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Abstract

Despite advancing language model (LM) align-
ment, direct preference optimization (DPO) falls
short in LM reasoning with the free lunch from re-
inforcement learning (RL). As the breakthrough,
this work proposes a new RL-free preference op-
timization method aiming to achieve DPO along
with learning another LM, whose response genera-
tion policy holds the asymptotic equivalence with
AlphaZero-like search, the apex of algorithms for
complex reasoning missions like chess Go. While
circumventing explicit value and reward model-
ing, the neural implicit tree search executed by the
extra LM remains seeking to equip DPO with rea-
soning procedure technically akin to AlphaZero.
Our experiments demonstrate that our methodol-
ogy outperforms both regular DPO variants in hu-
man preference alignment, and MCTS-based LMs
in mathematical reasoning and planning tasks.

1. Introduction
Preference optimization paradigms, notably Reinforcement
Learning from Human Feedback (RLHF) (Bai et al., 2022)
and Direct Preference Optimization (DPO) (Rafailov et al.,
2024b), are foundational to modern Language Model (LM)
alignment, aiming to imbue these models with human’s be-
havioral characteristics, inclination, and value. In particular,
DPO circumvent reward modeling so as to directly optimize
LMs with preferential response pairs, thereby reinforcement
learning (RL)’s complexities and instability avoided to yield
more efficiently and stably aligned models.

Distinct from preference alignment, sophisticated reason-
ing capabilities underlying human brains are not typically
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replicated by RLHF and DPO alone: the emulation often ne-
cessitates synergistic integration with other techniques, i.e.,
meticulous prompt engineering (Wei et al., 2022), process-
based reward modeling (Lightman et al., 2023), and Monte
Carlo Tree Search (MCTS) (Xie et al., 2024a). Among these
complementary approaches, MCTS stands out as essentially
promising, due to its exploration of complex decision spaces
in achieving high-level reasoning tasks such as game Go (Sil-
ver et al., 2017b). Massive leading research were proposed
to combine MCTS with preference optimization, whereas
their MCTS procedures inevitably require the value func-
tion learned by RL for executing the search principles of
Upper Confidence Bound (UCB). It is noteworthy that the
critical advantage of DPO is to skip the value learning to
achieve faster and more stable preference optimization than
RLHF. The standard MCTS’s reliance on an RL-learned
value function directly conflicts with DPO’s core strength of
bypassing RL entirely, showing a significant hurdle for their
seamless integration. It implies the necessity to reconcile
MCTS methodologies with the RL-free nature behind DPO.

Rather than the regular MCTS, this paper started from its
theoretical variant derived from (Grill et al., 2020b), where
AlphaZero-like MCTS can be treated as a stochastic policy
solved by the state-specific local optimization regularized
by the reverse KL-divergence. With this regard, each state-
specific local tree search decision asymtotically converges
to AlphaZero-like MCTS decision with the gap bounded by
the empirical visit counts, thus, lifting the expressiveness of
MCTS limited by the integer-count probability and sparse
tree width. Regretfully, the local solution of this stochastic
policy involves the parameter only solvable by dichotomic
search per state. In terms of the exponentially complex state
space in token-level language generation, this implicit tree
search (ITS) is hardly applied in MCTS-based LM research.

Contributions. We propose a new RL-free preference op-
timization paradigm aiming to approximate ITS by LMs.
Specifically,

• Beyond the original token-selection policy in DPO, we
propose another LM to learn the global policy of ITS
with regards to neural universal approximation. The
preference optimization built on top of DPO, without
dichotomic search and any other RL elements, inherits
the critical advantages of the DPO family.
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• In terms of the gradient analysis to the preference op-
timization with ITS, learning its global policy yields
the response generation with diverse and better aligned
preference, therefore, simultaneously benefits AI align-
ment and reasoning tasks.

• Self-improved preference policy augmentation and de-
coding strategy are proposed for our ITS-based prefer-
ence optimization approaches, in order to align with the
MCTS-based LLM decoding. The connection between
the decoding strategies and group-relative policy opti-
mization (Shao et al., 2024) has also been presented.

Our experiments included the evaluation across human pref-
erence alignment, mathematical reasoning, and mathemati-
cal planning, where our approach concurrently reaped the
optima against DPO variants and MCTS-derived baselines.

2. Preliminaries
For language generation, language models (LM) θ serve as a
token-level Markov decision process (MDP) (S ,A,P ,R,T ),
where the state st = (x,y<t) in S consists of a prompt x
followed by a sequence of response tokens x<t generated
at the previous t-1 steps, and the action at = yt in A de-
notes the token selected at the current t step. Given this,
the transition kernel P: (S,A)→ S holds the deterministic
mapping from (st, at) to the next state st+1 = (x,y<t+1)
with y<t+1 = (y<t, yt). The rewardR: (S ,A)→ R quan-
tifies the preference of selecting tokens, and T∈T denotes
the step to cease the generation when aT is the end-of-
sequence (EoS) token. The goal is to learn the sequential
token-selection policy πθ that maximizes the accumulated
reward R(x,y)=

∑T
t=1 r(st,at), ∀r ∈ R.

RLHF and DPO. Token-level MDP needs R(x,y) to re-
flects human preferences. RLHF (Bai et al., 2022) captures
this from prompt x with its response pairs y(w) ≻ y(l),
where≻ identifies y(w) more preferable than y(l). The com-
parison is made by Bradley-Terry (BT) model (Bradley &
Terry, 1952) in the contextual bandit setting

PBT(y
(w) ≻ y(l)|x) = exp(R(x,y(w)))

exp(R(x,y(w))) + exp(R(x,y(l)))
.

(1)
where R(x,y) can be learned through

min
R
−E(x,y(w),y(l))∼D[log σ(R(x,y(w))−R(x,y(l)))]

(2)
with the human preference dataset D. It serves RLHF as a
KL-constraint RL objective

max
πθ

Ex∼D,y∼πθ(·|x)[R(x,y)− βDKL(πθ(·|x)∥πref(·|x))],
(3)

where the reference policy πref is initialized by supervised
fine-tuning (SFT) LM to learn the generation policy πθ via
PPO (Schulman et al., 2017), and β > 0 controls their

trade off. DPO (Rafailov et al., 2024b) reconsiders the
optimization from a interpretation of R(x,y) represented as
R(x,y) = β log πθ(y|x)

πref(y|x) + β logZ(x). With such regards,
Eq.2 is equivalent with

LDPO(πθ;πref) = −E(x,y(w),y(l))∼D[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
,

(4)
therefore the reward modeling phase is skipped to directly
optimize the token-selection policy πθ.

Token-level Interpretation of LM Alignments. The afore-
mentioned LM alignments focus on a complete response y,
yet πθ is executed in each MDP step using token-level re-
wards r(st,at) with β log

πθ(yt|[x,y<t])

πref(yt|[x,,y<t])
=β log πθ(at|st)

πref(at|st)
.

(Rafailov et al., 2024a) re-formulates Eq.3 via the token-
level interpretation

max
πθ

Es0=x∼D,at∼πθ(·|st)

Ty∑
t=1

[
r(st,at)−β log

πθ(at|st)

πref(at|st)

]

⇆max
πθ

Es0=x∼D,at∼πθ(·|st)

Ty∑
t=1

[
r(st,at)+β log πref(at|st)

+ βH(π)
]
.

(5)
So given rME(st,at)=r(st,at)+β log πref(at|st), RLHF
with the reframed reward is maximum-entropy RL (Ziebart,
2010) whose fixed point solution leads to the optimal pol-
icy π∗

θ that satisfies π∗
θ(at|st)=exp

(Q∗(st,at)−V ∗(st)
β

)
with

respect to V ∗(st) = β log
∑

a∈A exp
(
Q∗(st,at)/β

)
. It

is noteworthy that the optimal state-action value function
holds the initial value Q∗(s0,a0) = R(x,y) = V ∗(s0) +

β
∑Ty

t=1 log
π∗
θ (at|st)

πref (at|st)
with V ∗(s0) = V ∗(x), henceforth

we have the objective similarly derived from DPO

LT-DPO(πθ;πref) = −E(x,y(w),y(l))∼D[
log σ

(
β

Tw∑
t=1

log
πθ(a

w
t |swt )

πref(aw
t |swt )

− β

Tl∑
t=1

log
πθ(a

l
t|slt)

πref(al
t|slt)

)]
,

(6)
where aw

t , al
t indicate the t-th token of the responses yw,

yl; and swt = [x,yw
<t], s

l
t = [x,yl

<t], respectively.

MCTS and AlphaZero-like Tree Search. Given the state-
action value treated as feedback from a contextual bandit,
MCTS (Browne et al., 2012) builds an online search tree
incrementally for decision making. (More details refers
to (Silver et al., 2017b)).MCTS algorithms are famous in
massive researches, among which the most successful case
is Alpha Zero (Silver et al., 2017b) and its variants (Silver
et al., 2017b; Schrittwieser et al., 2020). The MCTS vari-
ant underlying these methods remarked as AlphaZero-like
tree search, compute a policy at the root of the search tree
improved from the distribution predicted by the prior policy
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π, which is updated by distilling back the tree-search policy
to update the prior. The significant difference from other
MCTS is AlphaZero-like tree incorporating π as the prior
during the search procedure. It leads to the heuristic search
principle inspired from UCB:

a⋆ ≜ argmax
a∈AMCTS

[
Qπ(s,a)+cπ(a|s)

√ ∑
a′∈AMCTS

n(s,a′)

1 + n(s,a)

]
.

(7)
where c > 0 is a balance factor between exploration and
exploitation in the MCTS search space AMCTS. The four-
stage procedure of Eq.7 is shown in Appendix.A.

3. Implicit Tree Search: Warm-Up
AlphaZero-like MCTS variants have been intensively ex-
plored in leading researches for LM training (Feng et al.,
2023; Zhang et al., 2024a) and alignment (Xie et al., 2024b;
Chen et al., 2024a), in order to mitigate their downsides of
reasoning and long-form generation ability captured in post-
training. In spite of different algorithm designs, the method-
ologies are consistent with MCTS in the data-generation
manner: π̂ merges with the decoding strategy to generate
responses for training data augmentation, then the token-
selection policy πθ and visit counts updated along with
these data, further renew the decoding by Eq.7. Despite sig-
nificantly advancing LM alignments, the decision-making
pipeline relies on the online state-action visit count n(s,a)
per state-action pair. In terms of the integer-count probabil-
ity and the sparse tree width in the initial training iters, it
inevitably suffers from two critical problems.

Cold-start exploration expressiveness.
√∑

a′∈A n(s,a′)

1+n(s,a) is
the key to differentiate π̂ and π, so AlphaZero-like tree
search typically employs its empirical visit distribution

1+n(s,a)
|AMCTS|+

∑
a′∈AMCTS

n(s,a′) or its exponential generalization

1+
(
n(s,a′)

)r

|AMCTS|+
∑

a′∈AMCTS

(
n(s,a′)

)r to explore the tree structure.

Whereas the discrete nature of visit counts limit the expres-
siveness of exploration strategy.

Proposition 3.1. Given a fixed r∈R/{0}, the action selec-
tion probability by the exponential empirical visit distribu-
tion holds its value with the equal cardinality of Z.

Proposition 3.2. Given a learnable r∈R, the action selec-
tion probability by the exponential empirical visit distribu-
tion holds the value in the range ( 1

|AMCTS| , 1).

The problem is cold-start because early decisions heavily
influences the tree growth yet the ratios of integers are more
unstable when the visit counts are small. It may drive the
language generation into bias or sub-optima.

Sparse-action improvement. π̂ solely improved for actions

searched at least once by the previous simulation whereas
those with n(s,a)=0 would be dominated by θ. In terms
of the large action space in language and the deterministic
policy in Eq.7, it may cause a large simulation budget to
improve actions never visited.

Recognizing that these limitations are intrinsic to the use of
online visit counts in conventional MCTS algorithms, we
supersedes the online tree-search strategy with stochastic
policy optimization established in (Grill et al., 2020b) (de-
picted in Figure.1.b), named Implicit Tree Search since the
optimized policy is provably equivalent with the AlphaZero-
like tree search exploration defined in Eq.7.

3.1. MCTS as Regularized Policy Optimization

More specifically, for any state, the action selection formula
in Eq.7 holds the identical interpretation

a⋆(s) ≜ argmax
a∈AMCTS

[
Qπ(s,a) + λN (s) · π(a|s)

π̂(a|s)

]
(8)

where π̂(a|s) ≜ 1+n(s,a)
|AMCTS|+

∑
a′∈AMCTS

n(s,a′) represents

the empirical visit distribution and λN (s) ≜ c ·√∑
a′∈AMCTS

n(s,a′)

|AMCTS|+
∑

a′∈AMCTS
n(s,a′) denotes the state-specific multi-

plier. Notice that for any s∈S, the empirical visit distribu-
tion π̂(·|s) is the only way that search algorithm influences
the optimal action of tree search. In language generation
context, we set π=πθ, so for any s∈S , π̂(·|s) holds a corre-
sponding predominant policy π(·|s) as

Theorem 3.3. (Asymptotic equivalence between ITS and
MCTS policies) ∀s ∈ S, let π(·|s) be the solution of

π(·|s)≜argmax
y(s)∈S

[
Qπθ (s)⊤y(s)

− λN (s)DKL[πθ(·|s),y(s)
] (9)

where S denotes the |AMCTS|-dimensional simplex, and
Qπθ (s) =

(
Qπθ (s,a1), Q

πθ (s,a2), · · · , Qπθ (s,a|AMCTS|))
is the Q-value vector with respect to the state s. Then

as the visit counts increase, the empirical visit distribution
π̂(·|s) in Eq.8 converges to π(·|s) with the upper bound∣∣∣∣∣∣π̂(·|s)− π(·|s)

∣∣∣∣∣∣ ≤ |AMCTS|+ 1

|AMCTS|+N
(10)

where N indicates the total rounds of simulation.

Theorem.3.3 is concluded from the definition.1 and proposi-
tion.1,5 in (Grill et al., 2020b). The theoretical result verifies
that, given sufficient simulation steps, there exists an asymp-
totic equivalence between the exploration of AlphaZero-like
tree search π̂(·|s) and the stochastic-sampling policy π(·|s).
Note that the policy optimization in a simplex allows the
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Figure 1. Comparison between the diagrams of (a).MCTS (regular MCTS and AlphaZero-like tree search), (b). Implicit Tree Search (ITS)
(Grill et al., 2020b), and our IT-PO algorithm.

continuous value change in π(·|s) that prevents the risk
of cold-start expressiveness. Besides, the reversed KL di-
vergence is smooth on π(·|s), ensuring the sparse-action
improvement resolved.

Accordingly, the expand and backup stages along with the
MCTS procedure require the state-specific stochastic policy
optimization formulated as follows

Lemma 3.4. (Solution of ITS policy (Grill et al., 2020b))
∀s ∈ S, the solution π(·|s) of Eq.9 holds

∀at ∈ AMCTS, π(at|st) = λN (st)
πθ(at|st)

α(st)−Qπθ (st,at)
(11)

where α(st) is defined as

1).α(st) ≜ max

{
α ∈ R, s.t.

∑
a∈AMCTS

π(a|st) = 1

}
2).α(st) ≥ α(st)min ≜ max

a∈AMCTS

(
Q(st,a) + λNπθ(a|st)

)
3).α(st) ≤ α(st)max ≜ max

a∈AMCTS

Q(st,a) + λN

(12)

Lemma.3.4 is derived from Appendix.B.3 in the paper.

3.2. Challenges of Combing Implicit Tree and LMs

Observed that
∑

a∈AMCTS
π(a|st) monotonically decreases

on (α(st)min,α(st)max), the theoretical result guarantees
the state-specific hyper-parameter α(st) uniquely identi-
fied using dichotomic search over (α(st)min, α(st)max). In
other words, π can not be universally optimized by gradi-
ent descent and even for each state, π(·|st)’s solution in
Eq.11 is not exactly closed-form. To this end, π can not
be flexibly used as explicit search like regular MCTS algo-
rithms and instead, only applicable for policy distillation to
update the Q function in AlphaZero-like MCTS. However,
it is hardly applied for LLM-based preference optimization.

The vital problem roots in the exponentially increase size of
the valid state space. As demonstrated in token-level MDP,
texts are generated by sequential token selection with the
state st = (x,y<t) deterministically transmitted as P(st,
at)→ st+1 = (x,y<t+1). It implies that for each prompt
x, the valid state space holds the size |V |t (|V | indicates the
size of token vocabulary V ) exponentially increase with t.
Given such challenge, Lemma.3.4 solely promises the local
policy so that the actor-critic modeling is required to obtain
πθ and Qπθ simultaneously, as leading LLM-based MCTS
approaches do. What’s worse, the local policy also relies on
α(st) inferred by dichotomic search per state, implying the
computation and buffer also exponentially increasing. This
problem even more severe when the action space AMCTS

become sentence-level.

4. Preference Optimization with Implicit Tree
Search

In the previous section, we demonstrated the advantages of
π over the empirical visit exploration employed by regular
MCTS methods, while its solution of Lemma.3.4 is hardly
implemented in the LM realm due to the state-specific non-
differentiable hyper-parameters α(st). In this section, we
derive the new RL-free preference optimization paradigm to
approximate π without either Q function or α(st), yielding
the response generation as MCTS without value modeling.

4.1. Language Models as ITS Policy

Specifically, we chase for the universal approximator of π
based on the extra policy network πφ parameterized by the
other language model φ (Figure.1.c). It supports the instant
inference of π(·|st) (i.e., no dichotomic search required to
obtain α(st)), no matter st was visited or not.

Thought consistent with πθ in the reversed KL constraint,
π is essentially a stochastic strategy generalized from de-
terministic policy in the AlphaZero-like tree search (Theo-
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rem.3.3). It motivates us to initialize its universal approxima-
tor πφ by supervised fine-tuning. Specifically, we fine-tune
a pre-trained LM to obtain πsft, whose parameters initialize
the reference policy πref , the token selection policy πθ, and
our ITS policy approximator πφ. Then we applied the DPO
variant algorithm, i.e., conservative DPO (cDPO) (Mitchell,
2023b) to update πθ:

LcDPO(θ) = E(x,y(w),y(l))∼D

−[(1−ϵ) log[σ(uθ(x,y
(w),y(l)))]+ϵ log[σ(uθ(x,y

(l),y(w)))]
(13)

where u(·) indicates the preference logit derived from BT
model, ϵ ∈ [0, 0.2) denotes the margin then when ϵ = 0,
cDPO degenerates into DPO.

After training with minφ LcDPO(φ; θ), the parameters of πθ,
πref are frozen to update the parameter of πφ. This manner
provides the stable πθ to derive the optimization of φ, i.e.,
Implicit-Tree Preference Optimization (IT-PO).

4.2. Implicit Tree Preference Optimization (IT-PO)

IT-PO seeks for learning πφ to substitute π without either
reward or value functions. It is noteworthy that π(·|st) in-
herently contains Qπθ (·, st) from Lemma.3.4, which serves
as the implicit policy evaluation for π with the lower values
implying increased exploration and vice versa. Therefore if
πφ approximate π well enough, ITS can implicitly derive
the value function from πφ without explicit modeling Qπθ .

For simplicity, we first consider step-synchronous ITS with
the policy πθ, wherein the MCTS action node is token-level,
i.e., AMCTS = A. Specifically, given fixed θ and rounds
of simulation (i.e., λN (st) is also fixed), the ITS policy
π(·|st), ∀st∈S can be uniquely determined according to
Lemma.3.4. Suppose that φ achieve the optimal parameter
such that πφ(at|st) = π(at|st), it holds the observation

Lemma 4.1. Suppose (x,y(w)) denotes a pair of prompt
and its preferred response. For each state s(w)

t = (x,y
(w)
<t ),

the action selects either the preferred token a
(w)
t = y

(w)
t

or a random token ât sampled from πφ∗(·|s(w)
t ); and each

state s
(l)
t = (x,y

(l)
<t), the action selects either the dispre-

ferred token a
(l)
t = y

(l)
t or a random token ǎt sampled from

πφ∗(·|s(l)t ). It holds

R(x,y(w)) =

Tw∑
t=1

(
r(s

(w)
t , ât)−λN (s

(w)
t )

(
πθ(a

(w)
t |s(w)

t )

πφ(a
(w)
t |s(w)

t )
− πθ(ât|s(w)

t )

πφ(ât|s(w)
t )

))
;

R(x,y(l)) =

Tl∑
t=1

(
r(s

(l)
t , ǎt)−λN (s

(l)
t )

(
πθ(a

(l)
t |s(l)

t )

πφ(a
(l)
t |s(l)

t )
− πθ(ǎt|s(l)

t )

πφ(ǎt|s(l)
t )

))
.

(14)

The lemma demonstrates that we may construct the accu-
mulated reward of preference prompt-response pair by the
ITS exploration starts from each state of the preferred and
dispreferred sequences (i.e., root or intermediate node). As
demonstrated in (Rafailov et al., 2024a), DPO-like meth-
ods hold the dense reward re-parameterized as r(st,at)
= β log πθ(at|st) − β log πref(at|st). Combine this with
Lemma.4.1 leading to
Theorem 4.2. (Step-Synchronous IT-PO) A prompt x
drawn from D has a response pairs y(w) ≻ y(l). Given
Â={ât ∼ πφ(·|s(w)

t )}Tw
t=1 and Ǎ={ǎt ∼ πφ(·|s(l)t )}Tl

t=1,
it holds

Uss(x,y
(w),y(l)) = R(x,y(w))−R(x,y(l))

=µw(φ, θ)− µl(φ, θ) + δ(θ),

s.t. µw(φ, θ)=−
Tw∑
t=1

λN (s
(w)
t )

(
πθ(a

(w)
t |s(w)

t )

πφ(a
(w)
t |s(w)

t )
− πθ(ât|s(w)

t )

πφ(ât|s(w)
t )

)

µl(φ, θ)=−
Tl∑
t=1

λN (s
(l)
t )

(
πθ(a

(l)
t |s(l)

t )

πφ(a
(l)
t |s(l)

t )
− πθ(ǎt|s(l)

t )

πφ(ǎt|s(l)
t )

)

δ(θ)=β

(
Tw∑
t=1

log
πθ(a

(w)
t |s(w)

t )

πref(a
(w)
t |s(w)

t )
−

Tl∑
t=1

log
πθ(a

(l)
t |s(l)

t )

πref(a
(l)
t |s(l)

t )

)
(15)

then the step-synchronous IT-PO is proposed by

Lss-IT-PO(φ; θ) = E(x,y(w),y(l))∼D,Â,Ǎ∼πφ

−[(1−ϵ) log σ(Uss(x,y
(w),y(l)))+ϵ log σ(Uss(x,y

(l),y(w)))]
(16)

Theorem 4.2 establishes that optimal approximation be-
tween π and πφ must preserve their stochastic search
strategies’ conformity to the BT preference model. The
minimization of Eq.13 is also derived from cDPO that incor-
porates the margin to tolerate the preference noises possibly
introduced by Â, Ǎ drawn from πφ. It benefits πφ to gen-
erate the high-quality responses that exceed the old data.

Step-Asynchronous ITS. MCTS algorithms significantly
improve the LM’s reasoning ability where the action space
of each node focuses on sentence. It holds the asynchronous
step between π and πθ, i.e., AMCTS =

⋃N
n=1An, where

An is the sentence-level action space with n-length tokens
and N indicates the maximum length of sentences. Observe
that the token-level MDP could be also identified into the
sentence level, where π, πθ, πref take their sentence-level ac-
tions by generating token sequences ended by “[\n]′′ token
(Definition B.3 in Appendix). We re-frame their sentence-
level policy as πS

φ, πS
θ , πS

ref so that given the state st ∈ SS
and the sentence-level action At = (a

(i)
t )Nt

i=1 ∈ AS (Nt

indicates the token number in the t-th sentence action and
a
(i)
t indicates the i-th token in the t-th sentence), and the

sentence-level reward rS(st, At) =
∑Nt

i=1 r(st, a
(i)
t ).

Given this, we derive the sentence-level ITS optimized by
step-asynchronous variant of Eq.4.2:
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Theorem 4.3. (Step-Asynchronous-IT-PO) A prompt x
drawn from D has a response pairs y(w) ≻ y(l) com-
posed of TS

w , TS
l sentences, respectively. A

(w)
t , A(l)

t de-
notes the t-th sentence in y(w), y(l), respectively. Sup-
pose the state s(w)

t ,s(l)t transmits along sentence-level MDP
(Definition.B.3), a(w,i)

t /a(l,i)
t indicates the i-th token in the

A
(w)
t /A(l)

t , s(w,i)
t /s(l,i)t denotes the sequential context ahead

of a(w,i)
t /a(l,i)

t in y(w)/y(l). Suppose that the sentence-
level policies πS

ref , πS
θ , πS

φ are identified by LM-based
token-selection policies πref , πθ, πφ, respectively; Ât =

(â
(1)
t , · · · , â(N̂t)

t ) ∼ πS
φ(·|s

(w)
t ),ŝ(0)t = s

(w)
t ,ŝ(i+1)

t =

P(ŝ(i)t , â
(i)
t );Ǎt = (ǎ

(1)
t , · · · , ǎ(Ňt)

t ) ∼ πS
φ(·|s

(l)
t ),š(0)t =

s
(l)
t ,š(i+1)

t = P(š(i)t , ǎ
(i)
t ). It holds

Usa(x,y
(w)

,y
(l)

) = R(x,y
(w)

) − R(x,y
(l)

)

=µ
S
w(φ, θ) − µ

S
l (φ, θ) + δ

S
(θ),

s.t. µS
w(φ, θ)= −

TS
w∑

t=1

λN (s
(w)
t )

(|A(w)
t |∏

i=1

πθ(a
(w,i)
t |s(w,i)

t )

πφ(a
(w,i)
t |s(w,i)

t )
−

N̂t∏
i=1

πθ(â
(i)
t |ŝ(i)t )

πφ(â
(i)
t |ŝ(i)t )

)

µ
S
l (φ, θ)=−

TS
l∑

t=1

λN (s
(l)
t )

(|A(l)
t |∏

i=1

πθ(a
(l,i)
t |s(l,i)t )

πφ(a
(l,i)
t |s(l,i)t )

−
Ňt∏
i=1

πθ(ǎ
(i)
t |š(i)t )

πφ(ǎ
(i)
t |š(i)t )

)

δ
S
(θ)=β

( TS
w∑

t=1

N̂t∑
i=1

log
πθ(â

(i)
t |ŝ(i)t )

πref (â
(i)
t |ŝ(i)t )

−
TS
l∑

t=1

Ňt∑
i=1

log
πθ(ǎ

(i)
t |š(i)t )

πref (ǎ
(i)
t |š(i)t )

)
(17)

then the step-synchronous IT-PO is proposed by

Lsa-IT-PO(φ; θ) = E
(x,y(w),y(l))∼D,{Ât}

TS
l

t=1,{Ǎt}
TS
w

t=1∼πφ

−[(1−ϵ) log σ(Uss(x,y
(w),y(l)))+ϵ log σ(Uss(x,y

(l),y(w)))]
(18)

4.3. Self-Improved Training and Decoding
In Sec.4.1, 4.2, LM φ serves as a universal approximator of
the ITS policy π across the state space. Since π behaves as
the stochastic variant of AlphaZero-like tree search, we turn
to discuss their common purpose, i.e., distilling πφ back
into the policy πθ to enhance both their performances.

Preference Policy Augmentation. Regular MCTS algo-
rithms used to sample decision-making trajectory to refine
the original policy πθ, which is recently treated as a type
of generalized policy improvement. Instead, (Grill et al.,
2020b) used to distill their ITS policy by −DKL(π, πθ). It
eases the sampling process but also sacrifices the benefits
derived from the high-quality response trajectories.

With this regards, we propose preference policy augmenta-
tion by resampling M responses {yk}Kk=1 generated from
each prompt x ∼ D by πφ. {yk}Kk=1 are then constructed
into pairs with their preference relations evaluated by Uss

or Uas, thus, (yi ≻ yj) holds if either Uss(x,yi,yj) > 0 at
the token level or Uas(x,yi,yj) > 0 at the sentence level.
After ranking their value by Uss or Uas, the top-M prefer-
ence pairs are selected for each prompt x in D. Then we
collect them across all prompts in D to construct the ITS

improved dataset D+. They join with D to refine the token-
selection policy via learning θ with cDPO. We elaborate the
IT-PO algorithm pipelines of its step-synchronous and step-
asynchronous cases in our implementation in Appendix.C.

Self-Improvement in Gradient Analysis. Through analyz-
ing the TI-PO loss function’s gradients with respect to φ, we
demonstrate how πφ facilitates the generated responses
both diverse and better aligned with ground-truth pref-
erences. For clarity, our analysis is derived from the step-
synchronous ITS using Uss for preference alignment and
focuses on the positive preference logit in − log[σ(Uss)]:

∇φ

(
− log[σ(Uss(x,y

(w))),y(l)]

)
=(∇φµw −∇φµl) · ∇△R

(
− log σ(△R)

)︸ ︷︷ ︸
higher when reward estimate is wrong by φ

s.t. ∇φµw=

Tw∑
t=1

λN (s
(w)
t )

(
πθ(a

(w)
t |s(w)

t )∇φ log[πφ(a
(w)
t |s(w)

t )]

πφ(a
(w)
t |s(w)

t )

−πθ(ât|s(w)
t )∇φ log[πφ(ât|s(w)

t )]

πφ(ât|s(w)
t )

)

−∇φµl=

Tl∑
t=1

λN (s
(l)
t )

(
− πθ(a

(l)
t |s(l)

t )∇φ log[πφ(a
(l)
t |s(l)

t )]

πφ(a
(l)
t |s(l)

t )

+
πθ(ǎt|s(l)

t )∇φ log[πφ(ǎt|s(l)
t )]

πφ(ǎt|s(l)
t )

)
.

(19)
Compared with DPO, the second multiplier observed from
the decomposed formula achieves the identical gradient ef-
fects. ∇φ log[πφ(a

(w)
t |s

(w)
t )] and −∇φ log[πφ(a

(l)
t |s

(l)
t )]

similarly exist in the first term yet they take the likelihood

increase and decrease effects with coefficients πθ(a
(w)
t |s(w)

t )

πφ(a
(w)
t |s(w)

t )

and πθ(a
(l)
t |s(l)

t )

πφ(a
(l)
t |s(l)

t )
. It implies that when πφ <πθ to the ground-

truth preference pairs, IT-PO takes the aggressive likelihood
influence to align πφ and πθ while the conservative likeli-
hood influence if πφ >πθ. More importantly, the implicit
tree sampled from the ground-truth preference nodes, i.e.,
ât ∼ πφ(·|s(w)

t ), ǎt ∼ πφ(·|s(l)t ) also influence the like-
lihood: −∇φ log[πφ(ât|s(w)

t )] and ∇φ log[πφ(ǎt|s(l)t )]
demonstrates that on account of the ground-truth preference
nodes, πφ learns to search lower preference child nodes
from s

(w)
t yet higher preference child nodes from s

(l)
t with

the same conservative-aggressive strategy. Hence πφ gener-
ates certain responses from the preferred context yet explore
more diverse responses when the context is not preferred.

ITS-guided Decoding. Beyond self-enhanced training, re-
cent study on LLM-based MCTS (Feng et al., 2023) demon-
strates promising results in improving the decoding process
by MCTS. Motivated from this, we propose the stochastic-
tree variant decoding from the spirits of their MCTS-α and
MCTS-rollout strategies.

1). ITS-α. For each initial state xroot, the original MCTS-α
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decoding strategy applied Alpha-like tree search for policy
evaluation then backup the visit count n(s,a) of the expo-

nential visit distribution n(st,a)
1/γ∑

a′ n(st,a′)1/γ
to guide decoding.

Since πφ is the universal approximator of π, the stochastic
variant of Alpha-like tree search. It is straightfoward to
use the exponential version of πφ, exp(log[πφ(a|st)]/γ)∑

a′ exp(log[πφ(a′|st)]/γ)

(step-synchronous IT-PO) or
exp(log[πS

φ(a|st)]/γ)∑
a′ exp(log[πS

φ(a′|st)]/γ)
(step-

asynchronous IT-PO) in our decoding strategy.

2). ITS-rollout. When the root xroot and the intermediate
state nodes sufficiently differ from the states visited in train-
ing, the simulation rounds N behaves more closely as zero
to fail the approximation between π̂ and π in Theorem.3.3.
In this case, πφ need to be updated to adapt the state xroot as
the backup process in MCTS. Due to no value function avail-
able, we employ πθ to implicitly evaluate arbitrary pairs of
responses y1,y2 generated by πφ(·|x), then the sampled
responses with preferences evaluated by θ would join the
meta-update of πφ to the state x

φ′ ←φ−∇(x,y1≻y2)
φ Lsa-IT-PO

s.t. y1 ≻ y2 if uθ(x,y1,y2) > 0,
(20)

which refreshes exp(log[πφ′ (a|st)]/γ)∑
a′ exp(log[πφ′ (a′|st)]/γ)

to facilitate our
decoding strategy. ITS-rollout can be treated as test-time-
training version of ITS-α. Its implementation first updates
φ′ by (20), then use ITS-α with φ′ to facilitate the decoding
process. In our experiment, 8 responses for each test prompt
were generated to achieve self-training, resulting the extra
0.5∼1 hour as the decoding warm-up stage.

Provided the decoding probabilities obtained by ITS-rollout,
the BF-S strategy (Breath-first Search) can be applied based
on the implicit advantage function solely approximated by
πφ and πθ. More specifically,

Aπθ (a, s) =Qπθ (a, s)− E[Qπθ (a′, s)|a′ ∼ πθ(·|s)]

≈Qπθ (a, s)− 1

N

∑
a′∼πθ(·|s)

Qπθ (a′, s)

=
(
α(s)− λN (s)

πθ(a|s)
π(a|s)

)
−
( 1

N

∑
a′∼πθ(·|s)

(
α(s)− λN (s)

πθ(a
′|s)

π(a′|s)
))

=− λN (s)
(πθ(a|s)
π(a|s) − 1

N

∑
a′

πθ(a
′|s)

π(a′|s)

)
≈− λN (s)

( πθ(a|s)
πφ(a|s)

− 1

N

∑
a′

πθ(a
′|s)

πφ(a′|s)

)
,

(21)
where N indicates how many responses drawn from πθ to
approximate the advantage function. Such decoding strategy
is closely related with wisdom of group-relative policy opti-
mization (GRPO), a well-known value-free RL algorithm
employed to train Deepseek (Shao et al., 2024).

Figure 2. Win rate measured by GPT-4 via the consistent prompts
in previous studies: (a) Win rate of baselines decoding with differ-
ent temperatures; (b) Win rate of πθ and πφ across the alternative
phases of their preference policy distillation.

5. Experiments
In this section, we demonstrate the superiority of IT-PO from
the step-synchronous (Theorem.4.2) and step-asynchronous
(Theorem.4.3) perspectives. In the step-synchronous cases,
IT-PO trains πφ to perform token-level ITS in order to pro-
vide the fine-grained human preference alignment; in the
step-asynchronous scenarios, we evaluate πφ trained by IT-
PO to perform sentence-level search in step-asynchronous
scenarios, i.e., mathematical reasoning and planning tasks
where LLM-based MCTS algorithms are extensively used.

5.1. Experiments on Token-level Preference Alignment

Anthropic HH dataset (Bai et al., 2022)1 consists of 170k di-
alogues between a human and an automated assistant, each
of which presents as a history with alternative responses
with respect to different preferences annotated by humans.
We conduct the conventional evaluation setup using Pythia
2.8 (Biderman et al., 2023) as the base model, then each
dialogue with its preferred completion in Anthropic HH
training set is incorporated for supervised fine-tuning to
derive three LMs: the parameter-frozen πref and parameter-
initialized πθ, πφ. In terms of preference alignment on
token-level MDP, SS-IT-PO with respect to the LMs θ, φ
are alternatively trained, then the IT-PO variants both com-
pared with token-level DPO-family baselines, i.e., DPO
(Rafailov et al., 2024a), RTO (Zhong et al., 2024a), TDPO1

and TDPO2 (Zeng et al., 2024a).

The experiment primarily aims for three evaluation metrics:
1). Accuracy: we adopt the evaluation split in (Zeng et al.,
2024a) to train all models then evaluate their performance

1https://huggingface.co/datasets/Anthropic/hh-rlhf
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Table 1. Comparison in terms of the trade-off between Alignment
(accuracy) and Diversity (entropy) on the Anthropic HH dataset.
The ↑ indicates higher values are preferable.

Method Alignment Diversity
Acc (%) ↑ Ent ↑

DPO 59.43 3.196
RTO 61.43 3.314

TDPO1 60.08 4.727
TDPO2 67.33 4.915

IT-PO θ (ours) 67.75 4.564
IT-PO φ (ours) 69.12 5.315

in terms of the accuracy on the generated responses relative
to chosen completions in the test dataset; 2). Diversity:
Nucleus sampling with p = 0.95 to generate 25 responses
then the predictive entropy across the responses indicates the
generation diversity. 3).Win rate: all baseline approaches
are evaluated through GPT-4 against the chosen responses
in the test set, so that > 50% implies the human preference
alignment achieved in their performances.

Both LMs θ and φ utilize ITS-α to enhance the decoding
strategy. The exponential rate γ =1 consistently across the
evaluation of three metrics. This choice aligns with MCTS-
α, which employs token-level tree search in alignment tasks.
Accuracy and Diversity across the baselines are presented
in Table 5.1. TDPO2 demonstrates competitive performance,
achieving alignment accuracy comparable to IT-PO θ, even
exhibiting superior diversity. On the other hand, IT-PO φ,
trained as the stochastic tree policy, outperforms TDPO2 by
a significant margin in both alignment and diversity metrics.
It is because that LM θ in our framework performs more
likely as a policy evaluator trained to boost the evolution of
stochastic tree policy πφ.

To verify our assumption, we further observe their Win rate
illustrated in Figure.2(a). Through scaling the temperature
during inference, T-DPOs are found quite sensitive to the
temperature, with lower performance than most baselines
when the temperature value are extreme. Instead, both IT-
PO θ and IT-PO φ consistently performs with robust value
over 50% in 7 out of 10 cases where the other baselines
underperform or even fail in the qualified Win rate level.
In Figure.2 (b), we further observe the Win rate progress
when IT-PO θ and IT-PO φ by through their alternative pol-
icy distillation. When no alternative strategy used (iter = 1),
the win rate of IT-PO θ and IT-PO φ are solely on par with
the win rates of DPO and RTO, respectively, which largely
underperform T-DPO variants. While after five iterations of
alternative preference policy distillation, Win rates in IT-
PO θ and IT-PO φ are both incredibly improved to exceed
their early, even their teachers’ performances. These obser-
vations are consistent with our analysis to φ’s gradients.

Table 2. Performance comparison of different methods on GSM8k
and Game24 datasets

Setting Method
Performance(%) / # Tokens
GSM8k Game24

Path@1

CoT-greedy 41.4 98 12.7 76
BFS-V 52.5 485 64.8 369
MCTS-α 51.9 561 63.3 412
MCTS-Rollout 47.8 3.4k 71.3 670
ITS-α (ours) 53.2 561 67.6 380
ITS-Rollout (ours) 51.6 3.8k 73.2 646

Equal-Token

CoT-SCMAJ 46.8 500 14.6 684
CoT-SCORM 52.3 500 50.6 684
BFS-VORM - - 70.90 1.6k
MCTSORM - - 69.34 649
ITS-α (ours) - - 70.64 1.6k
ITS-Rollout (ours) - - 71.42 698

5.2. Experiments on Mathematical Tasks

Our second experimental suite includes the tasks of mathe-
matical reasoning on GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021) and mathematical planning on
Game24 (Cobbe et al., 2021). Although the benchmarks are
famous in evaluating LLM’s reasoning capability by PRM
(process reward model) (Lightman et al., 2023) and MCTS-
based methods (Feng et al., 2023), they are nontrivial for
DPO family since explicit value function can not be skipped
to execute MCTS reasoning strategies.

Baselines and Evaluation. Since most DPO-based ap-
proaches can not adapt to LLM reasoning without explicit
value modeling, we are more interested in the comparison
between TI-PO and state-of-the-art tree-search (TS) LLM
and Chain-of-Thought (CoT) (Wei et al., 2022) baselines in
(Feng et al., 2023). More specifically, the evaluated base-
lines for GSM8K and Game24 are derived from LLAMA-7b
2 base model, specifically include CoT-greedy (greedy value
search by CoT), BFV (Breath-first search with their learned
value function), MCTS-α (AlphaZero-like tree search with
their learned value function), MCTS-rollout (MCTS-α vari-
ant that allows the backup process happen in the interme-
diate step). As a counterpart, we incorporate the policies
πθ and πφ with their LMs fine-tuned by cDPO (Eq.13) and
step-asynchronous IT-PO objective (Eq.17), respectively,
then achieve their alternative post-training via preference
policy augmentation. After five iterations, the policy models
jointly facilitate the decoding processes via ITS-α and ITS-
rollout strategies. All baselines are evaluated in the single
path setup via Path@1 and Equal-Token, the latter try to

2https://huggingface.co/meta-llama/Llama-2-7b
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Table 3. Path@1 metric on Game24 with different node size.

Method
Performance(%) / # Tokens
width=6 width=20 width=50

MCTS-α 41.6 243 63.3 412 74.5 573

MCTS-Rollout 43.8 401 71.3 670 80.7 833

BFS-V 43.2 206 64.8 370 74.6 528

ITS-α (ours) 46.1 267 67.6 380 75.0 647

ITS-Rollout (ours) 48.9 489 73.2 646 81.8 954

compare the results with the similar scale computation con-
sumption. For the evaluation on MATH, we construct the
training set integrated with the training splits of GSM8K and
MATH, then consider Qwen1.5-32B (Team, 2024) as our
base model. Beyond this, we also introduced LLAMA3.1-
8B as an alternative of φ to verify whether φ can be re-
placed by a smaller LLM. To this, we have the evaluated
LLMs (θ,φ) defined by (Qwen1.5-32B,Qwen1.5-32B) and
(Qwen1.5-32B,LLAMA3-8B), respectively. We also em-
ployed greedy CoT (3 shots), MCTS-α, and MCTS-rollout
for their comparison.

Implementation. Distinct from human preference data with
pairwise responses, reasoning tasks only consist of question
prompts and its correct solution responses. It motivates us
to reconfigure their data to adapt our preference optimiza-
tion regime. Beyond this, since our “tree-search” strategy is
indeed a stochastic policy, the search depth and breadth for
training LLM φ were not limited in all datasets, while their
decoding procedures i.e., ITS-α and ITS-rollout, inherited
the pruning setup derived from the MCTS baselines to ad-
dress the heavy computation while the tree search runs for
reasoning-oriented inference. Details refer to Appendix.C.

Results.According to the GSM8k results (Table 2), when
examining Path@1 performance across all baseline methods,
tree-search algorithms (excluding our proposed methods)
don’t show significant advantages over standard CoT ap-
proaches. MCTS variants actually perform worse than BFV,
despite their higher computational requirements. However,
the Game24 results tell a different story. In this task, CoT
approaches perform poorly, largely because Game24’s struc-
ture allows for wider and deeper search trees, which better
showcases the strengths of tree-search algorithms (Table
B.5). But interestingly, ITS-α and ITS-rollout consistently
outperform other approaches, regardless of the default tree
width and depth limits during inference.

This superior performance can be attributed to our IT-PO
training regime. Unlike traditional approaches that slowly
build sparse trees based on visit counts, our approximated
π encourages broader exploration across the entire action
space. This approach is computationally efficient since IT-
PO only needs to sample the next sentence (rather than the

Table 4. The experimental results in MATH. All baselines em-
ployed Qwen1.5-32B as their base models.

Baselines/Decoding greedy CoT -α -rollout

Qwen1.5-32B 36.1 - -

MCTS- (Qwen1.5-32B) - 36.0 36.7

ITS- (φ=Qwen1.5-32B) - 39.8 40.2

ITS- (φ=Qwen1.5-32B) - 37.9 38.2

complete reasoning path) from preferred/dispreferred con-
texts (as defined by Ât and Ǎt in Eq. 4.3). This enables
faster search and backup operations compared to standard
MCTS. As a result, even with bounded search width and
depth during inference, the stochastic policy demonstrates
robust performance due to effective training simulation. In
order to support our claim, we further ablate the maximum
tree width and node size during inference to observe the
performance variation across different baselines. As shown
in Table.3,4, expanding the node size and tree width sig-
nificantly boosts regular TS-LLM performances. While
ITS-α and ITS-Rollout have already achieved impressive
results with the small node size and and tree width. Beyond
this, they also enjoy the performance growth along with the
increasing exploration space.

In Table.5, we presented the evaluation in MATH that con-
tains more difficult mathematical reasoning tasks. In terms
of the greedy CoT results in LLAMA3-8B (20.5), some
observations can be found in the table. First, we note that
the MCTS strategy derived from GSM8K is unreliable in
MATH, probably due to the conflict between the problem
complexity and limited search width and depth during train-
ing, while ITS-α and ITS-rollout did not suffer from this
problem. Second, with a weaker model (LLAMA3-8B) to
implement LLM φ, IT-PO still enabled the improvement
of LLM-based reasoning. It implies the feasibility of IT-
PO. Specifically, despite avoiding value modeling, IT-PO
introduces the extra LM φ instead of the single LM θ in stan-
dard DPO variants, leading to the increased computational
and memory requirement. While the evidences in Table.5
demonstrated that using LM φ with the significantly smaller
and weaker base model than LM θ, ITS-(θ =Qwen1.5-32B,
φ = LLAMA3-8B) still yields the results very competitive
with ITS-(θ = Qwen1.5-32B, φ = Qwen1.5-32B).

6. Concluding Remark
This paper presents a new RL-free methodology to equip
DPO with MCTS interpreted as stochastic policy to better
align LMs with human preferences, and simultaneously
outperforms MCTS-based LLM reasoning baseline methods
in both mathematical reasoning and planning tasks.
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This work advances preference-based learning for large lan-
guage models through improved exploration mechanism,
which has implications for AI alignment and safer deploy-
ment of language technologies. By enhancing LLMs’ rea-
soning and long-form generation capabilities through more
principled exploration and preference learning, our approach
could lead to more reliable and controllable language mod-
els. However, improved reasoning capabilities could also en-
able more sophisticated text generation that may be misused.
The integration of MCTS with preference learning repre-
sents a step toward more transparent optimization of lan-
guage model behavior, though careful consideration should
be given to the selection of preference data to avoid encod-
ing harmful biases. We believe the technical advances pre-
sented here can contribute positively to the development of
more capable and aligned language models when deployed
thoughtfully with appropriate safeguards and oversight.

References
Abdulhai, M., White, I., Snell, C., Sun, C., Hong, J., Zhai,

Y., Xu, K., and Levine, S. Lmrl gym: Benchmarks for
multi-turn reinforcement learning with language models.
arXiv preprint arXiv:2311.18232, 2023.

Amini, A., Vieira, T., and Cotterell, R. Direct prefer-
ence optimization with an offset, 2024. URL https:
//arxiv.org/abs/2402.10571.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.

In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324–345, 1952.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. A survey of monte carlo
tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games, 4(1):1–43, 2012.

Chen, G., Liao, M., Li, C., and Fan, K. Step-level value pref-
erence optimization for mathematical reasoning. arXiv
preprint arXiv:2406.10858, 2024a.

Chen, G., Liao, M., Li, C., and Fan, K. Step-level value pref-
erence optimization for mathematical reasoning, 2024b.
URL https://arxiv.org/abs/2406.10858.

Chen, Z., Wang, K., Wang, X., Peng, P., Izquierdo, E., and
Lin, L. Deep co-space: Sample mining across feature
transformation for semi-supervised learning. IEEE Trans-
actions on Circuits and Systems for Video Technology, 28
(10):2667–2678, 2017.

Chen, Z., Huang, X., Guan, Q., Lin, L., and Luo, W. A
retrospect to multi-prompt learning across vision and
language. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 22190–22201, 2023.

Chen, Z., Zheng, Y., Lai, Z.-R., Guan, Q., and Lin, L. Diag-
nosing and rectifying fake ood invariance: A restructured
causal approach. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 11471–11479,
2024c.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems,
2021. URL https://arxiv. org/abs/2110.14168, 2021.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72–83. Springer, 2006.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W.,
Pan, R., Diao, S., Zhang, J., Shum, K., and Zhang, T.
Raft: Reward ranked finetuning for generative foundation
model alignment, 2023. URL https://arxiv.org/
abs/2304.06767.

Dong, H., Xiong, W., Pang, B., Wang, H., Zhao, H., Zhou,
Y., Jiang, N., Sahoo, D., Xiong, C., and Zhang, T. Rlhf
workflow: From reward modeling to online rlhf. arXiv
preprint arXiv:2405.07863, 2024.

10

https://arxiv.org/abs/2402.10571
https://arxiv.org/abs/2402.10571
https://arxiv.org/abs/2406.10858
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2304.06767


Language Models as Implicit Tree Search

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. Implementation matters in
deep policy gradients: A case study on ppo and trpo, 2020.
URL https://arxiv.org/abs/2005.12729.

Feng, X., Wan, Z., Wen, M., McAleer, S. M., Wen, Y.,
Zhang, W., and Wang, J. Alphazero-like tree-search can
guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023.

Feng, X., Wan, Z., Wen, M., McAleer, S. M., Wen, Y.,
Zhang, W., and Wang, J. Alphazero-like tree-search can
guide large language model decoding and training, 2024.
URL https://arxiv.org/abs/2309.17179.
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A. Related Work
The integration of search-based optimization techniques in language model alignment has significantly advanced AI
alignment, with Reinforcement Learning with Human Feedback (RLHF)(Bai et al., 2022; Wang et al., 2023; Kirk et al.,
2023; Dong et al., 2024) being a widely used approach. RLHF employs reward models trained from human feedback to
optimize model behavior through reinforcement learning, typically using Proximal Policy Optimization (PPO) (Zhong et al.,
2024b). However, RLHF has been criticized for instability, sample inefficiency, and over-optimization issues (Engstrom
et al., 2020; Liu et al., 2024b; Chen et al., 2023; 2017; 2024c). To address these challenges, methods like Reward Ranked
FineTuning (RAFT) (Dong et al., 2023) and Rank Responses to align Human Feedback (RRHF) (Yuan et al., 2023) have
been proposed to refine ranking-based optimization without explicit reinforcement learning. More recently, Direct Preference
Optimization (DPO) (Rafailov et al., 2024c; Amini et al., 2024) has emerged as an alternative, allowing language models to
be aligned directly from human preference data without requiring a reward model.

Unlike PPO, which operates within a reinforcement learning framework by optimizing policies through reward feedback,
DPO reformulates the alignment problem as a supervised learning task, making policy updates more stable while maintaining
alignment with human preferences. Further refinements, such as processing the paragraph at token level with methods such
as TDPO (Zeng et al., 2024b), T-REG (Zhou et al., 2024), TPPO (Ouyang et al., 2024), and TIS-DPO (Liu et al., 2024a),
improve efficiency by incorporating token-wise adjustments, improving preference alignment in a manner that contrasts
with RLHF’s reliance on policy gradient updates.

Monte Carlo Tree Search (MCTS) has been extensively applied in decision-making tasks, particularly in game-playing AI, as
demonstrated by its success in AlphaGo (Silver et al., 2017b), AlphaZero (Silver et al., 2017a), and MuZero (Schrittwieser
et al., 2020). Recent advancements have expanded its application to large language models (LLMs) for structured text
generation, such as in AlphaZero-like Tree-Search for LLMs (TS-LLM) (Feng et al., 2023). Similarly, Xie et al. (Xie et al.,
2024c) propose an iterative preference learning approach, using MCTS to refine step-wise reasoning capabilities in LLMs.
Further developments by Wang et al. (Wang et al., 2024b) introduce self-improvement techniques where LLMs leverage
MCTS for preference-guided reinforcement learning, while Chen et al. (Chen et al., 2024b) focus on step-level value
preference optimization, allowing fine-grained preference learning at intermediate steps. Zhang et al. (Zhang et al., 2024b)
extend this concept with chain preference optimization, improving long-range decision-making for complex reasoning tasks.
Lastly, Liao et al. (Liao et al., 2024) introduce Tree-based Preference Optimization (TPO), which integrates MCTS with
preference alignment techniques to refine LLM outputs progressively. Despite these advancements, a key challenge remains:
these approaches still require learning an explicit reward value function, which is critical for optimizing the search process
and improving the efficiency of LLM training and inference.

Our work proposes Implicit Tree Search (ITS), which integrates stochastic policy optimization with AlphaZero-like search
principles while eliminating explicit tree structures. ITS leverages reversed KL-divergence constraints and a stochastic
sampling policy to enhance exploration expressiveness, addressing cold-start issues common in MCTS-based methods.
Similar ideas have been explored in Monte Carlo-based regularized policy optimization (Grill et al., 2020a), (Wang et al.,
2024a) they use pairwise training framework that enables LLMs to self-improve through MCTS behavior but ITS extends
these principles to preference learning in language models.

Furthermore, our approach aligns with broader research on AI safety and preference-based learning (Yuan et al., 2024;
Xie et al., 2024a; Chen et al., 2024a; Mitchell, 2023a). ITS represents a novel search-and-learn paradigm that improves
structured reasoning in language models without relying on explicit tree expansion, bridging the gap between MCTS and
modern alignment techniques.

C.1. Fundamentals of Monte Carlo Tree-Search Methods

Monte Carlo Tree Search (MCTS) has been widely adopted as an effective strategy for solving problems requiring sequential
decision-making and planning. Traditional MCTS operations, as introduced by (Kocsis & Szepesvári, 2006) and (Coulom,
2006), include four key steps: selection, expansion, simulation, and backpropagation. However, these operations can be
adapted for more advanced frameworks like AlphaZero (Silver et al., 2017b), which incorporates a learned value function
and policy network to guide the search process.

To address challenges in balancing exploration and exploitation, we utilize a variant of MCTS with a modified Predictor
Upper Confidence Tree (PUCT) algorithm (Rosin, 2011). The algorithm selects actions at at each node st as follows:

at = argmax
a

(
Q(st, a) + U(st, a)

)
,
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where U(st, a) is calculated using the formula:

U(s, a) = cpuct · πθ(s, a) ·
√∑

b N(s, b)

1 +N(s, a)
.

Here, N(s, a) represents the visit count of action a at node s, and cpuct is a constant controlling exploration, as defined by:

cpuct = log

(∑
b N(s, b) + cbase + 1

cbase

)
+ cinit.

Node Expansion and Assessment: Upon reaching a leaf node sL, if it is not terminal, the tree is expanded by generating
possible successor nodes. The value of the leaf node is then estimated using a neural network. For terminal nodes, a reward
function R(sL) is used, or an Outcome Reward Model (ORM) serves as an approximation (Uesato et al., 2022).

Value Propagation: Once a leaf node is assessed, the computed values are propagated back through the path s0, s1, . . . , sL.
For each node, the visit count is updated as:

N(st, a) = N(st, a) + 1,

and the cumulative action value is updated as:

W (st, a) = W (st, a) + v(sL).

The mean action value is then computed as:

Q(st, a) =
W (st, a)

N(st, a)
.

This combination of learned value functions and search-based methods enables efficient exploration of large decision spaces,
as demonstrated in AlphaZero (Silver et al., 2017b) and its applications to tree-search-guided language models (Yao et al.,
2023; Hao et al., 2023).

B. Proofs.
B.1. Proof of Proposition 3.1

Proof. Given r ∈ R and ∀a′ ∈ AMCTS/{a}, n(s,a′) are fixed, the probability of empirical visit distribution to the action
a denotes as 1+n(s,a)r

|AMCTS|+
∑

a′∈AMCTS
n(s,a′)r . It holds

1 + n(s,a)r

|AMCTS|+
∑

a′∈AMCTS
n(s,a′)r

= 1−
1− (|AMCTS|+

∑
a′∈AMCTS/{a} n(s,a

′)r)

|AMCTS|+
∑

a′∈AMCTS/{a} n(s,a
′)r + n(s,a)r

(22)

Since |AMCTS| +
∑

a′∈AMCTS/{a} n(s,a
′)r is constant, the exponential empirical visit distribution only changes along

with n(s,a′)r changes. Due to |AMCTS| > 1 as ”tree” definition, |AMCTS| +
∑

a′∈AMCTS/{a} n(s,a
′)r > 1. Note that

f(x) = 1 − 1−c
c+x is bijective with respect to c > 1 and when r ̸= 0, {nr : n ∈ Z ∪ {0}} holds the consistent cardinality

with Z. The proposition has been proved.

B.2. Proof of Proposition 3.2

Proof. To prove the proposition, we only need to prove the following lemma:

Lemma B.1. Given positive integers a, b, and {ci}ai=1, define

f(r) =
1 + br

a+ 1 +
∑a

i=1 c
r
i + br

.

We claim that for all real r, the value of f(r) lies strictly within the open interval
(

1
a+1 , 1

)
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Proof. 1. As r → −∞: Since br → 0 and cri → 0 for each i, we have

lim
r→−∞

f(r) = lim
r→−∞

1 + br

a+ 1 +
∑a

i=1 c
r
i + br

=
1 + 0

a+ 1 + 0 + 0
=

1

a+ 1
.

Thus f(r) never goes below 1/(a+ 1).

2. As r → +∞: Let M = max{b, c1, c2, . . . , ca}. For sufficiently large r, Mr dominates br and each cri , so the
numerator and denominator in f(r) are asymptotically proportional to Mr, giving

lim
r→+∞

f(r) = 1.

Since br and cri increase with r, one can show f(r) itself is strictly increasing in r. Consequently, its image over r ∈ R
is precisely (

1
a+1 , 1

)
.

Counterexample. Because f(r) is bounded below by 1
a+1 , any real x with

0 < x <
1

a+ 1

cannot be realized by f(r). For instance, choose

x0 =
1

2(a+ 1)
.

We observe

0 <
1

2(a+ 1)
<

1

a+ 1
,

but there is no real r for which f(r) = x0. Hence, values in
(
0, 1

a+1

)
are not attainable.

Set a = |AMCTS| − 1, b = n(s,a), and ci = n(s,ai), ∀ai ∈ AMCTS/{a}, the proposition has been proved.

B.3. Proof of Lemma 4.1

Proof. As discussed in Lemma.3.4,

πφ(at|st) = λN (st)
πθ(at|st)

α(st)−Qπθ (st,at)
⇆ r(st,at) = α(st)− V πθ (st)− λN (st)

πθ(at|st)
πφ(at|st)

, (23)

where Qπθ (st,at) = r(st,at) + V πθ (st). Provided (x,y(w)) denoting a pair of prompt and its preferred response, we
construct the preferred state-action trajectory along with the token-level MDP, i.e., {(s(w)

t ,a
(w)
t )}Tw

t=1 w.r.t. s(w)
t = (x,y

(w)
<t )

and a
(w)
t = y

(w)
t . Then based on the definition, for the t-th state in the preferred state-action trajectory, we sample another

action âi from the parameterized ITS exploration policy πφ i.e., ât ∼ πφ(·|s(w)
t ). For the preferred state-action trajectory,

Eq.23 holds at each step so that

R(x,y(w)) =

Tw∑
t=1

r(s
(w)
t ,a

(w)
t ) =

Tw∑
t=1

(
α(s

(w)
t )− V πθ (s

(w)
t )− λN (s

(w)
t )

πθ(a
(w)
t |s

(w)
t )

πφ∗(a
(w)
t |s

(w)
t )

)
(24)

and ∀t ∈ Tw,

r(s
(w)
t , ât) = α(s

(w)
t )− V πθ (s

(w)
t )− λN (s

(w)
t )

πθ(ât|s(w)
t )

πφ∗(ât|s(w)
t )

. (25)
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Therefore

R(x,y(w))−
Tw∑
t=1

r(s
(w)
t , ât) =

Tw∑
t=1

(
α(s

(w)
t )− V πθ (s

(w)
t )− λN (s

(w)
t )

πθ(a
(w)
t |s

(w)
t )

πφ∗(a
(w)
t |s

(w)
t )

)

−
Tw∑
t=1

(
α(s

(w)
t )− V πθ (s

(w)
t )− λN (s

(w)
t )

πθ(ât|s(w)
t )

πφ∗(ât|s(w)
t )

)

=− λN (s
(w)
t )

(
πθ(a

(w)
t |s

(w)
t )

πφ∗(a
(w)
t |s

(w)
t )

− πθ(ât|s(w)
t )

πφ∗(ât|s(w)
t )

)
.

(26)

Therefore R(x,y(w)) =
∑Tw

t=1

(
r(s

(w)
t , ât)−λN (s

(w)
t )

(
πθ(a

(w)
t |s(w)

t )

πφ(a
(w)
t |s(w)

t )
− πθ(ât|s(w)

t )

πφ(ât|s(w)
t )

))
.

The dispreferred state-action trajectory from (x,yl) can be also constructed in the same routine, i.e., {(s(l)t ,a
(l)
t )}Tl

t=1 w.r.t.
s
(l)
t = (x,y

(l)
<t) and a

(l)
t = y

(l)
t . For the i-th state in the dispreferred state-action trajectory, we sample another action ǎi

from πφ i.e., ǎi ∼ πφ(·|s(l)t ). For the dispreferred state-action trajectory, it holds the mirror formulations of Eq.24-26 , then

from the same deduction, R(x,y(l)) =
∑Tl

t=1

(
r(s

(l)
t , ǎt)−λN (s

(l)
t )

(
πθ(a

(l)
t |s(l)

t )

πφ(a
(l)
t |s(l)

t )
− πθ(ǎt|s(l)

t )

πφ(ǎt|s(l)
t )

))
is hold.

B.4. Proof of Theorem 4.2

Proof. Let’s introduce the dense reward reparameterzation theory in (Rafailov et al., 2024a):

Lemma B.2. (Reparameterzed dense reward) (Rafailov et al., 2024a) Given a reference policy πref and a parameter β > 0
all reward classes consistent with the Plackett-Luce (and Bradley-Terry) models, the step-wise reward r(st,at) can be
represented with the a re-parameterization

r(st,at) = β log π(at|st)− β log πref(at|st) (27)

within the token MDP where V ∗(st) = 0 for all terminal state.

Here we combine Lemma.4.1 and Lemma.B.2 to certify our theorem. Specifically, V πθ (sT ) = V ∗(sT ) = 0 for all terminal
state given any sequence, since θ is optimized from DPO-like algorithms. By Lemma.B.2, we have the dense reward
decomposition

r(s
(w)
t , ât) = β log πθ(ât|s(w)

t )− β log πref(ât|s(w)
t ) = β log

πθ(ât|s(w)
t )

πref(ât|s(w)
t )

,∀t ∈ [Tw]. (28)

The decomposition holds in the dispreferred states such that

r(s
(l)
t , ǎt) = β log πθ(ǎt|s(l)t )− β log πref(ǎt|s(l)t ) = β log

πθ(ǎt|s(l)t )

πref(ǎt|s(l)t )
,∀t ∈ [Tl]. (29)

where the dispreferred state-action trajectory along with the token-level MDP, i.e., {(s(l)t ,a
(l)
t )}Tl

t=1 is constructed by
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s
(l)
t = (x,y

(l)
<t) and a

(l)
t = y

(l)
t , ∀t ∈ [Tl]. Given this, we have

Uss(x,y
(w),y(l)) =R(x,y(w))−R(x,y(l))

=

(
R(x,y(w))−

Tw∑
t=1

r(s
(w)
t , ât)

)
+

( Tw∑
t=1

r(s
(w)
t , ât)−

Tl∑
t=1

r(s
(l)
t , ǎt)

)
+

( Tl∑
t=1

r(s
(l)
t , ǎt)−R(x,y(l))

)

=

Tw∑
t=1

−λN (s
(w)
t )

(
πθ(a

(w)
t |s

(w)
t )

πφ(a
(w)
t |s

(w)
t )
− πθ(ât|s(w)

t )

πφ(ât|s(w)
t )

)
︸ ︷︷ ︸

µw(φ;θ)

+

Tl∑
t=1

λN (s
(l)
t )

(
πθ(a

(l)
t |s

(l)
t )

πφ(a
(l)
t |s

(l)
t )
− πθ(ǎt|s(l)t )

πφ(ǎt|s(l)t )

)
︸ ︷︷ ︸

µl(φ;θ)

+

Tw∑
t=1

β log
πθ(ât|s(w)

t )

πref(ât|s(w)
t )

−
Tl∑
t=1

β log
πθ(ǎt|s(l)t )

πref(ǎt|s(l)t )︸ ︷︷ ︸
δθ

(30)
The theorem has been proved.

B.5. Proof of Theorem.4.3

Here we provide the formal proofs to the sentence-level version of Lemma.4.1 and Theorem.3.3. They are based on the
definition of Sentence-level MDP:

Definition B.3. (Sentence-level MDP) Suppose thatM = (S,A,P,R, T ) denotes the token-level MDP. It identifies the
sentence-level MDPMS =(SS ,AS ,PS ,RS ,TS) as

SS =

+∞⋃
n=1

Sn;AS = AMCTS =

N⋃
n=1

An;PS : SS ×AS → SS ;RS : SS ×AS → R; TS = T . (31)

where Sn indicates the sequence composed of n sentences ended by “\n′′ in order and obviously, Sn ⊂ S. An is
the sentence-level action space with n-length tokens and N indicates the maximum length of sentences. The transition
kernel PS and reward space RS holds PS⊂S × AS → S and RS⊂S × AS → R. To this, if we consider the policies
hold the decomposition πS(At|st) =

∏Nt

i=1 π(a
(i)
t |s

(i)
t ) (At = (a

(i)
t )Nt

i=1 ∈ AS denotes the sentence-level action, Nt

indicates the token number in the selected sentence action, a(i)t indicates the i-th token in the t-th sentence, and s(i) =

(s, a
(1))
t , · · · , a(i−1))

t .) RS ⊂ S ×AS → R, to this, we define rS(Ai, s) ∈ RS such that rS(st, Ai) =
∑Nt

i r(s
(i)
t , a

(i)
t ).

Lemma B.4. Given the prompt x with its preference response pair y(w), y(l) composed of TS
w , TS

l sentences, A(w)
t ,

A
(l)
t denotes the t-th sentence in y(w), y(l), respectively. Suppose the state s

(w)
t ,s(l)t transmits along sentence-level MDP,

a
(w,i)
t /a(l,i)

t indicates the i-th token in the A
(w)
t /A(l)

t , s(w,i)
t /s(l,i)t denotes the sequential context ahead of a(w,i)

t /a(l,i)
t in

y(w)/y(l). Suppose that the sentence-level policies πS
ref , π

S
θ , πS

φ are identified by LM-based token-selection policies πref ,

πθ, πφ, respectively; Ât = (â
(1)
t , · · · , â(N̂t)

t ) ∼ πS
φ(·|s

(w)
t ),ŝ(0)t = s

(w)
t ,ŝ(i+1)

t = P(ŝ(i)t , â
(i)
t );Ǎt = (ǎ

(1)
t , · · · , ǎ(Ňt)

t ) ∼
πS
φ(·|s

(l)
t ),š(0)t = s

(l)
t ,š(i+1)

t = P(š(i)t , ǎ
(i)
t ). It holds

R(x,y(w)) =

TS
w∑

t=1

N̂t∑
i=1

r(ŝ
(i)
t , â

(i)
t )−λN (s

(w)
t )

( |A(w)
t |∏

i=1

πθ(a
(w,i)
t |s(w,i)

t )

πφ(a
(w,i)
t |s(w,i)

t )
−

N̂t∏
i=1

πθ(â
(i)
t |ŝ

(i)
t )

πφ(â
(i)
t |ŝ

(i)
t )

)
R(x,y(l)) =

TS
l∑

t=1

Ňt∑
i=1

r(š
(i)
t , ǎ

(i)
t )−λN (s

(l)
t )

( |A(l)
t |∏

i=1

πθ(a
(l,i)
t |s(l,i)t )

πφ(a
(l,i)
t |s(l,i)t )

−
Ňt∏
i=1

πθ(ǎ
(i)
t |š

(i)
t )

πφ(ǎ
(i)
t |š

(i)
t )

)
(32)

Proof. Suppose that QπS
θ (st, ·) denotes the state-action value function on the sentence-level policy πS

θ with respect to LM
θ. Due to πS

θ defined with the action space AS = AMCTS, it results in

πS
φ(At|st) = λN (st)

πS
θ (At|st)

α(st)−QπS
θ (st, At)

⇆ rS(st, At) = α(st)− V πS
θ (st)− λN (st)

πS
θ (At|st)

πS
φ(At|st)

, (33)
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where At = (a
(i)
t )Nt

i=1 ∈ AS denotes the sentence-level action, Nt indicates the token number in the selected sentence action,
and a

(i)
t indicates the i-th token in the t-th sentence. It holds QπS

θ (st, At) = rS(st, At) + V πθ (st) =
∑Nt

i r(s
(i)
t , a

(i)
t ) +

V πS
θ (st).

Provided (x,y(w)) denoting a pair of prompt and its preferred response, we construct the preferred state-action trajectory
along with the sentence-level MDP. In particular, suppose TS

w denotes the number of sentences included in the preferred
response y(w), which can be uniquely identified through the location of “\n′′ tokens. We denote them as a sequence of

sentence-level actions {A(w)
t }

TS
w

t=1. ∀t ∈ TS
w , and make the decomposition such that {(s(w)

t , A
(w)
t )}T

S
w

t=1 with respect to

A
(w)
t =(y

(w)∑t−1
j=1 N

(w)
j +1

, · · · , y(w)∑t−1
j=1 N

(w)
j +N

(w)
t

)

=(a
(w,1)
t , · · · ,a(w,N

(w)
t )

t )

s
(w)
t =(x, A

(w)
1 , · · · , A(w)

t−1),

(34)

Then for each (s
(w)
t , A

(w)
t )

s
(w,i)
t = (s

(w)
t ,a

(w,1)
t , · · · ,a(w,i−1)

t ),∀i ∈ [N
(w)
t ]. (35)

where a
(w,i)
t denotes the response token y

(w)∑t−1
j=1 N

(w)
j +i

in y(w).

Then we provide the derivation

R(x,y(w)) =

TS
w∑

t=1

N
(w)
t∑
i

r(s
(i)
t , a

(i)
t ) =

TS
w∑

t=1

rS(s
(w)
t , At)

=

TS
w∑

t=1

(
α(s

(w)
t )− V πS

θ (s
(w)
t )− λN (s

(w)
t )

πS
θ (A

(w)
t |s

(w)
t )

πS
φ(A

(w)
t |s

(w)
t )

)

=

TS
w∑

t=1

(
α(s

(w)
t )− V πθ (s

(w)
t )− λN (s

(w)
t )

∏N
(w)
t

i=1 πθ(a
(w,i)
t |s(w,i)

t )∏N
(w)
t

i=1 πφ(a
(w,i)
t |s(w,i)

t )

)

=

TS
w∑

t=1

(
α(s

(w)
t )− V πθ (s

(w)
t )− λN (s

(w)
t )

N
(w)
t∏

i=1

πθ(a
(w,i)
t |s(w,i)

t )

πφ(a
(w,i)
t |s(w,i)

t )

)
(36)

Beyond this, for the t-th state in the preferred state-action trajectory, we sample another action Ât from the parameterized
ITS exploration policy πS

φ i.e., Ât = (â1
t , · · · , â

(N̂t)
t ) ∼ πS

φ(·|s
(w)
t ). It can be telescoped into {â(i)

t ∼ πφ(·|ŝ(i)t )}N̂t
i=1 with

respect to ŝ
(i)
t = (x, A

(w)
1 , · · · , A(w)

t−1, â
(1)
t , · · · , â(i−1)

t ). Therefore ∀t ∈ [TS
w ], it holds

rS(s
(w)
t , Ât) =

Nt∑
i=1

r(â
(i)
t , ŝ

(i)
t ) =α(s

(w)
t )− V πS

θ (s
(w)
t )− λN (s

(w)
t )

πS
θ (Ât|s(w)

t )

πS
φ(Ât|s(w)

t )

=α(s
(w)
t )− V πS

θ (s
(w)
t )− λN (s

(w)
t )

∏N̂t

i=1 πθ(â
(i)
t |ŝ

(i)
t )∏N̂t

i=1 πφ(â
(i)
t |ŝ

(i)
t )

=α(s
(w)
t )− V πS

θ (s
(w)
t )− λN (s

(w)
t )

N̂t∏
i=1

πθ(â
(i)
t |ŝ

(i)
t )

πφ(â
(i)
t |ŝ

(i)
t )

(37)

Derived from the similar routine in Eq.26, we combine Eq.36, 37 to obtain

R(x,y(w)) =

TS
w∑

t=1

N̂t∑
i=1

r(ŝ
(i)
t , â

(i)
t )−λN (s

(w)
t )

(N
(w)
t∏

i=1

πθ(a
(w,i)
t |s(w,i)

t )

πφ(a
(w,i)
t |s(w,i)

t )
−

N̂t∏
i=1

πθ(â
(i)
t |ŝ

(i)
t )

πφ(â
(i)
t |ŝ

(i)
t )

) (38)
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For the dispreferred response y(l), it refers to the mirror notation of (w) → (l) to construct the dispreferred state-action

trajectory {(s(l)t , A
(l)
t )}T

S
l

t=1 and for each (s
(l)
t , A

(l)
t ), a(l,i)

t = y
(w)∑t−1

j=1 N
(l)
j +i

and s
(l,i)
t = (s

(l)
t ,a

(l,1)
t , · · · ,a(l,i−1)

t ),∀i ∈

[N
(l)
t ] in y(l). Given this, for the t-th state in the dispreferred state-action trajectory, instead of A(l)

t , we sample another
sentence action Ǎt from the parameterized ITS exploration policy πS

φ i.e., Ǎt = (â1
t , · · · , ǎ

(Ňt)
t ) ∼ πS

φ(·|s
(l)
t ). It can

be telescoped into {ǎ(i)
t ∼ πφ(·|š(i)t )}Ňt

i=1 with respect to š
(i)
t = (x, A

(l)
1 , · · · , A(l)

t−1, ǎ
(1)
t , · · · , ǎ(i−1)

t ). From the same
deduction routine, it holds

rS(s
(l)
t , Ǎt) = α(s

(l)
t )− V πS

θ (s
(l)
t )− λN (s

(l)
t )

Ňt∏
i=1

πθ(ǎ
(i)
t |š

(i)
t )

πφ(ǎ
(i)
t |š

(i)
t )

, ∀t ∈ [TS
l ] (39)

and

R(x,y(l)) =

TS
l∑

t=1

Ňt∑
i=1

r(š
(i)
t , ǎ

(i)
t )−λN (s

(l)
t )

(N
(l)
t∏

i=1

πθ(a
(l,i)
t |s(l,i)t )

πφ(a
(l,i)
t |s(l,i)t )

−
Ňt∏
i=1

πθ(ǎ
(i)
t |š

(i)
t )

πφ(ǎ
(i)
t |š

(i)
t )

) (40)

On top of Lemma.B.4, we prove Theorem 4.3 as follows

Proof. According to Lemm.B.2, we have

r(ŝ
(i)
t , â

(i)
t ) = β log

πθ(â
(i)
t |ŝ

(i)
t )

πref(â
(i)
t |ŝ

(i)
t )

, s.t.∀t ∈ TS
w ,∀i ∈ N̂t;

r(š
(i)
t , ǎ

(i)
t ) = β log

πθ(ǎ
(i)
t |š

(i)
t )

πref(ǎ
(i)
t |š

(i)
t )

, s.t.∀t ∈ TS
l ,∀i ∈ Ňt.

(41)

Therefore

Usa(x,y
(w),y(l)) = R(x,y(w))−R(x,y(l))

=

(
R(x,y(w))−

TS
w∑

t=1

N̂t∑
i=1

r(ŝ
(i)
t , â

(i)
t )

)
+

( TS
w∑

t=1

N̂t∑
i=1

r(ŝ
(i)
t , â

(i)
t )−

TS
l∑

t=1

Ňt∑
i=1

r(š
(i)
t , ǎ

(i)
t )

)
+

( TS
l∑

t=1

Ňt∑
i=1

r(š
(i)
t , ǎ

(i)
t )−R(x,y(l))

)

=

(
R(x,y(w))−

TS
w∑

t=1

N̂t∑
i=1

r(ŝ
(i)
t , â

(i)
t )

)
+

(
R(x,y(l))−

TS
l∑

t=1

Ňt∑
i=1

r(š
(i)
t , ǎ

(i)
t )

)

+ β

( TS
w∑

t=1

N̂t∑
i=1

log
πθ(â

(i)
t |ŝ

(i)
t )

πref(â
(i)
t |ŝ

(i)
t )
−

TS
l∑

t=1

Ňt∑
i=1

log
πθ(ǎ

(i)
t |š

(i)
t )

πref(ǎ
(i)
t |š

(i)
t )

)

=

TS
w∑

t=1

−λN (s
(w)
t )

(N
(w)
t∏

i=1

πθ(a
(w,i)
t |s(w,i)

t )

πφ(a
(w,i)
t |s(w,i)

t )
−

N̂t∏
i=1

πθ(â
(i)
t |ŝ

(i)
t )

πφ(â
(i)
t |ŝ

(i)
t )

)
︸ ︷︷ ︸

µS
w(φ,θ)

+

TS
l∑

t=1

λN (s
(l)
t )

(N
(l)
t∏

i=1

πθ(a
(l,i)
t |s(l,i)t )

πφ(a
(l,i)
t |s(l,i)t )

−
Ňt∏
i=1

πθ(ǎ
(i)
t |š

(i)
t )

πφ(ǎ
(i)
t |š

(i)
t )

)
︸ ︷︷ ︸

−µS
l (φ,θ)

+ β

( TS
w∑

t=1

N̂t∑
i=1

log
πθ(â

(i)
t |ŝ

(i)
t )

πref(â
(i)
t |ŝ

(i)
t )
−

TS
l∑

t=1

Ňt∑
i=1

log
πθ(ǎ

(i)
t |š

(i)
t )

πref(ǎ
(i)
t |š

(i)
t )

)
︸ ︷︷ ︸

δS(θ)

(42)
Set up N

(w)
i = |A(w)

t | and N
(l)
i = |A(l)

t |, then the theorem has been proved.
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Algorithm 1 The algorithm pipeline of IT-PO
Input: preference dataset D; pre-trained LLMs θ, φ.
Hyper-parameters: ϵ; K; the batch size M to construct the batch of cDPO; the number of alternative training nalter.
Output: LLMs θ∗, φ∗.
Initialize LLMs θ, φ by SF with the prompt-response pairs drawn from D, Nalter = 0;
Minimize LcDPO(θ) to post-train LLM θ with the prompt and its pairwise responses drawn from the dataset D;
repeat

Implicit-Tree Preference Optimization:
repeat

Construct the training batch by M triplets drawn from D;
For each triplet (x,y(w),y(l)), construct {(a(w)

t , s
(w)
t )}Tw

t=1, {(a(l)
t , s

(l)
t )}Tl

t=1 based on the rule of token-level MDP
(w.r.t. Lss-IT-PO(φ; θ) for LM alignment) or sentence-level MDP (w.r.t. Las-IT-PO(φ; θ) for LM Reasoning);
Set Kw = K

Tw
, ∀t ∈ Tw (parallel), draw Kw tokens from πφ(·|s(w)

t ) to construct the samples of token-level action

random variable ât, or draw Kw sentences from πS
φ(·|s

(w)
t ) to construct the samples of the sentence-level action

random variable Ât;
Set Kl =

K
Tl

, ∀t ∈ Tl (parallel), draw Kl tokens from πφ(·|s(l)t ) to construct the samples of token-level action

random variable ǎt, or draw Kl sentences from πS
φ(·|s

(l)
t ) to construct the samples of the sentence-level action

random variable Ǎt;
Fix θ, minimize Lss-IT-PO(φ; θ) to update φ for LM alignment or minimize Las-IT-PO(φ; θ) to update φ for LM
reasoning;

until The number of training epoches reach the same of LcDPO(θ).
Preference Policy Augmentation:
For each prompt x in D, generate K responses {yk}Ki=1 using πφ;
For each prompt x in D and ∀i ̸= j ∈ [K], calculate Uss(x,yi,yj) or Uas(x,yi,yj);
Build the token-level policy augmentation pool D+

ss = {(x,yi,yj)|∀i ̸= j ∈ [K], Uss(x,yi,yj) > 0, (x,yi,yj) ∈
topK({Uss(x,yi,yj)}i ̸=j∈[K]), or build the sentence-level policy augmentation pool D+

as = {(x,yi,yj)|∀i ̸= j ∈
[K], Uas(x,yi,yj) > 0, (x,yi,yj) ∈ topK({Uas(x,yi,yj)}i̸=j∈[K])
Minimize LcDPO(θ) to post-train LLM θ with the prompt and its pairwise responses drawn from D ∪D+

ss or D ∪D+
as;

Nalter = Nalter + 1;
until Nalter = nalter

θ∗← θ, φ∗ ← φ.

C. Implementation
The algorithm pipeline of IT-PO are presented in Algorithm.1. The algorithm implementation almost holds the consistency
with its theoretical foundation except for two details:(1) the specification of λN (st); (2) the φ’s gradient implementation in
Lss-IT-PO(φ; θ) and Las-IT-PO(φ; θ).

Suppose that λN (s
(w)
t ), λN (s

(l)
t ) denote the number of reasoning paths generated from the state st, which consists of a

prompt x and its responses y(w),y(l) with their contents in the previous t − 1 steps. For each preference pair, we set
∀t ∈ {1, . . . , Tw}, λN (s

(w)
t ) = Kw and ∀t ∈ {1, . . . , Tl}, λN (s

(l)
t ) = Kl, where Kw,Kl denote how many search start

from the t-th leaf nodes s(w)
t , s

(l)
t , respectively. Notice that Tw, Tl change with respect to the preference pair. So IT-PO

adaptively configure Kw = K
Tw

,Kl =
K
Tl

to balance the optimization with different response lengths in y(w),y(l) for each
pair. We set K = 8, inspired from the number of sampled responses for each prompt in many RLHF implementations.

In φ’s gradient analysis in Lss-IT-PO(φ; θ), the gradient of φ consists of terms in the form πθ(at|st)
πφ(at|st)

∇ log[π̄(at|st)]. Due to
πθ(at|st)
πφ(at|st)

∈ (0,+∞), updating the models with πθ(at|st)
πφ(at|st)

∇ log[π̄(at|st)] may suffer from exploding/vanishing gradients.

To this, we used their logarithmic scaling πθ(at|st)
πφ(at|st) → exp(log(πθ(at|st))− log(πφ(at|st))) to ensure the less sensitive
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Table 5. Task setups. The node, tree max width, and tree max depth are search space parameters. The max tree-width and tree-depth
follow the empirical experience in (Feng et al., 2023).

Task Task Category Train/test size Node Tree Max width Tree Max depth
GSM8k Mathematical Reasoning 7.5k / 1.3k Sentence 6 8

Game24 Mathematical Planning 1.0k / 0.3k Sentence 20 4

MATH Mathematical Reasoning - / - Sentence 6 8

Table 6. Performance Comparison on ProofWriter and Chess Endgame Tasks

Setting Baselines ProofWriter (Acc %) Chess Endgame (Win rate %)

Path@1 CoT-greedy 37.72 58.14

BFS-V 48.94 67.75

MCTS-α 66.71 96.90

MCTS-rollout 69.23 98.76

ITS-α (ours) 71.77 99.21

ITS-rollout (ours) 75.31 99.83

Equal-Token CoT-SC-MAJ 36.50 9.84

CoT-SC-MAJ 36.58 73.80

BFS-V-ORM 63.42 93.18

MCTS-ORM 60.86 94.26

ITS-α (ours) 74.26 96.48

ITS-rollout (ours) 78.15 98.57

update ratio. In φ’s gradient analysis in Las-IT-PO(φ; θ), it can derive the similar gradient as
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(i)
t )

πφ(ǎ
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where we also took the logarithmic scaling for the gradients in their implementation, e.g.,
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and so do others.

To train our policy networks in GSM8K, Game24, and MATH, we propose the preference data reconfigured from their
training set. For each question x with correct response y, we compute − log πref(y

′|x) across all responses y′ from another
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question to generate the hard negative preference pairs, then take them to initialize πθ via cDPO. We set ϵ=0 to human
alignment task, yet set ϵ=0.25 to mathematical reasoning and planning tasks. As for tree-based decoding, we employ the
same tree-width pruning strategy in (Feng et al., 2024), difference only rises from the deterministic decision making or
stochastic decision making. In GSM8K, we also provided the component analysis by varying ϵ in the range {100%, 75%,
50%, 25%, 0%}, along with the results ranged from 53.2, 52.9, 53.4, 51.8, 50.1, accordingly. The performance drastically
drops when the ratio less than 50%.

D. LLM-based Reasoning Experiments Beyond Mathematics
We offer evaluation based on ProofWriter (Tafjord et al., 2020) for deductive logical reasoning, and Chess Endgame
(Abdulhai et al., 2023) for long-term multi-turn decision making. For ProofWriter, we follow (Pan et al.) to generate
the test set, then the rest are merged to 41,433 training instances. All training and test instances employed the prompt
template in (Pan et al.) that initiated the start of CoT, then we employ LLAMA2-7B as the base model and all fine-tuning
methods only run for a single epoch. For Chess Endgame, we follow the experimental setup in (Feng et al., 2023). With
regards to each prompt-response pair (x,y(w)), in ProofWriter and Chess Endgame, we find the dispreferred response y(l)

using the same strategy in our mathematical reasoning tasks. We ensure the evaluation in the fair comparison with the
CoT and LLM-based tree-search baselines : CoT-greedy, BFS-V, MCTS- tr, MCTS-rollout, CoT-SC-MAJ, CoT-SC-ORM,
BFS-V-ORM, MCTS-ORM, whose implementations are consistent in the paper.

For simplicity, we skip the average token number metric to highlight Acc in ProofWriter and Win rate in Chess Endgame.
While their results remain based on Path@1 to promise the computation efficiency, and Equal-Token to encourage the
comparison in the similar scale of computation consumption cross baselines. In the table, we found that CoT variants almost
fail in ProofWriter due to their performances close to random guess (33.33%). MCTS variants obtain significantly better
results yet basically under-perform ITS variants with substantial gap in ACC, probably due to the cold-start effect in MCTS
learned with one epoch. As for Chess Endgame, ITS variants almost solve the problems with Win rates 99.83% in Path@1
and 98.57% in Equal-Token. It proves ITS also competitive in long-horizon reasoning.
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