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ABSTRACT

Long-form video reasoning is essential for various applications such as video re-
trieval, summarizing, and question answering. However, existing methods often
require significant computational resources and are limited by GPU memory con-
straints. To address this challenge, we present Long-Video Memory Network,
LVM-Net, a novel video reasoning method that employs a fixed-size memory rep-
resentation to store discriminative patches sampled from the input video. By
leveraging a neural sampler that identifies discriminative memory tokens, LVM-
Net achieves improved efficiency. Furthermore, LVM-Net only requires a sin-
gle pass over the video, further enhancing overall efficiency. Our results on the
Rest-ADL dataset demonstrate an 18x – 75x improvement in inference times for
long-form video retrieval and answering questions, with a competitive predictive
performance.

1 INTRODUCTION

Long-form video understanding is important for various applications such as video retrieval, summa-
rizing, and question answering. For example, for automated checkout in retail applications, a video
understanding system needs to understand the temporal order of important actions such as grabbing
an object, and limit the attention to actions such as browsing items, and interacting with other peo-
ple, to efficiently process long duration shopping videos (Wankhede et al., 2018; Strafforello et al.,
2023).

Modern methods for long-form video understanding such as transformer based models can be ineffi-
cient and require significant computational resources (Wu & Krahenbuhl, 2021). These methods of-
ten require building an intermediate representation for the entire video in memory and consume large
amounts of GPU memory limiting the maximum length of videos that can be processed, especially
for reasoning tasks that require joint spatio-temporal analysis of different scene elements (Fournier
et al., 2023). These tasks necessitate reasoning approaches that repeatedly access and manipulate
different scene elements, as dictated by complex intermediate computational or scene graphs (Fei
et al., 2024; Ji et al., 2020). Furthermore, when these reasoning models are scaled, such as us-
ing Vision-Language Models (VLMs), they require even more compute and GPU memory (Bordes
et al., 2024). Hence, given a limited compute budget, VLMs only operate on a few images or short
snippets/summaries and often struggle to efficiently perform dense understanding of videos, limiting
video sizes to a few minutes (Weng et al., 2024).

Even though several efficient approaches exist, these methods often sample a fixed number of
frames (Ma et al., 2018) affecting model performance for certain actions, or perform a clip based
aggregation losing the order of short term actions (Fan et al., 2021a). Existing token sampling and
pruning methods condense background tokens in the spatial domain, and do not store or re-use to-
kens in memory that can affect efficiency for dense spatio-temporal tasks (Bolya et al., 2022; Fayyaz
et al., 2022).

Figure 1a illustrates the computational challenge associated with video reasoning models. As shown
in Figure 1(a), TubeDETR (Yang et al., 2022) repeatedly processes a large number of frames while
handling approximately 6000 activity queries on long videos during inference. The average duration
of these long videos spans is 27 minutes. A histogram of the frame processing counts is presented
in Figure 1a. This observation demonstrates an opportunity for memory-based approaches, which
load the frames of long videos into GPU memory, to improve computational efficiency.
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Figure 1: Figure 1(a) shows a activity query video and a histogram of the number of times a sin-
gle frame is reloaded in GPU memory for the video from the video reasoning, ReST-ADL dataset
(FPS=1). (b) Activity video. Image source (Yang et al., 2023)

To address the above issues, we present LVM-Net which uses a fixed-size memory representation
to identify and store discriminative patches sampled from the input video. The memory patches are
identified using a neural sampler, that improves efficiency while maintaining the discriminability of
memory representation. Additionally, LVM-Net only requires a single pass of the video over the
memory, further improving the overall efficiency.

In our results over the Rest-ADL dataset, we demonstrate an 18X speedup during inference with 1
FPS and and 75x improvement with 5 FPS, for long form video retrieval for answering questions
over long (>30 min) videos to answer activity, object, and temporal queries and achieve competitive
performance.

2 RELATED WORK

Our work is inspired by related work in video understanding methods including long-form video
understanding, reasoning and efficient video transformer architectures.

Video understanding Deep learning based video understanding methods have evolved from us-
ing 3D convolution based methods (Ji et al., 2012) to 2D-CNNs (Donahue et al., 2015; Simonyan
& Zisserman, 2014; Feichtenhofer et al., 2019), with additional blocks such as object/ROI fea-
tures (Gkioxari et al., 2018; Ma et al., 2018), convolution-transformer approaches (Girdhar et al.,
2019) and transformer-only approaches (Arnab et al., 2021; Bertasius et al., 2021; Fan et al., 2021b;
Liu et al., 2022). Transformer based approaches often tokenize the video by chopping the input into
a series of 2D spatial frames or into 3D spatio-temporal cubes on a regular grid. This approach
can provide high accuracy but requires significant amounts of compute and memory due to large
number of tokens and their parallel processing in transformer architecture. In contrast, our method
uses transformer based tokens and samples the tokens to significantly reduce processing costs.

Long-form video reasoning Various long-form video understanding approaches have been stud-
ied (Song et al., 2024; Sun et al., 2022; Wang et al., 2024; Wu & Krahenbuhl, 2021; Wu et al.,
2022). Noteworthy among these approaches, MeMViT caches representations of previous clips to
extend temporal context without increasing per-step compute. However, these approaches are often
limited to less than few minutes, largely due to lack of long form video datasets (> 30 mins). Ad-
ditionally, existing reasoning based datasets largely focus around QA (Yi et al., 2019) or temporal
action retrieval (Chao et al., 2018; Hahn et al., 2019; Yuan et al., 2016). In contrast, our paper is
focused on videos with duration of 30+ mins with a focus on tasks that require a joint analysis of
activities, objects and time, which requires complex reasoning.

Long-context VLMs Most VLMs can usually process only a few minutes of videos due to limited
context length. Video processing requires a large number of tokens to be processed; for example,
deploying a 7B Llama model that can process 10 million tokens requires 8 A100 GPUs (640GB
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memory), even with advanced serving optimizations (Hooper et al., 2024). Even larger proprietary
models such as Gemini 1.5 Pro can process 10 million tokens which roughly translates to approx-
imately 10 hours of video duration(Reid et al., 2024). Gemini 1.5 model architecture and number
of parameters are unknown. However, Gemini 1.5 model is most likely compute intensive – based
on its API pricing (GeminiAPI, 2024). In contrast, our proposed LVM-Net consists of around 300
million parameters (≤ 1 GB with FP16) and can process a single 10 hour video into a fixed sized
memory (≤ 1 GB with FP16). LVM-Net can be deployed on an edge device.

Efficient transformer architectures Efficient transformer architectures have focused on reduc-
ing the cost of quadratic attention costs with respect to sequence lengths (Tay et al., 2020), prun-
ing (Meng et al., 2022; Rao et al., 2021; Voita et al., 2019) and reduction of vision tokens as an input
to decoders downstream. Previous work has analyzed sparse attention patterns to reduce complexity
from attention to linear (Beltagy et al., 2020; Zaheer et al., 2020), and approximated attention using
kernel methods achieving linear time and memory complexity (Choromanski et al., 2020; Schlag
et al., 2021). Many hierarchical approaches use a hierarchical token structure to process inputs at
multiple resolutions, reducing overall computation (Jaegle et al., 2021; Liu et al., 2021a; Feng et al.,
2023).

Token efficiency methods In order to reduce token costs, approaches such as token merg-
ing (Bolya et al., 2022), adaptive token sampling in classification domain (Fayyaz et al., 2022),
token turing machines (Ryoo et al., 2023), spatio-temporal token selection (Wang et al., 2022) have
been explored. BLIP-3 (Xue et al., 2024) uses Perceiver based token sampler to project input image
to a fixed number of tokens. However, token pruning methods often can deduplicate tokens whereas,
LVM-Net identifies discriminative tokens using a neural sampler. Crucially, LVM-Net uses a fixed
memory, re-using token representations across queries significantly reducing inference time.

3 PRELIMINARIES

We use the Relational Space-Time Query (ReST) dataset (Yang et al., 2023) to evaluate long-form
video reasoning. ReST consists of three kinds of relational space-time queries: activity query, object
query, and time-query. Each query asks questions on a single property (e.g. activity) by providing
the other two properties (e.g. object and time) as input.

The templates of queries are as follows:

1. Activity query - what activities did I perform with a particular object during a given time?

2. Object query - on which objects I perform with a particular activity during a given time?

3. Time query - at what time did I perform a particular activity with a particular object?

ReST consists of long videos with average duration of 27 minutes in length. The relational space-
time queries over the videos are further categorized into three types based on query time duration
– short (around 5 minutes), medium (around 15 minutes), and long (around 30 minutes). Note that
the short queries in our paper are longer than those typically employed by existing models, which
usually last about 3 minutes (Yang et al., 2023).

There are four-time representations in our setup: long video time (vs, ve), ReST query time (qs, qe),
time-property time (ts, te) and clip time (cs, ce). The long video time represents the complete
duration of the input video clip (up to an hour long). The ReST query time (qs, qe) represents the
duration of the relational space time query. The time duration of a ReST query can be short (around
5 mins), medium (around 15 minutes), and long (around 30 minutes). The ReST query time has
the following constraint: vs ≤ qs ≤ qe ≤ ve. The time-property time (ts, te) of a query is the
duration when an activity occurs on an object within query time (qs, qe). The time-property time
has following constraint: vs ≤ qs ≤ ts ≤ te ≤ qe ≤ ve. The clip time represents the sampled
clip from a long video such that the sampled frames from the clip can be loaded into the available
GPU memory. It has following constraint: vs ≤ cs ≤ ce ≤ ve. The ReST dataset contains multiple
queries per video where qij represents the jth query in the ReST dataset that belongs to video i.
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Figure 2: Overview of the LVM-Net training : We sample tokens from input videos and store
them in memory to efficiently process long-form videos. The inference steps are shown in the
Figure 3.

4 METHODOLOGY

We now describe the model architecture for efficient video reasoning. We refer to video reasoning
as a model’s ability to understand three properties: what activity is being performed on what object
over what time. We test a model’s video understanding ability by asking queries where we provide
input two properties of the video and then ask the model to predict the third property.

In order to build an efficient architecture, we draw inspiration from human memory that uses multi-
ple memory representations and uses attention as a gatekeeper for the memory, guided by the high
level goals (Hazy et al., 2006; Watzl, 2017). LVM-Net performs reasoning over long videos by us-
ing attention to store specific information within a fixed memory. It achieves this through a trained
neural sampler that extracts discriminative visual patches from the video and stores them in mem-
ory as shown in Figure 2. During inference, LVM-Net uses this pre-populated memory to respond
to queries without needing to revisit the original video, significantly reducing inference time. This
architecture is well-suited for answering multiple queries from a single video, enabling fast and
effective video understanding.

LVM-NET INPUT ENCODING

The three properties in ReST—activity, object, and time—are represented in three different repre-
sentation spaces: activity is represented as one of C classes, the object is represented as an image,
and time is represented by start and end times.

The activity input is represented as a one-dimensional vector aj ∈ R1×C . This vector is then passed
through a feed-forward layer to obtain a d-dimensional representation ahj ∈ R1×d. The object input
is an instance image oj ∈ Roh×ow . The image is passed through a frozen image backbone (pre-
trained Swin Transformer (Liu et al., 2021b)). The time input (tj,s, tj,e) from the ReST query is
passed into a video-level temporal positional encoding layer (Vaswani et al., 2017) that outputs a
latent representation thj ∈ R(tj,e−tj,s+1)×d.
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NEURAL SAMPLER

The objective of the differentiable neural sampler is to populate memory with the representative
visual tokens from the whole long video vi. The memory stores a fixed number of mi ∈ Rm×d

visual tokens per video. The input to the neural sampler is mi memory tokens and k visual tokens
from the sampled clip cij ∈ RT×H×W×d of the query qij where T,H, and W are duration of clip,
height and weight of the image frames, respectively. The neural sampler outputs m discriminative
visual tokens. The sampled clip cij ∈ RT×H×W×d is passed through a pre-trained, frozen Swin
transformer based image backbone (Liu et al., 2021b) that results in k ∈ RTh′w′×d visual tokens
where h′ and w′ are computed based on patch size. We use the same image backbone for object
image and clip frames. The sampled mi tokens are then passed through the 2D spatial positional
encoding layer and video-level temporal positional encoding layer. Our proposed framework is
independent of the choice of neural sampler (Xie et al., 2019; Pervez et al., 2022).

The neural sampler outputs scores for k (clip) tokens and m (memory) tokens. To understand which
tokens out of m + k tokens are important, we first pass the m + k tokens through a transformer
encoder followed by a single MLP layer that outputs the scores. The neural sampler (Xie et al., 2019)
samples subsets with Gumbel-Top k Relaxations that adds Gumbel noise to the scores and utilizes
reparameterization trick (Kingma, 2013) so that the gradients can back-propagate to the transformer
encoder and MLP layer. The sampler is trained based on ReST queries predictive performance
where the loss is higher if the sampler samples non-discriminative tokens.

ENCODER-DECODER

The input xi
j to the transformer encoder includes mi ∈ Rm×d memory tokens along with the query

specific input. For example, in the case of activity query, the input includes latent representation of
instance image ohj so the input is xj ∈ R(m+oh′ow′)×d. Before passing the input xj to the encoder,
we perform element-wise multiplication of instance image and frame tokens. Let nf be number of
frames, then m = nf × (oh′ow′). Therefore, xj ∈ R((nf+1)⊙oh′ow′)×d. In case of object query, the
input includes latent representation of activity ahj so input is and xj ∈ R(m+1)×d. In case of time
query, the input includes both latent representation of activity ahj and instance image ohj so input is
xj ∈ R(m+oh′ow′+1)×d and after element-wise multiplication xj ∈ R(((nf+1)⊙oh′ow′)+1)×d. The
transformer decoder accepts input in the form of key and value representations from the transformer
encoder. The queries input to the transformer decoder are initialized based on video-level temporal
positional encoding, with an input given by thj ∈ R(tj,e−tj,s+1)×d. The output of the decoder is
a learned representation of t̂hj , which are learned by contextualizing memory tokens and the ReST
queries’ input representations through the use of time query representations.

LVM-NET OUTPUT ENCODING

The learned representation of t̂hj from the previous step is used for prediction tasks. The prediction
is carried out using a query-specific multi-layer perceptron (MLP) head. For an activity query, we
apply mean pooling to t̂hj ∈ R(tj,e−tj,s+1)×d to obtain t̂′ ∈ R1×d. This representation is then fed
into an activity prediction MLP, which predicts the activities â ∈ R1×C .

For an object query, bounding box predictions are computed for each sampled frame. To do this,
we pass the learned query representation t̂hj ∈ R(tj,e−tj,s+1)×d through a specific MLP layer
tailored for object queries. This object-specific MLP layer predicts normalized bounding boxes
ôj ∈ R(tj,e−tj,s+1)×4 for each sampled frame.

In the case of a time query, we pass the learned query representation t̂hj ∈ R(tj,e−tj,s+1)×d through
two separate MLP layers to predict start and end times.

MEMORY READ/WRITE OPERATIONS

In LVM-Net the memory mi is allocated per long video vi. A long video vi can possibly have
multiple associated ReST queries where each query could focus on a clip (for example, cij which
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corresponds to jth clip of video vi). Since we train our model through sampled clips it becomes
important, how we form a batch through a data sampler. A naive data sampler can form a batch
with two or more clips belonging to the same video. In this case, the neural sampler would read m
tokens from video vi and k tokens from each clip cij (say cij1 and cij2 ). The neural sampler would
then output m tokens for cij1 and m tokens for cij2 to be written to the ith video memory slot thereby
creating a race condition 1.

To avoid this race condition on a single GPU, we design a data sampler such that a batch has ReST
queries with no two queries belonging to the same long video. In distributed training with multiple
GPUs, our data sampler ensures that all the batches have ReST queries with no two queries belong-
ing to the same video. This data-sampling constraint ensures there is no memory corruption. At the
end of each iteration, the written memory tokens are synchronized across all devices. To summarize,
in a distributed training setup with r devices and n number of videos, the maximum batch size on a
single GPU becomes n

r in order to avoid race condition.

INFERENCE

The inference of LVM-Net enables faster processing of queries than existing long video understand-
ing models. In existing models such as TubeDETR (Yang et al., 2022), for answering q queries
from a single video, one has to pass the query clip’s frames, q number of times. The clip processing
– passing the clip frames through the image backbone and then passing the latent representations
through encoder-decoder modules – is compute intensive and results in a significant delay in gener-
ating the query’s response. Moreover, q queries are processed independently so if multiple queries
share a small region of clip, there is no potential to offset the clip processing load. In contrast, in our
proposed model, as shown in the Figure 3, we first populate video vi specific memory mi through
our trained neural sampler. All the responses to the queries that belong to video vi are generated
using sampled memory mi.

The memory mi ∈ R(m,d) – m is the number of tokens and d represents latent dimension of image
backbone – for a particular video vi is populated as follows: we first initialize mi with video tokens
sampled randomly. We then extract clips from video vi through a sliding window with two clips
having zero overlap. Each clip is then passed through the image backbone that outputs k tokens.
The neural sampler takes m memory tokens and k clip tokens and outputs m tokens that are written
to memory. In the end, the populated mi is fed to the encoder for answering queries that belong to
ith video.

An additional advantage of our proposed model is that it can be deployed on an edge device with
limited memory. The inference can be performed in a streaming fashion where we can store m
memory tokens and k tokens from the current query clip. The sampler here would take input m+ k
tokens and output m discriminative tokens. These m memory tokens are used to generate responses
for multiple queries.

TRAINING LOSS

The input training data is the ReST query’s clip frames. In the case of activity query, the input is
two properties: object instance and time-property time (ts, te). The task in an activity query is to
predict the activity from the available C classes. In an activity query, multiple activities can happen
on an object instance within time-property time, so we model the activity prediction as a multi-label
classification setup. We use focal loss (a, â) where a ∈ R1×C represents ground truth.

In the case of object query, the input is two properties: activity class and time-property time (ts, te).
The task in the object query is to predict bounding boxes for each sampled frame in (ts, te). Given
ground truth bounding boxes, o where o ∈ [0, 1]4(te−ts+1) and predicted bounding boxes ô, the
object query loss is given as ∑

i∈object-queries

λ1L1(ôj , oj) + λgIoULgIoU (ôj , oj) (1)

1A race condition occurs where two or more processes attempt to write to the same shared memory at the
same time.
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Activity Query Object Query Time Query

Short Queries

Modified TubeDETR 264 mins 99 mins 11 mins
LVM-Net 14 mins (18x) 6 mins (16.5x) 7 mins

Medium Queries

Modified TubeDETR 180 mins 663 mins 31 mins
LVM-Net 16 mins (11.2x) 15 mins (44x) 14 mins

Long Queries

Modified TubeDETR 174 mins 756 mins 19 mins
LVM-Net 15 mins (11.6x) 10 mins (75x) 10 mins

Table 1: Running time: Benchmarked over a single A100 with inference batch size selected to
maximize 80GB GPU memory for both methods. The Target FPS is set to one for activity and
time query and set to five for object query as ground truth is available at five FPS for object
query.

where L1 is L1 loss on bounding boxes coordinates and LgIoU is generalized intersection over union
loss on the bounding boxes (Rezatofighi et al., 2019). λ1 and λgIoU are scalar weights.

In the case of time query, the input is three properties: activity class, object instance, and query time
(qts, qte). The task in time query is to predict the time-property time (ts, te) within (qts, qte). The
ground truth is represented through two vectors – vts ∈ R1×l for start time ts and vte ∈ R1×l for
end time te. Here, l is set to (te − ts)/target-fps. We compute Cross Entropy loss LCE(v̂ts , vts) +
LCE(v̂te , vte) for training the model on time query.

ONLINE CONTINUAL LEARNING LOSS

Given a ReST query qij , k visual tokens from the qij’s clip, and mi memory tokens of video i, we
train the neural sampler based on the training loss. However, with this training setup, the neural
sampler is biased towards sampling qij’s clip visual tokens instead of memory tokens – since the
training loss computed on qij’s predictions is minimized by sampling visual tokens from the qij’s
clip. As a result, the model cannot identify tokens that capture the global view of the long video.
This bias contrasts against our goal of training a neural sampler that would process the long video
once and populate discriminative tokens into memory.

We propose an auxiliary loss to address this sampling bias. Specifically, we propose online contin-
ual learning loss shown in Figure 4. Here, we store past p ReST queries in a heap of size p where
the oldest query is ejected when the heap is full. These ReST queries are passed through the shared
transformer encoder-decoder and the training loss is computed on both the current query’s predic-
tions and past p query’s predictions. This auxiliary loss addresses the sampling bias of the neural
sampler. We make a design choice of performing the continual learning in an online fashion – train-
ing based on recent past p queries – instead of randomly sampling p queries from all the previous
queries. This is due to the fact that the initial probability of past p queries’ relevant tokens being
in memory is high. With online continual learning, we reinforce the neural sampler to give those
relevant tokens high scores regardless of their relevance to the current query qij .

EXPERIMENTS

We performed experiments on the ReST-ADL dataset. The ReST-ADL consists of three relational
space-time queries – activity, object, and time. The train and test splits are performed at the level of
individual videos. Each ReST query is evaluated on three different query durations: short (around 5
mins), medium (around 15 mins), and long (around 30 mins).

7
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Activity Query Object Query Time Query

Short Queries

ReST system 48.1 9.6 31.3
Modified TubeDETR 45.3 27.5 35.0
LVM-Net 32.4 26.4 22.9

Medium Queries

ReST system 50.7 10.0 31.8
Modified TubeDETR 31.6 25.4 6.7
LVM-Net 26.1 11.9 11.9

Long Queries

ReST system 46.3 10.0 30.0
Modified TubeDETR 29.9 24.6 12.8
LVM-Net 22.8 21.3 8.6

Table 2: Prediction Performance (Recall@1x) over short, medium, and long queries using
ReST, TubeDETR, and LVM-Net. We demonstrate that LVM-Net achieves competitive per-
formance despite the 18X speedup in inference time.

EVALUATION METRICS

We follow (Yang et al., 2023) and use recall@1x metric for evaluation. The metric measures the
percentage of ground truth labels identified in top x predictions where x stands for the number of
ground truth predictions. In case of object query, we follow (Yang et al., 2022) and define vIoUj =
1
Su

∑
f∈te−ts+1 IoU(ôj,f , oj,f ). The prediction is positive if vIoUj > R otherwise a zero value is

assigned to the prediction. Following (Yang et al., 2022), we set R = 0.3. In the case of time query,
we again compute tIoU using ground truth start-end time and predicted start-end time. A prediction
is positive if tIoUj > 0.3 otherwise a zero value is assigned to the prediction.

BASELINES

We compare our proposed method with the ReST (Yang et al., 2023) that uses a multi-stage dif-
ferentiable learning model and end-to-end TubeDETR method (Yang et al., 2022). We modify the
last MLP layer of TubeDETR for activity prediction outputs. TubeDETR operates on clips that can
be loaded into GPU memory. For clips with durations greater than 4 minutes (1 FPS), TubeDETR
requires sampling a fixed number of frames to meet GPU memory requirements. We follow the
clip-based training and inference recipe outlined in the PyTorchVideo library (Fan et al., 2021a) for
TubeDETR. Specifically, during training, given a long clip, we randomly sample a sub-clip whose
duration, with the selected FPS, results in a predefined fixed number of frames. During inference,
we follow these steps:

1. Divide the long clip into non-overlapping short clips.

2. Pass each short clip along with the object image through the trained TubeDETR model,
which outputs the activity class logits.

3. Aggregate the logits across all clips and perform prediction.

In the case of the object query, during training, we apply object detection loss mentioned in the
Equation 1 on the sampled clip. During inference, we divide the long clip of query qj into non-
overlapping short clips, pass the activity hidden representation along with each clip and compute the
vIoUj score per query.

In the case of the time query, where the task requires predicting the start and end times, we follow
TubeDETR and sample a fixed number of frames (Yang et al., 2022).
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RESULTS

We report our experimental results in Tables 1 and 2. We perform the inference running time com-
putation on the identical A100 instances. Batch size for both the methods is selected to maximize
the GPU memory utilization. As shown in Table 1, LVM-Net, outperforms the TubeDETR model in
terms of inference speed. In the case of activity query, LVM-Net achieves speedups of 18X, 11.2X,
and 11.6X over TubeDETR on short, medium, and long activity queries, respectively. When pro-
cessing the ReST-ADL dataset, which consists of approximately 6000 test activity queries across
four long videos, LVM-Net passes each video through its neural sampler once to create four video-
specific memories. All subsequent test queries are then processed using this memory, resulting in
efficiency gains.

In contrast, TubeDETR treats each query independently and requires a separate inference process
for every query, as outlined in the baselines section. This approach leads to redundant processing of
frames when multiple queries refer to overlapping or identical long clips. While it might be possible
to optimize this by processing all frame representations once and storing them on disk, this approach
would still require additional steps:

1. Dividing the long video clip into non-overlapping short clips.

2. Loading these clips’ frame representations in memory.

3. Passing them along with the object image through the trained TubeDETR model to obtain
logits.

4. Aggregating these logits.

The latter steps are particularly time-consuming and result in slow inference times.

In the case of object query, the ground truth is available at five FPS, hence the target fps is set to
five for all the models as the groundtruth for object query is available at five FPS. We observe 75x
improvement in inference speed as compared to TubeDETR since at five FPS, TubeDETR has to
process 5X more frames. From Table 2, we observe LVM-Net performs competitively as compared
to TubeDETR.

In the case of the time query, due to the nature of predicting start and end times, we follow Tube-
DETR and sample a fixed number of frames(Yang et al., 2022). We observe that the modified Tube-
DETR had a shorter running time for time queries compared to activity and object queries due to
frame sampling. However, for medium (15-minute) and long (30-minute) queries, the performance
of the modified TubeDETR deteriorates because it is not explicitly designed for long videos(Yang
et al., 2022). In contrast, LVM-Net stores a global view of each video in memory and passes this
along with object images through its trained encoder-decoder model, which outputs activity class
logits without requiring any additional aggregation. As shown in Table 2, our system performs
competitively compared to other methods.

We also perform additional experiments (reported in the appendix) where we demonstrate the impact
of online continual vs non-continual learning loss in Section A.3.2. We also measure the trained
neural sampler’s ability to sample discriminative tokens by comparing the performance of LVM-Net
with trained neural sampler vs uniform random sampling of tokens in Section A.3.1.

CONCLUSION

Long-form video understanding has been a long-standing challenge for the computer vision com-
munity. While many approaches exist, they cannot be efficiently applied to longer videos over 30
minutes. In this paper, we present LVM-Net that demonstrates an efficient network for long-form
video reasoning using an external memory. The external memory is populated using differentiable
neural sampler that samples tokens and builds an effective condensed representation. In our results,
we demonstrate an 18-75X faster inference over the state of the art in the ReST ADL video rea-
soning benchmark. The inference speedup is primarily due to the fact that our proposed LVM-Net
performs a single pass over a long video to populate memory and can provide answers to multiple
queries from the long video using the populated memory. In the future, we plan to extend our work
to long-context VLMs and to reduce the compute requirements for retrievals using natural language.
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Petryk, Oscar Mañas, Zhiqiu Lin, Anas Mahmoud, Bargav Jayaraman, et al. An introduction to
vision-language modeling. arXiv preprint arXiv:2405.17247, 2024.

Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A Ross, Jia Deng, and Rahul
Sukthankar. Rethinking the faster r-cnn architecture for temporal action localization. In CVPR,
pp. 1130–1139, 2018.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 2625–2634, 2015.

Haoqi Fan, Tullie Murrell, Heng Wang, Kalyan Vasudev Alwala, Yanghao Li, Yilei Li, Bo Xiong,
Nikhila Ravi, Meng Li, Haichuan Yang, et al. Pytorchvideo: A deep learning library for video
understanding. In Proceedings of the 29th ACM international conference on multimedia, pp.
3783–3786, 2021a.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pp. 6824–6835, 2021b.

Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and Jürgen Gall. Adaptive token sampling
for efficient vision transformers. In European Conference on Computer Vision, pp. 396–414.
Springer, 2022.

Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang, Meishan Zhang, Mong-Li Lee, and Wynne
Hsu. Video-of-thought: Step-by-step video reasoning from perception to cognition. In Forty-first
International Conference on Machine Learning, 2024.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Yoshua Bengio, and Mohamed Osama Ahmed.
Tree cross attention. arXiv preprint arXiv:2309.17388, 2023.

Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. A practical survey on faster and
lighter transformers. ACM Computing Surveys, 55(14s):1–40, 2023.

GeminiAPI. Gemini api pricing. https://ai.google.dev/pricing, 2024. Accessed: Oct
1st, 2024.

10

https://ai.google.dev/pricing


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zisserman. Video action transformer net-
work. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 244–253, 2019.

Georgia Gkioxari, Ross Girshick, Piotr Dollár, and Kaiming He. Detecting and recognizing human-
object interactions. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 8359–8367, 2018.

Meera Hahn, Asim Kadav, James M Rehg, and Hans Peter Graf. Tripping through time: Efficient
localization of activities in videos. arXiv preprint arXiv:1904.09936, 2019.

Thomas E Hazy, Michael J Frank, and Randall C O’Reilly. Banishing the homunculus: making
working memory work. Neuroscience, 139(1):105–118, 2006.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021.

Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. Action genome: Actions as com-
positions of spatio-temporal scene graphs. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 10236–10247, 2020.

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for human action
recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):221–231,
2012.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Song Liu, Haoqi Fan, Shengsheng Qian, Yiru Chen, Wenkui Ding, and Zhongyuan Wang. Hit:
Hierarchical transformer with momentum contrast for video-text retrieval. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 11915–11925, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021b.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
former. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 3202–3211, 2022.

Chih-Yao Ma, Asim Kadav, Iain Melvin, Zsolt Kira, Ghassan AlRegib, and Hans Peter Graf. Attend
and interact: Higher-order object interactions for video understanding. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 6790–6800, 2018.

Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-
Nam Lim. Adavit: Adaptive vision transformers for efficient image recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12309–12318,
2022.

Adeel Pervez et al. Scalable subset sampling with neural conditional poisson networks. In ICLR,
2022.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. Advances in neural information
processing systems, 34:13937–13949, 2021.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rezatofighi et al. Generalized intersection over union: A metric and a loss for bounding box regres-
sion. In CVPR, 2019.

Michael S Ryoo, Keerthana Gopalakrishnan, Kumara Kahatapitiya, Ted Xiao, Kanishka Rao, Austin
Stone, Yao Lu, Julian Ibarz, and Anurag Arnab. Token turing machines. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19070–19081, 2023.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition
in videos. Advances in neural information processing systems, 27, 2014.

Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory
for long video understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18221–18232, 2024.

Ombretta Strafforello, Klamer Schutte, and Jan Van Gemert. Are current long-term video under-
standing datasets long-term? In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 2967–2976, 2023.

Yuchong Sun, Hongwei Xue, Ruihua Song, Bei Liu, Huan Yang, and Jianlong Fu. Long-form
video-language pre-training with multimodal temporal contrastive learning. Advances in neural
information processing systems, 35:38032–38045, 2022.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A sur-
vey.(2020). arXiv preprint cs.LG/2009.06732, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Junke Wang, Xitong Yang, Hengduo Li, Li Liu, Zuxuan Wu, and Yu-Gang Jiang. Efficient video
transformers with spatial-temporal token selection. In European Conference on Computer Vision,
pp. 69–86. Springer, 2022.

Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
understanding with large language model as agent. arXiv preprint arXiv:2403.10517, 2024.

Kirti Wankhede, Bharati Wukkadada, and Vidhya Nadar. Just walk-out technology and its chal-
lenges: A case of amazon go. In 2018 International Conference on Inventive Research in Com-
puting Applications (ICIRCA), pp. 254–257. IEEE, 2018.

Sebastian Watzl. Structuring mind: The nature of attention and how it shapes consciousness. Oxford
University Press, 2017.

Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient
long video understanding via large language models. arXiv preprint arXiv:2404.03384, 2024.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Chao-Yuan Wu and Philipp Krahenbuhl. Towards long-form video understanding. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1884–1894, 2021.

Chao-Yuan Wu, Yanghao Li, Karttikeya Mangalam, Haoqi Fan, Bo Xiong, Jitendra Malik, and
Christoph Feichtenhofer. Memvit: Memory-augmented multiscale vision transformer for efficient
long-term video recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13587–13597, 2022.

12

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sang Michael Xie et al. Reparameterizable subset sampling via continuous relaxations. IJCAI,
2019.

Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj
Prabhu, Yutong Dai, Michael S Ryoo, et al. xgen-mm (blip-3): A family of open large multimodal
models. arXiv preprint arXiv:2408.08872, 2024.

Antoine Yang et al. Tubedetr: Spatio-temporal video grounding with transformers. In CVPR, 2022.

Xitong Yang, Fu-Jen Chu, Matt Feiszli, Raghav Goyal, Lorenzo Torresani, and Du Tran. Relational
space-time query in long-form videos. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6398–6408, 2023.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
Tenenbaum. Clevrer: Collision events for video representation and reasoning. arXiv preprint
arXiv:1910.01442, 2019.

Jun Yuan, Bingbing Ni, Xiaokang Yang, and Ashraf A Kassim. Temporal action localization with
pyramid of score distribution features. In CVPR, pp. 3093–3102, 2016.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 INFERENCE

The inference pipeline is shown in Figure 3. In the first stage, the memory is first initialized with
random video tokens. We then divide the long video into multiple non-overlapping clips. These
clips are then passed through the trained neural sampler in a random order. One can also pass these
non-overlapping clips multiple times through the neural sampler. However, we observe minor im-
provement in the performance. The populated video specific memory mi is then utilized to provide
responses to ReST queries qij .

Image 
Backbone

k tokens Trained Neural 
Sampler

m tokens

Output m tokens

Memory Bank
Stores m tokens
per video

(a) Inference Stage 1: The whole long video is passed clip by clip through the trained neural sampler
which populates the memory.

MLP

Query

Activity

Object

Time

MLP

Video-level Temporal 
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Video-level Spatio-Temporal
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Transformer
Decoder
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Encoder

Key, 
Values

MLP

Activity Query Prediction

Mean Pooling
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Object Query : 
per frame 
bounding box 
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ths ths+1 the

th's th's+1 th'e

Memory Bank

Image 
Backbone
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Time Query : 
Start 
prediction

Time Query : 
End 
prediction

(b) Inference Stage 2: The ReST queries responses are predicted by our trained model by only
reviewing the pre-computed memory tokens.

Figure 3: Two stage Inference pipeline of LVM-Net .

A.2 ONLINE CONTINUAL LEARNING

The continual learning loss is shown in Figure 4. We store the past p number of ReST queries in
a heap of size p where the oldest query is ejected when the heap is full. The p ReST queries when
passed through LVM-Net output p loss values. For p > 1, we compute the sum of those p losses and
add it to the current query’s loss.
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Time Query 
Start prediction

(Current + Past p) 
Object Query 
predictions

(Current + Past p) 
Time Query 
End prediction

Image 
Backbone
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Figure 4: Auxillary online continual learning loss (shown in red color). The loss addresses the
bias of neural sampler towards sampling current query’s clip tokens rather than sampling
tokens that helps reduce loss for all the queries.

Recall@1x Recall@3x

Short Queries

LVM-Net 32.38 56.78
LVM-Net-random 21.42 43.20

Medium Queries

LVM-Net 26.12 44.80
LVM-Net-random 18.23 40.57

Long Queries

LVM-Net 22.81 45.39
LVM-Net-random 18.42 38.45

Table 3: Activity Query: Neural sampler vs uniform random of tokens

A.3 ABLATION STUDIES

A.3.1 RANDOM SAMPLING VIDEO TOKENS VS SAMPLER

We study the impact of the neural sampler in sampling video tokens as compared to the uniform
sampling of tokens in Table 3. We quantitatively show that the neural sampler is able to identify
discriminative tokens as compared to a uniform random sampling of tokens. The uniform random
sampling would sample a lot of background tokens as compared to the trained neural sampler thereby
resulting in a significant reduction in the predictive performance of activity query.
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Recall@1x Recall@3x

Short Queries

LVM-Net 32.38 56.78
LVM-Net-non-continual 26.39 47.31

Medium Queries

LVM-Net 26.12 44.80
LVM-Net-non-continual 24.81 44.63

Long Queries

LVM-Net 22.81 45.39
LVM-Net-non-continual 18.28 44.54

Table 4: Activity Query: Continual Learning vs Non-Continual learning

A.3.2 CONTINUAL LEARNING

We perform an ablation experiment where we report the performance of LVM-Net with and with-
out continual learning in Table 4. We can see that adding continual learning helps improve the
performance of LVM-Net in a significant manner.

A.4 LVM-NET DETAILS

The temporal positional encoding layer is standard positional encoding (Vaswani et al., 2017) where
the sequence length is set to the maximum long-video length in seconds times the target FPS. We
set the target frame per second (FPS) to 1 for activity and time query while the target FPS is set to
5 for object query. We sample 120 number of frames set in a clip. We select the frozen pre-trained
image backbone as Swin transformer (Liu et al., 2021b). We set the following hyper-parameters:
T = 120, d = 2048, N = 2,L1 = 5, λgIoU = 2. We train our model and baseline models for 10
epochs. The models are trained on 4 A100 GPUs with an effective batch size of 4. We initialize
the parameters of LVM-Net using modified TubeDETR. The learning rate of the neural sampler is
set to 1e-5 while the rest of the parameters learning rate is set to 1e-7. We reset the memory bank
after every training epoch. We set the number of past continual learning queries p value to 2. The
memory size is set to 5880 tokens. The Swin transformer outputs 49 tokens per frame. With 120
number of frames, the number of clip tokens and memory tokens has the same capacity of tokens.
The number of layers in all MLPs is set to 1. We use the TIMM library Wightman (2019) for Swin
transformer backbone with model id: swinv2 cr small ns 224. We perform data augmentations –
horizontal flip, posterize, photometric distortion – with a probability of 0.25. The dropout value
is set 0.2. To encourage exploration during the initial stage of neural sampler training, we set the
temperature to 1.5 and slowly decrease the value of the temperature to 1.
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