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Abstract

We consider a dynamic mechanism design problem where an auctioneer sells an
indivisible good to two groups of buyers in every round, for a total of T rounds.
The auctioneer aims to maximize their discounted overall revenue while adhering
to a fairness constraint that guarantees a minimum average allocation for each
group. We begin by studying the static case (T = 1) and establish that the optimal
mechanism involves two types of subsidization: one that increases the overall
probability of allocation to all buyers, and another that favors the group which
otherwise has a lower probability of winning the item. We then extend our results
to the dynamic case by characterizing a set of recursive functions that determine
the optimal allocation and payments in each round. Notably, our results establish
that in the dynamic case, the seller, on the one hand, commits to a participation
reward to incentivize truth-telling, and, on the other hand, charges an entry fee for
every round. Moreover, the optimal allocation once more involves subsidization
in favor of one group, where the extent of subsidization depends on the difference
in future utilities for both the seller and buyers when allocating the item to one
group versus the other. Finally, we present an approximation scheme to solve the
recursive equations and determine an approximately optimal and fair allocation
efficiently.

1 Introduction
Auctions play a pivotal role in allocation decisions across various domains, serving as a structured
methodology for determining the distribution of resources based on bids. Housing, government
contracts, electromagnetic spectrum rights, and advertising slots are a few of the many domains
where allocations are determined by auctions. In many of the real-world applications of auction-based
allocations, the resource in question is both valuable and limited, which raises concerns about fairness.

For instance, housing auctions are often governed by policies addressing the needs of low- and
moderate-income households, such as Affordable Housing Quotas in the United Kingdom to tax
credits and vouchers in the United States [20, 22]. Government procurement contracts for goods
and services in the United States are subject to the United States Small Business Act which outlines
target contracting rates across categories (e.g., woman-owned businesses, veteran-owned businesses,
historically underutilized zones) [17]. The United States Federal Communications Commission drives
initiatives ensuring , for instance, that small and regional companies maintain reasonable access to
connectivity [35].

The importance of incorporating a consideration of fairness in important real-world use cases
motivates recent work that extends classical work on auction design emphasizing economic efficiency
to ensure outcomes do not disproportionately favor some bidders over others. Integrating fairness
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into auction designs is, however, a source of significant complexity, given that buyers often have
different valuations, which can lead to strategic bidding behavior that may skew fairness.

In this paper, we focus on studying the question of fairness in a dynamic mechanism design setting,
where a seller allocates an indivisible item through an auction at every round and for T rounds to
two groups of buyers, each group including n buyers. At each round, the buyers’ values are realized
independently from an underlying distribution (which may differ between the two groups), and the
buyers then submit their bids. The seller’s goal is to decide on an allocation rule as a function of the
submitted bids that maximizes their total discounted revenue with a discount factor δ, while ensuring
that each group receives a minimum allocation, or more specifically, that group i’s average discounted
allocation is greater than or equal to some αi.

This fairness constraint enforces a proportional notion of fairness regarding the number of items each
group wins. There are several advantages to adopting such a fairness notion. First, it is typically
more straightforward from a policy perspective compared to, for instance, focusing on the total value
won by each group. For example, most regulations concerning fair housing allocation emphasize the
percentage of housing allocated to low-income groups as a measure of success [27]. Moreover, a
buyer’s value in private-value auctions is not solely determined by the intrinsic value of the item but
also depends on the financial constraints of the buyers or asymmetric information about the item’s
value. Therefore, a proportional fairness constraint is a suitable choice in cases where one group’s
values are systematically lower than another’s. For example, in the context of housing allocation,
low-income individuals may assign lower monetary value to homes compared to wealthier individuals,
as they are more concerned with basic shelter than with investment or resale value. In such scenarios,
the allocation ratio is a more effective approach to mitigate allocation inequality compared to using
buyers’ value.

We start by considering the static case with T = 1. In the unconstrained case, it is well-known that
the optimal allocation is the second-price auction with a reserve price, which allocates the item to
the buyer with the highest bid, conditioned on the bid being above a certain reserve price. Here,
we establish that the optimal allocation under the fairness constraint has two main differences: first,
the optimal fair mechanism subsidizes one group that would otherwise not meet the target fairness
constraint. Second, the optimal allocation may increase the chance of allocating the item to both
groups in general by reducing the reserve price (again disproportionately in favor of one group).

We next focus on the general dynamic case. Here, we characterize the optimal allocation through a set
of recursive functions. At any round t, we define the residual minimum allocation, which, roughly
speaking, given the allocation so far, updates the fairness constraint as if we were to start at this round.
We establish that, given the residual minimum allocation, we may have to allocate the item to one of
the two groups to be on track to satisfy the fairness constraint overall, and that, in this case, we would
simply allocate to the highest bidder in the group and charge them the second-highest bid within
their group. However, in cases where we have the option to allocate to both groups, the design of the
optimal allocation is more complicated because buyers in each group may consider underreporting
their value in the current round to keep their chances of winning the item in future rounds higher,
especially if they expect their value in future rounds to be higher.

In this case, we establish that, as the above reasoning suggests, there is a utility associated with not
winning the item. This utility is the difference between a buyer’s expected utility in future rounds if
their group does not win the item this round, compared to the scenario where their group wins the
item at the current round. We establish that, in the optimal allocation, and to incentivize buyers to
report their values truthfully, the seller commits to paying them a participation reward if their group
wins the item, and this reward is equal to the aforementioned net utility of not winning the item. On
the other hand, the seller charges them an entry fee, which is equal to the expected reward payment
that they would miss if they did not participate. Finally, we also prove that the optimal allocation rule
is similar to the static case at a high level: when allocating an item to a group, it is assigned to the
buyer with the highest bid. Second, the decision regarding which group receives the item takes the
form of a subsidy. However, here, the amount of the subsidy depends on the above net utility of not
winning the item and the seller’s future utility from allocating the item to one group or the other.

As our results so far suggest, finding the optimal allocation requires solving a set of recursive
functions, and as we see, the computational complexity could grow exponentially with the number
of rounds. Our next contribution is to provide an efficient approximation scheme. In particular, we
establish that, for any ε > 0, we can find an allocation that guarantees the same utility to the seller
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and a fairness constraint of (1− ε)(αi − ε) for group i. This requires only O(ε−1/(1−δ))) calls to an
oracle that computes integrals. We further provide a constant approximation scheme which requires
Poly(1/(1 − δ)) calls to the oracle, which is more applicable to scenarios where δ is close to one.
We conclude our paper by providing a simple numerical experiment to illustrate the impact of the
fairness constraint on the utility of both the seller and users.

Related work: Our work is related to the growing literature on questions related to fairness in
mechanism design [15, 36, 24]. Many works in fair mechanism design with an algorithmic focus
draw from notions of fairness central to computer science and machine learning [19]. For instance, a
prominent related area of fair algorithmic mechanism design studies frameworks that ensure equity
in the distribution of online advertisements across protected user attributes in the setting of online
auctions, e.g. [14], [13], and [21].

Our work is also related to a rich literature on fair division that studies fair allocation without
considering the strategic behavior of agents, e.g. [8], [16], [11], [34], [12], [3]. Our work joins the set
of works that consider both fairness and incentive compatibility in allocation. Where [25], [9], [12]
consider truthful fair allocations with respect to variants of envy-freeness and [7], [6] consider more
broadly the feasibility of different notions of fairness in a strategic setting, we join works that adopt
a proportional notion of fairness, e.g, [1], [2], [4], [15]. We further depart from these works in our
focus on revenue optimization (instead of, e.g., optimizing social welfare [36]) and in our treatment
of the dynamic strategic environment.

Another group of related works studies the impact of budgetary and liquidity constraints on auction
revenue, e.g. [26], and [18]. These works’ motivation for considering budget constraints aligns
with the setting where fair allocation guarantees are relevant. In particular, both settings drop the
assumption that a bidder’s valuation is accurately reflected by their willingness to pay. The setting of
asymmetric budgetary constraints studied by [32] motivates the relevance of our work’s introduction
of guarantees for relative allocative fairness between groups. We build upon this set of work by
introducing a framework where the allocative limitations of both homogeneous and heterogeneous
budget constraints can be simultaneously overcome as efficiently as possible. A separate set of
related works empirically studies the impact on efficiency of subsidizing targeted groups of bidders
in procurement auctions [23], [5]. These works complement ours by pointing to bid subsidies as the
cost-optimal mechanism to enforce fairness.

The closest setting to ours is that of [31] which examines a similar notion of fairness in the single-
round (static) case, but only for one group. We depart from their work as we consider the dynamic
case and present an approximation scheme. Additionally, even in the static case, we consider a
minimum allocation constraint for both groups, which introduces a second type of subsidization.

2 Model
We consider a monopolist seller that interacts with two groups of buyers over T rounds,1 with
n buyers in each group.2 At each round t ∈ [T ],3 the seller conducts an auction to sell a single
indivisible item. The private value of buyer k ∈ [n] from group i ∈ [2] (or simply, buyer (i, k)) for
this item is denoted by vti,k, which is drawn from the publicly known and full support continuous
distribution with density f t

i : [vti, v̄
t
i ] → R. We also denote its cumulative distribution function by

F t
i (·). We assume the buyers’ values are independent.

Timeline of the auction: At each time t, buyers’ private values are realized, and then each
buyer (i, k) submits a bid bti,k. We denote the vector of bids at round t by bt. The seller then
conducts the auction and decides on the allocation xt(bt,ht) where ht denotes the public history
of allocations up to (but not including) time t, i.e., which buyers received the items in the previous
t − 1 rounds. In particular, xt

i,k(b
t,ht) ∈ {0, 1} denotes whether the kth buyer in group i gets

the item in round t. Notice that since we allocate a single item at each round, we should have∑2
i=1

∑n
k=1 x

t
i,k(b

t,ht) ≤ 1 for every t ∈ [T ]. Finally, buyer (i, k) makes the payment pti,k(b
t,ht)

1We demonstrate that the results extend to the case of multiple groups of buyers in an extended version
available at https://arxiv.org/abs/2406.00147.

2Here, for simplicity in notation, we assume that the two groups are of equal size n. However, our analysis
and results apply to the general case, including unequal group sizes and scenarios with more than two groups.

3For any integer N , [N ] denotes the set {1, . . . , N}.
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to the seller. The vector of payments at time t is denoted by pt(bt,ht). Notice that the mechanism is
determined by the allocation and payment functions (x1:T ,p1:T ).

Utility functions: The utility function of buyer (i, k) at time t is given by U t
i,k(v

t
i,k; b

t,ht) :=

xt
i,k(b

t,ht)vti,k − pti,k(b
t,ht). Buyer (i, k) and seller’s overall utilities are, respectively, given by:

Ui,k(v
1:T
i,k ; b1:T ,h1:T ) :=

T∑
t=1

δt−1U t
i,k(v

t
i,k; b

t,ht) and U0(b
1:T ,h1:T ) :=

T∑
t=1

δt−1
∑
(i,k)

pti,k(b
t,ht) (1)

where δ ∈ (0, 1] is the discount factor. Our goal is to identify mechanisms that maximize the seller’s
expected utility, subject to certain fairness constraints ensuring a minimum allocation is guaranteed
to each group. We next formally define these fairness constraints.

The fairness constraint: The seller, acting as the auctioneer, aims to ensure that a minimum
allocation is guaranteed to each group in this dynamic setting. More specifically, let αi represent the
minimum (discounted) average allocation promised to group i, with the condition that α1 + α2 ≤ 1.
Then, at each round t, the seller ensures that the discounted average of the items allocated to group i
thus far, combined with the expected allocation in the remaining rounds, is at least αi:

1− δ

1− δT

(
t−1∑
τ=1

δτ−1
n∑

k=1

xτ
i,k + E

[
T∑

τ=t

δτ−1
n∑

k=1

xτ
i,k

])
≥ αi, (2)

where the expectation is taken over the realization of the private values at time t and the future rounds.
We call the auction infeasible at round t if it is not possible to satisfy the fairness constraint over the
remaining rounds.

Notice that this condition is ex ante with respect to the allocation at time t onwards as we find this
condition more compatible compared to an ex post fairness in a setting with indivisible goods. Also,
it is straightforward to verify that if the condition (2) holds for t = T , then it would hold for any
t ≤ T . However, as we will elaborate later, this condition determines the set of feasible allocations
for any t ≤ T − 1. For instance, suppose T = 4 and α1 = α2 = 1/3. Then, if we allocate the item
to group 1 in the first three rounds, we cannot satisfy condition (2) for group 2 in the last round.

Direct truthful mechanisms: The dynamic revelation principle states that, without loss of general-
ity, we can focus on direct, truthful mechanisms where buyers bidding truthfully is a Nash equilibrium
[29]. It is important to note that the dynamic revelation principle requires truthful reporting only on
the equilibrium path; that is, assuming all buyers have been truthful in the past. However, in our
setting, this would imply truthful reporting under any history, even if a buyer has previously been
dishonest (and we are off the equilibrium path). To see why this is the case, note that the utility of
each buyer depends on their current (private) value and all past bids (but not on the past true values).
Thus, when it is optimal for the buyer to bid truthfully when past reports have been truthful, it remains
optimal for them to bid truthfully even if some buyers have lied in the past. This argument generally
holds true for Markovian environments (see [33, 37] for a detailed discussion on this topic.)

In this paper, we use the periodic ex post incentive compatibility (see [10] for a discussion on this
definition and its comparison with the weaker notion of Bayesian incentive compatibility in dynamic
mechanism design). More specifically, for any mechanism (x1:T ,p1:T ), the following Markovian
decision problem finds the best bid for buyer k from group i, assuming that all other buyers are
reporting their values truthfully:

U t
i,k(v

t,ht) := max
bti,k

{
U t
i,k

(
vti,k; b

t
i,k,v

t
−(i,k),h

t
)
+ δ E

[
U t+1
i,k (vt+1,ht+1)

∣∣∣ht
]}

, (3)

with the convention that UT+1
i,k (·, ·) := 0. This is a recursive formula in which the buyer identifies

the optimal bid by maximizing the sum of their utility at the current moment and the maximum of
what they could achieve in the future, while they assume that all other buyers are bidding truthfully.
A mechanism is called ex post incentive compatible if the maximum is achieved through truthful
bidding. The formal definition is provided below.
Definition 1. A mechanism (x1:T ,p1:T ) is ex post incentive compatible (EPIC) if:

vti,k ∈ argmax
bti,k

{
U t
i,k

(
vti,k; b

t
i,k,v

t
−(i,k),h

t
)
+ δ E

[
U t+1
i,k (vt+1,ht+1)

∣∣∣ht
]}

∀i, k, t,vt,ht. (4)
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Note that the EPIC mechanism can be identified through backward induction, starting at the last round
and progressing back to the first. By doing so, at time t, we would realize that maximum utility in
future rounds is achieved through truthful bidding. Consequently, the term U t+1

i,k (vt+1,ht+1) could
be replaced with the utility assuming that everyone reports truthfully. In other words, to identify the
EPIC mechanism, it is sufficient to find a mechanism that satisfies the following condition:

vti,k ∈ argmax
bti,k

{
U t
i,k

(
vti,k; b

t
i,k,v

t
−(i,k),h

t
)
+ δ E

[
T∑

τ=t+1

Uτ
i,k(v

τ
i,k;v

τ ,hτ )
∣∣∣ht

]}
. (5)

Finally, we state the individual rationality assumption or the participation condition. This assumption
ensures that, at each round, each buyer (knowing only their value) would weakly prefer to participate
in the auction. In other words, each buyer’s expected utility is weakly higher if they participate rather
than choosing their outside option, which is skipping that round.

Definition 2. A mechanism (x1:T ,p1:T ) is individually rational (IR) if for all i, k, t, vti,k, and ht:

E
[
U t
i,k(v

t,ht)
]
≥ δ E

[
U t+1
i,k (vt+1, (h′)t+1)

∣∣∣ht
]
, ‘ (6)

where (h′)t+1 denotes the history under which buyer (i, k) has not participated at round t, and the
expectations are taken over vt

−(i,k) and vt+1:T .4

The left hand side of (6) demonstrates the expected utility of buyer (i, k) at time t and thereafter,
assuming their participation in round t. However, the right hand side of (6) shows the expected utility
of buyer (i, k) when they skip the t-th round (and receive no utility in the t-th round).

Throughout our analysis, we adopt the following regularity assumption on the distribution of values
that is common in mechanism design literature. This assumption applies to a variety of distributions,
including uniform, exponential, and normal distributions.5

Assumption 1. For any i and t, the distribution F t
i is regular, i.e., the virtual value function

ϕt
i(v) := v − 1−F t

i (v)
ft
i (v)

is increasing in v.

For the rest of the paper, our goal is to find an EPIC and IR mechanism (x1:T ,p1:T ) that maximizes
the expected seller utility subject to the fairness constraint (2). We start our analysis by discussing
the static case, i.e., T = 1, which will be used in our analysis for the dynamic setting.

3 The static case
To simplify the notation, we drop the dependence of the parameters on time t in this section. Here,
our fairness constraint (2) reduces to E [

∑n
k=1 xi,k] ≥ αi, where the expectation is taken over a

single realization of the private values.

It is well-known that in the absence of the fairness constraint, and under Assumption 1, the item is
allocated to the buyer who has the highest virtual value, provided that at least one buyer’s virtual
value is non-negative. Conversely, the seller does not allocate the item if all virtual values are negative.
This mechanism is known as the second-price auction (or Vickrey auction) with reserve pricing, as
detailed in [30]. This allocation is depicted in Figure 1a. We next present the main result of this
section which establishes the optimal allocation under the fairness constraint.

Theorem 1. Suppose Assumption 1 holds. For any i ∈ [2], let vi := maxk vi,k be the maximum
value among buyers in group i. Then, the following results hold for the optimal allocation:

(i) If the item is allocated to group i, then it is allocated to the buyer in group i with the highest
value, i.e., if xi,k = 1, then vi,k = vi.

4In the case of n = 1, a buyer’s non-participation could lead to the infeasibility of the auction as the item
cannot be allocated to their group in that round. To avoid such special cases, in the case of n = 1, we assume
that we may still allocate the item to their group even if they do not participate, but this potential allocation does
not count towards their outside option utility.

5We demonstrate that the results in both the static and dynamic cases hold when this is assumption is
weakened via ironing in an extended version available at https://arxiv.org/abs/2406.00147.

5

https://arxiv.org/abs/2406.00147


ϕ1(v1)

ϕ2(v2)
ϕ2(v2) = ϕ1(v1)

(a) Without fairness constraint

ϕ1(v1)

ϕ2(v2)

−η1

−η2

−γ

ϕ2(v2) = ϕ1(v1)

ϕ1(v1) = ϕ2(v2) + γ

(b) With fairness constraint

Figure 1: Optimal allocation in the static case.

(ii) The allocation decision at the group level depends only on the maximum value of the two
groups, v1 and v2. For any i, let Gi denote the pair (v1, v2) for which the item is allocated
to group i. Then, there exists η1, η2 ≥ 0 and γ with η2 = η1 + γ such that (up to a
measure-zero set)

G1 = {(v1, v2) | ϕ1(v1) ≥ ϕ2(v2) + γ and ϕ1(v1) ≥ −η1} , (7a)
G2 = {(v1, v2) | ϕ2(v2) ≥ ϕ1(v1)− γ and ϕ2(v2) ≥ −η2} . (7b)

The proof of this result (along with all other proofs) can be found in the appendix. An example of the
optimal allocation rule with γ > 0 is depicted in Figure 1b where group one is allocated the item in
the yellow and orange regions and group two is allocated the item in the blue and green regions.

The theorem follows from the fact that the loss in the seller’s utility increases in Euclidean distance
from the boundary of the unconstrained optimal allocation ϕ1(v1) = ϕ2(v2). Therefore, virtual
valuations of the under-allocated group that are closest to those of the over-allocated group, specif-
ically within a distance γ, are the set that minimize the cost of reallocating to the target group to
achieve the desired balance between groups. In the case of insufficient unconstrained allocation, the
further modification of allocating in cases where the item remains unallocated in the unconstrained
mechanism is necessary.

As Theorem 1 shows, the optimal fair mechanism subsidizes one group that would otherwise not
meet target allocation levels. To maximize revenue while satisfying a given fairness constraint, we
deviate from the unconstrained allocation in the most cost efficient way, that is, we reassign the good
to a lower valuation bidder in cases that least impact expected seller revenue.

Also, notice that, when there is no fairness constraint, the seller does not allocate the item if the
maximum bid is below their reserve price r = min{ϕ−1

1 (0), ϕ−1
2 (0)}. Thus, it is possible that, in the

unconstrained optimal mechanism, the total probability of allocation across both groups be less than
the sum of the target allocation levels αi. This is the intuition behind why η1, η2 may both be greater
than zero in some cases. In other words, we must simultaneously enforce that the item is allocated
more often in general and that the relative rates of allocation between groups is sufficiently balanced.

We conclude this section with a result which helps us to identify γ, η1, and η2.

Proposition 1. Let γ, η1, and η2 correspond to the optimal allocation given by Theorem 1. Then, if
γ > 0, i.e., the seller strictly subsidizes in favor of the second group, we have P(G2) = α2. Moreover,
if η1 > 0, we have P(G1) = α1.On the other hand, if γ < 0, i.e., the seller strictly subsidizes in favor
of the first group, we have P(G1) = α1. Moreover, if η2 > 0, we have P(G2) = α2.

The probability P(·) above is defined with respect to the distribution of the pair of maximum values
(v1, v2) with CDF Fmax(v1, v2) = F1(v1)

nF2(v2)
n. The intuition behind this proposition is that the

seller satisfies the fairness constraint while maximizing their utility by deviating from the optimal
unconstrained only as much as is necessary to satisfy the fairness constraint with equality.
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4 The dynamic case

We next turn our attention to the dynamic case. Here, our main approach involves using backward
induction. The analysis from the previous section serves as the basis for the optimal allocation at the
last round, i.e., t = T . In this section, we describe how we proceed backward to find the optimal
dynamic auction under the fairness constraint. We make the following assumption which simplifies
the characterization of the optimal mechanism and allows us to focus on the insights. In the appendix,
we discuss how our analysis extends to cases where this assumption does not hold.
Assumption 2. We assume the seller must allocate the item in any round, except possibly the last.

We start our analysis by making a number of definitions and observations. Suppose we are at the
beginning of round t. Given (2), our allocation at round t and the future rounds should satisfy the
following constraint:

T−1∑
τ=t

δτ−t
n∑

k=1

xτ
i,k + δT−tE

[
n∑

k=1

xT
i,k

]
≥ Rt

i :=
1

δt−1

(
1− δT

1− δ
αi −

t−1∑
τ=1

δτ−1
n∑

k=1

xτ
i,k

)
, (8)

We refer to the right-hand side as the residual minimum allocation for group i. It is noteworthy that
equation (8) can be interpreted as if the auction is starting at time t, with the fairness constraint given
by Rt

i(1− δ)/(1− δT−t). We next make the following simple observation:

Fact 1. Given the allocation at time t, the residual minimum allocation at time t+ 1, i.e., Rt+1
i , is

equal to 1
δ (R

t
i − 1) when the item is allocated to group i and equal to 1

δR
t
i otherwise.

We next introduce two interim functions. For the sake of these two definitions, assume the auction
starts at time t, i.e., the utility at any time τ , for τ ≥ t, is discounted by a factor of δτ−t. With this
assumption, and for a given pair of residual minimum allocations (Rt

1, R
t
2), we define µt(Rt

1, R
t
2) as

the (discounted) sum of the expected utility of the seller at time t and thereafter, under the optimal
mechanism satisfying equation (8), prior to the realization of values. Similarly, νti (R

t
1, R

t
2) represents

the expected utility of a buyer in group i. It is worth noting that, given the distribution of values
within each group is similar, νti does not depend on k (the buyer’s index within the group). We also
set the these functions equal to −∞ if there is no feasible auction satisfying (8). The following result
regarding νTi (·, ·) and µT (·, ·) is a corollary of Theorem 1. Notice that the last round can be seen as a
static auction with fairness constraint for group i given by RT

i .

Corollary 1. At round T , and for a given pair of residual minimum allocations (RT
1 , R

T
2 ), we have

νTi (R
T
1 , R

T
2 ) =

1

n

∫
Gi

1− FT
i (vi)

fT
i (vi)

dFT
max(v1, v2), (9a)

µT (RT
1 , R

T
2 ) =

∫
G1

ϕT
1 (v1)dF

T
max(v1, v2) +

∫
G2

ϕT
2 (v2)dF

T
max(v1, v2), (9b)

where FT
max(v1, v2) = FT

1 (v1)
nFT

2 (v2)
n and Gi’s are defined in Theorem 1.

This corollary is proved in the appendix. Now, suppose we are in the t-th round, conducting the
backward induction. Consequently, we have access to νt+1

i (·, ·) (for i ∈ [2]) and µt+1(·, ·). Next,
we will establish the optimal allocation for round t and describe how to compute νti (·, ·) and µt(·, ·)
accordingly. We have three main regimes:

(I) When the auction is infeasible: Suppose that no matter whether the seller gives the item to the
first or second group, they would not be able to satisfy the residual minimum allocation constraint in
the remaining rounds. In this case, we declare the auction is infeasible at round t.
Fact 2. For a given pair of residual minimum allocations (Rt

1, R
t
2), suppose we have µt+1((Rt

1 −
1)/δ,Rt

2/δ) and µt+1(Rt
1/δ, (R

t
2 − 1)/δ) = −∞. Then, there is no feasible auction satisfying the

residual minimum allocation constraints, and hence, we set µt(Rt
1, R

t
2) and νti (R

t
1, R

t
2), for both

i ∈ [2], equal to −∞.

To better highlight this proposition, let us consider a simple example. Suppose T = 2, δ = 0.5, and
α1 = α2 = 0.4. In this scenario, R1

1 = R1
2 = 0.6. Now, the residual minimum allocation for the

second round for the group that doesn’t receive the item in the first round would be 1.2, which is not
feasible. Hence, there is no feasible auction that satisfies the fairness constraint.
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(II) When the item must be allocated to a certain group: Suppose, for instance, that if the
seller allocated the item to the second group, they would not be able to satisfy the resulting residual
minimum allocation constraints in the remaining rounds. However, allocating the item to the first
group would result in a feasible auction. Therefore, in this case, the seller must allocate the item (if
keeping it were feasible, then allocating it to the second group would also have been feasible), and
moreover, the item must be allocated to the first group. The following result formalizes the optimal
allocation for this scenario.
Proposition 2. Suppose Assumption 1 holds. For a given pair of residual minimum allocations
(Rt

1, R
t
2) and some i ∈ [2], suppose we have µt+1(Rt

i/δ, (R
t
−i − 1)/δ) = −∞ but µt+1((Rt

i −
1)/δ,Rt

−i/δ) > −∞. Then, the seller allocates the item to the buyer with the highest value in group
i, with the payment being equal to the second-highest value within the same group.

Intuitively, if the item must be allocated to the first group, the question of who within that group
receives the item essentially boils down to a static Vickrey auction: the buyer offering the highest
value acquires the item and pays the price equal to the second highest value in the group. It is
important to note that, in this scenario, there is no reserve price (and we do not need to explicitly
impose Assumption 2) because the seller is obliged to allocate the item to meet the fairness constraint.
Lastly, the update of interim functions are provided in Appendix A.4.1.

(III) When allocation to both groups is feasible: Suppose that whether the seller allocates the
item to the first or second group, they still have the opportunity to meet the allocation constraint in
future rounds. Now, what should be the seller’s allocation strategy to maximize their utility?

Note that the expected utility of buyers in each group changes based on whether or not they receive
the item in the current round. The difference between these two scenarios can be interpreted as
the expected utility of not receiving the item. More formally, for a given pair of residual minimum
allocations (Rt

1, R
t
2), and when allocation to both groups is feasible, the net utility of not receiving

the item for group i is defined as

∆t
i(R

t
1, R

t
2) := νt+1

i (Rt
i/δ, (R

t
−i − 1)/δ)− νt+1

i ((Rt
i − 1)/δ,Rt

−i/δ). (10)

It is worth noting that, interestingly, the net utility of not receiving the item could be negative in some
case (See Appendix A.5). Lastly, we define ∆t

0(R
t
1, R

t
2) as the difference in seller’s future utility by

allocating the item to the first group, compared to allocating it to the second group, i.e.,

∆t
0(R

t
1, R

t
2) := µt+1((Rt

1 − 1)/δ,Rt
2/δ)− µt+1((Rt

2 − 1)/δ,Rt
1/δ). (11)

Theorem 2. Suppose Assumptions 1 and 2 hold. For a given pair of residual minimum allocations
(Rt

1, R
t
2), suppose both µt+1(Rt

1/δ, (R
t
2 − 1)/δ) and µt+1((Rt

1 − 1)/δ,Rt
2/δ) are finite. Then, the

seller allocates the item to the buyer with the highest value in group i if (vt1, v
t
2) ∈ Gt

i, where
vtj := maxk v

t
j,k is the maximum value among buyers in group j and Gt

i is given by

Gt
i :=

{
(v1, v2)

∣∣∣ ϕt
i(vi)− ϕt

−i(v−i) ≥ nδ
(
∆t

i(R
t
1, R

t
2)−∆t

−i(R
t
1, R

t
2)
)
+ (−1)iδ∆t

0(R
t
1, R

t
2)
}
.

Moreover, let i∗ denote the index of the winner group. Then, the payment of buyer (i, k) is given by

vti,k xt
i,k(v

t
i,k,v

t
−(i,k))−

∫ vt
i,k

vt
i

xt
i,k(z,v

t
−(i,k))dz + δ∆t

i(R
t
1, R

t
2)(ζ

t
i − 1(i∗ = i)), (12)

where ζti denotes the probability of group i winning the item if the auction runs with n− 1 buyers
from their group instead of n buyers.

The explicit characterization of ζti ’s along with the update of interim functions are provided in
Appendix A.6. It is worth emphasizing that while the term ζti depends on the allocation rule of an
auction with 2n− 1 buyers, we can derive it in a non-recursive manner. The reason is that finding the
allocation, similar to Gt

i above, does not require running the smaller-size auction. Next, we would
like to draw a few insights from this result. First, notice that, similar to the static case, the boundary
of allocation rule is a linear function of the maximum virtual values of both group.

Next, note that the payment function consists of three terms. The first term, vti,k xt
i,k(v

t
i,k,v

t
−(i,k))−∫ vt

i,k

vt
i

xt
i,k(z,v

t
−(i,k))dz, represents what only the winner pays and is equal to the minimum bid
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they could have made to still win the item. This is indeed similar to the second-price auction in
which the winner’s payment is equal to the second highest bid. To better understand the other
two terms, and for the sake of discussion, suppose ∆t

i(R
t
1, R

t
2)’s are non-negative, indicating a

non-negative net future utility associated with not receiving the item at the current time (because it
means your chance of receiving it in the future increases). The second term of the payment function
is −δ∆t

i(R
t
1, R

t
2)1(i

∗ = i), which is negative and thus represents a transfer from the seller to the
buyers (we call this participation reward). Only the buyers from the group that wins the item receive
this payment. To understand why such a reward is needed from the seller, notice that when a buyer’s
group wins the item, they are in fact losing an amount of δ∆t

i(R
t
1, R

t
2) in their future utility because

their group has a lower chance of winning in the future. Hence, in some sense, this reduces the
value of the item in the current round, and the buyers may find it profitable to underreport their
value. That said, this payment serves to incentivize truthful reporting. Finally, the last term in the
payment function is δ∆t

i(R
t
1, R

t
2)ζ

t
i , which is a payment that every buyer should make to the seller.

The rationale here is that if the buyer skips the current round, then if their group wins, which happens
with probability ζti , their group would receive a payment equal to δ∆t

i(R
t
1, R

t
2) from the seller, as we

elaborated above. Hence, the seller charges the same amount as the entry fee.

Lastly, notice that in the allocation rule Gt
i, there is a threshold of nδ

(
∆t

i(R
t
1, R

t
2)−∆t

−i(R
t
1, R

t
2)
)
+

(−1)iδ∆t
0(R

t
1, R

t
2) which determines which group receives the item. Notice that this threshold

increases as ∆t
i(R

t
1, R

t
2) increases, meaning that the seller is less willing to give the item to group i.

This is because a higher ∆t
i(R

t
1, R

t
2) means that the seller has to make a higher payment to group

i’s buyers if they win. Additionally, this threshold decreases for the first group when ∆t
0(R

t
1, R

t
2)

increases, indicating that the seller is more willing to allocate the item to the first group when
∆t

0(R
t
1, R

t
2) is higher. This is intuitive as this term represents the seller’s future net utility by

allocating the item to the first group compared to allocating it to the second group.

An approximation scheme: Our results so far offer an exact characterization of the optimal dynamic
allocation. However, due to the recursive nature of the analysis, the computational complexity of
this allocation increases exponentially with the number of rounds, T . We conclude this section by
discussing efficient methods to find an approximately optimal allocation. Since our focus is not on
approximating the integrals here, we assume we have access to an oracle which can compute integrals
and solve integral equations.
Assumption 3. We have access to an oracle that, for any i ∈ [n] and t ∈ [T ], can com-
pute the integrals

∫
G
ϕt
i(v

t
i), dF

t
max(v1, v2) and

∫
G

1−F t
i (vi)

ft
i (vi)

, dF t
max(v1, v2) with F t

max(v1, v2) =

F t
1(v1)

nF t
2(v2)

n and over any affine subspace G. Furthermore, the oracle can find the optimal
allocation in the static case by solving the integral equations in Proposition 1.

We start by making the following observation regarding the case δ = 1.
Fact 3. Suppose δ = 1 and Assumptions 1-3 hold. Then, we can find the exact optimal allocation by
calling the oracle O(T 2) times.

To see why this holds, notice that, for the case of δ = 1, the pair (Rt
1, R

t
2) at most takes T different

values for any t, and so computing all {µt(Rt
1, R

t
2), ν

t
1(R

t
1, R

t
2), ν

t
2(R

t
1, R

t
2)}t would overall require

O(T 2) round of computation using the recursive derivations we stated earlier. However, for the case
δ < 1, this is not the case anymore, as the pair (Rt

1, R
t
2) could take as much as 2T different values.

In this case, we can technically choose some T0 < T and aim to achieve the fairness constraint
approximately in the first T0 rounds, and then run the regular second-price auction in the remaining
rounds. The following result formalizes this.
Proposition 3. Suppose Assumptions 1-3 hold and that δ < 1. Then, for any ε ∈ [0,mini αi), there
exists an allocation x′ with the following properties: (1) x′ guarantees that the fairness constraint
for group i is satisfied at a level of at least (1− ε)(αi − ε), (2) x′ guarantees that the sellers total
utility is at least that of the optimal allocation, and (3) x′ can be computed by calling the oracle
O
(
ε−1/ log(1/δ)

)
times.

Intuitively, the approximation guarantees that the fairness constraint is satisfied within ε of the target
level by conducting the fair allocation scheme at level αi − ε up to a sufficiently large time step such
that approximate fairness is met no matter the allocations of the remaining rounds. In the remaining
rounds, a standard second-price auction is carried out, thereby ensuring that total seller utility is at
least that of the case where the fair allocation scheme is carried out to the last round.
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(a) Seller utility (b) Group One utility (c) Group Two utility

Figure 2: Difference in utility relative to unconstrained optimal allocation for T = 2

(a) Seller utility (b) Group One utility (c) Group Two utility

Figure 3: Difference in utility relative to unconstrained optimal allocation for T = 4

Notice that the complexity of the approximation given by proposition 3 grows large for δ close to 1.
Next, we present a second approximation scheme for the case where δ is close to one.
Proposition 4. Suppose Assumptions 1-3 hold and that δ < 1. Then, for a fixed constant c < δ2,
there exists an allocation x′′ with the following properties: (1) x′′ satisfies the fairness constraint
for group i at a level of at least c ·αi, (2) x′′ guarantees that the sellers total utility is at least c times

that of that of the optimal allocation, and (3) x′′ can be computed by calling the oracle Poly
(

1
1−δ

)
times where the polynomial’s degree and coefficients depend on c.

This x′′ modifies the approximation x′ presented in Proposition 3 by introducing a discontinuous
discounting technique. In x′′, we partition the first T0 rounds into buckets that use a common
approximate discount factor such that the computational complexity of each bucket may be controlled
in the same manner as Fact 3. A complete proof as well as a complete proof statement that relates the
early stopping approximation with the discounting approximation that can be tuned to achieve an
overall approximation level c can be found in Appendix A.8.

5 Experiments
Here, we present the results of a numerical experiment assessing the impact on utilities of varying
the fairness constraints of each group. In particular, we implement the case where δ = 0.99, n = 1,
vt1 ∼ Uniform(0.5, 1.5), and vt2 ∼ Uniform(0, 1) for t ∈ [2] for T = 2, 4.

For each value of T , we consider combinations of fairness constraints on a discretized grid where
α1 and α2 range over (0, 0.5) with increments of 0.1. For each pair α1, α2, we calculate the mean
difference in utility between the optimal fair allocation at level α1, α2 and the unconstrained optimal
allocation satisfying Assumption 2 (i.e., α1, α2 = 0), for the seller and buyers over 10,000 iterations
of the mechanism. Note that, for these distributions, when T = 2 the average unconstrained allocation
probabilities are 0.69 and 0.31 for groups one and two, respectively. The results are reported in
Figures 2-3.

We see that the seller utility is decreasing in α1, α2 but only after the point at which the constraints
bind. For group one, we see that, for a fixed α1, utility is decreasing in α2, since, to satisfy the
fairness constraint, we re-allocate higher value regions to group two and allocate lower-value regions
that would otherwise go unallocated to group one. In contrast, for group two, we see that, for a fixed
α2, utility is relatively constant in α1 since the optimal allocation tends to reallocate to group one
from the lower-value no-allocation region.
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A Appendix

In this appendix, we present proofs and details that are omitted from the body of the paper.

A.1 Proof of Theorem 1

We first revisit the following well-known result for EPIC and IR mechanisms in the static scenario
(see Chapters 9 and 13 of [30] for the proof):

Proposition 5 ([28]). A mechanism (x,p) is EPIC if and only if, for every i and k, the allocation
function xi,k(v,v−(i,k)) is weakly increasing in v, and the payment function is given by

pi,k(v,v−(i,k)) = v xi,k(v,v−(i,k))−
∫ v

vi

xi,k(z,v−(i,k))dz + c(v−(i,k)), (13)

with c(v−(i,k)) = 0 for IR mechanisms. Moreover, the seller’s expected utility for any EPIC and IR
mechanism is given by

Ev

 ∑
i∈[2],k∈[n]

ϕi(vi,k)xi,k(v)

 . (14)

Next, let S be the set of (ϕi(vi,k))i,k for which the seller allocates the item to one of the groups in
the optimal allocation x̃, i.e.,

S =
{
(ϕi(vi,k))i,k

∣∣∣∃i, k s.t. xi,k(v) = 1
}
. (15)

Recall that vi = maxk vi,k. We first establish that, given S , the boundary of the optimal allocation is
in the form of ϕ1(v1) = ϕ2(v2) + γ for some γ. Note that the set S is measurable as the allocation
function is measurable.

Notice that the probability of S is at least α1 + α2. Since f1(·) and f2(·) are continuous, we can find
an allocation rule that is confined to S , satisfies the fairness constraint, and its boundary takes the form
ϕ1(v1) = ϕ2(v2) + γ for some γ (we call such allocations as affine allocations). That is, group one
receives the object if and only if ϕ1(v1) ≥ ϕ2(v2) + γ and (ϕ1(v1), ϕ2(v2)) ∈ S; similarly, group
two receives the object if and only if ϕ1(v1) < ϕ2(v2) + γ and (ϕ1(v1), ϕ2(v2)) ∈ S. We further
assume this allocation allocates the item to the buyer with highest value within each group. Denote
this allocation by x∗. If there are multiple allocation rules of this form, we select the one whose
corresponding γ has the smallest absolute value. On can verify by inspection that such allocation is
monotone, and hence, satisfies the EPIC condition with its corresponding payment identity. Without
loss of generality, we may assume γ > 0, as the case for γ < 0 can be argued similarly.

If we had to allocate every pair in S but there were no fairness constraints, the optimal allocation
would have been by checking to the buyer with the highest value, which from groups’ pointw of view
would mean the boundary ϕ1(v1) ⋚ ϕ2(v2). Let A∗ be the region that x∗ allocates differently from
this unconstrained allocation over S, i.e.,

A∗ =
{
(ϕi(vi,k))i,k ∈ S

∣∣∣ϕ1(v1) ≥ ϕ2(v2) ≥ ϕ1(v1)− γ
}
. (16)

We define Ã similarly for the allocation x̃ as the set of values for which we allocate the item
suboptimally. Also, for any j ∈ [2], let Qj ⊂ S be the region that is allocated to group j in the
optimal unconstrained allocation, i.e.,

Qj =
{
(ϕi(vi,k))i,k ∈ S

∣∣∣ϕj(vj) ≥ ϕ−j(v−j)
}
. (17)

In particular, note that A∗ ⊆ Q1. We next make the following claim.

Claim 1. The probability of Ã ∩Q1 is lower bounded by the probability of A∗, i.e.,

Pv(Ã ∩Q1) ≥ Pv(A
∗). (18)

Moreover, equality can only occur if Ã ⊆ Q1.
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Proof. To see why this is the case, notice that since x̃ satisfies the fairness constraint, we should have

Pv(Ã ∩Q1) + Pv(Q2) ≥ Pv(Ã ∩Q1) + Pv(Q2\Ã) ≥ α2. (19)

Now, if (18) does not hold, then we would have

Pv(A
∗) + Pv(Q2) > α2, (20)

but then this would mean that we can lower the γ in allocation x∗ which contradicts its definition.

Notice that the loss of allocation x∗ compared to the optimal unconstrained allocation is given by

Lossx∗ :=

∫
A∗

(ϕ1(max
k

v1,k)− ϕ2(max
k

v2,k))dF (v) (21)

Let also Lossx̃ denote the loss of allocation x̃ compared to the optimal unconstrained allocation. This
loss is lower bounded by

Lossx̃ ≥
∫
Ã∩Q1

(ϕ1(max
k

v1,k)− ϕ2(max
k

v2,k))dF (v). (22)

Notice that, since x̃ is the optimal allocation, the right hand side of (22) should be lower than (21):∫
Ã∩Q1

(ϕ1(max
k

v1,k)− ϕ2(max
k

v2,k))dF (v) ≤
∫
A∗

(ϕ1(max
k

v1,k)− ϕ2(max
k

v2,k))dF (v). (23)

We next claim that this implies that A∗ = Ã ∩Q1.

Claim 2. We have A∗ = Ã ∩Q1 (up to a measure-zero set).

Proof. To simplify the notation, let L(v1, v2) = ϕ1(v1) − ϕ2(v2). Suppose these two sets are not
equal. This implies that there is some region B̃ outside region A∗ that is in region Ã ∩Q1 and some
region B∗ that is outside region Ã ∩Q1 but inside region A∗. By Claim 1, we have:∫

B̃

dF (v) ≥
∫
B∗

dF (v). (24)

Next, by (23), we have ∫
B̃

L(v1, v2)dF (v) ≤
∫
B∗

L(v1, v2)dF (v) (25)

Notice that L(v1, v2) is nonnegative over B̃ and B∗. Also, the fact that B̃ ∩A∗ is empty (along with
B̃ ⊆ Q1) means that supB∗ L(v1, v2) ≤ γ < infB̃ L(v1, v2). Next, notice that∫

B∗
L(v1, v2)dF (v) ≤ sup

B∗
L(v1, v2)

∫
B∗

dF (v)

and ∫
B̃

L(v1, v2)dF (v) ≥ inf
B̃

L(v1, v2)

∫
B̃

dF (v).

Combined with (24), these inequalities yield that∫
B∗

L(v1, v2)dF (v) ≤
∫
B̃

L(v1, v2)dF (v),

where the equality holds only if B̃ and B∗ are measure zero, which should be the case given (25).
This shows that x̃ and x∗ are the same, up to a measure zero set.

This claim along with the equality condition of Claim 1 shows that A∗ and Ã are equal up to a
measure-zero set. Hence, for a given S, the optimal allocation is an affine allocation.

Now, this result was for a given S . Using a similar argument, we can establish that the optimal set S
should be in the form of{

(ϕ1(v1), ϕ2(v2))
∣∣∣ϕ1(v1) ≥ −η1 or ϕ2(v2) ≥ −η2

}
(26)
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ϕ1(v1)

ϕ2(v2)

−η1

−η2

−γ

−(η1 + γ)

ϕ2(v2) = ϕ1(v1)

ϕ1(v1) = ϕ2(v2) + γ

Figure 4: The case where η2 < η1 + γ.

for some η1, η2 ≥ 0. We finally establish that η2 = η1 + γ. Suppose that η2 < η1 + γ in the
optimal fair allocation. Then, there exists the following region of allocations to group one: G =
{(ϕ1(v1), ϕ2(v2)) : ϕ2(v2) ∈ (−η2,−η1−γ), ϕ1(v1) ∈ (−η1,−η1−γ+η2), ϕ2(v2) ≥ ϕ1(v1)+γ}.
Notice that G constitutes a triangle as depicted in the red region in Figure 4. Consider modifying
the allocation rule as follows. For some g ∈ G, do not allocate g. Instead, allocate a region of equal
measure to group 1 beginning at (−η1,−η2). This switch changes the loss by the amount η1 − η2.
Then, we return to the original and total levels of allocation by reallocating another equal-measure
region on the border ϕ1(v1) = ϕ2(v2) − γ to group 2. The second switch changes the loss by the
amount γ. Therefore, the total change to the loss is η1 − η2 + γ < 0 by our initial assumption. Thus,
this modification results in decreased loss to the seller, and it cannot be optimal. Now, suppose that
η2 > η1 + γ in the optimal fair allocation. Then, there exists a region that is not allocated under
the optimal mechanism defined by H = {(ϕ1(v1), ϕ2(v2)) : ϕ2(v2) ∈ (−η1 − γ,−η1), ϕ1(v1) ∈
(−η2 − γ,−η1), ϕ2(v2) ≤ ϕ1(v1) + γ}. As before, H is a triangle depicted in gray in Figure
5. However, notice that the unallocated values in H are closer to the unconstrained allocation
boundary than the allocated set of virtual values {(ϕ1(v1), ϕ2(v2)) : ϕ1(v1) <= η1, ϕ2(v2) ∈
(−η1 − γ,−η2), ϕ2(v2) ≥ ϕ1(v1) − γ }. Therefore, such an allocation cannot be the optimal fair
allocation due to the result shown in the proof of Theorem 1 that loss is increasing in Euclidean
distance from the unconstrained allocation boundary (1a). Observing that these two cases together
imply equality concludes the proof. ■

A.2 Proof of proposition 1

Let Lossx and Lossx̂ denote the loss of allocations x and x̃ compared to the original unconstrained
allocation, respectively. Notice that the change in loss under the modified allocation can be expressed
as

Lossx − Lossx̂ =

∫
Ĝ2

(ϕ1(max
k

v1,k)− ϕ2(max
k

v2,k))dF (v). (27)

Since ϕ1(maxk v1,k)−ϕ2(maxk v2,k) ∈ (0, γ) for every pair (maxk v1,k,maxk v2,k) ∈ Ĝ2 and Ĝ2

is a set with nonzero measure, we may conclude that Lossx − Lossx̂ > 0 In other words, the seller’s
utility increases under the allocation x̂ as compared to that of allocation x. Therefore, for an optimal
fair allocation where γ > 0, it must be that P(G2) = α2.
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ϕ1(v1)

ϕ2(v2)

−η1

−η2

−γ

−(η1 + γ)

ϕ2(v2) = ϕ1(v1)

ϕ1(v1) = ϕ2(v2) + γ

Figure 5: The case where η2 > η1 + γ.

The proof is similar to show that, if η1 > 0, i.e., there is insufficient total allocation in the optimal
unconstrained allocation, we have P(G1) = α1. As before, clearly P(G1) ≥ α1, otherwise the
fairness constraint is not satisfied. Suppose, for sake of contradiction, that P(G1) ≥ α1. Then there
is some subset

Ĝ1 ⊆ {(v1, v2)| − η1 ≤ ϕ1(v1),≤ 0, ϕ2(v2) ≤ ϕ1(v1)− γ} (28)

with nonzero measure such that P(G1 \ Ĝ2) ≥ α1. Notice that Ĝ1 is some subset of the orange
region in Figure 1b. Once again, let x be the original allocation and x̂ be the modified allocation
where we do not allocate region Ĝ2. The change in loss under the modified allocation is given by

Lossx − Lossx̂ =

∫
Ĝ1

(ϕ1(max
k

v1,k)− ϕ2(max
k

v2,k))dF (v). (29)

Since Ĝ1 has nonzero measure and ϕ2(v2) ≤ 0 for all (maxk v1,k,maxk v2,k) ∈ Ĝ1, it follows that
Lossx̂ − Lossx > 0. Once again, this contradicts the optimality of allocation x, and it must be that
P(G1) = α1.

Observing that the second claim follows from exchanging the roles of groups 1 and 2 in the preceding
work concludes the proof. ■

A.3 Proof of corollary 1

Both results follow from an application of the following claim.
Claim 3. Let f(vTi,k) be some function of vTi,k. Then

E
[
xT
i,k(b

T ,hT )f(vTi,k)
]
=

1

n

∫
Gi

f(vTi,k)dF
T
max(v1, v2) (30)

First, by the law of total probability and observing that xT
i,k = 0 if vTi,k < maxk v

T
i,k,

E
[
xT
i,k(b

T ,hT )f(vTi,k)
]
= E

[
xT
i,k(b

T ,hT )f(vTi,k) | vTi,k = max
k

vTi,k

]
P
(
vTi,k = max

k
vTi,k

)
(31)
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Next, since vTi,k
i.i.d.∼ FT

i , P(vTi,k = maxk vi,k) =
1
n . Also observe that xT

i,k = 0 for (v1, v2) /∈ Gi.
Thus,

E
[
xT
i,k(b

T ,hT )f(vTi,k)
]
=

1

n
E
[
f(vTi,k)1{vTi,k = max

k
vTi,k, (v1, v2) ∈ Gi}

]
=

1

n

∫
Gi

f(vTi,k)dF
T
max(v1, v2)

(32)

Now, we use the preceding claim to evaluate the expected utility of a buyer in group i denoted
νTi (R

T
1 , R

T
2 ). Note that

νTi (R
T
1 , R

T
2 ) = E

[
UT
i,k(v

T
i,k; b

T ,hT )
]
= E

[
xT
i,k(b

T ,hT )vTi,k − pTi,k(b
T ,hT )

]
(33)

The expected payment of a buyer in group i can equivalently be expressed as

E
[
pTi,k(b

T ,hT )
]
= E

[
xT
i,k(b

T ,hT )ϕT
i (v

T
i,k)
]

(34)

as shown in [30, Lemma 13.11]. Substitution of this result into yields

νTi (R
T
1 , R

T
2 ) = E

[
xT
i,k(b

T ,hT )
(
vTi,k − ϕT

i (v
T
i,k)
)]

(35)

From here, applying the claim 3 to the function vTi,k − pTi,k(b
T ,hT ) yields the desired result.

Next, we show the second part of the claim. By definition 14, we may express the expected utility of
the seller in group i denoted µT (RT

1 , R
T
2 ) as

E [ϕ1(v1,k)x1,k(v) + ϕ2(v2,k)x2,k(v)] (36)

By linearity of expectation and an application of claim 3 to functions ϕ1(v1,k) and ϕ2(v2,k) yields
the desired result. ■

A.4 Proof of proposition 2

First, notice that the seller must allocate the item to a member of the group, otherwise the auction
becomes infeasible. Therefore, this case reduces to a static Vickrey auction with no reserve price
where the revenue-maximizing allocation and payments are characterized by [28] as follows. To
optimize seller revenue, the seller allocates to the highest bidder who pays an amount equal to the
second highest bid.

By definition, we may express the expected utility as

νti (R
t
1, R

t
2) = E

[
T∑

τ=t

δτ−tUτ
i,k

]
= E

[
U t
i,k

]
+ δE

[
T∑

τ=t+1

δτ−(t+1)Uτ
i,k

]
(37)

Since the seller allocates the item to a buyer in group i with probability 1 to maintain feasibility and
by Fact 1,

δE

[
T∑

τ=t+1

δτ−(t+1)Uτ
i,k

]
= δνt+1

i ((Rt
i − 1)/δ,Rt

−i/δ) (38)

From (35), the definition of virtual values, and the observation that this setting reduces to a Vickrey
auction,

E
[
xt
i,k(b

t,ht)
(
vti,k − ϕt

i(v
t
i,k)
)]

= E

[
1− F t

i (v
t
i,k)

f t
i (v

t
i,k)

1

{
vti,k = max

j
vti,j

}]
(39)

Since vti,k is distributed according to F t
i (v

t
i,k) for all k ∈ [n], P

(
vti,k = maxj v

t
i,j

)
= (F t

i (v))
n−1.

Therefore,

E
[
xt
i,k(b

t,ht)
(
vti,k − ϕt

i(v
t
i,k)
)]

=

∫
(1− F t

i (v))(F
t
i (v))

n−1dv (40)

and the result follows.
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Next, we evaluate the expected utility of buyer −i that does not receive the item. Since buyer −i
does not receive the item with probability 1, their expected utility reduces to the discounted expected
utility over future rounds, i.e.,

νt−i(R
t
1, R

t
2) = δE

[
T∑

τ=t+1

δτ−(t+1)Uτ
i,k

]
. (41)

The result follows by applying Fact 1 to see that

δE

[
T∑

τ=t+1

δτ−(t+1)Uτ
i,k

]
= δνt+1

−i ((Rt
1 − 1)/δ,Rt

2/δ). (42)

Last, we evaluate the seller’s expected utility. By Definition 14 and since the good is allocated to the
maximum valuation buyer in group i with probability 1,

µt(Rt
1, R

t
2) = E

 T∑
τ=t

δτ−t

 ∑
i∈[2],k∈[n]

ϕτ
i (v

τ
i,k)x

τ
i,k(v)

 = E
[
ϕt
i

(
max

k
vti,k

)]
+ δµt+1((Rt

i − 1)/δ,Rt
−i/δ).

(43)

Recalling that maxk v
t
i,k ∼ F t

i (v)
n, we can express the first term as

E
[
ϕt
i

(
max

k
vti,k

)]
=

∫
ϕt
i(v)dF

t
i (v)

n (44)

and the result follows. ■

A.4.1 Update of interim functions

Under the premise of Proposition 2, the interim functions are updates in the following manner:

νti (R
t
1, R

t
2) =

∫
(1− F t

i (v))(F
t
i (v))

n−1dv + δνt+1
i ((Rt

i − 1)/δ,Rt
−i/δ), (45a)

νt−i(R
t
1, R

t
2) = δνt+1

−i ((Rt
i − 1)/δ,Rt

−i/δ), (45b)

µt(Rt
1, R

t
2) =

∫
ϕt
i(v)dF

t
i (v)

n + δµt+1((Rt
i − 1)/δ,Rt

−i/δ). (45c)

A.5 Example with negative net utility of not receiving an item

One might expect the net utility of not receiving the item to be nonnegative for each group, given
that not receiving the item at the current time implies a higher chance of receiving it in future rounds.
However, interestingly, this argument is not necessarily true; the expected utility of a buyer may
decrease even as the fairness constraint on their group increases. Let us elaborate this matter by a
simple example. Consider a scenario with T = 2, n = 1, and δ = 0.8. Suppose the distributions of
values are identical across both groups, i.e., F t

1 = F t
2 for t ∈ [2], while the values from the first round

are significantly lower than those from the second round, i.e., v̄1i ≪ v2i . Initially, let α1 = α2 = 0.2.
In this scenario, each group has some positive probability of receiving the item in the second round.
Now, let us increase α1 to 0.5. It is straightforward to verify that the only feasible allocation is to give
the item to the first group in the first round and to the second group in the second round. Given that
the values in the first round are considerably lower, this allocation actually decreases the expected
utility for the first group.

A.6 Proof of theorem 2

Notice that the variable
n∑

ℓ=1

xt
i,ℓ(v

t). (46)
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determines whether group i receives the item or not. Now, suppose buyer (i, k) submits bid b. Given
Assumption 2, we can write the utility of buyer (i, k) as:

xt
i,k(b,v

t
−(i,k))v

t
i,k−pti,k(b,v

t
−(i,k))−δ(

n∑
ℓ=1

xt
i,ℓ(b,v

t
−(i,k)))∆

t
i(R

t
1, R

t
2)+δνt+1

i (Rt
i/δ, (R

t
−i−1)/δ).

(47)
Notice that the last term δνt+1

i (Rt
i/δ, (R

t
−i − 1)/δ) is a constant, independent of the values and the

bid. Hence, we can drop this constant from the buyer’s decision making. Now, assuming vt
−(i,k) is

fixed, we can write the adjusted utility as

xt
i,k(b,v

t
−(i,k))v

t
i,k − p̃ti,k(b,v

t
−(i,k)), (48)

where

p̃ti,k(b,v
t
−(i,k)) := pti,k(b,v

t
−(i,k)) + δ(

n∑
ℓ=1

xt
i,ℓ(b,v

t
−(i,k)))∆

t
i(R

t
1, R

t
2). (49)

Using this representation, we can interpret round t-th auction as a one round auction. Hence, given
proposition 5, for an allocation to be EPIC, xt

i,k(b,v
t
−(i,k)) should be (weakly) monotone in b and

we also should have

p̃ti,k(b,v
t
−(i,k)) = b xt

i,k(b,v
t
−(i,k))−

∫ b

vt
i

xt
i,k(z,v

t
−(i,k))dz + ci,k(v

t
−(i,k)), (50)

for some function ci,k(·) which is independent of v. As a result, for any i ∈ [2] and k ∈ [n], the
payment is given by

pti,k(v,v
t
−(i,k)) = (51)

v xt
i,k(v,v

t
−(i,k))−

∫ v

vt
i

xt
i,k(z,v

t
−(i,k))dz − δ(

n∑
ℓ=1

xt
i,ℓ(v,v

t
−(i,k)))∆

t
i(R

t
1, R

t
2) + ci,k(v

t
−(i,k)).

The seller wants to choose ci,k(·) as large as possible, but the IR constraint puts an upper bound on it.
Substituting the payment (51) into (47), the buyer utility is given by∫ vt

i,k

vt
i

xt
i,k(z,v

t
−(i,k))dz + δνt+1

i (Rt
i/δ, (R

t
−i − 1)/δ)− ci,k(v

t
−(i,k)). (52)

Now, to check the IR constraint, suppose buyer (i, k) skips round t, and denote the optimal allocation
in that case by x̃t. Hence, the expected utility of buyer (i, k) from time t+ 1 onwards is given by

δνt+1
i (Rt

i/δ, (R
t
−i − 1)/δ)− δ(

∑
ℓ ̸=k

x̃t
i,ℓ(v

t
−(i,k)))∆

t
i(R

t
1, R

t
2). (53)

The IR constraint implies that the expectation of (52) minus (53) over vt
−(i,k) should be nonnegative

for any vti,k. Thus, we should have

Evt
−(i,k)

[ci,k(v
t
−(i,k))] ≤ δ∆t

i(R
t
1, R

t
2) Evt

−(i,k)

∑
ℓ ̸=k

x̃t
i,ℓ(v

t
−(i,k))

 , (54)

and so, the seller sets the function ci,k(·) to achieve the equality case. Note that the right hand side is
only a function of i. We denote it by cti. We next make the following claim regarding the expected
payment of buyer (i, k) to the seller in this case.

Claim 4. The expected payment of buyer (i, k) to the seller at round t is given by

Evt

[
ϕt
i(v

t
i,k)x

t
i,k(v

t)− δ(

n∑
ℓ=1

xt
i,ℓ(v

t))∆t
i(R

t
1, R

t
2)

]
+ cti. (55)
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The proof of this claim follows from the classical derivation of payment in static mechanism design
(see [30][Lemma 13.11] for instance) along with the characterization of payment in (51). As a
consequence, the seller’s utility at round t is given by

Evt

[
2∑

i=1

n∑
k=1

ϕt
i(v

t
i,k)x

t
i,k(v

t)−
2∑

i=1

nδ∆t
i(R

t
1, R

t
2)

n∑
ℓ=1

xt
i,ℓ(v

t)

]
+ nct1 + nct2. (56)

Therefore, the seller’s expected utility for time t onwards is given by

Evt

[
2∑

i=1

n∑
k=1

ϕt
i(v

t
i,k)x

t
i,k(v

t) +

2∑
i=1

δ
(
µt+1((Rt

i − 1)/δ,Rt
−i/δ)− n∆t

i(R
t
1, R

t
2)
) n∑

ℓ=1

xt
i,ℓ(v

t)

]
+nct1+nct2.

(57)
Notice that the seller wants to maximize (57). First, notice that, since ϕt

i(·) is increasing by
Assumption 1, if we allocate the item to group i, we would allocate it to the buyer with the highest
value which we denote its value by vti = maxk v

t
i,k.

Now, we need to determine whether the item is allocated to the buyer with the highest value in group
one or to the buyer with the highest value in the second group. Given (57), it is straightforward to see
that the item is allocated to group one if

ϕt
1(v

t
1)− ϕt

2(v
t
2) ≥ (58)

nδ
(
∆t

1(R
t
1, R

t
2)−∆t

2(R
t
1, R

t
2)
)
+ δ

(
µt+1((Rt

2 − 1)/δ,Rt
1/δ)− µt+1((Rt

1 − 1)/δ,Rt
2/δ)

)
,

and otherwise it is allocated to the second group. Notice that this allocation is indeed monotone, and
hence, along with the above payment, it is an EPIC and IR allocation. This gives us the set Gt

i in the
theorem’s statement. Finally, to derive the update of interim functions, notice that the expected utility
of seller follows from (57). The expected utility of buyers can also be derived from Claim 4 similar
to the proof of Corollary 1.

A.6.1 Characterization of ζti
Recall that cti is given by

cti = δ∆t
i(R

t
1, R

t
2)ζ

t
i (59)

where

ζti = Evt
−(i,k)

∑
ℓ ̸=k

x̃t
i,ℓ(v

t
−(i,k))

 (60)

is the probability of group i winning the object when they participate with one fewer buyer. Notice that,
an argument similar to the one we made above implies that in the case where we have n−1 buyers from
group i and n buyers from the other group, group i wins the item if (maxℓ̸=k v

t
i,ℓ,maxℓ v

t
(−i),ℓ) ∈ G̃t

i

with
G̃t

i :=
{
(v1, v2)

∣∣∣ ϕt
i(vi)− ϕt

−i(v−i) ≥ (n− 1)δ∆t
i(R

t
1, R

t
2)− nδ∆t

−i(R
t
1, R

t
2) + (−1)iδ∆t

0(R
t
1, R

t
2)
}
.

As a result, we have

ζti =

∫
G̃t

i

d(F t
i (vi))

n−1(F t
−i(v−i))

n. (61)

A.6.2 Update of interim functions

The expected utility of seller follows from (57). The expected utility of buyers can also be derived
from Claim 4 similar to the proof of Corollary 1. Hence, we have

νti (R
t
1, R

t
2) =

1

n

∫
Gt

i

1− F t
i (vi)

f t
i (vi)

dF t
max(v1, v2) + δνt+1

i (Rt
i/δ, (R

t
−i − 1)/δ)− δ∆t

i(R
t
1, R

t
2)ζ

t
i ,

(62a)

µt(Rt
1, R

t
2) = (62b)

2∑
i=1

(∫
Gt

i

ϕt
i(v

t
i) dF

t
max(v1, v2) + δP(Gt

i)µ
t+1((Rt

i − 1)/δ,Rt
−i/δ) + δn∆t

i(R
t
1, R

t
2)(ζ

t
i − P(Gt

i))

)
,

where the probability measure P(·) is taken with respect to the distribution F t
max(v1, v2) :=

F t
1(v1)

nF t
2(v2)

n.
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A.6.3 Relaxing Assumption 2

Revisiting our proof shows that we can relax Assumption 2 and repeat the proof steps. In particular,
when not allocating to either of the two groups is feasible, the utility of buyer (i, k) in (47) will
change to

xt
i,k(b,v

t
−(i,k))v

t
i,k − pti,k(b,v

t
−(i,k)) + δνt+1

i (Rt
i/δ,R

t
−i/δ)

− δ(

n∑
ℓ=1

xt
i,ℓ(b,v

t
−(i,k)))∆

′
i,i(R

t
1, R

t
2)− δ(

n∑
ℓ=1

xt
(−i),ℓ(b,v

t
−(i,k)))∆

′
i,−i(R

t
1, R

t
2), (63)

with

∆′
i,i(R

t
1, R

t
2) = νt+1

i (Rt
i/δ,R

t
−i/δ)− νt+1

i ((Rt
i − 1)/δ,Rt

−i/δ), (64)

∆′
i,−i(R

t
1, R

t
2) = νt+1

i (Rt
i/δ,R

t
−i/δ)− νt+1

i (Rt
i/δ, (R

t
−i − 1)/δ) (65)

We can follow similar steps to derive the payment and allocations. We do not repeat the proof steps
here as they follow a similar argument.

A.7 Proof of proposition 3

We first define x′ as follows: We assume that the auction is designed to run for T0 rounds (for a
chosen value of T0 determined later) and use the recursive functions developed earlier to determine
the exact fair allocation under the fairness constraint at level αi − ε for group i (computed over the
first T0 rounds). For the remaining T − T0 rounds, we conduct the standard second-price auction.

First, we characterize the approximation x′ in relation to the exact fair allocation. Let x∗t
i denote the

allocation to group i at time t under the optimal allocation that satisfies the fairness constraint (2)
at a level αi for i ∈ {1, 2}. Next, we consider the fairness guarantees of x∗ := {x∗t

i}Tt=1 with early
stopping.

Claim 5. If the allocation x∗ is stopped at time T0 := δ
ε < T , then {x∗t

i}
T0
t=1 satisfies the fairness

constraint (2) at a level (αi − ε).

Proof. Observe that x∗ satisfies
T∑

t=1

δt−1x∗t
i =

T0∑
t=1

δt−1x∗t
i +

T∑
t=T0+1

δt−1x∗t
i ≥ αi

T−1∑
t=0

δt. (66)

Now, since x∗t
i ∈ {0, 1} for all t, we can see that

T∑
t=T0

δt−1x∗t
i ≤ δT0

T−1−T0∑
t=0

δt = ε

T−1−T0∑
t=0

δt

where the second equality follows from the fact that δT0 = ε by construction. From here, we can see
that ∑T0

t=1 δ
t−1x∗t

i∑T0−1
t=0 δt

≥ αi

∑T−1
t=0 δt∑T0−1
t=0 δt

− ε

∑T−1−T0

t=0 δt∑T0−1
t=0 δt

≥ (αi − ε)

∑T−1
t=0 δt∑T0−1
t=0 δt

≥ αi − ε

where the last two inequalities follow from the fact that δt > 0 for all t and that T0 ≤ T . It follows
that

T0∑
t=1

δt−1x∗t
i ≥ (αi − ε)

T0−1∑
t=0

δt (67)

Now, we use this claim to evaluate the fairness guarantee of x′. We claim that, over T rounds, x′

satisfies the fairness condition at a level (1− ε)(αi − ε) for i ∈ {1, 2}, i.e.,

T∑
i=1

δt−1x′t
i ≥ (1− ε)(αi − ε)

T−1∑
t=0

δt.

21



Since x′t
i = x∗t

i for i ∈ [T0], by Claim 5, it suffices to show

T∑
t=T0+1

δt−1x′t
i ≥ (αi − ε)

T−1∑
t=T0

δt − ε(αi − ε)

T−1∑
t=0

δt (68)

Now, since δ ∈ (0, 1) and T ≤ T0, we can observe that

δT0
1− δT

1− δ
≥ δT0 − δT

1− δ

Substituting δT0 = ε and recognizing these expressions as geometric series yields

ε

T−1∑
t=0

δt ≥
T−1∑
t=T0

δt.

Now, noticing that αi − ε ≥ 0 and rearranging, we see that

0 ≥ (αi − ε)

T−1∑
t=T0

δt − ε(αi − ε)

T−1∑
t=0

δt.

We reach the desired result of Equation (68) by noting that δt−1x∗t
i ≥ 0 for all t and we have shown

that, over T rounds, x′ achieves a fairness level of at least (1− ε)(αi − ε).

Next, we consider the computational guarantee of x′. Since the fair allocation algorithm is recursive,
its computational complexity increases exponentially in the number of rounds. In the approximation,
we conduct exactly T0 rounds of the fair allocation, therefore, the computational complexity can be
bounded as follows:

O
(
2T0
)
≤ O

(
eT0
)
= O

(
ε1/ log(δ)

)
= O

(
1

ε

1
log(1/δ)

)

Finally, we consider seller utility guarantees of x′. First, we note that, by Claim 5, the seller utility
up to time T0 under x′ is at least that of x∗ up to T0 because the set of allocations over which x′ is
optimal over the first T0 rounds in terms of seller utility is a subset of those allocations over which
x∗ is optimal. Second, since, under x′ we perform an unconstrained second-price auction in the
remaining T − T0 rounds, it follows that x′, must also guarantee a seller utility that is at least that of
the optimal fair allocation x∗ over the second interval. Therefore, x′ guarantees a seller utility that is
at least that of x∗ over all T rounds. ■

A.8 Proof of proposition 4

First, we give the full proposition statement:
Proposition 6. Suppose Assumptions 1-3 hold and that δ < 1. Then, for any ε ∈ (0,mini(αi)), β >
1− δ, there exists an approximation to the optimal allocation x′′ with the following properties:

1. x′′ satisfies the fairness constraint over all rounds at a level of at least (1−ε)(1−β)2(αi−ε).

2. x′′ guarantees that the sellers total utility is at least (1−β) of that of the optimal allocation.

3. x′′ can be computed by calling the oracle O
(

1
ε

1
β log( 1

1−δ )+1
)

times.

Note that ε, β can be chosen to achieve a given c ≤ δ2 such that the proof statement in the body
holds.

Now, we proceed with the proof by first defining x′′ as follows: As in the approximation x′ presented
in proposition 3, we assume under x′′ that the fair auction runs over T0 rounds (the same value T0

which we detail later) where we partition these T0 rounds into T0/ℓ buckets of ℓ rounds (we later
also define ℓ in detail) and approximate the discount factor as being constant within each bucket.
Then, within each bucket, we recursively calculate the fair allocation at level (1− β)(1− αi) with
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respect to the approximated discontinuous discounting scheme. For the remaining T − T0 rounds, we
conduct a standard second-price auction.

In particular, as before, we take T0 := log(ε)
log(δ) and we choose ℓ such that δℓ ≃ 1− β. Without loss of

generality, we assume T0/ℓ, ℓ are integers. In the kth bucket, we approximate the discount factor of
each round in the bucket with δk−1 for k ∈ [T0/ℓ].

Now, we characterize the allocation under x′′ in relation to the exact fair allocation x∗ as defined in
the proof of proposition 3 to show its fairness guarantee. First, observe the following relationship
between the true discount factors and those of the discontinuous discounting scheme in x′′:

T0−1∑
t=0

δt ≥ (1− β)

T0/ℓ∑
k=1

ℓ · δℓ(k−1). (69)

Therefore, by Claim 5 and our construction of the discontinuous discounting scheme, x∗ satisfies the
fairness constraint at the level (1− β)(αi − ε) with respect to the discontinuous discounting scheme
over the first T0 rounds, i.e.,

T0/ℓ−1∑
k=0

δℓk
kℓ∑

t=kℓ+1

x∗
i
t ≥

T0∑
t=1

δt−1x∗
i
t ≥ (1− β)(αi − ε)

T0/ℓ∑
k=1

ℓ · δℓ(k−1).

From here, we characterize x′′ as the allocation such that, in the first T0 rounds, we perform the
fair allocation procedure that satisfies fairness constraint at a level (1− β)(αi − ε) with respect to
the discontinuous discounting scheme and a standard second-price auction in the remaining T − T0

rounds. It follows that x′′ satisfies

T0−1∑
t=0

δtx′′
i
t ≥ (1− β)

T0/ℓ−1∑
k=0

δℓk
kℓ∑

t=kℓ+1

x′′
i
t ≥ (1− β)2(αi − ε)

T0−1∑
t=0

δt.

In other words, over the first T0 rounds, x′′ satisfies the fairness constraint at a level of at least
(1 − β)2(αi − ε) with respect to the original discounting scheme. By the same manner as the
proof of proposition 3, it follows that, over T rounds, x′′ guarantees fairness at the level at least
(1−ε)(1−β)2(αi−ε). Finally, by (69) and the same logic as the proof of proposition 3, we conclude
that the seller’s utility is at least (1− β) that of x∗ under x′′ over T rounds. ■

A.9 Experiment Details

Here, we provide the full results of the experimentation summarized in the body of the paper.6
For each combination of α1, α2 and each value of T = 2, 3, 4, we compute 10,000 iterations of
the seller-optimal allocation satisfying the fairness constraint at level αi for group i ∈ [2] over
2 rounds with discount factor δ = 0.99. Also note that buyer values are distributed as follows:
vt1 ∼ Uniform(0.5, 1.5), and vt2 ∼ Uniform(0, 1) for t ∈ [T ], T = 2, 3, 4. It is useful to note that, in
the seller-optimal unconstrained mechanism, groups 1 and 2 are allocated the item with probabilities
0.69 and 0.31, respectively. Our implementation maintains all key assumptions outlined in the
presentation of the mechanism. We report the difference in mean utility of the seller, group 1, and
group 2 that satisfies the fairness constraint specified by a particular α1, α2 relative to the utility of
the optimal unconstrained mechanism satisfying assumption 2 (i.e. the optimal fair mechanism at
level α1, α2 = 0). Standard errors are reported for each value in Tables 1-6 and reflect the standard
error of the mean which assumes sample independence.

6Note that additional experimental results are available in an extended version available at
https://arxiv.org/abs/2406.00147
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Table 1: Difference in seller utility relative to unconstrained optimal allocation with standard errors
for T = 2

α2 α1 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.0 -0.0019 -0.0015 -0.004 -0.0134 -0.0624
(0.0031) (0.0032) (0.0032) (0.0032) (0.003) (0.0029)

0.1 -0.2033 -0.1957 -0.2033 -0.2016 -0.2224 -0.2679
(0.0037) (0.0037) (0.0037) (0.0037) (0.0036) (0.0034)

0.2 -0.2688 -0.267 -0.2759 -0.2715 -0.2777 -0.3291
(0.0038) (0.0038) (0.0038) (0.0038) (0.0037) (0.0036)

0.3 -0.3435 -0.344 -0.3345 -0.3416 -0.3531 -0.4061
(0.0039) (0.0039) (0.004) (0.0039) (0.0038) (0.0036)

0.4 -0.4341 -0.4285 -0.4245 -0.4227 -0.4383 -0.4828
(0.0038) (0.0039) (0.0039) (0.0039) (0.0038) (0.0036)

0.5 -0.5297 -0.5351 -0.5337 -0.5325 -0.5394 -0.587
(0.0036) (0.0036) (0.0036) (0.0036) (0.0035) (0.0033)

Table 2: Difference in group 1 utility relative to unconstrained optimal allocation with standard errors
for T = 2

α2 α1 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.0 0.0065 0.0007 0.0019 0.023 0.0622
(0.0036) (0.0037) (0.0037) (0.0037) (0.0037) (0.0038)

0.1 -0.0155 -0.0058 -0.0123 -0.0081 0.0035 0.0587
(0.0035) (0.0036) (0.0036) (0.0035) (0.0036) (0.0037)

0.2 -0.0232 -0.0169 -0.0186 -0.0184 -0.0018 0.0409
(0.0034) (0.0034) (0.0034) (0.0034) (0.0035) (0.0035)

0.3 -0.0305 -0.0317 -0.0247 -0.0267 -0.0119 0.037
(0.0033) (0.0033) (0.0033) (0.0033) (0.0034) (0.0034)

0.4 -0.0451 -0.0413 -0.0445 -0.0387 -0.0277 0.013
(0.0032) (0.0032) (0.0032) (0.0032) (0.0032) (0.0033)

0.5 -0.0639 -0.0609 -0.0618 -0.0598 -0.0549 0.0002
(0.0031) (0.0031) (0.0031) (0.0031) (0.0031) (0.0032)

Table 3: Difference in group 2 utility relative to unconstrained optimal allocation with standard errors
for T = 2

α2 α1 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.0 -0.0021 -0.0009 -0.0037 0.0032 0.0226
(0.0025) (0.0026) (0.0026) (0.0025) (0.0026) (0.0027)

0.1 0.1773 0.1729 0.1789 0.1749 0.1807 0.1873
(0.0033) (0.0033) (0.0033) (0.0032) (0.0033) (0.0034)

0.2 0.2214 0.2187 0.2215 0.2194 0.2212 0.2337
(0.0033) (0.0034) (0.0034) (0.0033) (0.0034) (0.0035)

0.3 0.2634 0.2705 0.2626 0.2629 0.2742 0.2849
(0.0034) (0.0034) (0.0034) (0.0034) (0.0034) (0.0035)

0.4 0.3245 0.3228 0.3253 0.3205 0.3284 0.3424
(0.0034) (0.0035) (0.0034) (0.0035) (0.0035) (0.0036)

0.5 0.3923 0.3896 0.3933 0.3861 0.397 0.4075
(0.0034) (0.0035) (0.0034) (0.0034) (0.0034) (0.0035)
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Table 4: Difference in seller utility relative to unconstrained optimal allocation with standard errors
for T = 4

α2 α1 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.0 -0.0006 -0.0209 -0.06 -0.0642 -0.1069
(0.0035) (0.0034) (0.0035) (0.0035) (0.0035) (0.0038)

0.1 -0.2693 -0.2578 -0.2767 -0.3308 -0.324 -0.3715
(0.0038) (0.0038) (0.0038) (0.0038) (0.0038) (0.0039)

0.2 -0.4246 -0.4145 -0.4279 -0.4767 -0.4801 -0.5395
(0.0038) (0.0037) (0.0038) (0.0038) (0.0038) (0.0038)

0.3 -0.623 -0.6251 -0.6363 -0.6913 -0.6895 -0.7614
(0.0038) (0.0037) (0.0038) (0.0038) (0.0037) (0.0037)

0.4 -0.6836 -0.6792 -0.6955 -0.7329 -0.741 -0.8184
(0.0038) (0.0038) (0.0038) (0.0038) (0.0038) (0.0036)

0.5 -0.4898 -0.4868 -0.4955 -0.5465 -0.5498 -0.6848
(0.0036) (0.0036) (0.0036) (0.0036) (0.0035) (0.0037)

Table 5: Difference in group 1 utility relative to unconstrained optimal allocation with standard errors
for T = 4

α2 α1 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.0 0.0055 0.0117 0.0673 0.0652 0.1944
(0.0054) (0.0055) (0.0055) (0.0055) (0.0054) (0.0055)

0.1 -0.0467 -0.0412 -0.035 0.0103 0.0164 0.1613
(0.0053) (0.0052) (0.0053) (0.0052) (0.0053) (0.0054)

0.2 -0.0824 -0.0812 -0.0765 -0.0269 -0.0245 0.1163
(0.0051) (0.0051) (0.0051) (0.0051) (0.0051) (0.0052)

0.3 -0.1372 -0.1325 -0.1204 -0.0862 -0.0712 0.0673
(0.0049) (0.0049) (0.0049) (0.005) (0.0049) (0.005)

0.4 -0.1641 -0.1592 -0.1481 -0.0988 -0.0956 0.0514
(0.0048) (0.0048) (0.0048) (0.0048) (0.0048) (0.0049)

0.5 -0.2634 -0.2681 -0.246 -0.2055 -0.1944 -0.0228
(0.0042) (0.0042) (0.0042) (0.0042) (0.0042) (0.0043)

Table 6: Difference in group 2 utility relative to unconstrained optimal allocation with standard errors
for T = 4

α2 α1 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.0 -0.0058 -0.0081 -0.011 -0.0087 -0.0666
(0.0043) (0.0043) (0.0043) (0.0043) (0.0043) (0.0042)

0.1 0.2473 0.2397 0.2362 0.2397 0.2408 0.1908
(0.0046) (0.0046) (0.0045) (0.0045) (0.0046) (0.0045)

0.2 0.3692 0.3712 0.3722 0.3757 0.3814 0.3376
(0.0046) (0.0046) (0.0046) (0.0046) (0.0046) (0.0046)

0.3 0.5476 0.5475 0.5437 0.5486 0.5436 0.5274
(0.0049) (0.0048) (0.0049) (0.0049) (0.0049) (0.005)

0.4 0.5734 0.5748 0.5663 0.5591 0.5699 0.545
(0.0049) (0.005) (0.005) (0.005) (0.0051) (0.005)

0.5 0.2677 0.2783 0.2751 0.2692 0.2739 0.2945
(0.0048) (0.0048) (0.0048) (0.0048) (0.0048) (0.0048)

All experiments were performed using hardware with the following specifications: Intel Xeon CPU
@ 2.20GHz, 1 CPU core. The total experiment runtime was 23 minutes and 10 seconds and used 1.5
GB system RAM.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The introduction and abstract accurately describe that the paper presents
the optimal static mechanism for allocating an indivisible good among two groups that
guarantees each group a minimum specified allocation probability, extends this result to
the dynamic setting, and presents approximations for and experimentation of these optimal
mechanisms. The introduction and abstract also identify the setup and key assumptions of
these results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Throughout the paper, modeling assumptions are stated clearly which make
clear the limitations of our results. For instance, our results assume regularity of the value
distributions (i.e., virtual value is increasing) as well as the independence of realized values
where lifting these assumptions is the topic of future work. The computational complexity
of the optimal mechanism that we present as well as the approximations that follow are
presented clearly.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper clearly states or references the full set of assumptions of each result.
A complete proof of each result is included in either the body of the paper or the appendix
and a proof sketch is provided in the body of the paper when the full proof is included in the
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides the full details of the experimental procedure as well as the
code to recreate the results of the experiment including all figures and tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the complete code and procedure to reproduce our results including
all figures and tables. Since our results include simulated data, we also include the full
procedure and code to reproduce synthetic data generation.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper fully specifies the process of data generation, the allocation algo-
rithm, and the procedure of experimentation. The body of the paper presents a thorough
summary of the experimentation process, and full details are specified in the appendix. The
full self-contained code to reproduce our results is also included.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard errors of our experiments in the appendix along with
relevant details and assumptions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide hardware specifications, runtime, and memory for all experimenta-
tion in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We identify the broader societal impacts of our work in the introduction where
we outline relevant applications and motivation for considering for fairness in resource
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We release no such data or models.
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use existing assets.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The optimal allocation mechanism that we introduce is specified in full detail,
as are the approximations to this mechanism.

Guidelines:

• The answer NA means that the paper does not release new assets.
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submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowsourcing not research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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guidelines for their institution.
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