
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SECOND-ORDER FINE-TUNING WITHOUT PAIN FOR
LLMS: A HESSIAN INFORMED ZEROTH-ORDER
OPTIMIZER

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large language models (LLMs) is necessary for specific downstream
tasks, but the classic adaptive first-order optimizer entails prohibitive GPU memory
because of backpropagation. Recent works such as MeZO have turned to zeroth-
order optimizers for fine-tuning, which reduce substantial memory by using just
two forward passes. However, heterogeneous curvatures across different parameter
dimensions in LLMs often cause convergence instability or even failure. In this
work, we propose HiZOO, a diagonal Hessian informed Zeroth-Order Optimizer ,
which is the first to leverage the diagonal Hessian to enhance ZOO for fine-tuning
LLMs. We provide the theoretical proof for HiZOO and visualize the optimiza-
tion trajectories on the test functions. Extensive experiments on various models
(RoBERTa, OPT, Phi-2, and LLama3, with 350M∼66B parameters) indicate that
HiZOO significantly reduces the number of training steps and improves model
accuracy. For example, on the SST2 task, HiZOO achieves an 8× speed-up and
better accuracy. Even when scaled to 66B-model, HiZOO outperforms MeZO
with up to 5.1% absolute improvement. We also propose HiZOO-L, which re-
duces the Hessian memory cost to 10% of the MeZO, while maintaining almost
same performance. Compared with ZO-Adam, HiZOO-L achieves a 4.3% ab-
solute improvement, just using 50% of the GPU memory. Code is available at
https://anonymous.4open.science/r/HiZOO-27F8.

1 INTRODUCTION

Memory efficient ✅
Converge quickly ✅

1 forward pass

1 backward pass

Adam MeZO

HiZOO

2 forward passes

Converge slowly ❌Memory
intensive ❌

updated
parameters

exact grad

m

v

h

first order
moment

second order
moment

Hessian
3 forward passes

projected
grad

h

+𝜖

−𝜖

update with
, , h

projected
grad

+𝜖

−𝜖

Figure 1: (Left) Comparison of HiZOO, MeZO and Adam. (Right) Heterogeneous curvatures
example. HiZOO updates along the direction with greater curvature (X) and converges more quickly
than MeZO. The corresponding loss curves are shown in Section 3.5.

Fine-tuning pre-trained LLMs for specific tasks has gained significant attention recently. As the
number of model parameters increases, full parameter fine-tuning (FT) becomes markedly memory-
intensive. To alleviate GPU memory limitations, parameter-efficient fine-tuning (PEFT) methods (Hu
et al., 2022; Li & Liang, 2021; Dettmers et al., 2023; Zhao et al., 2024; Pan et al., 2024) have been
developed, which only fine-tune a small number of (extra) model parameters. As a result, they
significantly reduce the computational and storage cost, while achieving performance comparable to
a fully fine-tuned model.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Adaptive first-order optimizers such as Adam (Kingma & Ba, 2015) and AdamW (Loshchilov &
Hutter, 2019) are widely used to fine-tune LLMs. However, using these optimizers still leads to
substantial memory consumption, primarily due to the inherent backpropagation process to calculate
the gradient. To address these limitations, MeZO (Malladi et al., 2023) proposed to utilize a zeroth-
order optimizer (ZOO) to estimate the gradient with just two forward passes per step, no need for
backpropagation anymore. This achieves numerous memory reductions and makes it accessible to
train and store LLMs on consumer hardware.

However, the parameters of LLMs often exhibit heterogeneous curvatures across different dimensions,
as documented in recent studies (Sagun et al., 2017; Ghorbani et al., 2019; Zhang et al., 2020). This
significant difference of second derivative makes the MeZO converge towards saddle point, slowing
down the convergence speed, as shown in Figure 1 (right). Since the incorporation of Hessian to
measure the curvature properties of the loss landscape, second-order methods (Liu & Li, 2023; Yao
et al., 2021; Anil et al., 2021) can solve this suboptimal behavior. Unfortunately, in the context of
zeroth-order optimization, one cannot directly compute the Hessian atop first-order derivatives.

In light of above, we propose HiZOO, as shown in Figure 1 (left), which estimates the diagonal
Hessian by one more forward pass. HiZOO can act as a pre-conditioner, directly adjusting the
update size of different parameters according to their curvatures. So that it can improve the model
convergence when encountered with heterogeneous curvatures. As shown in Figure 2, HiZOO can
significantly reduce number of training steps and improve model accuracy. Here we summarize our
key contributions as follows:

Figure 2: Performance of MeZO, HiZOO and HiZOO-L on SST2 task, when fine-tuning RoBERTa-
large, OPT-13B, Llama3(8B) models. HiZOO can achieve 8× speedup and 1.55% absolute accuracy
improvement compared with MeZO. Experiments are conducted with the same learning rate.

1. In this work, we estimate the Hessian in zeroth-order optimizer to fine-tune LLMs for the
first time. Our HiZOO reduces the total number of forward passes required for model
convergence and achieves better accuracy. By utilizing diagonal Hessian, HiZOO reduces
the corresponding memory cost from O(d2) to O(d). Furthermore, we propose HiZOO-L,
reducing the memory usage of Hessian to 10% of the MeZO.

2. We provide theoretical analysis to prove that HiZOO provides an unbiased estimation of
the Hessian. Also, we illustrate how HiZOO utilizes Hessian to improve the convergence
process by visualizing the optimization trajectories on test functions.

3. We conduct extensive experiments across different models (RoBERTa-large, OPT, Llama3
and Phi-2) with scales from 350M to 66B, different methods (FT, LoRA, prefix), and
different downstream tasks (classification, multiple-choice, and generation) to verify the
effect of the HiZOO. For example, on SST2 task HiZOO achieves a better accuracy and
8× speedup over MeZO on average across different models. Even on OPT-66B, HiZOO
outperforms better than MeZO with up to 5.1% absolute improvement.

4. Further exploration in Section 4.3 showcases that HiZOO can achieve better performance in
optimizing non-differentiable objectives such as F1 score. Specifically, HiZOO significantly
outperforms MeZO ’s results with 6.5% absolute on average.

2 RELATED WORKS

Here we present a concise overview on optimizers used in fine-tuning LLMs(details in Appendix A).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

First-Order adaptive optimizer used in fine-tuning LLMs Optimization methods have consis-
tently been a popular research domain. Adaptive first-order optimizer, such as Gradient Descent
(GD), Momentum, Adagrad (Duchi et al., 2011), are fundamental in many areas like computer vision,
natural languagle processing (NLP). Among them, Adam (Kingma & Ba, 2015) plays a dominant
role due to its fast convergence and is often chosen for training and fine-tuning LLMs. AdamW
(Loshchilov & Hutter, 2019) improves upon Adam by adding the weight decay to alleviate overfitting.
But both of them requires lots of memory cost due to the backpropagation process. This issue has
become increasingly critical as the number of LLM parameters skyrockets.

Enhanced optimizers with Hessian On the other hand, researchers incorporated second-order
information (Hessian) to provide richer guidance for gradient descent during the training. For
example BROYDEN (BROYDEN, 1970) , Nesterov & Polyak (Nesterov & Polyak, 2006) and Conn
et al. (Conn et al., 2000) utilized curvature information to pre-condition the gradient; Magoulas et
al. (Magoulas et al., 1999) applied diagonal Hessian as the pre-conditioner; Martens (Martens, 2010)
approximated the Hessian with conjugate gradient. Sophia (Liu & Li, 2023) used a light-weight
estimate of the diagonal Hessian for pre-training LLMs. Despite their potential, above optimizers
require the enormous GPU-memory cost. Additionally, these methods can only be used when
first-order gradients are available.

Zeroth-Order Optimizer Zeroth-order optimizers, with just forward passes to estimate the gradient,
can greatly reduce the memory consumption. It appears in a wide range of applications where either
the objective functions is implicit or its gradient is impossible or expensive to obtain. Methods like
SPSA (Spall, 1992) have been shown to perform well in non-convex multi-agent optimization (Tang
et al., 2021; Hajinezhad & Zavlanos, 2018) or generating black-box adversarial examples (Chen et al.,
2017; Cai et al., 2021; Liu et al., 2019a; Ye et al., 2019). Recently, MeZO (Malladi et al., 2023) first
adapted the classical ZO-SGD method to fine-tune LLM, achieving comparable performance with
significant memory reduction. Then Zhang et al. (2024) proposed a wider array of ZO optimization
techniques. However, these methods often struggle with heterogeneous curvatures.

3 METHODS

In the following, we briefly introduce the classical ZO gradient estimator SPSA (Spall, 1992), which
is used in MeZO. Then we describe how HiZOO estimates diagonal Hessian and cooperates with
ZOO. We also provide detailed proof for our method.

3.1 PRELIMINARIES

Definition 3.1. Simultaneous Perturbation Stochastic Approximation or SPSA

Given a model with parameters θ ∈ Rd and loss function L, SPSA estimates the gradient on a
minibatch B , based on the concepts of sampling and differencing, as shown below:

g′µ(θt) =
L(θt + µu;B)− L(θt − µu;B)

2µ
u ≈uu⊤∇L(θt;B),

where u ∈ Rd and is sampled from N (0, Id), µ is the perturbation scale. The n-SPSA gradient
estimate averages gµ(θ) over n randomly sampled u.

3.2 HESSIAN INFORMED ZEROTH-ORDER OPTIMIZATION

We will present how to estimate Hessian inverse matrix Σ in detail in Section 3.3. Given Σ, then we
can construct the following descent direction:

gµ(θt) =

n∑
i=1

L(θt + µΣ
1/2
t ui;B)− L(θt − µΣ

1/2
t ui;B)

2µ · n · Σ1/2
t ui. (1)

With the above descent direction, we can update θt as follows:

θt+1 = θt − ηtgµ(θt). (2)

It’s guaranteed that gµ(θ) can estimate the descent direction by the following equation:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 HiZOO
Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale µ, learning rate

schedule ηt, smooth scale αt, diagonal Hessian Σ0

1: for t = 1, ..., T do
2: Sample batch B ⊂ D and random seed s
3: ℓ← L(θ;B)
4: θ← PerturbParameters(θ, µ, Σ1/2

t−1, s)
5: ℓ+ ← L(θ;B)
6: θ← PerturbParameters(θ, −2µ, Σ1/2

t−1, s)
7: ℓ− ← L(θ;B)
8: θ← PerturbParameters(θ, µ, Σ1/2

t−1, s) ▷ Reset parameters before descent
9: Σ′

t =
1

2µ2 (ℓ+ + ℓ− − 2ℓ)(Σ
−1/2
t−1 uiu

⊤
i Σ

−1/2
t−1) ▷ Update diagonal Hessian

10: Σ−1
t = (1− αt)Σ

−1
t−1 + αt |diag(Σ′

t)|
11: projected_grad← (ℓ+ − ℓ−) ∗ Σ1/2

t /2µ
12: Reset random number generator with seed s ▷ For sampling ui

13: for θi ∈ θ do
14: Sample ui ∼ N (0, Id)
15: θi ← θi − ηt∗ projected_grad ∗ui

16: end for
17: end for
18: function PERTURBPARAMETER(θ, µ, Σ1/2

t , s)
19: Reset random number generator with seed s ▷ For sampling ui

20: for θi ∈ θ do
21: Sample ui ∼ N (0, Id)

22: θi ← θi + µΣ
1/2
t ui ▷ Modify parameters in place

23: end for
24: return θ
25: end function

E [L(θt+1;B)] = L(θt;B)− ηtE [⟨∇L(θt;B), gµ(θt)⟩] +O(η2t)

= L(θt;B)− ηt
1

b
E

[
b∑

i=1

⟨∇L(θt;B),Σ1/2
t uiu

⊤
i Σ

1/2
t ∇L(θt;B)⟩

]
+O(η2t) +O(µ)

= L(θt;B)− ηt∥Σ1/2
t ∇L(θt;B)∥2 +O(η2t) + µ,

where the first and second equality are both from the Taylor’s expansion. Above equation shows that
when ηt is properly chosen, gµ(θ) can accurately estimate the direction of gradient descent, which is
the key to the success of fine-tuning large language models.

3.3 DIAGONAL HESSIAN ESTIMATOR

Given a model with parameters θ ∈ Rd, storing the exact full spectral Hessian (d × d) requires
O(d2) memory (Yao et al., 2018; Xu et al., 2019; Dembo et al., 1982), which is sufficient but never
necessary. In HiZOO, we just estimate and retain only the diagonal Hessian which requires O(d)
memory. It serves as a pre-conditioner to scale the direction and magnitude of the model parameter
updates according to their respective curvatures.

Drawing from the lemma presented in MiNES (Ye, 2023):

1

2
· Eu(u

⊤Σ1/2HΣ1/2u · (Σ−1/2uu⊤Σ−1/2 − Σ−1)) = H, (3)

where H is the Hessian∇2L(θ;B) and Σ is a positive definite matrix.

Thus, we can approximate the diagonal Hessian by the zeroth order oracles. Firstly, we will access to
the L(θ + µΣ1/2u;B), L(θ − µΣ1/2u;B) and L(θ;B). Through the Taylor’s expansion, we yield
the following results:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

L(θ + µΣ1/2u;B) = L(θ;B) + µ⟨L(θ;B),Σ1/2u⟩+ µ2

2
u⊤Σ1/2∇2L(θ;B)Σ1/2u+ α(θ, µΣ1/2u).

Similarly, we also have:

L(θ − µΣ1/2u;B) = L(θ;B)− µ⟨L(θ;B),Σ1/2u⟩+ µ2

2
u⊤Σ1/2∇2L(θ;B)Σ1/2u+ α(θ,−µΣ1/2u).

Then we can calculate the difference ∆L by:

∆L = L(θ + µΣ1/2u;B) + L(θ − µΣ1/2u;B)− 2L(θ;B)
= µ2u⊤Σ1/2∇2L(θ;B)Σ1/2u+ α(θ, µΣ1/2u) + α(θ,−µΣ1/2u).

Since α(θ, µΣ1/2u) and α(θ,−µΣ1/2u) are of order O(µ3), we can obtain that:

∆L
µ2

= u⊤Σ1/2∇2L(θ;B)Σ1/2u+O(µ).

Upon substituting the above results into the left side of the Eq. equation 3, we arrive at:

1

2
E
[
∆L
µ2
·
(
Σ−1/2uu⊤Σ−1/2 − Σ−1

)]
= ∇2L(θ;B) +O(µ).

Therefore, by generalizing above equation to the multi-sampling version, we can approximate the
diagonal Hessian∇2L(θ) at θ by:

Σ′
t(θ) =

1

2n

n∑
i=1

[
∆L
µ2
·
(
Σ

−1/2
t uiu

⊤
i Σ

−1/2
t − Σ−1

)]
, (4)

where n denotes the number of sampling instances for u, indicating the frequency of estimation
per step. A larger n diminishes the variance of the diagonal Hessian estimation and simultaneously
increases computational overhead. Here we adopt n = 1 as the default setting and present the
pseudo-code of HiZOO in Algorithm 1. Further experimental investigation into the impact of varying
n is available in the Section 4.6.

Above equation shows that we can approximate the diagonal entries of∇2L(θ;B) by diag(Σ′
t(θ)),

requiring just one more forward pass per step compared with MeZO.

Due to the presence of noise in the calculation of the Hessian, we utilize exponential moving average
(EMA) to denoise the diagonal Hessian estimation.

Σ−1
t+1 = (1− αt)Σ

−1
t + αt |diag(Σ′

t)| . (5)

In the above equation, we firstly initial the Σ0 = Id and update it every step with O(d) memory cost
all the time. We also use |diag(Σ′

t)| to keep all entries of Σt to be non-negative.

To further reduce Hessian memory consumption, we propose HiZOO-L to maintain it in a low-rank
subspace, motivated by Adafactor (Shazeer & Stern, 2018). For Σ̂−1 ∈ Rp×q, we will store two
low-rank matrices R ∈ Rp×k and C ∈ Rk×q with k = 1. Specifically, we can get Σ̂−1 by:

Σ̂−1
t = (Rt ∗ Ct)/(1

⊤
p ∗Rt),

where 1p = (1, · · · , 1) ∈ Rp denotes a column vector of p ones. Then in each step, we will update
the R and C separately:

R−1
t = (1− αt)R

−1
t−1 + αt

∣∣∣diag(Σ̂′
t)
∣∣∣ ∗ 1q,

C−1
t = (1− αt)C

−1
t−1 + αt1

⊤
p ∗

∣∣∣diag(Σ̂′
t)
∣∣∣ .

Detailed Algorithm can be seen in Appendix D.

3.4 CONVERGENCE ANALYSIS

In this section, we will analyse the convergence based on the assumption of non-convex optimization
(details in Appendix B).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 3.2. Let the descent direction gµ(θt) defined as:

gµ(θt) =

b∑
i=1

L(θt + µΣ
1/2
t ui;Bt)−L(θt − µΣ

1/2
t ui;Bt)

2bµ
Σ

1/2
t ui. (6)

Based on Assumption B.1-B.3, if the update rule for θ is θt+1 = θt − ηgµ(θt) for a single step, then
it’s established that:

E [L(θt+1) |] ≤ L(θt)−
ηt
4
∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu)σ
2 +O(µ2). (7)

Furthermore, given iteration number T , we choose the step size η = 1
8
√
TL(maxt tr(Σt)+βu)

and take

θout = θj with j uniformly sampled from {1, . . . , T}. Then, we have

E
[
∥∇L(θout)∥2

]
≤ 32L (maxt{tr(Σt)}+ βu) (L(θ1)−L(θ∗))√

Tβℓ

+
σ2

T 3/2βℓ
+O

(
µ2) , (8)

where L(θ∗) minimizes the function L(θ;). The above equation shows that as T →∞, HiZOO can
converge to the stationary point.

Proof. Detailed proof can be found in Appendix B.

3.5 VISUALIZATION OF HIZOO ON TEST FUNCTIONS

Despite above theoretical guarantee, we still want to illustrate how HiZOO utilizes Hessian to
improve the convergence process. But it’s impractical for large models to visualize their optimization
trajectories. Therefore we choose three test functions (see details in Appendix C) with heterogeneous
curvatures across different parameters and visualize the optimization trajectories on them.

As illustrated in Figure 3, HiZOO and Adam both achieve better convergence on three functions, and
HiZOO even requires less steps for convergence than Adam. However, MeZO only achieves effective
convergence in either the x or y dimension, but not both, indicating a limitation in capturing this
curvature difference. Particularly in function (c) curvature of x is extremely bigger than y. In this
case, HiZOO can sense this difference in parametric curvature and update the function along x on
purpose, achieving quicker convergence. In contrast, MeZO is very hard to converge.

Figure 3: Optimization trajectories of Adam, MeZO and HiZOO on 3 test functions. We have labeled
the number of iterations required for the loss to drop to 0.1.

4 EXPERIMENTS

Large language models are generally classified into two types: (1) Encoder-Decoder, also known as
masked language models, such as BERT (Devlin et al., 2019) and ALBERT (Lan et al., 2020); (2)
Decoder-Only, also recognized as generative language models, such as GPT family (Radford et al.,
2019; Brown et al., 2020), OPT (Zhang et al., 2022a), LLaMA (Touvron et al., 2023), Phi (Li et al.,
2023; Gunasekar et al., 2023).

To rigorously assess the universality and robustness of our HiZOO, we have chosen models from
each category for empirical testing. Additionally, we investigate FT and PEFT (LoRA (Hu et al.,
2022) and prefix (Li & Liang, 2021)). Detailed experiment settings are presented in Appendix E.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Experiments on RoBERTa-large (350M parameters, k=16). PEFT represents using LoRA
and prefix and we report the best result of them. All reported numbers are averaged accuracy (standard
deviation) across 5 runs.

Task Type SST-2 SST-5 SNLI MNLI RTE TREC Average
—— sentiment —— —— natural language inference —— — topic —

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0 49.5
LP 76.0 (±2.8) 40.3 (±1.9) 66.0 (±2.7) 56.5 (±2.5) 59.4 (±5.3) 51.3 (±5.5) 58.3

FT 91.9 (±1.8) 47.5 (±1.9) 77.5 (±2.6) 70.0 (±2.3) 66.4 (±7.2) 85.0 (±2.5) 74.9
PEFT 91.9 (±1.0) 47.7 (±1.1) 77.2 (±1.3) 67.7 (±1.4) 66.6 (±2.0) 85.7 (±1.3) 72.8

MeZO 90.5 (±1.2) 45.5 (±2.0) 68.5 (±3.9) 58.7 (±2.5) 64.0 (±3.3) 76.9 (±2.7) 67.4
MeZO (PEFT) 91.4 (±0.9) 45.8 (±2.0) 71.6 (±2.5) 62.1 (±2.5) 61.0 (±3.9) 80.3 (±3.6) 68.7

HiZOO 93.2 (±0.8) 46.2 (±1.1) 74.6 (±1.3) 64.9 (±1.7) 66.8 (±1.2) 79.8 (±1.3) 70.9
HiZOO(PEFT) 92.3 (±1.2) 47.2 (±1.1) 71.1 (±1.1) 62.1 (±1.7) 65.4 (±1.2) 82.0 (±2.0) 70.0

4.1 MASKED LANGUAGE MODELS

Firstly, we conduct experiments on RoBERTa-large 350M (Liu et al., 2019b) on three NLP task
paradigms: sentence classification, multiple choice and text generation. We follow the experimental
setting (Malladi et al., 2023) in studying the few-shot and many-shot, sampling k examples per class
for k = 16 (results in Table 1) and k = 512 (results in Appendix E.1). We did not utilize HiZOO-L
here due to model’s smaller parameter count.

Figure 4: Training loss curves when using Adam, MeZO and HiZOO to fine-tune Roberta-large on
MNLI. The evaluation accuracy curves can be found in Figure 11 in Appendix E.1.

HiZOO greatly increases the convergence speed across full-parameter tuning, LoRA and prefix.
As shown in Figure 4, HiZOO achieves 4× speedup over MeZO on average while getting the same
training loss compared with MeZO. What’s more, HiZOO finally achieves a 2.2% absolute accuracy
improvement on MNLI better than MeZO.

HiZOO achieves better performance compared with MeZO. Table 1 shows that HiZOO out-
performs MeZO’s results with 3.5% absolute on average on all datasets across different tasks.
Specifically, HiZOO outperforms MeZO more than 6% in both the SNLI and MNLI dataset.

Table 2: Experiments on three different models(with 1000 examples). We highlight the best results
between MeZO, HiZOO and HiZOO-L in bold to facilitate comparison.

Model Method SST-2 RTE CB WSC WIC COPA MultiRC Average
Phi-2 MeZO 86.6 67.1 75.0 59.6 54.4 86.0 78.2 72.4
Phi-2 HiZOO 88.9 69.0 75.2 62.5 59.4 86.0 79.2 74.3
Phi-2 HiZOO-L 88.9 68.9 75.2 62.4 59.2 86.0 79.2 74.2

Llama3 MeZO 92.2 74.4 69.6 63.5 57.8 88.0 77.6 74.7
Llama3 HiZOO 93.5 75.1 69.6 63.5 59.7 89.0 78.2 75.5
Llama3 HiZOO-L 94.3 75.1 69.6 63.5 57.7 89.0 77.9 75.3

OPT-13B MeZO 91.4 66.1 66.0 63.5 59.4 88.0 57.3 70.2
OPT-13B HiZOO 92.1 69.3 69.6 63.5 59.4 89.0 61.3 72.1
OPT-13B HiZOO-L 92.1 68.2 67.9 65.4 59.4 89.0 61.1 71.9

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 AUTO-REGRESSIVE LANGUAGE MODELS

Then we extend experiments with Phi-2(2.7B), Llama3(8B) and OPT family on the same NLP task
paradigms. The results of the experiment in Table 2 show that HiZOO outperforms MeZO in most
cases. Also, we can see that HiZOO-L has only a slight decrease in accuracy. We also provide relative
loss curves to show the better convergence process of our HiZOO in Appendix E.2.

HiZOO is capable of scaling to large models with up to 66B parameters, while preserving its
exceptional performance. As depicted in Table 3, on OPT-30B HiZOO outperforms MeZO with
up to 2.9% increase and 1.1% increase on average. Even scaling to OPT-66B, HiZOO(prefix) still
outperforms MeZO(prefix) with up to 5.1% increase and 2.7% increase on average.

4.3 TRAINING WITH NON-DIFFERENTIABLE OBJECTIVES

Our proposed HiZOO employs gradient estimation to update parameters, allowing for the use of
non-differentiable objectives for training. Following the setting of MeZO (Malladi et al., 2023), we
conduct extensive experiments using F1 as optimization objective. The results presented in Table 4
indicate that our method outperforms MeZO by 6.54% absolute on F1 on average.

Table 3: Experiments on OPT-30B (we use FT
and prefix-tuning, report the best of them) and
OPT-66B (we use prefix-tuning).

Task SST-2 RTE WSC WIC Average
30B MeZO 90.6 66.4 63.5 59.1 69.9
30B HiZOO 91.2 69.3 63.5 60.2 71.0
30B HiZOO-L 91.1 68.9 63.5 59.8 70.8

66B MeZO 93.6 66.4 57.7 58.6 69.0
66B HiZOO 93.6 71.5 60.6 61.1 71.7
66B HiZOO-L 93.6 71.0 60.3 60.9 71.4

Table 4: Experiments on non-differentiable
optimization objectives (F1). For classification
(k = 512), we use full-parameter tuning and for
SQuAD (1,000 examples), we use prefix tuning.

Model RoBERTa-large (350M) OPT-13B

Task SST-2 SST-5 SNLI TREC SQuAD
Zero-shot 79.0 35.5 50.2 32.0 46.2
MeZO 92.7 48.9 82.7 68.6 78.5
HiZOO 94.9 52.9 83.1 90 83.21

4.4 MEMORY USAGE AND TIME EFFICIENCY ANALYSIS

Memory Usage As shown in Figure 5, HiZOO increases the memory usage compared to MeZO
because of the storage of the diagonal Hessian(refer to Appendix F for detailed numbers). To
further reduce memory consumption, we propose HiZOO-L, the low-rank implementation of HiZOO,
motivated by Adafactor (Shazeer & Stern, 2018). Detailed Algorithm can be seen in Appendix D.
As a result, HiZOO-L increases < 10% memory more than MeZO, while maintaining the original
performance of HiZOO. Specifically, using the same GPUs, HiZOO-L allows for tuning a model that
is 10 times larger than what is feasible with FT on average.

Time Efficiency We analyse the wall-clock time efficiencies and find that HiZOO and HiZOO-L
spend 1.5× time per step compared with MeZO, mainly from the extra forward pass, details in
Appendix G. However, HiZOO reduces total number of forward passes required for convergence. For
example, HiZOO achieves a 8× and 4× speedup on SST2 and MNLI tasks.

7x

7x

10x

11x

10x

Figure 5: GPU memory consumption with different OPT models and tuning methods on MultiRC
(400 tokens per example on average). More details can be found in Appendix F.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.5 COMPARISON WITH OTHER ZO VARIANTS

We also compare our HiZOO with a broader array of ZO optimization techniques Zhang et al. (2024).
As shown in Table 5, our HiZOO outperforms all other ZO methods. Compared with ZO-Adam who
leverages second-order moment to guide gradient descent, our HiZOO-L achieves a notable 4.3%
absolute improvement, while using 50% of the GPU memory.

Table 5: Performance comparison on SST2(Robert-Large and OPT-1.3B) and COPA(OPT-13B) using
different ZO methods. Memory and runtime cost are multiples of ZO-SGD.

Model/Task Roberts-Large OPT-1.3B OPT-13B Average Memory Runtime
FT prefix FT prefix FT prefix

ZO-SGD 89.4 90.0 90.8 91.4 90.0 79.0 88.4 1.0x 1.0x
ZO-SGD-MMT 89.6 89.1 85.2 91.2 87.0 85.0 87.8 1.56x 1.0x
ZO-SGD-Cons 89.6 89.1 88.3 88.1 82.0 84.0 86.8 1.0x 2.49x
ZO-SGD-Sign 52.5 53.6 87.2 89.5 80.0 78.0 73.4 1.0x 1.0x
ZO-Adam 89.8 90.2 84.4 91.4 82.0 79.0 86.1 2.47x 1.04x
HiZOO 93.2 92.7 90.7 91.4 88.0 87.0 90.5 2.04x 1.37x
HiZOO-L 92.5 92.7 90.7 91.4 88.0 87.0 90.4 1.12x 1.39x

4.6 HYPERPARAMETER ANALYSIS

Influence of Smooth Scale αt in EMA To assess the robustness of the optimizer, a grid search is
conducted to evaluate the sensitivity of the hyper-parameter αt on RoBERTa-large (350M). Figure 6
illustrates that as αt is incrementally increased from zero, the training loss decreases faster. However,
too large αt values may impede convergence or even cause training to fail due to gradient explosion.

Influence of Estimation Times n Per Step We also propose a variant of HiZOO in Appendix D.2:
HiZOO-multi, which has n > 1 per step. As shown in Figure 7, different n maybe doesn’t affect
the final accuracy. However, the larger n will estimate the diagonal Hessian more accurate per step
and accelerate model convergence, reducing the overall training steps. But it will also increase the
computation per step. Balancing these factors is crucial for efficient training.

Figure 6: Influence of EMA αt for hessian in
Eq. equation 5. We use HiZOO (prefix) to fine-
tune Roberta-large on SNLI. More results can
be found in Appendix H.1.

Figure 7: Loss curves on Function (a) using the
variant HiZOO-multi with different estimation
times n per step. Trajectory visualization can
be found in Appendix H.1.

5 CONCLUSION

In this work, we introduce HiZOO, which is the first ZOO that incorporates diagonal Hessian for fine-
tuning LLMs. By introducing one more forward pass, HiZOO can handle heterogeneous curvatures
across different parameter dimensions. We provide theoretical analysis and visualize the optimization
trajectories to explore how it works. Further experiments show that HiZOO converges in much fewer
steps than MeZO and achieves better performance across various LLMs. We also explore a memory
efficient implementation (HiZOO-L) to reduce the Hessian consumption.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Alekh Agarwal, Martin J Wainwright, Peter Bartlett, and Pradeep Ravikumar. Information-theoretic
lower bounds on the oracle complexity of convex optimization. Advances in Neural Information
Processing Systems, 22, 2009.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

C. G. BROYDEN. The Convergence of a Class of Double-rank Minimization Algorithms 1. General
Considerations. IMA Journal of Applied Mathematics, 6(1):76–90, 03 1970. ISSN 0272-4960. doi:
10.1093/imamat/6.1.76. URL https://doi.org/10.1093/imamat/6.1.76.

Hanqin Cai, Yuchen Lou, Daniel Mckenzie, and Wotao Yin. A zeroth-order block coordinate
descent algorithm for huge-scale black-box optimization. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 1193–1203. PMLR, 18–24 Jul 2021.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450352024. doi:
10.1145/3128572.3140448. URL https://doi.org/10.1145/3128572.3140448.

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods. Society for
Industrial and Applied Mathematics, USA, 2000. ISBN 0898714605.

Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug. Inexact newton methods. SIAM Journal on
Numerical Analysis, 19(2):400–408, 1982. doi: 10.1137/0719025. URL https://doi.org/
10.1137/0719025.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In North American Chapter of the Associa-
tion for Computational Linguistics, 2019. URL https://api.semanticscholar.org/
CorpusID:52967399.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159, jul 2011. ISSN 1532-4435.

FairScale authors. Fairscale: A general purpose modular pytorch library for high performance and
large scale training. https://github.com/facebookresearch/fairscale, 2021.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker-factored eigenbasis. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp.
9573–9583, Red Hook, NY, USA, 2018. Curran Associates Inc.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2232–2241. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/ghorbani19b.html.

10

https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1145/3128572.3140448
https://doi.org/10.1137/0719025
https://doi.org/10.1137/0719025
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://github.com/facebookresearch/fairscale
https://proceedings.mlr.press/v97/ghorbani19b.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need, 2023.

Davood Hajinezhad and Michael M. Zavlanos. Gradient-free multi-agent nonconvex nonsmooth
optimization. 2018 IEEE Conference on Decision and Control (CDC), pp. 4939–4944, 2018. URL
https://api.semanticscholar.org/CorpusID:58669445.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free optimization.
Advances in Neural Information Processing Systems, 25, 2012.

Shuoran Jiang, Qingcai Chen, Youchen Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi Liu,
and Xiaobao Song. Zo-adamu optimizer: Adapting perturbation by the momentum and uncertainty
in zeroth-order optimization, 2023.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
URL https://aclanthology.org/2021.acl-long.353.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report, 2023.

Hong Liu and Zhiyuan Li. Sophia: A scalable stochastic second-order opti-
mizer for language model pre-training. https://synthical.com/article/
17aca766-2012-4c7c-a0f4-5b785dadabf9, 4 2023.

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle.
In International Conference on Learning Representations, 2019a. URL https://api.
semanticscholar.org/CorpusID:108298677.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Jan R Magnus et al. The moments of products of quadratic forms in normal variables. Univ., Instituut
voor Actuariaat en Econometrie, 1978.

G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis. Improving the convergence of the
backpropagation algorithm using learning rate adaptation methods. Neural Comput., 11(7):
1769–1796, oct 1999. ISSN 0899-7667. doi: 10.1162/089976699300016223. URL https:
//doi.org/10.1162/089976699300016223.

11

https://api.semanticscholar.org/CorpusID:58669445
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://aclanthology.org/2021.acl-long.353
https://synthical.com/article/17aca766-2012-4c7c-a0f4-5b785dadabf9
https://synthical.com/article/17aca766-2012-4c7c-a0f4-5b785dadabf9
https://api.semanticscholar.org/CorpusID:108298677
https://api.semanticscholar.org/CorpusID:108298677
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1162/089976699300016223
https://doi.org/10.1162/089976699300016223

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=Vota6rFhBQ.

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10, pp. 735–742, Madison,
WI, USA, 2010. Omnipress. ISBN 9781605589077.

Yurii Nesterov and B. T. Polyak. Cubic regularization of newton method and its global performance.
Math. Program., 108(1):177–205, aug 2006. ISSN 0025-5610.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Layerwise
importance sampling for memory-efficient large language model fine-tuning, 2024.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks, 2014.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Maxim Raginsky and Alexander Rakhlin. Information-based complexity, feedback and dynamics in
convex programming. IEEE Transactions on Information Theory, 57(10):7036–7056, 2011.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity
and beyond, 2017. URL https://openreview.net/forum?id=B186cP9gx.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In Sanjoy Dasgupta and
David McAllester (eds.), Proceedings of the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research, pp. 343–351, Atlanta, Georgia, USA,
17–19 Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/schaul13.
html.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4596–4604.
PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/shazeer18a.
html.

James C. Spall. A one-measurement form of simultaneous perturbation stochastic approximation.
Automatica, 33(1):109–112, jan 1997. ISSN 0005-1098. doi: 10.1016/S0005-1098(96)00149-5.
URL https://doi.org/10.1016/S0005-1098(96)00149-5.

J.C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approxi-
mation. IEEE Transactions on Automatic Control, 37(3):332–341, 1992. doi: 10.1109/9.119632.

Yujie Tang, Junshan Zhang, and Na Li. Distributed zero-order algorithms for nonconvex multiagent
optimization. IEEE Transactions on Control of Network Systems, 8(1):269–281, 2021. doi:
10.1109/TCNS.2020.3024321.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ArXiv, abs/2302.13971, 2023. URL https://api.semanticscholar.org/
CorpusID:257219404.

A. T. Vakhitov, O. N. Granichin, and L. S. Gurevich. Algorithm for stochastic approximation with
trial input perturbation in the nonstationary problem of optimization. Autom. Remote Control,
70(11):1827–1835, nov 2009. ISSN 0005-1179. doi: 10.1134/S000511790911006X. URL
https://doi.org/10.1134/S000511790911006X.

Zhongruo Wang, Krishnakumar Balasubramanian, Shiqian Ma, and Meisam Razaviyayn. Zeroth-
order algorithms for nonconvex minimax problems with improved complexities. arXiv preprint
arXiv:2001.07819, 2020.

12

https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=B186cP9gx
https://proceedings.mlr.press/v28/schaul13.html
https://proceedings.mlr.press/v28/schaul13.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://doi.org/10.1016/S0005-1098(96)00149-5
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://doi.org/10.1134/S000511790911006X

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Peng Xu, Fred Roosta, and Michael W. Mahoney. Newton-type methods for non-convex optimization
under inexact hessian information, 2019.

Zhewei Yao, Peng Xu, Farbod Roosta-Khorasani, and Michael W. Mahoney. Inexact non-convex
newton-type methods, 2018.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(12):10665–10673, May 2021. doi: 10.1609/aaai.v35i12.
17275. URL https://ojs.aaai.org/index.php/AAAI/article/view/17275.

Haishan Ye. Mirror natural evolution strategies, 2023.

Haishan Ye, Zhichao Huang, Cong Fang, Chris Junchi Li, and Tong Zhang. Hessian-aware zeroth-
order optimization for black-box adversarial attack, 2019.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=Syx4wnEtvH.

Matthew D. Zeiler. Adadelta: An adaptive learning rate method, 2012.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, San-
jiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 15383–15393. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/b05b57f6add810d3b7490866d74c0053-Paper.pdf.

Lin Zhang, Shaohuai Shi, and Bo Li. Eva: Practical second-order optimization with kronecker-
vectorized approximation. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=_Mic8V96Voy.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022a.

Yan Zhang, Yi Zhou, Kaiyi Ji, and Michael M. Zavlanos. A new one-point residual-feedback oracle
for black-box learning and control. Automatica, 136(C), feb 2022b. ISSN 0005-1098. doi:
10.1016/j.automatica.2021.110006. URL https://doi.org/10.1016/j.automatica.
2021.110006.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen.
Revisiting zeroth-order optimization for memory-efficient LLM fine-tuning: A benchmark. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 59173–59190. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/zhang24ad.html.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024.

13

https://ojs.aaai.org/index.php/AAAI/article/view/17275
https://openreview.net/forum?id=Syx4wnEtvH
https://proceedings.neurips.cc/paper_files/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b05b57f6add810d3b7490866d74c0053-Paper.pdf
https://openreview.net/forum?id=_Mic8V96Voy
https://doi.org/10.1016/j.automatica.2021.110006
https://doi.org/10.1016/j.automatica.2021.110006
https://proceedings.mlr.press/v235/zhang24ad.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORKS

A.1 FIRST-ORDER OPTIMIZER USED IN LLMS

Optimization methods have consistently been a popular research domain, encompassing techniques
such as Gradient Descent (GD), Momentum, Adagrad (Duchi et al., 2011), ADADELTA (Zeiler,
2012), and Newton’s method, which have been instrumental in advancing fields like computer vision.
However, the emergence of large-scale models, characterized by their massive parameter counts and
intricate architectures, has challenged the efficacy of conventional optimization methods for training
tasks. Amidst this landscape, Adam (Kingma & Ba, 2015) has emerged as the preferred choice
for its ability to rapidly converge, making it particularly suitable for the training and fine-tuning
large models. Then AdamW (Loshchilov & Hutter, 2019) was proposed to add a weight decay
coefficient to alleviate over-fitting. Notwithstanding these advancements, a limitation persists with
these optimizers: they have an implicit batch size ceiling. Exceeding this threshold can provoke
extreme gradient updates, thus impeding the convergence rate of the models. This bottleneck is
particularly problematic in the context of large-model training, which typically necessitates substantial
batch sizes. To circumvent this constraint, LAMB (You et al., 2020) was devised to apply principled
layer-wise adaptation strategy to accelerate the training of large models employing large batches.

A.2 HESSIAN BASED FIRST-ORDER OPTIMIZER

Compared with first-order optimizers, second-order optimizer considers second-order information in
the process of gradient calculation. As a result, it has more abundant information to guide gradient
descent and is considered to be more promising. Previous studies utilized curvature information
to pre-condition the gradient (BROYDEN, 1970; Nesterov & Polyak, 2006; Conn et al., 2000).
Subsequently, Magoulas et al. (Magoulas et al., 1999) applied diagonal Hessian as the pre-conditioner,
which greatly promotes the landing of second-order optimizer in the field of deep learning. Martens
(Martens, 2010) approximated the Hessian with conjugate gradient. Schaul et al. (Schaul et al.,
2013) utilized diagonal Hessian to automatically adjust the learning rate of SGD during training.
Another work (Pascanu & Bengio, 2014) extended natural gradient descent to incorporate second
order information alongside the manifold information and used a truncated Newton approach for
inverting the metric matrix instead of using a diagonal approximation of it. EVA (Zhang et al.,
2023) proposed to use the Kronecker factorization of two small vectors to approximated the Hessian,
which significantly reduces memory consumption. AdaHessian (Yao et al., 2021) incorporates an
approximate Hessian diagonal, with spatial averaging and momentum to precondition the gradient
vector.

Although great progress has been made in the research of second-order optimizer, it has not been
widely used because of the extra computation and memory cost when gradient updating, and this
situation is extremely serious in the training of large language models. Based on the above dilemma,
recent works (Anil et al., 2021; George et al., 2018) proposed to offload Hessian computation to
CPUs and utilized ResNets and very large batch size to approximate the Fisher information matrix.
Sophia (Liu & Li, 2023) was the first to apply second-order optimizer and achieve a speed-up on
large language models in total compute successfully.

A.3 ZEROTH-ORDER OPTIMIZER

Zeroth-order optimization, is also known as derivative-free or black-box optimization. There have
been many one-point gradient estimators in past works (FairScale authors, 2021; Spall, 1997; Vakhitov
et al., 2009; Spall, 1992; Jamieson et al., 2012; Agarwal et al., 2009; Raginsky & Rakhlin, 2011;
Wang et al., 2020). However, cursory experiments with one such promising estimator (Zhang et al.,
2022b) reveal that SPSA outperforms other methods.

In previous works, it appears in a wide range of applications where either the objective function is
implicit or its gradient is impossible or too expensive to compute. For example, methods (Tang et al.,
2021; Hajinezhad & Zavlanos, 2018) consider derivative-free distributed algorithms for non-convex
multi-agent optimization. ZO-BCD(Cai et al., 2021), ZOO(Chen et al., 2017), ZO-signSGD (Liu
et al., 2019a) and ZO-HessAware (Ye et al., 2019) utilize zeroth-order stochastic optimization to
generate black-box adversarial example in deep learning.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Beyond that, MeZO (Malladi et al., 2023) firstly adapted the classical ZO-SGD method to fine-tune
LLMs, while achieving comparable performance with extremely great memory reduction and GPU-
hour reduction. Subsequently, ZO-AdaMU (Jiang et al., 2023) improved ZO-SGD and adapted the
simulated perturbation with momentum in its stochastic approximation method. Both of these two
optimizers provide researchers with a new and promising technique for fine-tuning large models.

B DETAILED CONVERGENCE ANALYSIS

Firstly, our convergence analysis requires the following assumptions:

Assumption B.1. The objective function L(θ) is L-smooth, which means that for any θ1, θ2 ∈ Rd,
it holds that:

L(θ2) ≤ L(θ1) + ⟨∇L(θ1), θ2 − θ1⟩+
L

2
∥θ2 − θ1∥2. (9)

Assumption B.2. The stochastic gradient∇L(θ) has σ2 variance, which means:

E
[
∥∇L(θ)−∇L(θ)∥2

]
≤ σ2. (10)

Assumption B.3. Each entry of Σt lies in the range [βℓ, βu] with 0 < βℓ ≤ βu.

Then we will give the detailed proof for convergence.

Proof. By the update rule of θt and Assumption B.1, we have

E [L(θt+1t+1) | θt]

≤L(θt)− ηtE [⟨∇L(θt), gµ(θt)⟩] +
Lη2t
2

E
[
∥gµ(θt)∥2

]
≤L(θt)− ηt∥∇L(θt)∥2Σt

+ ηtO (µ∥∇L(θt)∥)
+ 2η2tL (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu)σ
2 +O(µ2)

≤L(θt)−
ηt
2
∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu)σ
2 +O(µ2)

=L(θt)−
ηt
2
(1− 4ηtL(tr(Σt) + βu)) ∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu)σ
2 +O(µ2)

≤L(θt)−
ηt
4
∥∇L(θt)∥2Σt

+ 2η2tL (tr(Σt) + βu)σ
2 +O(µ2),

where the second inequality is because of Lemma B.4 and the last inequality is because of the value
of ηt.

Rearrange above equation and summing up it, we can obtain that

E

[
T∑

t=1

ηt
4
∥∇L(θt)∥2Σt

]
≤

T∑
t=1

(L(θt)−L(θt+1t+1))

+ 2η2tL (tr(Σt) + βu)σ
2 +O(Tµ2)

=L(θ11)−L(θT+1T+1) + 2η2tL (tr(Σt) + βu)σ
2 +O(Tµ2)

≤L(θ11)−L(θ∗∗) + 2η2tL (tr(Σt) + βu)σ
2 +O(Tµ2).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

By taking θout = θj with j uniformly sampled from {1, . . . , T} and taking expectation, we can
obtain that

E
[
∥∇L(θout)∥2

]
=

1

T

T∑
t=1

∥∇L(θt)∥2 ≤
1

Tβℓ

T∑
t=1

∥∇L(θt)∥2Σt

≤4(L(θ1)−L(θ∗))

Tβℓη
+

8ηL (tr(Σt) + βu)

Tβℓ
σ2 +O(µ2)

=
32L (tr(Σt) + βu) (L(θ1)−L(θ∗))√

Tβℓ

+
σ2

T 3/2βℓ
+O

(
µ2

)
,

where the first inequality is because of the assumption that the diagonal entries of Σt is no less than
βℓ,

Eq. equation 7 shows that once we choose the step size η properly, L(θt+1) will be less than
L(θt) in expectation up to some noises of order µ2. Specifically, if set η = 1

8
√
TL(maxt tr(Σt)+βu)

,

Eq. equation 8 implies that we can find an solution θout such that E
[
∥∇L(θout)∥2

]
≤ ϵ2 in O(ϵ−4)

iterations. This rate matches the one of (Ghadimi & Lan, 2013).
Lemma B.4. We assume that Assumption B.2 and Assumption B.3 hold. Then, gµ(θt) defined in
Eq. equation 6 has the following properties:

E [gµ(θt)] = Σt∇L(θt) +O(µ)
E
[
∥gµ(θt)∥2

]
≤ 4 (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 4βu (tr(Σt) + βu)σ
2 +O(µ2).

Proof. By the definition of gµ(θt), we have

gµ(θt)

=

b∑
i=1

L(θt + µΣ
1/2
t ui)−L(θt − µΣ

1/2
t ui)

2bµ
Σ

1/2
t ui

=

b∑
i=1

2µ∇⊤L(θt)Σ
1/2
t ui +O(µ2)

2bµ
Σ

1/2
t ui

=
1

b

b∑
i=1

Σ
1/2
t uiu

⊤
i Σ

1/2
t ∇L(θt) +O(µ).

Thus, we can obtain that

E [gµ(θt)] = Σt∇L(θt) +O(µ). (11)

Moreover,

E
[
∥gµ(θt)∥2

]
=E

[
∥1
b

b∑
i=1

Σ
1/2
t uiu

⊤
i Σ

1/2
t ∇L(θt) +O(µ)∥2

]

≤2E

[
∥1
b

b∑
i=1

Σ
1/2
t uiu

⊤
i Σ

1/2
t ∇L(θt)∥2

]
+O(µ2)

≤2

b

b∑
i=1

E
[
∥Σ1/2

t uiu
⊤
i Σ

1/2
t ∇L(θt)∥2

]
+O(µ2)

=2tr(Σt) · ∇⊤L(θt)Σt∇L(θt)

+ 2∇⊤L(θt)Σ
2
t∇L(θt) +O(µ2)

≤2 (tr(Σt) + βu)∇⊤L(θt)Σt∇L(θt) +O(µ2),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where the last equality is because of Lemma B.5.

Finally, we have

E
[
∇⊤L(θt)Σt∇L(θt)

]
= E

[
∥∇L(θt)∥2Σt

]
≤2E

[
∥∇L(θt)∥2Σt

]
+ 2E

[
∥∇L(θt)−∇L(θt)∥2Σt

]
≤2∥∇L(θt)∥2Σt

+ 2βuE
[
∥∇L(θt)−∇L(θt)∥2

]
≤2∥∇L(θt)∥2Σt

+ 2βuσ
2,

where the second inequality is because of Assumption B.3 and the last inequality is because of
Assumption B.2.

Therefore,

E
[
∥gµ(θt)∥2

]
≤ 4 (tr(Σt) + βu) ∥∇L(θt)∥2Σt

+ 4βu (tr(Σt) + βu)σ
2.

Lemma B.5. (Magnus et al., 1978) Let A and B be two symmetric matrices, and u obeys the
Gaussian distribution, that is, u ∼ N(0, Id). Define z = u⊤Au · u⊤Bu. The expectation of z is:

Eu[z] = (trA)(trB) + 2tr(AB). (12)

C TEST FUNCTIONS OF THE OPTIMIZATION TRAJECTORIES

For better illustrating how HiZOO utilizes hessian to improve the convergence process, we choose
below three test functions with heterogeneous curvatures across different parameters. In Figure 8, we
provide the 2D convergence paths of three functions and the variation of their losses with respect to
steps.

• Function (a)1: f(x, y) = 8(x− 1)2(1.3x2 + 2x+ 1) + 0.5(y − 4)2

• Function (b): f(x, y) = |x|+ |y|
• Function (c): f(x, y) = 10000x2 + y2

Figure 8: 2D trajectories of Adam, MeZO and HiZOO on 3 test functions. The upper figures are the
2D trajectories of gradient descent, and the bottom parts are the corresponding loss curves.

1Function (a) is from (Liu & Li, 2023).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D HIZOO VARIANTS

D.1 HIZOO-L

Due to the storage of Hessian, HiZOO introduces extra memory cost, which is equal to the size of the
model parameters. To address this limitations, we propose HiZOO-L, the low-rank implementation
for the storage of Hessian, motivated by Adafactor (Shazeer & Stern, 2018). Details can be see in
Algorithm 2. We also visualize the loss curves of HiZOO and HiZOO-L in Figure 9 and find that
on most datasets two algorithms perform closely. This also indicates that the estimation of Hessian
in HiZOO may be sparse, so we encourage researchers to try other memory efficient algorithms to
compress the Hessian.

Algorithm 2 HiZOO-L
Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale µ, learning rate

schedule ηt, smooth scale αt, diagonal Hessian R0, C0

1: for t = 1, ..., T do
2: Sample batch B ⊂ D and random seed s
3: ℓ← L(θ;B)
4: θ← PerturbParameters(θ, µ, Rt−1, Ct−1, s)
5: ℓ+ ← L(θ;B)
6: θ← PerturbParameters(θ, −2µ, Rt−1, Ct−1, s)
7: ℓ− ← L(θ;B)
8: θ← PerturbParameters(θ, µ, Rt−1, Ct−1, s) ▷ Reset parameters before descent
9: Σ̂−1

t−1 = (Rt−1 ∗ Ct−1)/(1
⊤
n ∗Rt−1)

10: Σ̂′
t =

1
2µ2 (ℓ+ + ℓ− − 2ℓ)(Σ̂

−1/2
t−1 uiu

⊤
i Σ̂

−1/2
t−1)

11: R−1
t = (1− αt)R

−1
t−1 + αt

∣∣∣diag(Σ̂′
t)
∣∣∣ ∗ 1m

12: C−1
t = (1− αt)C

−1
t−1 + αt1

⊤
n ∗

∣∣∣diag(Σ̂′
t)
∣∣∣

13: projected_grad← (ℓ+ − ℓ−) ∗ Σ̂1/2
t /2µ

14: Reset random number generator with seed s ▷ For sampling ui

15: for θi ∈ θ do
16: Sample ui ∼ N (0, Id)
17: θi ← θi − ηt∗ projected_grad ∗ui

18: end for
19: end for

20: function PERTURBPARAMETER(θ, µ, Rt, Ct, s)
21: Reset random number generator with seed s ▷ For sampling ui

22: for θi ∈ θ do
23: Sample ui ∼ N (0, Id)

24: Σ̂−1
t = (Rt ∗ Ct)/(1

⊤
n ∗Rt)

25: θi ← θi + µΣ̂
1/2
t ui ▷ Modify parameters in place

26: end for
27: return θ
28: end function

D.2 HIZOO-MULTI

There is a rich history of transferring ideas from first order optimization to enhance ZO algorithms.
Below, we highlight the variant of HiZOO: HiZOO-multi which can perform n estimation times
per step efficiently as shown in Algorithm 3. We conducted experiments to explore the influence
of estimation times n per step as shown in Figure 16. We can conclude that when n is larger, the
estimation of diagonal Hessian is more accurate. It can decrease the variance of the estimated diagonal
Hessian matrix during each step and thus reduce the overall training steps, but will cause much more
computation per step meanwhile. So choosing an appropriate value of n is very important during the
training.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9: Loss curves on Llama3 between HiZOO and HiZOO-L.

Algorithm 3 HiZOO-multi
Require: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale µ, batch size B,

learning rate schedule ηt, smooth scale αt, estimate times n, Hessian matrix Σ0

1: for t = 1, ..., T do
2: seeds, projected_grads← []
3: for j = 1, ..., n do
4: Sample batch B ⊂ D and random seed s
5: ℓ← L(θ;B)
6: θ← PerturbParameters(θ, µ, Σ1/2

t−1, s)
7: ℓ+ ← L(θ;B)
8: θ← PerturbParameters(θ, −2µ, Σ1/2

t−1, s)
9: ℓ− ← L(θ;B)

10: θ← PerturbParameters(θ, µ, Σ1/2
t−1, s) ▷ Reset parameters before descent

11: Σ′
t =

1
2µ2 (ℓ+ + ℓ+ − 2ℓ)(Σ

−1/2
t−1 uiu

⊤
i Σ

−1/2
t−1)

12: Σ−1
t = (1− αt)Σ

−1
t−1 + αt |diag(Σ′

t)| ▷ Update Hessian matrix
13: projected_grad← (ℓ+ − ℓ−) ∗ Σ1/2

t /2µ
14: projected_grads[j]← projected_grad
15: seeds[j]← s
16: end for
17: end for
18: for j = 1, ..., n do
19: Reset random number generator with seeds[j]
20: for θi ∈ θ do
21: ui ∼ N (0, Id)
22: θi ← θi − (ηt/n)∗projected_grads[j] ∗ui ▷ Avg grad for u1, ..., un

23: end for
24: end for

25: function PERTURBPARAMETER(θ, µ, Σ1/2
t ,s)

26: Reset random number generator with seed s
27: for θi ∈ θ do
28: ui ∼ N (0, Id)

29: θi ← θi + µΣ
1/2
t ui ▷ Modify parameters in place

30: end for
31: return θ
32: end function

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E EXPERIMENTS ON LLMS

E.1 DETAILED EXPERIMENTS ON ROBERTA-LARGE

We use the hyperparameters in Table 6 for HiZOO experiments on RoBERTa-large. Regarding
learning rate scheduling and early stopping, we use constant learning rate for all HiZOO experiments.

Table 6: The hyperparameter grids used for RoBERTa-large experiments. HiZOO uses a constant
learning rate schedule. All HiZOO experiments use 100K steps.

Experiment Hyperparameters Values

HiZOO Batch size 64
Learning rate {1e−7, 1e−6, 1e−5}

µ 1e−3
Weight Decay 0

HiZOO(prefix) Batch size 64
Learning rate {1e−2, 5e−3, 1e−3}

µ 1e−1
Weight Decay 0

prefix tokens 5

HiZOO(LoRA) Batch size 64
Learning rate {1e−5, 5e−5, 1e−4}

µ 1e−3
Weight Decay 0.1

(r, α) (8, 16)

Table 7: Experiments on RoBERTa-large (350M parameters, k=512). For MeZO we report the results
we reproduced.

Task Type SST-2 SST-5 SNLI MNLI RTE TREC Average
—— sentiment —— —— natural language inference —— — topic —

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0 49.5
LP 91.3 (±0.5) 51.7 (±0.5) 80.9 (±1.0) 71.5 (±1.1) 73.1 (±1.5) 89.4 (±0.5) 76.3

FT 91.9 (±1.8) 47.5 (±1.9) 77.5 (±2.6) 70.0 (±2.3) 66.4 (±7.2) 85.0 (±2.5) 73.1
FT (LoRA) 91.4 (±1.7) 46.7 (±1.1) 74.9 (±4.3) 67.7 (±1.4) 66.1 (±3.5) 82.7 (±4.1) 71.6
FT (prefix) 91.9 (±1.0) 47.7 (±1.1) 77.2 (±1.3) 66.5 (±2.5) 66.6 (±2.0) 85.7 (±1.3) 72.6

MeZO 93.3 (±0.7) 53.2 (±1.4) 83.0 (±1.0) 78.3 (±0.5) 78.6 (±2.0) 94.3 (±1.3) 80.1
MeZO (LoRA) 90.5 (±0.6) 45.4(±1.1) 64.6(±1.2) 62.1(±0.9) 61.1(±1.8) 80.8(±1.5) 67.4
MeZO (prefix) 93.3 (±0.1) 53.6 (±0.5) 82.9 (±1.1) 75.6 (±1.2) 77.2 (±0.8) 88.2 (±0.7) 78.4

HiZOO 95.5 (±0.4) 53.2 (±0.9) 82.6 (±0.7) 77.7 (±0.6) 80.0 (± 1.5) 94.6 (±1.1) 80.6
HiZOO (LoRA) 91.7 (±0.3) 45.3 (±0.7) 76.5 (±0.3) 63.1 (±0.6) 70.4 (±1.4) 85.6 (±1.5) 72.1
HiZOO (prefix) 96.1 (±0.2) 54.2 (±0.4) 85.7 (±0.7) 79.7 (±1.0) 77.3 (±0.2) 93.9 (±0.6) 81.2

Figure 10: Loss curves on RoBERTa-large between MeZO and HiZOO.

In Table 7 we show the full experiment results. Additionally, we plot more loss curves to compare
with MeZO. As shown in Figure 10, we can see that HiZOO can greatly accelerate the training
process over MeZO, which verifies the robustness of HiZOO.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 11: Accuracy curves on RoBERTa-large between MeZO and HiZOO.

E.2 DETAILED RESULTS ON VARIOUS LLMS

We use the hyperparameters in Table 8 for HiZOO experiments on OPT. Full results for OPT-30B
and OPT-66B are in Table 9. We also provide the relative loss curves of fine-tuning OPT family
in Figure 12. We provide several loss curves of fine-tuning Phi-2(2.7B) and Llama3(8B) in Figure 13
and Figure 14.

Table 8: The hyperparameter grids used for OPT experiments. All weight decay is set to 0. HiZOO
uses 20K steps and constant learning rates.

Experiment Hyperparameters Values

HiZOO Batch size 16
Learning rate {1e−6, 5e−7, 1e−7}

µ 1e−3

HiZOO(prefix) Batch size 16
Learning rate {5e−2, 1e−2, 5e−3}

µ 1e−1
prefix tokens 5

HiZOO(LoRA) Batch size 16
Learning rate {1e−4, 5e−5, 1e−5}

µ 1e−2
(r, α) (8, 16)

FT with Adam Batch size 8
Learning Rates {1e−5, 5e−5, 8e−5}

Table 9: Experiments on OPT-30B and OPT-66B(with 1000 examples). The best results are
highlighted in bold for better comparison. We highlight the best results between HiZOO and MeZO
in bold to facilitate comparison.

Task SST-2 RTE WSC WIC
30B zero-shot 56.7 52.0 38.5 50.2
30B ICL 81.9 66.8 56.7 51.3
30B MeZO 90.6 66.4 63.5 48.9
30B MeZO(prefix) 87.5 66.1 55.8 59.1

30B HiZOO 90.3 69.3 63.5 53.4
30B HiZOO(prefix) 91.2 68.6 57.7 60.2

66B zero-shot 57.5 67.2 43.3 50.6
66B ICL 89.3 65.3 52.9 54.9
66B MeZO(prefix) 93.6 66.4 57.7 58.6

66B HiZOO(prefix) 93.6 71.5 60.6 61.1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 12: Loss curves on OPT between MeZO and HiZOO.

Figure 13: Loss curves on Phi-2 between MeZO and HiZOO.

Figure 14: Loss curves on Llama3 between MeZO and HiZOO.

F DETAILS ABOUT MEMORY USAGE

Here we show the detailed numbers of memory profiling results Table 10. We did not turn on any
advance memory-saving options, e.g., gradient checkpointing. We set the per-device batch size as 1
to test the minimum hardware requirement to run the model with specific optimization algorithms.
We use Nvidia’s nvidia− smi command to monitor the GPU memory usage.

Table 10: Memory usage on the MultiRC (average tokens=400) dataset. Results of ICL and full-
parameter tuning are from MeZO(Malladi et al., 2023).

Method zero-shot/MeZO(FT) HiZOO(FT) HiZOO-L(FT) ICL Adam(FT)
1.3B 1xA100 (4GB) 1xA100 (7GB) 1xA100 (4GB) 1xA100 (6GB) 1xA100 (27GB)
2.7B 1xA100 (7GB) 1xA100 (13GB) 1xA100 (8GB) 1xA100 (8GB) 1xA100 (55GB)
6.7B 1xA100 (14GB) 1xA100 (29GB) 1xA100 (15GB) 1xA100 (16GB) 2xA100 (156GB)
13B 1xA100 (26GB) 1xA100 (53GB) 1xA100 (29GB) 1xA100 (29GB) 4xA100 (316GB)
30B 1xA100 (58GB) 2xA100 (118GB) 1xA100 (64GB) 1xA100 (62GB) 8xA100 (633GB)
66B 2xA100 (128GB) 3xA100 (246GB) 2xA100 (140GB) 2xA100 (134GB) 16xA100

G DETAILS ABOUT WALLCLOCK TIME EFFICIENCY

In this section, we measure the wallclock time efficiency of HiZOO compared to MeZO and full-
parameter fine-tuning (FT) with respect to different model sizes. Due to the lack of NV-Link

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

connectivity in our A100 GPUs, we selected models that can be fully fine-tuned on a single A100
GPU for comparison. As shown in Table 11, HiZOO exhibits a longer per-step duration compared
to MeZO, within a 50% margin. This result indicates that the primary overhead in hierarchical
optimization methods lies in the forward propagation process. Given that HiZOO involves an
additional forward pass compared to MeZO, the time per step increases by approximately 1.4 to 1.5
times.

In conclusion, the speedup factors derived from the forward pass step used in our comparisons
between HiZOO and MeZO reflect the actual wallclock time efficiency improvements accurately.

Table 11: Wallclock time per step between MeZO, HiZOO and HiZOO-L. The increase in wallclock
time per step for HiZOO compared to MeZO is less than 1.5 times across different model sizes. To
avoid introducing additional overheads such as inter-GPU communication, results are measured on
the same dataset (SST-2) and GPUs (80GB A100), with each result averaged over 100 steps. "BS"
refers to batch size. For the relatively smaller RoBERTa-large model, we used a BS=64, while for
models larger than 1B parameters, we used a BS=16.

Model RoBERTa-large(350M) Phi-2(2.7B) Llama3(8B) OPT(13B)
MeZO 0.2092s(BS=64) 0.3011s(BS=16) 0.7471s(BS=16) 1.1108s(BS=16)
HiZOO 0.3023s(BS=64) 0.4486s(BS=16) 1.1090s(BS=16) 1.5225s(BS=16)
HiZOO-L 0.3193s(BS=64) 0.4851s(BS=16) 1.1996s(BS=16) 1.6422s(BS=16)

H DETAILS ABOUT ABLATION EXPERIMENTS

H.1 INFLUENCE OF SMOOTH SCALE αt AND NUMBER OF ESTIMATION n PER STEP

We conducted experiments on SST-2, SST-5, MNLI datasets when fine-tuning RoBERTa-large to
research the influence of smooth scale αt. Figure 15 shows that the value of αt mainly affects the
convergence speed of the model. Additionally, the best value of αt will vary between different
datasets. Figure 16 shows that the influence of the number of estimation n per steps.

(a) (b) (c)

Figure 15: More experiments on influence of the value of Smooth scale αt on RoBERTa.

Figure 16: Influence of number of estimation per step. (left) 2D trajectories of gradient descent;
(right) Corresponding loss curves.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

H.2 EXPERIMENTS ABOUT OMITTING [−Σ−1] TERM IN EQ. EQUATION 4

We conducted experiments on SST-2 datasets using three methods to fine-tune RoBERTa-large to
compare the difference between with [−Σ−1] term and without this term. Figure 17 shows that this
term can make negligible influence.

(a) (b) (c)

Figure 17: Experiment about the error generate by omitting the [−Σ−1] term in Eq equation 4. ’with’
means holding the term and ’without’ means omitting the term.

24

	Introduction
	Related Works
	Methods
	Preliminaries
	Hessian Informed Zeroth-Order Optimization
	Diagonal Hessian Estimator
	Convergence Analysis
	Visualization of HiZOO on Test Functions

	Experiments
	Masked Language Models
	Auto-Regressive Language Models
	Training with Non-Differentiable Objectives
	Memory Usage and Time Efficiency Analysis
	Comparison with other ZO variants
	Hyperparameter Analysis

	Conclusion
	Related Works
	First-order Optimizer Used in LLMs
	Hessian Based First-Order Optimizer
	Zeroth-Order Optimizer

	Detailed Convergence Analysis
	Test Functions of the optimization trajectories
	HiZOO Variants
	HiZOO-L
	HiZOO-multi

	Experiments on LLMs
	Detailed Experiments on RoBERTa-large
	Detailed results on various LLMs

	Details about Memory Usage
	Details about Wallclock Time Efficiency
	Details about Ablation Experiments
	Influence of Smooth Scale t and number of estimation n per step
	Experiments about Omitting [--1] term in Eq. equation 4

