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Abstract

Transformers have attained outstanding performance across various modalities, owing to
their simple but powerful scaled-dot-product (SDP) attention mechanisms. Researchers
have attempted to migrate Transformers to graph learning, but most advanced Graph
Transformers (GTs) have strayed far from plain Transformers, exhibiting major architectural
differences either by integrating message-passing or incorporating sophisticated attention
mechanisms. These divergences hinder the easy adoption of training advances for Transform-
ers developed in other domains. Contrary to previous GTs, this work demonstrates that
the plain Transformer architecture can be a powerful graph learner. To achieve this, we
propose to incorporate three simple, minimal, and easy-to-implement modifications to the
plain Transformer architecture to construct our Powerful Plain Graph Transformers (PPGT):
(1) simplified L2 attention for measuring the magnitude closeness among tokens; (2) adaptive
root-mean-square normalization to preserve token magnitude information; and (3) a simple
MLP-based stem for graph positional encoding. Consistent with its theoretical expressivity,
PPGT demonstrates noteworthy realized expressivity on the empirical graph expressivity
benchmark, comparing favorably to more complicated alternatives such as subgraph GNNs
and higher-order GNNs. Its empirical performance across various graph datasets also justifies
the effectiveness of PPGT. This finding underscores the versatility of plain Transformer
architectures and highlights their strong potential as a unified backbone for multimodal
learning across language, vision, and graph domains.

1 Introduction

Transformers have achieved excellent performance across various domains, from language (Vaswani et al.,
2017; Devlin et al., 2019; Brown et al., 2020) to vision (Dosovitskiy et al., 2021; Touvron et al., 2021a;b),
and are well known for their reduced dependency on inductive bias as well as stronger flexibility and
generalizability (Dosovitskiy et al., 2021). The recent success of transformer-based, multi-modal, large
language models (LLMs) (OpenAI, 2024; Dubey et al., 2024) has also brought the once-unattainable dream
of building artificial general intelligence closer to reality. However, these modalities are primarily data on
Euclidean spaces, while non-Euclidean domains are still under-explored. Non-Euclidean domains like graphs
are important for describing physical systems with different symmetry properties, from protein structure
prediction (Jumper et al., 2021) to complex physics simulation (Sanchez-Gonzalez et al., 2018). Therefore,
many researchers have attempted to migrate Transformer architectures for graph learning for the future
integration into multimodal foundation models.

Nevertheless, unlike other Euclidean domains, the characteristics of graphs make the naive migration
challenging. Following the suboptimal performance of an early attempt (Dwivedi & Bresson, 2021), researchers
introduced significant architectural modifications to make Transformers perform well for graph learning.
These include: implicit/explicit message-passing mechanisms (Kreuzer et al., 2021; Rampášek et al., 2022),
edge-updating (Kim et al., 2022; Hussain et al., 2022; Ma et al., 2023), and sophisticated non-SDP (scaled-
dot-product) attention designs (Chen et al., 2022; Ma et al., 2023). These complexities hinder the integration
of advances for Transformers arising from other domains and impede progress towards potential future
unification of multi-modalities.
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Figure 1: (a) Graph Transformers usually consist of preprocessing blocks (i.e., stems), backbone blocks
(i.e., Transformer layers), and task-specific output heads. (b) GraphGPS introduces a complicated hybrid
architecture integrating MPNN layers with sparse edge updates. (c) GRIT is equipped with a complex
attention mechanism (conditional MLPs) with PE update and degree-scaler. On the other hand, (d) the
proposed PPGT blocks simply follow the plain Transformer architecture, where sL2 attention is implemented
as SDP attention via float attention mask, and AdaRMSN is a direct substitute of RMSN.

In this work, we step back and rethink the difficulties that a plain Transformer architecture faces when
processing graph data. Instead of adding significant architectural modifications, we propose three minimalist
but effective modifications to empower plain Transformers with advanced capabilities for learning on graphs (as
shown in Fig. 1). This results in our proposed Powerful Plain Graph Transformers (PPGTs), which have
remarkable empirical and theoretical expressivity for distinguishing graph structures and superior empirical
performance on real-world graph datasets. These modifications can be incorporated without significantly
changing the architecture of the plain Transformer. Thus, our proposal both retains the simplicity and
generality of the Transformer and offers the potential of facilitating cross-modality unification.

2 Preliminaries

2.1 Graph Learning

Learning of Graphs and Encoding of Multisets Graphs are non-Euclidean geometric spaces with
irregular structures and symmetry to permutation (i.e., invariant/equivariant). A key factor for learning
graphs is the ability to distinguish the distinct structures of the input graphs, which is typically referred
to as the expressivity of the graph model (Xu et al., 2019; Zhang et al., 2023b). Currently, most graph
neural networks (GNNs) are developed based on the framework of the Weisfeiler-Leman (WL) Isomorphism
test (Weisfeiler & Leman, 1968) – a color-refinement algorithm based on multisets {{·}} encoding. For example,
message-passing networks (MPNNs) based on 1-WL (Xu et al., 2019), distinguish graphs by encoding the
neighborhood of each node as a multiset (Xu et al., 2019). To go beyond 1-WL, researchers have extended
to K-WL GNNs (Morris et al., 2019), K-Folklore-WL (FWL) GNNs (Feng et al., 2023), and Generalized-
distance-WL (GD-WL) GNNs (Zhang et al., 2023b), which are also based on such multiset encoding schemes,
albeit with different multiset objects. It is worth mentioning that, as discussed in Xu et al. (2019); Zhang et al.
(2023b), the cardinalities of multisets are crucial for distinguishing multisets, e.g., {{a, b}} versus {{a, a, b, b}}.
Generally, the cardinality is encoded into the token representation as its magnitude, e.g., encoding {{a, b}} and
{{a, a, b, b}} as x and c · x respectively, for c ̸= 1 ∈ R+. Thus, the loss of token magnitude information
weakens the ability to distinguish multisets and, consequently, graph structures.
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Graph Transformers – Learning Graphs with Pseudo-coordinates The philosophy of Graph
Transformers (GTs) is to learn graph representations using positional encodings (PEs) rather than operating
directly on the original input graphs. Zhang et al. (2023b) provide a theoretical framework (GD-WL) that
demonstrates that GTs’ stronger expressivity stems from finer-grained information beyond 1-WL encoded
in graph PEs. Zhang et al. (2024b) demonstrate that GD-WL not only applies to distance-like or relative
graph PEs but also enables analysis of absolute PEs (e.g., Laplacian PE) by transforming them into their
relative counterparts. Concurrently, Ma et al. (2024) interpret graph PE as pseudo-coordinates in graph
spaces that mimic manifolds, demonstrating that it can extend beyond graph distance and is not restricted to
the Transformer architecture (e.g., convolutions on pseudo-coordinates). We follow the same philosophy
and show that with a simple stem on pseudo-coordinates, even plain Transformers can achieve
strong expressive power in graph learning.

2.2 Limitations in Plain Transformer Architectures

The Loss of Magnitude Information in Token-wise Normalization Layer LayerNorm (LN (Ba
et al., 2016)) and Root-Mean-Square-Norm (RMSN (Zhang & Sennrich, 2019)) are two widely used token-wise
normalization techniques in Transformer-based models that effectively control token magnitudes:

LN(x) =
x − 1

D 1⊺x
1√
D

∥x − 1
D 1⊺x∥

⊙ γ + β , RMSN(x) = x
1√
D

∥x∥
⊙ γ . (1)

Here x ∈ RD are token vectors; ∥ · ∥ ∈ [0, ∞) is the L2-norm (i.e., magnitude) of a vector; and γ, β ∈ RD are
parameters of a learnable affine transform.

They retract token representations onto a hypersphere, a property essential for dot-product attention
mechanisms, echoing the notion of retraction as used in computational physics. However, both LN and
RMSN are strictly invariant to changes in input magnitude (see Proposition E.3 and the case study
in Appx. B.2), which can result in the loss of valuable token magnitude information

Pitfalls of Scaled Dot-product Attention With a good balance of capacity and efficiency, Scaled dot-
product (SDP) attention has become the most common attention mechanism in modern Transformers (Vaswani
et al., 2017). It has been widely explored in previous works and well optimized in deep learning libraries.

However, SDP attention is not perfect. For query and key tokens qi, kj ∈ RD, SDP attention is:

αij := Softmaxj(α̂ij) = exp(α̂ij)∑
j′ exp(α̂ij′) , where α̂ij := q⊺

i kj√
D

= cos(qi, kj) · ∥qi∥ · ∥kj∥√
D

. (2)

Here cos(qi, kj) ∈ [−1, 1] is the cosine similarity, measuring the angle between qi and kj , independent of the
vector magnitudes.

Three drawbacks of SDP attention necessitate the additional control of token magnitudes:

1. Softmax saturation: large token magnitudes (i.e., ∥qi∥, ∥kj∥) lead to large pre-softmax-logit values α̂ij

and consequently extremely small gradients in backpropagation (Vaswani et al., 2017).
2. No closeness measurement on magnitude: for each query, ∥qi∥ degenerates to a temperature factor

τ , and only controls the sharpness of attention scores, irrespective of the closeness between ∥qi∥ and ∥kj∥
(Fig. 2).

3. Biased to large magnitude keys: with ∥qi∥ as the temperature τ , compared to cos(qi, kj) ∈ [−1, 1],
large ∥kj∥ ∈ [0, +∞) will dominate attention scores.

To mitigate the first and third drawbacks, existing plain Transformers heavily rely on token-wise nor-
malization to regulate the token magnitudes. Removing LN/RMSN and/or using BatchNorm(BN) (Ioffe
& Szegedy, 2015) instead can induce training instability and divergence (Touvron et al., 2021b; Yao et al.,
2021).
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Figure 2: Illustration for comparing different attention mechanisms: (b) visualization of attention scores.
SDP attention is biased towards larger-magnitude k2. Cos attention disregards the magnitude information.
L2 attention strikes a balance between SDP and Cos attention to attend to k1, which has the lowest L2
distance to the query q.

3 Method

As established in Section 2, plain Transformers exhibit suboptimal performance in graph learning, due to
the architectural limitations that hinder preserving and modeling token magnitude information — a critical
aspect of capturing graph structures. Consequently, previous GTs attempt to address it by adopting BN
and overly sophisticated attention designs (e.g., MPNNs and/or MLP-based attention) (Kreuzer et al., 2021;
Rampášek et al., 2022; Ma et al., 2023). They have thus strayed away from plain Transformers, impeding the
transfer of previously explored training advances and the potential unification of other foundation models.

In this work, we propose two minimal and easy-to-adapt modifications to directly address the aforementioned
limitations in plain Transformers. Furthermore, we introduce an extra enhancement in the PE stem to
boost the information extraction of PE. These enhancements enable plain Transformers to achieve stronger
expressive power for graph learning.

3.1 AdaRMSN

As discussed above, SDP attention mechanisms necessitate additional control on token magnitudes. However,
existing token-wise normalization layers lead to irreversible information loss on magnitudes. We desire a
normalization layer that can not only control the token magnitudes, but is also capable of preserving the
magnitude information when necessary.

Inspired by adaptive normalization layers (Dumoulin et al., 2017; de Vries et al., 2017; Peebles & Xie, 2023),
we propose adaptive RMSN (AdaRMSN)

AdaRMSN(x) = x
1√
D

∥x∥
· γ′(x) , where γ′(x) := 1√

D
∥α · x + β∥ . (3)

The parameter β ∈ RD is initialized as 1 and α ∈ RD as 0, leading to γ′(x) = 1. AdaRMSN behaves the
same as regular RMSN at the initial stage of training, but is capable of recovering the identity transformation
with β = 0 and α = 1 when necessary.

3.2 Simplified L2 Attention Mechanisms

From Dot-product to Euclidean Distance To empower SDP attention to sense both angle- and
magnitude-information among query and key tokens, we revisit L2 attention (Kim et al., 2021), which is based
on Euclidean distance and is capable of measuring token closeness by balancing both angles and magnitudes,
in contrast to SDP attention and cosine-similarity attention (as shown in Fig. 2).
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To achieve better alignment with SDP attention, we further simplify it and reformulate it as SDP-attention
with an additional bias term:

αij := Softmaxj(− 1√
D

· 1
2∥qi − kj∥2

2) = Softmaxj( 1√
D

(q⊺
i kj − 1

2q⊺
i qi − 1

2k⊺
j kj))

= Softmaxj( 1√
D

q⊺
i kj − 1

2
√

D
k⊺

j kj) . (4)

This can be easily supported by existing SDP attention implementations in most deep learning libraries, e.g.,
PyTorch (Paszke et al., 2019) 1.

We denote this attention mechanism as simplified L2 (sL2) attention.

sL2 Attention with PE and Universality Enhancement For effective learning of objects with structure,
we need to inject positional encoding (PE) to enable the attention mechanism to sense the structure. Following
previous work (Zhang et al., 2024b), we describe sL2 attention using the relative-form of PE.

Let pij denote the relative positional embeddings for node-pair (i, j) shared by all attention blocks, which is
potentially processed by the stems (preprocessing modules). For each head, the attention scores αij ∈ R for
query/key tokens qi, kj ∈ RD in the proposed attention are computed as

αij := ϕ(pij) · Softmaxj

(q⊺
i kj√
D

−
k⊺

j kj

2
√

D
+ θ(pij)

)
, (5)

where ϕ : RD → R and θ : RD → R are linear transforms. The ϕ(pij) is an optional term purely based on
the relative position to guarantee the universality of attention with relative PE (URPE) (Luo et al., 2022).
This term demands slight customization of the existing attention implementation, but we retain it since it is
beneficial for learning objects with complicated structures (Luo et al., 2022; Zhang et al., 2023b). Notably,
this form can be viewed as Continuous Kernel Graph Convolution (Ma et al., 2024) with a dynamic density
function.

Note that, the attention with PE in relative-form is general, since it is widely employed in many existing
Transformers, from language (Shaw et al., 2018; Raffel et al., 2020; Press et al., 2022) to vision (Dosovitskiy
et al., 2021; Liu et al., 2021; 2022). Many absolute PEs are de facto explicitly/implicitly transformed into the
relative-form in attention mechanisms (Su et al., 2024; Huang et al., 2024; Zhang et al., 2024b).

3.3 Powerful Plain Graph Transformers

In this section, we provide an example of constructing plain Transformers for learning graphs with our
proposed techniques, termed Powerful Plain Graph Transformers (PPGT).

We follow the plain Vision Transformers architecture (Dosovitskiy et al., 2021; Touvron et al., 2021a), —
stems, backbone and prediction head (as shown in Fig. 1(a) and Fig. 1(d)).

Graph Positional Encoding In this work, we utilize relative random walk probabilities (RRWP) (Ma
et al., 2023) as our demonstrating example of graph PE, considering its simplicity and effectiveness. RRWP
is defined as

p′
ij = [I, w, w2, . . . , wK−1][i,j] ∈ RK , (6)

where X[i,j] stands for the i, jth element/slice of a tensor X; w := D−1A is the random walk matrix given
the adjacency matrix A of the graph; and I ∈ RN×N denotes the identity matrix. Most other graph PEs are
applicable in our framework with minor modifications to the PE stem.

1e.g., the bias term can be directly formulated as a float attention mask in SDP-attention in PyTorch.
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Transformer Backbone Following the latest plain Transformers, we utilize the pre-norm (Xiong et al.,
2020) architecture, for l = 1, · · · , L,

X̂l = Xl−1 + MSA(Norm(Xl−1), P), Xl = FFN(Xl) := X̂l + MLP(Norm(X̂l)), Y = Norm(XL) (7)

where Xl = [xl
i]Ni=1 ∈ RN×D contains the node representations at layer l; P = [[pij ]Ni=1]Nj=1 ∈ RN×N×D

contains the relative positional embeddings; MSA denotes multihead self-attention; Norm indicates the normal-
ization layer; MLP is a 2-layer multilayer perception and FFN is a Feedfoward networks with pre-norm.

Stem Before the Transformer backbone, we use small networks, usually referred to as stems, to process
positional encoding p′

ij and merge node/edge attributes x′
i/e′

ij .

We consider a simple stem design for node and PE, respectively:

x0
i = FC(x′

i) + FC(p′
ii), p0

ij = Norm ◦ FFN ◦ · · · ◦ FFN(FC(e′
ij) + FC(p′

ij)), (8)

where FC stands for the fully-connected layer (e.g., linear projection); ◦ stands for function composition; x′
i is

treated as zero if there are no node attributes; e′
ij is set to zero if there are no edge attributes or if (i, j) is

not an observed edge. Driven by the analysis of RRWP in Ma et al. (2023), we introduce additional FFNs
and a final normalization layer in the PE stem to better extract the structural information, mimicking the
pre-norm architecture of the Transformer backbone.

Prediction Head Unless otherwise specified, we employ a task-specific MLP prediction head, following the
designs of GRIT (Ma et al., 2023) and GraphGPS (Rampášek et al., 2022) – for graph-level tasks, we apply
sum or mean pooling followed by an MLP; for node-level tasks, we use an MLP shared across all nodes. For
OGBN-ArXiv, we utilize a class-attention prediction head inspired by CaiT (Touvron et al., 2021b), which is
better suited for the graph-sampling strategy.

3.4 Anti-Spectral-Bias with Sinusoidal PE Enhancement (SPE)
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Figure 3: Illustration of two node-pairs (a) (i, j) and (i, k) of a graph, and (b) absolute difference of RRWPs
and sinusoidally-encoded RRWPs for those two node-pairs.

As discussed in Zhang et al. (2023b; 2024b), as the information provided through graph positional encodings
(PEs) becomes more fine-grained, GD-GNNs can achieve better distinguishability of graph structure. However,
due to the spectral bias of neural networks (Rahaman et al., 2019), MLPs prioritize learning the low-frequency
modes and thus lose detailed information stored in PEs.

To mitigate this issue, motivated by NeRF (Mildenhall et al., 2020), we add an extra sinusoidal encoding on
top of the RRWP and process it with a simple MLP. The sinusoidal encoding is applied to each channel of
p′

ij in an elementwise fashion:

SPE(p′
ijk) =

[
p′

ijk, sin(20πp′
ijk), cos(20πp′

ijk), . . . , sin
(
2S−1πp′

ijk

)
, cos

(
2S−1πp′

ijk

)]
, (9)

where SPE : R → R1+2S with S ∈ Z+ different bases. For notational conciseness, we use SPE(p′
ij) ∈ RK+2SK

to denote the application of SPE to all channels of p′
ij and concatenate the outputs. The PE stem (Eq. (8))

becomes
p0

ij = Norm ◦ FFN ◦ · · · ◦ FFN(FC(e′
ij) + MLP(SPE(p′

ij))) (10)
As shown in Fig. 3, after sinusoidal encoding, the signal differences between p′

ij and p′
ik are amplified.
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3.5 Theoretical Expressivity of PPGT

The theoretical expressivity of PPGT can be analyzed within the GD-WL framework (Zhang et al., 2023b).
When equipped with regular generalized distances (e.g., RRWP, resistance distance (Zhang et al., 2023b)) as
graph PE, PPGT attains expressivity strictly beyond 1-WL and is upper bounded by 3-WL, matching the
theoretical limits of a broad class of GD-WL algorithms. We provide the formal proof in Appx. E.1.

4 Relationship with Previous Work

Graph Transformers. Transformers, especially plain Transformers—architectures close to the vanilla
Transformer (Vaswani et al., 2017) with scaled dot-product (SDP) attention and feed-forward networks
(FFNs)—have achieved outstanding performance across a wide range of domains, from language (Devlin
et al., 2019; Raffel et al., 2020; OpenAI, 2024; Dubey et al., 2024) to vision (Dosovitskiy et al., 2021; Touvron
et al., 2021b; Caron et al., 2021; Oquab et al., 2024).

Motivated by the success of Transformers in other domains, researchers have strived to migrate Transformers
to graph learning to address the limitations of MPNNs. Although the naive migration of Transformers to
graph learning did not work well (Dwivedi & Bresson, 2021), several recent works have achieved considerable
success when constructing graph Transformers, from theoretical expressivity analysis (Zhang et al., 2023b;
2024b) to impressive empirical performance (Ying et al., 2021; Rampášek et al., 2022; Ma et al., 2023).
However, during the development of these graph Transformers, there has been a gradual
but substantial deviation from the plain Transformers widely used in other domains. For
example, SAN (Kreuzer et al., 2021) introduces dual-attention mechanisms with local and global aggregations;
K-Subgraph SAT (Chen et al., 2022) introduces MPNNs into attention mechanisms to compute attention
scores; GraphGPS (Rampášek et al., 2022) heavily relies on the MPNNs within its hybrid Transformer
architecture; EGT (Hussain et al., 2022) introduces gated mechanisms and edge-updates inside the attention;
GRIT (Ma et al., 2023) incorporates a complicated conditional MLP-based attention mechanism (shown in
Appendix. D.1). These deviations prevent the easy adoption of Transformer training advances and obscure the
potential unification of cross-modality foundation models. Among these graph Transformers, the graphormer-
series (Ying et al., 2021; Luo et al., 2022; Zhang et al., 2023b) retain architectures that are closest to
plain Transformers; unfortunately, the result is a substantial gap in empirical performance
and empirical expressivity compared to the best-performing graph Transformers (Rampášek et al.,
2022; Ma et al., 2023). Most graph Transformers treat a node as a token. TokenGT (Kim et al., 2022) views
both nodes and edges as tokens and processes them using plain or sparse Transformers. However, despite
adopting a plain Transformer architecture, TokenGT also falls considerably behind recent graph Transformers
on the expressivity-demanding PCQM4Mv2 dataset.

Developing powerful graph Transformers based on a plain Transformer architecture is particularly attractive,
as the associated hardware stacks and software libraries have already been extensively optimized. Therefore,
we investigate the fundamental limitations of plain Transformers on graph-structured data and introduce
several simple yet effective architectural enhancements that preserve the core plain Transformer design,
enabling competitive empirical performance without requiring significant architectural modifications.

Other Attention Mechanisms. Besides SDP attention, there are other attention variants in use. Bahdanau
et al. (2015) introduced the earliest content-based attention mechanism for recurrent neural networks (RNNs)
based on an MLP, which is more computationally and memory costly. Swin-Transformer-V2 (Liu et al., 2022)
uses cosine-similarity to compute attention scores for better stability, but neglects the magnitude information.
Kim et al. (2021) propose the use of the negative of the square L2-distance, with tied query-key projection
weights, for maintaining Lipchitz continuity of Transformers. Our attention mechanism, although based on
L2 attention, is further simplified and adjusted in order to maintain alignment with SDP attention.

Continuous Kernel Graph Convolution. Ma et al. (2024) introduce graph convolution operators with
continuous kernels defined over pseudo-coordinates of graphs, termed CKGConv. These operators offer better
flexibility in capturing high-frequency information compared to attention-based mechanisms. PPGT with
URPE enhancement can also be interpreted as a generalization of CKGConv. In Eq. (5), the ϕ(pij) term
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serves as the convolution kernel, analogous to that in CKGConv, while the Softmaxj

( q⊺
i

kj√
D

− k⊺
j

kj

2
√

D
+ θ(pij)

)
component can be regarded as a dynamic density function conditioned on the token representations, which is
assumed to be uniform in CKGConv.

Universality of Transformers The Universal Approximation Theorem is fundamental for understanding the
theoretical representational capacity upper bound of neural networks. While Hornik et al. (1989) established
that MLPs are universal approximators for functions f : RN → RM on compact sets, this conclusion does not
automatically extend to other domains. Yun et al. (2020) demonstrated that Transformers with absolute
Positional Encodings (PE)—which sufficiently distinguish token order—are universal approximators for
sequence-to-sequence functions. Conversely, Luo et al. (2022) showed that Transformers with relative PE
lack this universality. However, they show that it can be restored through the universality enhancement.
Regarding graph domains, Kreuzer et al. (2021) state that Transformers with absolute PE can approximate
any function f for the graph isomorphism problem. Crucially, however, this requires that the absolute PE can
uniquely identify nodes in each graph, which is infeasible due to the highly symmetric structure of graphs.

Graph Transformers with full attention and appropriate positional encoding (PE) are typically considered at
most as expressive as the 3-WL test for graph isomorphism (Zhang et al., 2023b). In contrast, those using
linear attention have expressivity equivalent to MPNNs with virtual nodes (Cai et al., 2023).

Additional related work. We discuss additional related work, including MPNNs, graph positional/structural
encoding, higher-order GNNs, and subgraph GNNs in Appx. D.

5 Experimental Results

5.1 Empirical Expressivity on Graph Isomorphism

To better understand the expressivity of PPGT, we evaluate our model on the BREC benchmark (Wang &
Zhang, 2024), a comprehensive dataset for measuring the empirical expressive power of GNNs w.r.t. graph
isomorphism, with graph-pairs from 1-WL to 4-WL-indistinguishable.

From the results (as shown in Tab. 1), we can uncover several conclusions and insights:
[1]. GTs can reach empirical expressivity approaching the theoretical expressivity: With proper
architectural designs and graph PE, most GTs achieve decent expressivity bounded by 3-WL, matching 3-WL
equivalence on the Basic, Regular, and Extended categories of graph pairs. Graphormer, as an example
of earlier plain Transformers, demonstrates inferior expressivity, highlighting the necessity of improving
plain Transformers for graph structure learning. PPGT, while maintaining a plain Transformer architecture,
achieves powerful empirical expressivity through our proposed modifications, surpassing other GTs with more
sophisticated architectures.
[2]. Mismatch between theoretical and empirical expressivity: The theoretical expressivity is not
completely reflected in the empirical expressivity. For example, despite the same theoretical expressivity,
adding SPE—which enhances the information extraction from PE—to PPGT can significantly boost the
empirical expressivity, distinguishing 24 pairs of graphs in CFI (improved from 8 pairs). On the other hand,
EPNN and PPGN, despite having stronger theoretical expressivity, achieve worse empirical expressivity
compared to PPGT. This indicates that besides theoretical expressivity, whether GNNs can effectively learn
to fulfill their theoretical expressivity also matters.
[3]. Mismatch between expressivity and real-world benchmark performance: The stronger
theoretical/empirical expressivity is not completely reflected in real-world benchmark performance. For
example, subgraph GNNs and/or K-WL GNNs with stronger expressivity (e.g., SSWL+, I2GNN, N2GNN)
demonstrate inferior performance compared to GRIT and PPGT on the ZINC benchmark.
[4]. Going beyond GD-WL?: As previously discussed, the design of graph PE, a.k.a., pseudo-coordinates,
can be extended beyond the distance/affinity of graphs. With this in mind, we conduct an exploratory demo
called I2GNN+PPGT, which uses I2GNN to generate additional positional encodings for PPGT. The empirical
expressivity is further improved to 76%, outperforming the standalone I2GNN and PPGT, surpassing 3-WL
and reaching the top performance among the methods compared. This demonstration hints that plain Graph
Transformers can potentially surpass GD-WL and achieve greater expressive power purely through enhanced
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positional encoding designs. This result is noteworthy, as PPGT achieves superior empirical performance
compared to many subgraph GNNs and higher-order GNNs that possess greater theoretical expressivity.

The expressivity bottleneck of our PPGT model does not stem from its architecture, but
rather from the design of positional encodings (PE). To fully realize the expressive potential of
plain Graph Transformers, it is crucial to develop expressive and generalizable PE schemes for
graphs that are also compatible with permutation symmetry.

Table 1: Theoretical Expressivity (WL-Class) vs. Empirical Expressivity (BREC ) vs. Empirical Performance
(ZINC-12K ). Notations on expressivity follow previous works (Morris et al., 2020; Zhang et al., 2024b) that
≡: equivalent; A ⊐ (⊒) B: A is bounded by (or equivalent to) B; A ̸⊐ B: A is not bouned by B. · for unnamed
WL-class. (k − 1)-FWL ≡ k-WL, for k > 2.

Basic (60) Reg.(140) Ext. (100) CFI (100) Total (400) ZINC
Type Model WL-Class Num.(↑) Num.(↑) Num.(↑) Num.(↑) Num.(↑) Acc. (↑) MAE (↓)

Heuristic
Algorithm

1-WL 1-WL 0 0 0 0 0 0% -
3-WL 3-WL 60 50 100 60 270 67.5% -

Subgraph
GNNs

SUN SWL ⊐ 3-WL 60 50 100 13 223 55.8% 0.083
SSWL+ SWL ⊐ SSWL ⊐3-WL 60 50 100 38 248 62% 0.070
I2GNN · ̸⊒3-WL 60 100 100 21 281 70.2% 0.083

K-WL
GNNs

PPGN 3-WL 60 50 100 23 233 58.2% -
2-DRFWL(2) · ⊐ 2-FWL 60 50 99 0 209 52.25 % 0.077
3-DRFWL(2) · ⊐ 2-FWL 60 50 100 13 223 55.75 % -

N2GNN 2-FWL ⊒ 2-FWL+ ⊐ 3-FWL 60 100 100 27 287 71.8% 0.059
Graphormer GD-WL ⊐ 3-WL 16 12 41 10 79 19.8% 0.122

EPNN GD-WL ⊒ EPWL ⊐ 3-WL 60 50 100 5 215 53.8% -
CKGConv GD-WL ⊐ 3-WL 60 50 100 8 218 54.5% 0.059

GD-WL
GNNs

GRIT GD-WL ⊐ 3-WL 60 50 100 8 218 54.5% 0.059
PPGT w/o SPE GD-WL ⊐ 3-WL 60 50 100 8 234 54.5% -

PPGT GD-WL ⊐ 3-WL 60 50 100 24 234 58.5% 0.057
I2GNN+PPGT GD++-WL 60 120 100 24 304 76% -

5.2 Benchmarking PPGT on Real-world Benchmarks

The specifications, details, and references for the baseline methods are provided in Appx. A.6.

Benchmarking GNNs We conduct a general evaluation of our proposed PPGT on five datasets from
Benchmarking GNNs (Dwivedi et al., 2022a): ZINC, MNIST, CIFAR10, PATTERN, and CLUSTER, and
summarize the results in Table 2. We observe that our model obtains the best mean performance for all five
datasets, outperforming various MPNNs, non-MPNN GNNs, and existing graph Transformers. These results
showcase the effectiveness of PPGT for general graph learning with a plain Transformer architecture.

Long Range Graph Benchmarks We present experimental results on three Long-range Graph Benchmark
(LRGB) (Dwivedi et al., 2022c) datasets – Peptides-Function, Peptides-Structure and PASCALVOC-SP
in Table 3. PPGT achieves the lowest MAE on Peptides-Structure, top F1 on PascalVoc-SP and remains
in the top three models on Peptides-Function. We adopt the updated experimental setup from LRGB as
described in Tönshoff et al. (2024), and report the corresponding results. Moreover, the difference in AP for
Peptides-Function dataset between the best performing GRIT and our PPGT is not statistically significant
at the 5% level for a one-tailed t-test. These results demonstrate PPGT’s capability of learning long-range
dependency structures.

5.3 Benchmarking PPGT on Large-scale Graph Benchmark and Large-scale-graph Benchmark

Scaling behavior with respect to both model size and dataset size is a critical consideration. Accordingly, in
this section, we evaluate the applicability of PPGT to large-scale data settings without imposing a strict
parameter budget.
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Table 2: Test performance on five benchmarks from Benchmarking GNNs (baselines please see Appx. A.6 for
details and references). Shown is the mean ± s.d. of 4 runs with different random seeds. Highlighted are the
top first, second, and third results. # Param under 500K for ZINC, PATTERN, CLUSTER and ∼ 100K
for MNIST and CIFAR10.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER
MAE↓ Accuracy↑ Accuracy↑ W. Accuracy↑ W. Accuracy↑

Message Passing Networks
GCN 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976
GIN 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GAT 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455 78.271 ± 0.186 70.587 ± 0.447
GatedGCN 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326
PNA 0.188 ± 0.004 97.94 ± 0.12 70.35 ± 0.63 − −

Non-MPNN Graph Neural Networks
CRaW1 0.085 ± 0.004 97.944 ± 0.050 69.013 ± 0.259 − −
GIN-AK+ 0.080 ± 0.001 − 72.19 ± 0.13 86.850 ± 0.057 −
DGN 0.168 ± 0.003 − 72.838 ± 0.417 86.680 ± 0.034 −
CKGCN 0.059 ± 0.003 98.423 ± 0.155 72.785 ± 0.436 88.661 ± 0.143 79.003 ± 0.140

Graph Transformers
SAN 0.139 ± 0.006 − − 86.581 ± 0.037 76.691 ± 0.65
K-Subgraph SAT 0.094 ± 0.008 − − 86.848 ± 0.037 77.856 ± 0.104
EGT 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409 86.821 ± 0.020 79.232 ± 0.348
Graphormer-GD 0.081 ± 0.009 − − − −
GPS 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
GMLP-Mixer 0.077 ± 0.003 − − − −
GRIT 0.059 ± 0.002 98.108 ± 0.111 76.468 ± 0.881 87.196 ± 0.076 80.026 ± 0.277
PPGT 0.0566 ± 0.002 98.614 ± 0.096 78.560 ± 0.700 89.752 ± 0.030 80.027 ± 0.114

We consider two distinct types of large-scale data settings of graphs: large-scale graph benchmarks and
large-scale-graph benchmarks. Although prior work often conflates these two scenarios, the distinction is
important.

Specifically, large-scale (graph) datasets comprise many graph instances, requiring scalability with respect to
dataset size. In contrast, large-scale graph datasets consist of a single graph with an extremely large number
of nodes, necessitating scalability with respect to input size (analogous to Gigapixel image processing). A
more detailed discussion is provided in Appendix F.1.

Large-scale Graph Benchmark: PCQM4Mv2 To further assess the scalability of PPGT to large-scale
data, we evaluate its performance on the PCQM4Mv2 large-scale graph regression benchmark, which consists
of 3.7 million graphs (Hu et al., 2021). This dataset is among the largest-scale graph benchmarks to date (see
Table 4). Following the experimental protocol of Rampášek et al. (2022), we exclude the 3D information
from the model attributes and use the PCQM4Mv2 validation set in place of the original private Test-dev set
for evaluation. By omitting 3D information, we aim to more accurately measure each model’s intrinsic graph
learning capability, ensuring that results do not reflect reliance on 3D coordinates.

The result of a single random seed run is reported due to the size of the dataset, following previous works.
Our model performs well, comparably to GRIT and GraphGPS, with a similar parameter budget.

Large-scale-graph Benchmark: OGBN-ArXiv Unlike large-scale graph benchmarks, which prioritize
the model’s capacity to learn from many graph instances, a large-scale-graph benchmark typically emphasizes
memory efficiency to handle the substantial size of an individual graph.

Even though PPGT is inherently not designed for processing large-size inputs, we also benchmark our
approach on a large-scale-graph dataset: OGBN-ArXiv (Hu et al., 2020)2.

2No feature enhancement techniques, such as UniMP (Shi et al., 2021) or GIANT (Chien et al., 2022), are applied.
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Table 3: Performance comparison on Long-Range Graph Benchmark (LRGB) – Peptides and PascalVoc-SP
datasets. (mean ± s.d. of 4 runs). Highlighted are the top first, second, and third results.

Method Peptides-Func Peptides-Struct PascalVoc-SP

AP ↑ MAE ↓ F1 ↑

GCN 0.6860 ± 0.0050 0.2460 ± 0.0007 0.2078 ± 0.0031
GINE 0.6621 ± 0.0067 0.2473 ± 0.0017 0.2718 ± 0.0054
GatedGCN 0.6765 ± 0.0047 0.2477 ± 0.0009 0.3880 ± 0.0040
DRew 0.7150 ± 0.0044 0.2536 ± 0.0015 0.3314 ± 0.0024
Exphormer 0.6527 ± 0.0043 0.2481 ± 0.0007 0.3960 ± 0.0027
GPS 0.6534 ± 0.0090 0.2509 ± 0.0010 0.4440 ± 0.0065
GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012 −

PPGT 0.6961 ± 0.0062 0.2450 ± 0.0017 0.4641 ± 0.0033

Table 4: Test performance on PCQM4Mv2 dataset. Shown is the result of a single run due to the computation
constraint. Highlighted are the top first, second, and third results.

Method Model Valid. (MAE ↓) # Param

MPNNs

GCN 0.1379 2.0M
GCN-virtual 0.1153 4.9M
GIN 0.1195 3.8M
GIN-virtual 0.1083 6.7M
GRPE 0.0890 46.2M
Graphormer 0.0864 48.3M
TokenGT (ORF) 0.0962 48.6M

Graph TokenGT (Lap) 0.0910 48.5M
Transformers GPS-small 0.0938 6.2M

GPS-medium 0.0858 19.4M
GRIT 0.0859 16.6M
PPGT (Ours) 0.0856 17.6M

To handle large graphs, we adopt an additional graph sampling strategy. Specifically, we convert node-level
tasks into graph-level tasks by extracting a local inducted subgraph around each target node using breadth-
first search (BFS) node sampling, referred to as Node2Subgraph conversion. Similar techniques exist (Zeng
et al., 2020; Sun et al., 2023), but we do not explore them here, as they are beyond the focus of this work.
Even in efficiency-oriented graph Transformers, graph sampling techniques are widely adopted to handle
ultra–large-scale input graphs that cannot be processed directly.

We compare PPGT with several state-of-the-art efficiency-oriented graph Transformers, including Node-
Former (Wu et al., 2022), Exphormer (Shirzad et al., 2023), and SGFormer (Wu et al., 2023). These models
aim for full node coverage on large graphs but often compromise expressivity, as linear-attention graph
Transformers exhibit the equivalent theoretical expressivity as MPNNs with virtual nodes (Cai et al., 2023).
PPGT maintains high expressivity through Node2Subgraph sampling, even at the cost of reduced node
coverage, and achieves performance comparable to these SOTA efficiency-oriented graph Transformers.

These results suggest that both model expressivity and node coverage are essential for learning on large
graphs, and achieving a balance between the two is more important than overemphasizing either.

5.4 Ablation Study on Proposed Designs

We perform a detailed ablation experiment on ZINC to study the usefulness of each architectural modification
proposed in this work. From Figure 4, we observe that replacing the complicated, conditional MLP-based
attention computation in GRIT (Ma et al., 2023) by SDP attention leads to worse performance if BN (Ioffe
& Szegedy, 2015) is used. This suggests that BN’s inability to regulate the token magnitude information
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Table 5: Testing results (Accuracy) on OGBN-ArXiv (mean ± s.d. of 4 runs). Highlighted are the top first,
second, and third results. Baseline results from (Wu et al., 2023; Shirzad et al., 2023; Li et al., 2022).
(*DeeperGCN does not provide s.d.)

Method GCN GCN-
NSampler DeeperGCN SIGN NodeFormer SGFormer Exphormer PPGT

OGBN-ArXiv 71.74 ± 0.29 68.50 ± 0.23 71.90 70.28 ± 0.25 59.90 ± 0.42 72.63 ± 0.13 72.44 ± 0.28 72.46 ± 0.15

GRIT

SDP+BNPPGT

s +BNL2

SDP+RMSN

SDP+ARMSN

s +ARMSNL2

+URPE

+URPE+SPE

s + 
ARMSN

L2

MLPA+BN+DegS

Figure 4: Ablation Study on ZINC. MLPA: Conditional MLP Attention; DegS: degree scaler; ARMSN:
AdaRMSNorm; URP: Universal RPE; SPE: Sinusoidal PE enhancement.

hurts performance. Using sL2 attention with BN is slightly better, showing that the sL2 attention improves
over SDP by mitigating the bias towards large magnitude keys. The same trend holds for AdaRMSN as well.
Moreover, SDP+ARMSN performs better than SDP+RMSN, showing that the flexibility of preserving the
magnitude information contributes positively towards performance. Finally, we observe that the use of URPE
and sinusoidal PE enhancement provides additional benefits.

5.5 Further Study

In Appx. B, we present additional experimental analyses, including: (B.1) a sensitivity study on the number
of bases S in SPE, demonstrating the impact of SPE on empirical expressivity; (B.2) a case study of different
normalization layers, showing that RMSN discards magnitude information whereas AdaRMSN preserves it;
(B.3) a batch-size sensitivity analysis of AdaRMSN, demonstrating its robustness to batch size, in contrast to
BN; and (B.4) a comparison of runtime and GPU memory consumption between PPGT and GRIT.

6 Conclusion

Plain Transformers are ill-suited for handling the unique challenges posed by graphs, such as the lack of
canonical coordinates and permutation invariance. To obtain superior capacity and empirical performance,
previous graph Transformers (GTs) have introduced non-standard, sophisticated, and domain-specific archi-
tectural modifications. In this work, we demonstrate that plain Transformers can be powerful graph learners
via the proposed minimal, easy-to-adapt modifications. Our Powerful Plain Graph Transformers (PPGTs)
not only achieve competitive expressivity, but also demonstrate strong empirical performance on real-world
graph benchmarks while maintaining the simplicity of plain Transformer architectures. Further exploration
of empirical expressivity also unveils a potential direction for improving plain GTs.

We consider this work an important first step toward reducing dissimilarities between GTs and Transformers
in other domains. This potentially eases the design of general multi-modal foundation models that integrate
learning capabilities on graphs and potentially other irregular non-Euclidean geometric spaces.
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Beyond graph domains, the insights from our work may also benefit Transformer architectures in other
domains, broadening their applicability and impact.

Limitations: This work demonstrates that plain Transformers can serve as powerful graph learners without
external graph models (e.g., MPNNs). However, like most vanilla Transformer architectures, PPGTs incur
an O(N2) computational complexity, which limits their direct applicability to large-size input graphs. To
mitigate this issue, graph sampling techniques can be employed to handle large inputs more efficiently. A
more detailed discussion of these limitations, along with potential directions for addressing them, is provided
in Appx. F.
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A Experimental Details

A.1 Benchmarking GNNs and Long Range Graph Benchmarks

Description of Datasets Table 6 provides a summary of the statistics and characteristics of the datasets
used in this paper. The first five datasets are from Dwivedi et al. (2022a), and the last two are from Dwivedi
et al. (2022c). Readers are referred to Rampášek et al. (2022) for more details of the datasets.

Table 6: Overview of the graph learning datasets involved in this work (Dwivedi et al., 2022a;c; Irwin et al.,
2012; Hu et al., 2021).

Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction level Prediction task Metric

ZINC 12,000 23.2 24.9 No Graph Regression Mean Abs. Error
SP-MNIST 70,000 70.6 564.5 Yes Graph 10-class classif. Accuracy
SP-CIFAR10 60,000 117.6 941.1 Yes Graph 10-class classif. Accuracy
PATTERN 14,000 118.9 3,039.3 No Inductive Node Binary classif. Weighted Accuracy
CLUSTER 12,000 117.2 2,150.9 No Inductive Node 6-class classif. Weighted Accuracy

Peptides-func 15,535 150.9 307.3 No Graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No Graph 11-task regression Mean Abs. Error
PascalVoc-SP 11,355 479.4 2,710.5 No Inductive Node 21-class classif. Marco F1

PCQM4Mv2 3,746,620 14.1 14.6 No Graph regression Mean Abs. Error
OGBN-ArXiv 1 169,343 1,116,243 Yes Transductive Node 40-class classif. Accuracy

Dataset splits, random seed, and parameter budgets We conduct the experiments on the standard
train/validation/test splits of the evaluated benchmarks, following previous works (Rampášek et al., 2022;
Ma et al., 2023). For each dataset, we execute 4 trials with different random seeds (0, 1, 2, 3) and report the
mean performance and standard deviation. We follow the most commonly used parameter budgets: around
500k parameters for ZINC, PATTERN, CLUSTER, Peptides-func, and Peptides-struct; and around 100k
parameters for SP-MNIST and SP-CIFAR10.

Hyperparameters Due to the limited time and computational resources, we did not perform an exhaustive
search on the hyperparameters. We start with the hyperparameter setting of GRIT (Ma et al., 2023) and
perform minimal search to satisfy the commonly used parameter budgets.

The hyperparameters are presented in Table 7 and Table 8. In the tables, S.D. stands for stochastic
depth (Huang et al., 2016), a.k.a., drop-path, in which we treat a graph as one example in stochastic depth.

For Peptides-func, we find that there exists a mismatch between the cross-entropy loss and the metric, average
precision, due to the highly imbalanced label distribution. Empirically, we observe that adding a BN in the
prediction head post-graph-pooling effectively mitigates the problem.

A.2 BREC: Empirical Expressivity Benchmark

BREC (Wang & Zhang, 2024) is an empirical expressivity dataset, consisting of four major categories of
graphs: Basic, Regular, Extension, and CFI. Basic graphs include 60 pairs of simple 1-WL-indistinguishable
graphs. Regular graphs include 140 pairs of regular graphs from four types of subcategories: 50 pairs of simple
regular graphs, 50 pairs of strongly regular graphs, 20 pairs of 4-vertex condition graphs and 20 pairs of
distance regular graphs. Extension graphs include 100 pairs of special graphs that arise when comparing four
kinds of GNN extensions (Papp & Wattenhofer, 2022). CFI graphs include 100 pairs of graphs generated by
CFI methods (Cai et al., 1992). All pairs of graphs are 1-WL-indistinguishable.

We follow the standard training pipelines from BREC: pairwise contrastive training and evaluating process.
No specific parameter budget required on the BREC dataset.

Hyperparameter The hyperparameter setting for PPGT on BREC can be found in Table 10.
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Table 7: Hyperparameters for five datasets from Benchmarking GNNs (Dwivedi et al., 2022a)

Hyperparameter ZINC MNIST CIFAR10 PATTERN CLUSTER
PE Stem
MLP-dim 128 64 64 128 128
Edge-dim 64 32 32 64 64
# FFN 2 1 2 2 2
FFN expansion 2 2 2 2 2
PE-dim 24 10 10 32 32
# bases 3 3 3 3 3
Backbone
# blocks 12 4 10 12 16
Dim 64 48 32 64 56
FFN expansion 2 2 2 2 2
# attn. heads 8 6 4 8 7
S.D. 0.1 0.2 0.2 0.1 0.3
Attn. dropout 0.2 0.5 0.2 0.1 0.3
Pred. Head
Graph Pooling sum mean mean - -
Norm - - - - -
# layers 3 2 2 2 2
Training
Batch size 32 32 16 32 16
Learn. rate 2e-3 1e-3 1e-3 1e-3 1e-3
# epochs 2500 400 200 400 150
# warmup 50 10 10 10 10
Weight decay 1e-5 1e-5 1e-5 1e-5 1e-5
# parameters 487K 102K 108K 497K 496K

For the experimental setup of I2-GNN + PPGT, we construct a subgraph for each edge within the 4-hop
neighborhood and use RRWP as the node-attributes. We employ a 6-layer GIN with BN on each subgraph
independently to get its representation. The subgraph representations are fed to PPGT as additional
edge-attributes. The I2-GNN and PPGT are trained end-to-end together.

A.3 PCQM4Mv2 from OGB Large-Scale Challenge

PCQM4Mv2 is a large-scale quantum chemistry graph dataset benchmark, containing over 3.7M graphs,
proposed from OGB Large-Scale Challenge (OGB-LSC) (Hu et al., 2021). The statistics of the dataset can
be found in Table 6.

A.4 OGBN-ArXiv from OGB Benchmark

OGBN-ArXiv is a large-scale graph benchmark featuring a transductive node classification task from Open
Graph Benchmark (Hu et al., 2020). Unlike the other graph datasets used in this work, OGBN-ArXiv
comprises a single large-scale graph containing over 169,000 nodes. This benchmark emphasizes the graph
models’ scalability to large input graphs. The statistics of the dataset can be found in Table 6.

For PPGT, we convert the transductive node-classification task on OGBN-ArXiv into a graph-classification
setting via the Node2Subgraph transformation. In this framework, we employ the class-attention mech-
anism (Touvron et al., 2021b) as the output head. As OGBN-ArXiv is a directed graph, we compute
dual-direction RRWP features, i.e., random walks along both in-edge and out-edge directions.
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Table 8: Hyperparameters for two datasets from the Long-range Graph Benchmark (Dwivedi et al., 2022c)

Hyperparameter Peptides-func Peptides-struct PascalVoc-SP
PE Stem
MLP-dim 128 128 128
Edge-dim 64 64 64
# FFN 1 1 1
FFN expansion 2 2 2
# bases 3 3 3
PE-dim 32 24 16
Backbone
# blocks 5 5 12
Dim 96 96 64
FFN expansion 2 2 2
# attn. heads 16 8 8
S.D. 0.1 0.1 0.2
Attn. dropout 0.2 0.1 0.3
Pred. Head
Graph Pooling sum mean -
Norm BN - -
# layers 3 2 2
Training
Batch size 32 32 16
Learn. rate 7e-4 7e-4 1e-3
# epochs 400 250 200
# warmup 10 10 10
Weight decay 1e-5 1e-5 1e-2
# Parameters 509K 488K 492K

A.5 Optimizer and Learning Rate Scheduler

Following most plain Transformers in other domains, we use AdamW (Loshchilov & Hutter, 2019) as the
optimizer and the Cosine Annealing Learning Rate scheduler (Loshchilov & Hutter, 2017) with linear warm
up.

A.6 Baselines Information

For benchmarks from BenchmarkingGNN (Dwivedi et al., 2022a).

• Tyical Message-passing Networks(MPNNs): GCN (Kipf & Welling, 2017), GIN (Xu et al.,
2019), GAT (Veličković et al., 2018), GatedGCN (Bresson & Laurent, 2018), PNA (Corso et al.,
2020);

• GNNs going beyond MPNNs: CRaW1 (Tönshoff et al., 2023), GIN-AK+ (Zhao et al., 2022),
DGN (Beani et al., 2021), CKGCN (Ma et al., 2024),

• Graph Transformers SAN (Kreuzer et al., 2021), K-Subgraph SAT (Chen et al., 2022), EGT (Hus-
sain et al., 2022), Graphormer-GD (Zhang et al., 2023b), GPS (Rampášek et al., 2022), GMLP-
Mixer (He et al., 2023), GRIT (Ma et al., 2023).

For BREC (Wang & Zhang, 2024):
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Table 9: Hyperparameters for PCQM4Mv2 (Hu et al., 2021) and OGBN-ArXiv (Hu et al., 2020).

Hyperparameter PCQM4Mv2 OGBN-ArXiv
PE Stem
MLP-dim 512 192
Edge-dim 128 96
# FFN 8 2
FFN expansion 2 2
# bases 10 3
PE-dim 24 5 (dual direction)
Backbone
# blocks 16 10+2(class attention)
Dim 512 192
FFN expansion 2 2
# attn. heads 16 8
S.D. 0.2 0.5
Attn. dropout 0.2 0.5
Node2Subgraph
Node Masking - 0.5
Max Size of Graph - 100
Pred. Head
Graph Pooling sum class attention
Norm - -
# layers 3 1
Training
Batch size 2048 128
Learn. rate 1e-3 2e-3
# epochs 500 300
# warmup 50 10
Weight decay 1e-3 5e-2
# parameters 17.6M 3.74M

• Subgraph GNNs: SUN (Frasca et al., 2022), SSWL+ (Zhang et al., 2023a), I2-GNN (Huang et al.,
2023)

• K-WL/K-FWL GNNs: PPGN (Maron et al., 2019), 2-DRFWL(2) (Zhou et al., 2023), 3-DRFWL(2)
(Zhou et al., 2023)

• K-FWL+SubgraphGNNs: N2GNN (Feng et al., 2023)

• GD-WL GNNs Graphormer (Ying et al., 2021), EPNN (Zhang et al., 2024b), CKGConv (Ma et al.,
2024), GRIT (Ma et al., 2023).

For OGB-LSC (Hu et al., 2021):
MPNNs (GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019) with/without virtual nodes) as well as several
Graph Transformers (GRPE (Park et al., 2022), Graphormer (Ying et al., 2021), TokenGT (Kim et al., 2022)
and GraphGPS (Rampášek et al., 2022)).
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Table 10: Hyperparameters for BREC (Wang & Zhang, 2024)

Hyperparameter BREC
PE Stem
MLP-dim 192
Edge-dim 96
# FFN 4
FFN expansion 2
# bases 15
Backbone
# blocks 6
Dim 96
FFN expansion 2
# attn. heads 16
S.D. 0.
Attn. dropout 0.
Pred. Head
Graph Pooling sum
Norm BN -
# layers 3
PE-dim 32
Training
Batch size 32
Learn. rate 1e-3
# epochs 200
# warmup 10
Weight decay 1e-5
# parameters 874K

B Additional Study

B.1 Sensitivity Study: Impact of the Number of Bases S in SPE on Empirical Expressivity

We conduct a sensitivity analysis on the hyperparameter S in the sinusoidal PE enhancement, focusing on
its impact on empirical expressivity. We notice that S has no impact on distinguishing basic, regular, and
extension graphs, but it displays a stronger influence on distinguishing CFI graphs. In this sensitivity study,
we fix the other architectural components and hyperparameters and only vary S along with the size of the
first fully-connected layer.

As shown in Table 11, gradually increasing S leads to a better ability to distinguish CFI graphs. This
observation matches our motivation for incorporating SPE, as discussed in Sec. 3.4. SPE can effectively
enhance the signal differences in graph PE, and thus can make it easier for MLPs to learn how to extract
pertinent information. However, the accuracy does not increase monotonically with S. Once S is sufficiently
large, further increasing it does not necessarily lead to stronger empirical expressivity, and potentially can
lead to overfitting and/or demand more training iterations.
Table 11: Sensitivity study on S in Sinusoidal encoding for RRWP on CFI graphs from BREC (Wang &
Zhang, 2024).

SPE (S =) 0 3 6 9 12 15 20

# Correct in CFI (100) 3 3 9 17 20 24 22
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B.2 Case Study Comparing BN, RMSN and AdaRMSN

We conduct an additional case study to demonstrate the advantages of AdaRMSN in addressing the limitations
of token-wise normalization: the ineffectiveness in preserving magnitude information.

We randomly generate a set of points in 2D Euclidean space with magnitudes ranging from 0.5 to 1.5. Given
the data points, we train auto-encoders with BN/RMSN/AdaRMSN, respectively,

y = FC ◦ Norm ◦ FC(x) (11)

where FC stands for fully-connected layers (i.e., linear layers) and Norm denotes the normalization layers.
We conduct an overfitting test as a sanity check to measure information loss in the normalization layer
via the autoencoders’ ability to recover input data points in predictions. Each auto-encoder is trained
independently for 5000 epochs in full-batch mode using the AdamW optimizer. As illustrated in Fig. 5, we
present visualizations comparing input data points with predictions generated by autoencoders employing
BN, RMSN, and AdaRMSN, respectively. The results demonstrate that RMSN fails to preserve magnitude
information, while both BN and AdaRMSN successfully maintain this crucial aspect of the data points. We
note that BN relies on cumulative moving averages of mini-batch statistics to estimate population parameters,
which can make it sensitive to the choices of batch size.
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Figure 5: (Case Study of AdaRMSN) Visualization of Input and Pred data points [(1) Input; (2) Predictions w/
BN; (3) Predictions w/ RMSN; (4) Predictions w/ AdaRMSN]. RMSN is ineffective in preserving magnitude
information, whereas both BN and AdaRMSN successfully maintain the crucial magnitude information of the
data point
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B.3 Sensitivity Study of AdaRMSN w.r.t. Batch Size

To better understand the advantages of AdaRMSN over BatchNorm (BN), we conducted a sensitivity study
comparing normalization techniques w.r.t. batch sizes, based on PPGT on the ZINC dataset The study (as
shown in Fig. 6) showcases the better stability of AdaRMSN compared to the choice of BN used in many
previous GTs (Kreuzer et al., 2021; Rampášek et al., 2022; Ma et al., 2023).

Figure 6: Test MAE of PPGT on ZINC v.s. Batch Size (BS). # Training epochs are adjusted per batch-size
for the same total update steps: 400 ∗ BS/32. The first 10% epochs are in the warmup stage. AdaRMSN and
RMSN demonstrate better stability and less sensitivity to varying batch sizes compared to BN.

B.4 Runtime and GPU Consumption

We report basic statistics on the runtime and GPU memory consumption of PPGT, in comparison with
GRIT (see Table 12). The results suggest that, even without efficiency-driven techniques, adopting a
plain Transformer architecture—rather than more complex graph-specific Transformer designs used in prior
work—can yield improved runtime and reduced GPU memory consumption.

Table 12: Comparison of peak GPU memory usage and per-epoch training time for GRIT and PPGT. Dataset:
Peptides-Structure (15K graphs); Model config.: 5 transformer layers, 96 channels, batch size 32. Hardware:
a single Nvidia V100 GPU with 32GB memory, supported by 80 Intel Xeon Gold 6140 CPUs running at
2.30GHz

Model GPU Memory (GB) Training Time (Sec/Epoch)
GRIT 29.16 141.60
PPGT 25.07 100.68
Improv. ∼14.03% ∼28.9%

C Implementation Details

C.1 Attention in Graph Transformers

In SAN (Kreuzer et al., 2021) and GRIT (Ma et al., 2023), the attention mechanism is implemented with
the sparse operations in PyTorch Geometric due to the complicated attention mechanism. For PPGTs, we
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provide two versions, one based on the sparse operations and another one based on the dense operations with
padding. The latter one is typically faster for larger-scale graphs but consumes more memory.

C.2 Initializations of Parameters

Following the most recent plain Transformers, we initialize the weights of linear layers in the backbone as
well as the prediction heads with truncated normalization with standard deviation σ = 0.02.

For the stems, we utilize Kaiming uniform initialization (He et al., 2015) with a = 0 for hidden layers in
MLPs and a = 1 for output layers in MLPs or standalone linear layers.

For lookup-table-like embedding layer, nn.Embedding, we utilize the default normal initialization with σ = 1.

C.3 Injection of Degree and Graph Order

For all datasets, we inject the log-degree of each node and the log-graph-order (i.e., the number of nodes in
the graph) as additional node attributes. Besides RRWP, we inject the reciprocal of degrees for node i and
node j as well as the reciprocal of the graph order to p′

ij as an extension.

For superpixel datasets (CIFAR10, MNIST), we also include the location of pixel into the graph PE.

C.4 Notes on Reproducibility

Our implementation is built upon PyTorch and PyTorch Geometric. For processing graphs, we utilize the
scatter operations from PyTorch Geometric, which are known to be non-deterministic for execution on GPUs.
Therefore, even with the same random seed, the experimental results of different trials might vary in an
acceptable range. This statement is applicable to most existing models.

We conducted the experiments for ZINC with NVIDIA GeForce RTX 4080 super, experiments for PCQM4Mv2
on NVIDIA H100, and the rest experiments with NVIDIA A100.

D Additional Related Work

D.1 GRIT’s Attention

The attention mechanism in GRIT (Ma et al., 2023) adopts the conditional MLP (Perez et al., 2018),
involves linear projections, elementwise multiplications, and an uncommon non-linearity in the form of a
signed-square-root:

êi,j = σ
(

ρ ((WQxi + WKxj) ⊙ WEwei,j) + WEbei,j

)
∈ Rd′

,

αij = Softmaxj∈V(WAêi,j) ∈ R,

x̂i =
∑
j∈V

αij · (WVxj + WEvêi,j) ∈ Rd,

(12)

where σ is a non-linear activation (ReLU by default); WQ, WK, WEw, WEb ∈ Rd′×d, WA ∈ R1×d′ , WV ∈
Rd×d and WEv ∈ Rd×d′ are learnable weight matrices; ⊙ indicates elementwise multiplication; and ρ(x) :=
(ReLU(x))1/2 −(ReLU(−x))1/2 is the signed-square-root. Note that ei,j here corresponds to pij in our PPGT,
but it requires updating within the attention mechanism. According to Ma et al. (2023), the signed-square-root
ρ is necessary to stabilize the training.

D.2 MPNNs

As the most widely used GNNs, message-passing neural networks (MPNNs) (Gilmer et al., 2017; Kipf &
Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018) learn graphs, following the 1-WL framework (Xu
et al., 2019). However, there are several known limitations of MPNNs: (1) over-smoothing (Li et al., 2018;
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Oono & Suzuki, 2020); (2) over-squashing and under-reaching (Alon & Yahav, 2020; Topping et al., 2022);
and (3) limited expressivity bounded by 1-WL (Xu et al., 2019).

Researchers dedicate relentless efforts to overcome the aforementioned limitations and lead to three research
directions: (1). graph Transformers; (2) higher-order GNNs; (3) subgraph GNNs.

D.3 Graph Positional Encoding and Structural Encoding

Attention mechanisms are structure-invariant operators which sense no structural information inherently.
Therefore, Transformers strongly rely on positional encoding to capture the structural information (Vaswani
et al., 2017; Dosovitskiy et al., 2021; Su et al., 2024). Designing graph positional encoding is challenging
compared to the counterpart in Euclidean spaces, due to the irregular structure and the symmetry to
permutation. Widely used graph positional encoding includes absolute PE: LapPE (Dwivedi & Bresson, 2021;
Huang et al., 2024); and relative PE: shortest-path distance (Ying et al., 2021), resistance-distance (Zhang
et al., 2023b), and RRWP (Ma et al., 2023). Recent works (Black et al., 2024; Zhang et al., 2024b) study the
connections between absolute PE and relative PE.

Besides the aforementioned PE, there exist several structural encoding (SE) approaches that aim to enhance
MPNNs, e.g., RWSE (Dwivedi et al., 2022b), substructure counting (Bouritsas et al., 2022), and homomorphism
counting (Jin et al., 2024). These SEs can effectively improve the empirical performance and/or theoretical
expressivity of MPNNs. Although they are not designed specifically for graph Transformers, integrating them
into graph Transformers is usually beneficial.

D.4 Higher-order GNNs

Besides graph Transformers, inspired by the K-WL (Weisfeiler & Leman, 1968) and K-Folklore WL (Cai
et al., 1992) frameworks, K-GNNs (Morris et al., 2019; Zhou et al., 2023; Maron et al., 2019) uplift GNNs to
higher-order, treating a tuple of K nodes as a token and adapting the color refinement algorithms accordingly.
Some other higher-order GNNs (Bodnar et al., 2022; 2021) are less closely related to K-WL but still perform
well. K-GNNs can reach theoretical expressivity bounded by K-WL, but are typically computationally costly,
with O(NK) computational complexity.

D.5 Subgraph GNNs

Subgraph GNNs (Bevilacqua et al., 2022; Frasca et al., 2022; Zhang et al., 2024a; Zhang & Li, 2021; Huang
et al., 2023) focus on improving the expressivity of GNNs beyond 1-WL. Unlike graph Transformers and
higher-order GNNs, subgraph GNNs typically do not change the model architecture. Instead, MPNNs are
trained using a novel learning pipeline: a graph is split into multiple subgraphs, subgraph representations are
learned independently, and then the subgraph representations are merged to obtain the graph representation.
Node-level subgraph GNNs are typically bounded by 3-WL (Frasca et al., 2022), while the expressivity
of edge-level subgraph GNNs is still under-explored. Huang et al. (2023) reveals that the expressivity of
edge-level GNNs might partially go beyond 3-WL. Note that subgraph GNNs usually have high memory
requirements due to the need to save multiple copies for each input graph.

Although most subgraph GNNs use MPNNs as the base model, the potential integration with stronger graph
models, e.g., higher-order GNNs and graph Transformers, is still an open question.

E Theoretical Analysis

E.1 Theoretical Expressivity of PPGT

Our PPGT with sL2 attention (with URPE) and RRWP as graph PE falls within the WL-class of Generalized-
Distance (GD)-WL (Zhang et al., 2023b). The expressive power of GD-WL depends on the choice of
generalized distance (i.e., graph positional encoding). With a suitable graph PE, such as resistance distance
(RD) and RRWP, GD-WL is strictly more expressive than 1-WL and is bounded by 3-WL (1-WL ⊐ GD-WL
⊐ 3-WL).
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The detailed discussion of GD-WL GNNs and its theoretical expressivity can be found in Sec. 4 and Appx.
E.3 of Zhang et al. (2023b), as well as in Sec. 5 of Zhang et al. (2024b). The discussion on RRWP can be
found in Sec. 3.1.1 of Ma et al. (2023). The empirical study of realized expressivity (in Sec. 5.1) also matches
the theoretical expressivity of PPGT.

Based on the GD-WL analysis framework (Zhang et al., 2023b), the proof is straightforward. However, we
still provide a simple proof for the completeness of the conclusion.
Proposition E.1. Powerful Plain Graph Transformers (PPGT) with generalized distance (GD) as graph PE
are as powerful as GD-WL, when choosing proper functions ϕ and θ and using a sufficiently large number of
heads and layers.

For a graph G = (V, E), the iterative node color update in GD-WL test is defined as:

χℓ
G(v) = hash({{(dG(v, u), χℓ−1

G (u)) : u ∈ V}}) . (13)

where dG(v, u) denotes a distance between nodes v and u, and χ0
G(v) is the initial color of v. The multiset of

final node colors {{χL
G(v) : v ∈ V}} at iteration L is hashed to obtain a graph color.

Lemma E.2. (Lemma 5 of Xu et al. (2019)) For any countable set X , there exists a function f : X → Rn

such that h(X̂ ) :=
∑

x∈X̂ f(x) is unique for each multiset X̂ ∈ X of bounded size. Moreover, for some function
ϕ, any multiset function g can be decomposed as g(X̂ ) = ϕ(

∑
x∈X̂ f(x)).

Proof of Proposition E.1. In this proof, we consider shortest-path distance (SPD) as an example of generalized
distance (GD), denoted as dSPD

G , which can be directly extended to other GDs such as the resistance distance
(RD) (Zhang et al., 2023b) and RRWP (Ma et al., 2023). Note that the choice of GD determines the practical
expressiveness of GD-WL.

We consider all graphs with at most n nodes to distinguish in the isomorphism tests. The total number of
possible values of dG is finite and depends on n (upper bounded by n2). We define

Dn = {dSPD
G (u, v) : G = (V, E), |V| ⩽ n, u, v ∈ V} , (14)

to denote all possible values of dSPD
G (u, v) for any graphs with at most n nodes. We note that since Dn is a

finite set, its elements can be listed as Dn = {dG,1, · · · , dG,|Dn|}.

Then the GD-WL aggregation at the ℓ-th iteration in Eq. (13) can be equivalently rewritten as (See Theorem
E.3 in Zhang et al. (2023b)):

χℓ
G(v) := hash

(
χℓ,1

G (v), χℓ,2
G (v), · · · , χ

ℓ,|Dn|
G (v)

)
,

where χℓ,k
G (v) := {{χℓ−1

G (u) : u ∈ V, dG(u, v) = dG,k}} . (15)

In other words, for each node v, we can perform a color update by hashing a tuple of color multisets determined
by the dG. We construct the k-th multiset by injectively aggregating the colors of all nodes u ∈ V at a specific
distance dG,k from node v.

Assuming the color of each node χl
G(v) is represented as a vector x(l)

v ∈ RC , by setting the query and key
projection matrices WQ, WK as zero matrices and θ as a zero function following Zhang et al. (2023b), the
attention layer of PPGT with URPE of the h-th head (Eq. (5)) can be written as

x̂(l),h
v := 1

|V|
∑
u∈V

(Wh
OWh

V x(l)
u ) · ϕh

(
dG(u, v)

)
. (16)

By defining ϕ(d) := I(d = dG,h), where I : R → R is the indicator function, dG,h ∈ Dn is a pre-determined
condition, we can have

x̂(l),h
v = 1

|V|
∑

dG(u,v)=dG,h

x(l)
u . (17)
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where Wh
O and Wh

V are dropped since they can be absorbed into the following feed-forward networks (FFNs).
Note that the constant 1

|V| can be extracted with an additional head and injected back to node representation
in the following FFNs.

Then, we can invoke Lemma E.2 to establish that each attention head of PPGT can implement an injective
aggregating function for {{χl−1

G (u) : u ∈ V, dG(u, v) = dG,h}}. The summation/concatenation of the output
from attention heads is an injective mapping of the tuple of multisets

(
χl,1

G , · · · , χ
l,|Dn|
G

)
. When any of the

linear mappings has irrational weights, the projection will also be injective. Therefore, with a sufficiently
large number of attention heads, the multiset representations χl,k

G , k ∈ [|Dn|] can be inejectively obtained.

Therefore, with a sufficient number of attention heads and a sufficient number of layers, PPGT is as powerful
as GD-WL in distinguishing non-isomorphic graphs, which concludes the proof.

It is worth mentioning that the expressivity upper bound of GD-WL (i.e., 2-FWL/3-WL), given by Theorem
4.5 in Zhang et al. (2023b), is based on the usage of generalized distance (e.g., resistance distance) as graph
PE. If we add PE that provides finer structural information, PPGT might surpass the 3-WL expressivity
upper bound. This is empirically verified in Section 5.1, where we demonstrate using I2GNN to generate PE
for PPGT.

E.2 LN and RMSN are Magnitude Invariant

Proposition E.3. LN and RMSN are magnitude-invariant, i.e., for an input vector x ∈ RD and a positive
scalar c ∈ R+, LN(c · x) = LN(x) and RMSN(c · x) = RMSN(x).

Proof of Proposition E.3. From Eq. (1), we immediately have:

RMSN(c · x) := c · x
1√
D

∥c · x∥
· γ ,

= �c · x
�c√
D

· ∥x∥
· γ , since vector norm is absolutely homogeneous and c > 0

= RMSN(x), ∀c > 0 , (18)

which proves the proposition for RMSN. The proof for LN follows the same steps.

F Limitations and Discussion

As plain Transformers, PPGTs still require O(N2) computational complexity like other plain Transformers.

This limits the ability of PPGTs to handle very large-size inputs, which are known as large-scale graphs in
the context of graph learning.

Note that the large-scale graph data is a different concept from large-scale graphs. We provide a more detailed
discussion here.

F.1 Large-scale Graph Datasets v.s. Large-scale-graph Datasets

As foundation models become increasingly popular, researchers have grown interested in the models’ capacity
to learn from massive volumes of data, a.k.a., large-scale data.

However, in the domain of graph learning, persistent confusion remains when discussing scaling up graph
models for large-scale datasets, particularly concerning two distinct concepts: "large-scale datasets" versus
"large-scale-graph datasets."

We provide a preliminary clarification regarding them:
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• Large-scale (graph) datasets (a large number of examples, i.e., graphs): This aligns with the
conventional understanding of dataset scale in machine learning (e.g., language and vision), where
capacity is the crucial factor for learning from the vast volume of training data. This type of dataset
is the usual scenario for training large foundation models.

• Large-scale-graph dataset (many nodes in a graph): This corresponds to the challenges in long-
context learning in language tasks and gigapixel image processing in vision tasks. The challenges
mainly lie in the computational efficiency and memory consumption of the models. These datasets
are usually small-scale in terms of examples, typically containing only one graph per dataset.

Even though these two research directions are both highly important in solving real-world problems. The
improvements on "scalability" and on "capacity" of (graph) models are generally two distinct research directions
that are often mutually exclusive in practice.

F.2 Efficiency Techniques for Plain Transformers

As plain Transformers, PPGTs can potentially adopt several efficiency techniques developed for plain
Transformers in graph-related and other domains, directly or with modifications.
BigBird (Zaheer et al., 2020) and Exphormer (Shirzad et al., 2023) propose building sparse attention
mechanisms through sparse computational graphs, using random graphs and expander graphs for language
tasks and graph learning tasks, respectively. They can be directly adopted by PPGTs.
Performer (Wu et al., 2021) proposes building low-rank attention via positive orthogonal random features
approaches, which can be directly applied to sL2 attention. However, it is not directly compatible with
relative PE.
Ainslie et al. (2023) proposes grouped-query attention (GQA) to save the memory bandwidth. It is a more
specific design for decoder-only Transformers (for KV-cache), and might not introduce remarkable benefits to
encoder-based Transformers, such as ViTs (Dosovitskiy et al., 2021; Touvron et al., 2021a; Liu et al., 2021),
Time-series Transformers (Nie et al., 2023; Zhang et al., 2024c) and most GTs (Kreuzer et al., 2021; Ying
et al., 2021; Zhang et al., 2023b; Ma et al., 2023) including PPGTs.

We mention only a few efficiency techniques for plain Transformers here. Owing to the plain Transformer
architecture, PPGTs can potentially adopt efficiency techniques developed in other domains and leverage
their training advances.

F.3 Impact Statement

This paper presents work whose goal is to advance the field of Geometric/Graph Deep Learning. There are
many potential societal consequences of our work, none of which we feel must be specifically highlighted here.
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