general representations of opinion dynamics and apply
them to more complex systems. (2) Limitations of the Real Datasets.
Larger-scale and more diverse real-world datasets could further
verify the generalization capability of the model. Additionally, all
real datasets used are based on text data, making the accurate trans-
formation of text into opinion data an area worth investigating.
Future research will focus on developing more accurate methods
for generating opinion data from textual information.
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A EXPERIMENTAL DETAILS
A.1 Build Synthetic Datasets

BA, ER, and WS graph structures are used to generate random
networks. The network size is set as n € {500, 1000, 2000, 3000}. For
BA random graphs, the average degree is k € {2,3,4,5}. For ER
random graphs, the probability of any two nodes being connected is
p € {0.1,0.2,0.3}. For WS random graphs, the average degree is k €
{4, 6, 8}, and the probability of any two nodes being connected is
p €{0.1,0.2,0.3}. For each set of parameters, five random network
structures are generated to run the unified opinion dynamics model.

For the opinion dynamics model, the stubbornness parameter
is set as a € {0.3,0.4,0.5,0.6, 0.7}, the confidence threshold is € €

{0.1,0.2,0.3,0.4}, and the noise parameter is o € {0.05,0.1,0.15,0.2,0.25}.

For models where parameters are determined based on network
structure, the Louvain method is used for community detection,
with the number of communities set to 5. For all parameters that
need to be randomly selected, three levels are set: [0.1, 0.3], [0.2, 0.4],
and [0.3,0.5]. On each graph structure, multiple opinion dynam-
ics models are run, provided there are no conflicting parameters.
Opinion dynamics are calculated using the Euler method, running
for 200 time steps. If the average opinion change of nodes over 10
continuous time steps is within 1 X 10~%, the model is considered to
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Table 4: Statistics of the real-world datasets.

datasets nodes edges message time span time step
Delhi Election 548 5271 20026 December 9, 2013 - December 15, 2013 280
U.S. Election 526 2482 10883 December 1, 2023 - March 5, 2024 384
Rumor 10695 89248 201365 October 7, 2023 - October 19, 2023 260
Food Safety 1390 4253 8506 May 30, 2023 - July 14, 2023 276
COVID 894 21143 102635 January 1, 2020 - March 31, 2020 364

have converged. Finally, data with convergence steps greater than
80 are selected to generate the synthetic dataset.

A.2 Real datasets

We used a real dataset related to the Delhi elections [13] and four
other datasets obtained from social media. We filtered out corporate
and bot accounts as well as irrelevant information. The criteria for
identifying active users varied by topic. The threshold for the U.S.
election dataset was 50, for the food safety dataset it was 8, for the
Israel-Palestine conflict rumor dataset it was 8, and for the COVID
dataset it was 100. We constructed edges based on retweet or com-
ment relationships and retained the largest connected component.
We used a combination of manual annotation and large language
models [11] to label the opinions of the nodes. In the election dataset,
user opinions corresponded to the political party they supported.
In the food safety dataset, social network users discussed whether a
food safety incident had occurred. In the rumor dataset, users chose
whether or not to believe the rumors. In the COVID dataset, user
opinions reflected their optimism or pessimism about the pandemic.
The table table 4 shows the information of these real datasets.

A.3 Baselines

In the experiments, in addition to the commonly chosen graph
neural networks—GCN [27], GAT [43], GIN [47], SGC [46] and
GraphSAGE [23]—the following baselines are used for comparison:

e ODNET [33], a graph neural network inspired by HK opin-

ion dynamics. It combines opinion dynamics with the message-

passing mechanism in neural networks, using the concept
of confidence thresholds to adjust influence weights be-
tween nodes.

e NCDN [48], a continuous-time graph neural network model.
Unlike traditional neural networks with discrete layers,
NDCN processes GNN layers in continuous time using nu-
merical integration, thereby capturing the dynamic changes
in node states on the graph.

o SINN [36], a sociology-driven neural network that trans-
lates opinion dynamics theoretical models from sociology
into ordinary differential equations (ODEs), using them as
constraints within the neural network.

e DiskNet [31], a model that incorporates the renormaliza-
tion group concept to construct a coarsening framework
for networks, and uses graph neural ODEs to learn on the
coarsened network.
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A.4 Additional experimental setups

In this subsection, we introduce the detailed additional settings
used in our experiments. The experiments ran on a Linux server
with four NVIDIA RTX A6000 GPUs and 128 GB memory. For
UniGO, the hyperparameters include the learning rate, the num-
ber of supernodes in graph pooling, the number of layers in the
graph neural network for simulating dynamics, the weight of the
KL divergence, and dropout. The learning rate of Adam was set
to {0.01,0.001,0.0001}. The number of supernodes in pooling was
set to {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, and the number of lay-
ers was set to {2,3,4,5,6}. The weight of KL divergence was set to

{0,0.2,0.4,0.6,0.8, 1, 2,5, 10}, and the dropout was set to {0.1, 0.2, 0.25}.

For the experiments in section 5.2 and section 5.3, UniGO and other
graph neural networks use a 3-layer setup, with the number of
supernodes set to 50. In graph neural ODE-based methods, the dis-
crete time step dt is set to 0.1. SINN [36] is a model that does not
directly consider network topology but models opinion dynamics
as ODE constraints. Its input is data streams, so the original setup
was followed.
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