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Abstract

Large-width asymptotic properties of neural networks (NNs) with Gaussian distributed
weights have been extensively investigated in the literature, with major results characterizing
their large-width asymptotic behavior in terms of Gaussian processes and their large-width
training dynamics in terms of the neural tangent kernel (NTK). In this paper, we study
large-width asymptotics and training dynamics of α-Stable ReLU-NNs, namely NNs with
ReLU activation function and α-Stable distributed weights, with α ∈ (0, 2). For α ∈ (0, 2],
α-Stable distributions form a broad class of heavy tails distributions, with the special case
α = 2 corresponding to the Gaussian distribution. Firstly, we show that if the NN’s width
goes to infinity, then a rescaled α-Stable ReLU-NN converges weakly (in distribution) to
an α-Stable process, which generalizes the Gaussian process. As a difference with respect
to the Gaussian setting, our result shows that the activation function affects the scaling
of the α-Stable NN; more precisely, in order to achieve the infinite-width α-Stable process,
the ReLU activation requires an additional logarithmic term in the scaling with respect
to sub-linear activations. Secondly, we characterize the large-width training dynamics of
α-Stable ReLU-NNs in terms an infinite-width random kernel, which is referred to as the
α-Stable NTK, and we show that the gradient descent achieves zero training error at linear
rate, for a sufficiently large width, with high probability. Differently from the NTK arising
in the Gaussian setting, the α-Stable NTK is a random kernel; more precisely, the random-
ness of the α-Stable ReLU-NN at initialization does not vanish in the large-width training
dynamics.

1 Introduction

There exists a vast literature on the interplay between Gaussian processes and the large-width asymptotic
behaviour of Gaussian neural networks (NNs), namely NNs with Gaussian distributed weights (Neal, 1996;
Der and Lee, 2006; Garriga-Alonso et al., 2018; Lee et al., 2018; Matthews et al., 2018; Novak et al., 2018;
Yang, 2019;a;b; Bracale et al., 2021; Eldan et al., 2021; Klukowski, 2022; Yang and Hu, 2021; Basteri and
Trevisan, 2022; Favaro et al., 2023; Hanin, 2023; Trevisan, 2023; Hanin, 2024). To define a Gaussian NN,
consider the following elements: i) for d, k ≥ 1 let X be a d×k NN’s input, such that xj = (xj1, . . . , xjd)T is
the j-th input (column vector); ii) let φ be an activation function; iii) for m ≥ 1 let W = (w(0)

1 , . . . , w
(0)
m , w)

be the NN’s weights, such that w(0)
i = (w(0)

i1 , . . . , w
(0)
id ) and w = (w1, . . . , wm) with the w(0)

ij ’s and the wi’s
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being i.i.d. according to a Gaussian distribution with mean 0 and variance σ2. A Gaussian φ-NN of width
m is

fm(W,X, φ) = (fm(W,x1, φ), . . . , fm(W,xk, φ)), (1)

where

fm(W,xj , φ) =
m∑
i=1

wiφ(〈w(0)
i , xj〉) j = 1, . . . , k.

Neal (1996) first investigated the large-width behaviour of fm(W,X, φ), which follows by a straightforward
application of the central limit theorem (CLT). In particular, it is well-known that if m → +∞, then
the rescaled Gaussian φ-NN m−1/2fm(W,X, φ) converges weakly (or in distribution) to a Gaussian process
with covariance function ΣX,φ such that ΣX,φ[r, s] = σ2E[φ(〈w(0)

i , xr〉φ(〈w(0)
i , xs〉]. Some extensions of this

infinite-width limit are available for deep NNs (Matthews et al., 2018), more general NN’s architectures
(Yang, 2019a;b), and infinite-dimensional inputs (Bracale et al., 2021; Eldan et al., 2021; Favaro et al.,
2023).

The large-width training dynamics of Gaussian NNs has been also extensively investigated in the literature,
with the training being performed through the gradient descent (Jacot et al., 2018; Arora et al., 2019; Du
et al., 2019; Lee et al., 2019). In particular, consider the Gaussian ReLU-NN fm(W,X) = fm(W,X,ReLU),
and set

f̃m(W,X) := 1
m1/2 fm(W,X).

Let (X,Y ) be the training set, where Y = (y1, . . . , yk) is the (training) output such that yj corresponds
to the j-th input xj . By considering a random initialization W (0) for the NN’s weights, and assuming a
squared-error loss, the gradient flow of W (t) leads to the training dynamics of f̃m(W (t), X), that is for any
t ≥ 0

df̃m(W (t), X)
dt = −(f̃m(W (t), X)− Y )ηmHm(W (t), X), (2)

where ηm > 0 is the learning rate, and Hm(W (t), X) is a k × k random matrix whose (j, j′) entry is
〈∂f̃m(W (t), xj)/∂W, ∂f̃m(W (t), xj′)/∂W 〉. By assuming ηm = 1, Jacot et al. (2018) first characterized the
large-width training dynamics of f̃m(W (t), X), showing that: i) if m → +∞ then Hm(W (0), X) converges
in probability to a deterministic matrix H∗(X,X); ii) the gradient descent achieves zero training error at
linear rate, i.e.

‖Y − f̃m(W (t), X)‖22 ≤ exp(−λ0t)‖Y − f̃m(W (0), X)‖22
for m sufficiently large, with high probability. The limiting matrix H∗(X,X) is refereed to as the neural
tangent kernel (NTK). See Yang (2019) and Yang and Littwin (2021) for extensions to deep NNs and general
architectures.

1.1 Our contributions

In this paper, we study large-width asymptotics and training dynamics of α-Stable ReLU-NNs, namely NNs
with a ReLU activation function and α-Stable distributed weights. For α ∈ (0, 2], α-Stable distributions
form a broad class of heavy tails distributions, with the special case α = 2 corresponding to the Gaussian
distribution; see Samoradnitsky and Taqqu (1994) and references therein for an overview on α-Stable dis-
tributions. According to the definition (1), we denote by fm(W,X, φ;α) the α-Stable φ-NN, namely a NN
of the form (1) with the weighs W distributed according to the α-Stable distribution with α ∈ (0, 2), thus
excluding the Gaussian case α = 2. In particular, fm(W,X;α) = fm(W,X,ReLU;α) denotes the α-Stable
ReLU-NN.

1.1.1 Related work

Neal (1996) considered α-Stable distributions to initialize NNs’ weights, showing that while all Gaussian
weights vanish in the infinite-width limit, some α-Stable weights retain a non-negligible contribution. Such
a different behaviour may be attribute to the diversity of the NN’s path properties as α ∈ (0, 2] varies, which
makes α-Stable NNs more flexible than Gaussian NNs; see Figure 1. Further works demonstrating practical
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applications of α-Stable NNs, with respect to Gaussian NN’s, are Der and Lee (2006), Fortuin et al. (2019),
Fortuin (2022), Lee et al. (2022) and Li et al. (2022); the empirical analyses developed in Fortuin et al.
(2019) shows that wide α-Stable NNs trained with gradient descent lead to a higher classification accuracy
than Gaussian NNs. Motivated by these works, Favaro et al. (2020; 2021) first investigated the large with
asymptotic behavior of fm(W,X, φ;α). In particular, assuming α ∈ (0, 2) and a sub-linear activation function
φ it is proved that if m → +∞, then the rescaled α-Stable φ-NN m−1/αfm(W,X, φ;α) converges weakly
to an α-Stable process, that is a stochastic process with α-Stable finite-dimensional distributions. See also
(Jung, 2023).

Figure 1: Sample paths of α-Stable NNs, as a random function mapping an input in [0, 1]2 to R, with a
ReLU activation function and widthm = 1024: i) top-left panel α = 2.0 (Gaussian distribution); ii) top-right
panel α = 1.5; iii) bottom-left panel α = 1.0 (Cauchy distribution); iv) bottom-right panel α = 0.5 (Lévy
distribution).

1.1.2 Large-width asymptotics

We extend the main results of Favaro et al. (2020; 2021) to the ReLU activation function, which is arguably
one of the most popular activation function in the field of NNs. In particular, we show that if m→ +∞, then
the rescaled α-Stable ReLU-NN (m logm)−1/αfm(W,X;α) converges weakly to an α-Stable process. For
NNs with a single input, i.e. k = 1, the large-width limit follows by a direct application of the generalized
CLT for heavy tails distributions (Uchaikin and Zolotarev, 2011; Bordino et al., 2022), whereas for k > 1
it requires to develop an alternative strategy that may be of independent interest in the context of multidi-
mensional α-Stable distributions (Samoradnitsky and Taqqu, 1994, Chapter 1 and Chapter 2). Differently
from the Gaussian setting, the large-width asymptotic behaviour of α-Stable NNs shows how the choice of
the activation function φ affects the scaling of the NN. More precisely, in order to achieve the infinite-width
α-Stable process, the use of the ReLU activation in place of a sub-linear activation results in a change of
the scaling m−1/α of the NN through the additional (logm)−1/α term. See also Bordino et al. (2022) for
a detailed discussion of this peculiar phenomenon in the context of α-Stable ReLU-NN with a single input
(k = 1).

1.1.3 Large-width training dynamics

We investigate the large-width training dynamics of α-Stable ReLU-NNs, with the training being performed
by gradient descent under the squared-error loss. In particular, consider the α-Stable ReLU-NN fm(W,X;α),
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and set
f̃m(W,X;α) = 1

(m logm)1/α fm(W,X;α). (3)

In analogy with (2), we define the training dynamics of f̃m(W (t), X;α), with a learning rate ηm and a k× k
random matrix Hm(W (t), X;α) whose (j, j′) entry is 〈∂f̃m(W (t), xj ;α)/∂W, ∂f̃m(W (t), xj′ ;α)/∂W 〉. By
assuming the learning rate ηm = (logm)2/α, we show that: i) if m → +∞ then (logm)2/αHm(W (0), X;α)
converges weakly to an (α/2)-Stable (almost surely) positive definite random matrix H̃∗(X,X;α); ii) and
for every δ > 0 the gradient descent achieves zero training error at linear rate, for m sufficiently large,
with probability 1 − δ. The limiting random matrix H̃∗(X,X;α) is refereed to as the α-Stable NTK.
Differently from the NTK that arises from the Gaussian setting, the α-Stable NTK is a random kernel.
More precisely, the randomness of the α-Stable ReLU-NN at initialization does not vanish in the large-width
training dynamics.

1.2 Organization of the paper

The paper is organized as follows. In Section 2 we characterize its large-width asymptotic behaviour of
α-Stable ReLU-NNs in terms of the infinite-width α-Stable process. In Section 3 we characterize the large-
width training dynamics of α-Stable ReLU-NNs in terms of the α-Stable NTK, and we show that the gradient
descent achieves zero training error at linear rate, for a sufficiently large width, with high probability. Section
4 contains a discussion of our results with respect to some directions of future work. Proofs are deferred to
the appendix.

2 Large-width asymptotics of α-Stable ReLU-NNs

We study the large-width asymptotic behaviour of α-Stable ReLU-NNs. The section is organized as follows:
i) we recall the definition of multidimensional α-Stable distribution (Section 2.1); ii) we define the α-Stable
ReLU-NN and characterize its large-width asymptotic behaviour in terms of the infinite-width α-Stable
process (Section 2.2); iii) we present some numerical illustrations of the large-width behaviour of α-Stable
ReLU-NNs (Section ??). The main result of this section is Theorem 2.1, whose proof is deferred to Appendix
A.1.

2.1 Multidimensional α-Stable distribution

For α ∈ (0, 2], a random variable S ∈ R is distributed according to a symmetric and centered 1-dimensional
α-Stable distribution with scale σ > 0 if its characteristic function is E(exp{izS}) = exp {−σα|z|α}, and
we write S ∼ St(α, σ). If the stability parameter α = 2 then S is distributed as a Gaussian distribution
with mean 0 and variance σ2. Let Sk−1 be the unit sphere in Rk, with k ≥ 1, and let Γ be a symmetric
finite measure on Sk−1. For α ∈ (0, 2], we say that a random variable S ∈ Rk is distributed according to
a symmetric and centered k-dimensional α-Stable distribution with spectral measure Γ if its characteristic
function is

E(exp{i〈z, S〉}) = exp
{
−
∫
Sk−1
|〈z, s〉|αΓ(ds)

}
,

and we write S ∼ Stk(α,Γ). Let 1r be the r-dimensional (column) vector with 1 in the r-th entry and
0 elsewhere, for any r = 1, . . . , k. Then, the r-th element of S, that is S1r is distributed as an α-Stable
distribution with scale

σ =
(∫

Sk−1
|〈1r, s〉|αΓ(ds)

)1/α
.

We deal mostly with k-dimensional α-Stable distributions with discrete spectral measure, that is Γ(·) =∑
1≤i≤n γiδsi(·) with n ∈ N, γi ∈ R and si ∈ Sk−1, for i = 1, . . . , n (Samoradnitsky and Taqqu, 1994,

Chapter 2). All the random variables are defined on a common probability space, say (Ω,F ,P), unless
otherwise stated.

We make use of the following characterization of the spectral measure of α-stable distributions (Samoradnit-
sky and Taqqu, 1994, Chapter 2): if S ∼ Stk(α,Γ), then for every Borel set B of Sk−1 such that Γ(∂B) = 0,
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it holds
lim
r→∞

rαP

(
‖S‖ > r,

S

‖S‖
∈ B

)
= CαΓ(B),

where

Cα =
{ 1−α

Γ(2−α) cos(πα/2) α 6= 1
2
π α = 1.

(4)

The proof of this result is reported in Appendix B Moreover, the distribution of a random vector ξ belongs
to the domain of attraction of the Stk(α,Γ) distribution, with α ∈ (0, 2) and Γ simmetric finite measure on
Sk−1, if and only if

lim
n→∞

nP
(
||ξ|| > n1/α,

ξ

||ξ||
∈ A

)
= CαΓ(A) (5)

for every Borel set A of S such that Γ(∂A) = 0. We refer to Appendix B for more details on the derivation of
(5). See also Samoradnitsky and Taqqu (1994, Chapter 1 and Chapter 2) for further details on the constant
Cα.

2.2 The infinite-width α-Stable process

To define a generic ReLU NN, let us consider the following elements: i) for d, k ≥ 1 let X be the d × k
NN’s input, such that xj = (xj1, . . . , xjd)T is the j-th input (column vector); ii) for m ≥ 1 let W =
(w(0)

1 , . . . , w
(0)
m , w) be the NN’s weights, such that w(0)

i = (w(0)
i1 , . . . , w

(0)
id ) and w = (w1, . . . , wm). A ReLU-

NN of width m is
fm(W,X;α) = (fm(W,x1;α), . . . , fm(W,xk;α)), (6)

where

fm(W,xj ;α) =
m∑
i=1

wi〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0) j = 1, . . . , k,

with I(·) being the indicator function. We denote by W (0) = (w(0)
1 (0), . . . , w(0)

m (0), w(0)) the NN’s weights
at random initialization. If the NN’s weights w(0)

ij ’s and the wi’s are initialized as i.i.d. α-Stable random
variables, with α ∈ (0, 2) and σ > 0, then fm(W (0), X;α) defines an α-Stable ReLU-NN of width m.
Theorem 2.1. For any α ∈ (0, 2), let fm(W (0), X;α) be an α-Stable ReLU-NN of width m. If m → +∞
then

1
(m logm)1/α fm(W (0), X;α) w−→ f(X),

where f(X) ∼ Stk(α,ΓX), with

ΓX = Cα
4

d∑
i=1

(‖[xjiI(xji > 0)]j‖α)D+
i (X) + ‖[xjiI(xji < 0)]j‖α)D−i (X)

such that
D+
i (X) = δ

(
[xjiI(xji > 0)]j
‖[xjiI(xji > 0)]j‖

)
+ δ

(
− [xjiI(xji > 0)]j
‖[xjiI(xji > 0)]j‖

)
and

D−i (X) = δ

(
[xjiI(xji < 0)]j
‖[xjiI(xji < 0)]j‖

)
+ δ

(
− [xjiI(xji < 0)]j
‖[xjiI(xji < 0)]j‖

)
,

where, for any s ∈ Sk−1, δ(s) is the probability measure degenerate in s, and Cα is in (4). The stochastic
process f(X) = (f(x1), . . . , f(xk)), as a process indexed by X, is an α-Stable process with spectral measure
ΓX .

Sketch of the proof of Theorem 2.1. The α-stable ReLU-NN of width m is a sum of m independent and
identically distributed random vectors. The proof relies on the analysis of the tail behavior of these sum-
mands, and it exploits a characterization of the multivariate α-Stable distribution as the limiting distribution
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of sums of independent random vectors that exhibit specific tail properties. We refer to Appendix A.1 for
details.

For a broad class of bounded or sub-linear activation functions, Favaro et al. (2021) characterizes the large-
width distribution of deep α-Stable NNs. See also Bordino et al. (2022) and references therein. In particular,
let

fm(W,xj , φ;α) =
m∑
i=1

wiφ〈w(0)
i , xj〉

be the α-Stable φ-NN of width m for the input xj , for j = 1, . . . , k, with φ being a bounded activation
function. Let fm(X;α) = (fm(x1;α), . . . , fm(xk;α)). From Favaro et al. (2021, Theorem 1.2), if m → +∞
then

1
m1/α fm(W,X, φ;α) w−→ f(X), (7)

with f(X) being an α-Stable process with spectral measure ΓX,φ. Theorem 2.1 extends Favaro et al. (2021,
Theorem 1.2) to the ReLU activation function. Theorem 2.1 shows that the use of the ReLU activation
in place of a bounded activation results in a change of the scaling m−1/α in (7), through the inclusion of
the (logm)−1/α term. This is a critical difference between the α-Stable setting and Gaussian setting, as
in the latter the choice of the activation function φ does not affect the scaling m−1/2 required to achieve
the infinite-width Gaussian process. For k = 1, we refer to Bordino et al. (2022) for a detailed analysis of
infinitely wide limits of α-Stable NNs with general classes of sub-linear, linear and super-linear activation
functions.
Remark 2.1. The need of the additional log(m) can be clarified by considering the α-Stable ReLU-NN
with a single input, i.e. k = 1, where the proof of Theorem 2.1 reduces to a straightforward application of
the generalized CLT for heavy tails distributions (Uchaikin and Zolotarev, 2011; Bordino et al., 2022). In
particular, we refer to Theorem 2.1. and Theorem 2.6 of Bordino et al. (2022), which show how the log term
arises from the tail behaviour of the product of α-Stable random variable wiw(0)

i ’s, which defines the NN; see
Cline (1986) and references therein. The log term is expected to hold for any activation that has a linear
growth.

To demonstrate numerically Theorem 2.1, we sample random neural networks according to 3 for various
values of width m and stability index α. We evaluate these networks on a fine uniform grid of points in
[0, 1]2. Figure 2 displays the results, which show that the function samples remain well-behaved as m grows
larger.

3 Large-width training dynamics of α-Stable ReLU-NNs

We study the large-width training dynamics of α-Stable ReLU-NNs. The section is organized as follows: we
define the training dynamics of the α-Stable ReLU-NN and characterize its large-width asymptotic behaviour
in terms of the α-Stable NTK (Section 3.1); ii) we show that the gradient descent achieves zero training
error at linear rate, for a sufficiently large width, with high probability (Section 3.2). The main results of
this section are Theorem 3.1 and Theorem 3.2, whose proofs are deferred to Appendix A.2 and Appendix
A.4, respectively.

3.1 The α-Stable NTK

Let fm(W,X;α) be the α-Stable ReLU-NN defined in (6), with α ∈ (0, 2), and let (X,Y ) be the training
set, where Y = (y1, . . . , yk) is the (training) output such that yj corresponds to the j-th input xj . Then, we
set

f̃m(W,X;α) = 1
(m logm)1/α fm(W,X;α),

such that f̃m(W,xj ;α) = (m logm)−1/αfm(W,xj ;α) is the (model) output of the j-th input xj , for j =
1, . . . , k. Assuming the squared-error loss function `(yj , f̃m(W,xj ;α)) = 2−1∑

1≤j≤k(f̃m(W,xj ;α)−yj)2, by
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Figure 2: Sample paths of α-Stable NNs, as a random function mapping an input in [0, 1]2 to R, with a
ReLU activation function; width values (left to right): m = 64, 256, 1024, 4096; α = 1.5 (top panel), α = 1.0
(bottom panel).

a direct application of the chain rule we obtain the training dynamics of f̃m(W,X;α). In particular, for any
t ≥ 0

df̃m(W (t), X;α)
dt = −(f̃m(W (t), X;α)− Y )ηmHm(W (t), X), (8)

where the kernel Hm(W (t), X) in the NN’s training dynamics is a k × k random matrix whose (j, j′) entry
is

Hm(W (t), X)[j, j′] =
〈
∂f̃m(W (t), xj ;α)

∂W
,
∂f̃m(W (t), xj′ ;α)

∂W

〉
, (9)

and ηm is the learning rate. The training dynamics for f̃m(W,X;α) is standard, and if follows training
dynamics presented in Section 1 for the Gaussian setting. See (Arora et al., 2019, Section 3) and references
therein for details.

For the training dynamics (8), we study the large-width behaviour of Hm(W (0), X) in (9). In particular, we
set

H̃m(W (0), X) = (logm)2/αHm(W (0), X), (10)
and show that if m → +∞, then H̃m(W (0), X) converges weakly to a positive definite random matrix
H̃∗(X,X,α) distributed according to an (α/2)-Stable distribution. To prove this result it useful to decompose
H̃m(W (0), X) as

H̃m(W (0), X) = H̃(1)
m (W (0), X) + H̃(2)

m (W (0), X), (11)

where

H̃(1)
m (W (0), X)[j, j′] = 1

m2/α

m∑
i=1

w2
i 〈xj , xj′〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0), (12)

and

H̃(2)
m (W (0), X)[j, j′] = 1

m2/α

m∑
i=1
〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)〈w(0)

i , xj′〉I(〈w(0)
i , xj′〉 > 0), (13)
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respectively. The next theorem characterizes the large-width asymptotic behaviour of H̃m(W (0), X) in terms
of the α-Stable NTK.
Theorem 3.1. For any α ∈ (0, 2), let H̃m(W (0), X), H̃(1)

m (W (0), X) and H̃(2)
m (W (0), X) be the k×k random

matrices whose (j, j′) entries are defined in (10), (12), and (13), respectively. Moreover, for every k ≥ 1
and u ∈ {0, 1}k, let

Bu = {v ∈ Rd : 〈v, xj〉 > 0 if uj = 1, 〈v, xj〉 ≤ 0 if uj = 0, j = 1, . . . , k},

and for every i = 1, . . . , d, let ei be a d-dimensional vector such that eij = 1 for j = i and eij = 0 for j 6= i.
As m→ +∞,

(H̃(1)
m (W (0), X), H̃(2)

m (W (0), X)) w−→ (H̃∗1 (α), H̃∗2 (α)),
where H̃∗1 (α) and H̃∗2 (α) are k×k random matrices that are stochastically independent, positive semi-definite,
and distributed according to (α/2)-Stable distributions with spectral measures Γ∗1 and Γ∗2, respectively, such
that

Γ∗1 = Cα/2
∑

u∈{0,1}k

P(w(0)
i (0) ∈ Bu)

δ

(
[〈xj ,xj′ 〉ujuj′ ]j,j′

(
∑

j,j′
〈xj ,xj′ 〉2ujuj′ )1/2

)
(∑

j,j′〈xj , xj′〉2ujuj′
)−α/4 , (14)

and

Γ∗2 = Cα/2
∑

u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

δ

(
[xjiujxj′iuj′ ]j,j′∑

j
x2

ji
uj

)
(∑

j x
2
jiuj

)−α/2 , (15)

with Cα/2 in (4). Furthermore, as m→∞,

H̃m(W (0), X) w−→ H̃∗(X,X;α),

where H̃∗(X,X;α) is a k × k random matrix that is positive semi-definite and distributed according to an
(α/2)-Stable distribution with spectral measure Γ∗ = Γ∗1 + Γ∗2. H̃∗(X,X;α) is refereed to as the α-Stable
NTK.

Sketch of the proof of Theorem 3.1. We can see (H̃(1)
m (W (0), X), H̃(2)

m (W (0), X)) as a random vector of
dimension 2k2, with k ≥ 1, whose elements are sums of independent and identically distributed random
vectors. The proof relies on the analysis of the tail behavior of these summands, and it exploits a charac-
terization of the multivariate α-Stable distribution as limiting distribution of the sum of independent and
identically distributed random vectors that exhibit specific tail properties. We refer to Appendix A.2 for the
details.

It turns out that the (α/2)-Stable distributions of the limiting random matrices H̃∗1 (α) and H̃∗2 (α) are
absolutely continuous in suitable subspaces of the space of symmetric and positive semi-definite matrices;
see Lemma A.4 and Lemma A.5 for details on the distribution of the random matrix H̃∗1 (α), and Lemma
A.6 and Lemma A.7 for details on the distribution of the random matrix H̃∗2 (α). This is applied in the
next theorem to show that the minimum eigenvalues of H̃(1)

m (W (0), X) and of H̃(2)
m (W (0), X) are bounded

away from zero, uniformly in m, for m sufficiently large, with arbitrarily high probability. Accordingly,
the minimum eigenvalue of H̃m(W (0), X) = H̃

(1)
m (W (0), X) + H

(2)
m (W (0), X) is bounded away from zero,

uniformly in m, for m sufficiently large, with arbitrarily high probability. We denote by λmin(·) the minimum
eigenvalue.
Proposition 3.1. For any α ∈ (0, 2), let H̃m(W,X), H̃(1)

m (W,X) and H̃(2)
m (W,X) be the random matrices

as in Theorem 3.1. For every δ > 0 there exist strictly positive numbers λ0, λ1 and λ2 such that, for m
sufficiently large,

λmin(H̃(i)
m (W (0), X)) > λi i = 1, 2,

and
λmin(H̃m(W (0), X)) > λ0.

with probability at least 1− δ.
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See Appendix A.3 for the proof of Proposition 3.1. Theorem 3.1 and Proposition 3.1 provide an extension
of some of the main results of Jacot et al. (2018) to the setting of α-Stable ReLU NN, for α ∈ (0, 2). See
also Du et al. (2019), Arora et al. (2019), Lee et al. (2019) and references therein. In particular, our results
show that

i) as m → +∞, the random matrix (logm)2/αHm(W (0), X) converges weakly to the α-Stable NTK
H̃∗(X,X;α), such that H̃∗(X,X;α) is a (α/2)-Stable (almost surely) positive definite random ma-
trix;

ii) at random initialization for the α-Stable ReLU-NN, for every δ > 0 the minimum eigenvalue of
the random matrix H̃m(W (0), X) remains bounded away from zero, for m sufficiently large, with
probability 1− δ.

Differently from the NTK that arises from the Gaussian setting, the α-Stable NTK is a random kernel. That
is, the randomness of the α-Stable ReLU-NN at initialization does not vanish in the large-width training
dynamics. Such a randomness makes more challenging the study of the corresponding large-with training
dynamics.

3.2 Zero training error at linear rate

Under the training dynamics (8), we show that for every δ > 0 the gradient descent achieves zero training
error at linear rate, for m sufficiently large, with probability 1− δ. In order to prove this result we combine
Proposition 3.1 with the next proposition, which shows that, if m is sufficiently large, then with high
probability the minumum eigenvalue of the random matrix H̃m(W (t), X) remains bounded away from zero.
We denote by ‖ · ‖F and ‖ · ‖2 the Frobenius and operator norms of symmetric and positive semi-definite
matrices, respectively.
Proposition 3.2. Let γ ∈ (0, 1) and c > 0. For k ≥ 1 let the NN’s inputs x1, . . . , xk be linearly independent
and such that ‖xj‖ = 1. For any α ∈ (0, 2), let H̃m(W,X) and H̃(2)

m (W,X) be the random matrices as in
Theorem 3.1. For every δ > 0 the following properties hold for every t ≥ 0, with probability at least 1 − δ,
for m sufficiently large:

(i) for every j = 1, . . . , k,

(logm)2/α
∥∥∥∥∂f̃m∂w (W (t), xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥2

F

< cm−2γ/α;

(ii) there exists λ0 > 0 such that

‖H̃(2)
m (W (t), X)− H̃(2)

m (W (0), X)‖F < λ0m
−γ/α

and
λmin(H̃m(W (t), X)) > λ0

2 .

Sketch of the proof of Proposition 3.2. The inequality displayed in (i) holds as long as W (t) stays within a
neighborhood ofW (0) with radius on the order of (logm)2/α, and viceversa. This implies that the fluctuations
of ∂f̃(W (t), X)/∂w during the training of the α-Stable ReLU-NN vanish as m→∞. Consequently, the first
inequality displayed in (ii) also holds throughout training if m is large enough. Together with Proposition
3.1, this ensures that the minimum eigenvalue of the random matrix H̃(2)

m (W (t), X) remains bounded away
from zero during training. The same argument applies to the random matrix H̃m(W (t), X), which is the
sum of H̃(2)

m (W (t), X) and of the non-negative definite matrix H̃(1)
m (W (t), X). We refer to Appendix A.4 for

the details.
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Now, we are in the position to show that the gradient descent achieves zero training error at linear rate, for
a sufficiently large width, with high probability. From Proposition 3.2, for a fixed δ > 0, let m and λ0 > 0
be such that

λmin(H̃m(W (s), X)) > λ0

2 .

for every s ≤ t, on a set N ∈ F with P[N ] > 1− δ. Accordingly, for any random initialization W (0)(ω), with
ω ∈ N ,

d
ds‖Y − f̃m(W (s)(ω), X;α)‖22 ≤ −λ0‖Y − f̃m(W (s)(ω), X;α)‖22,

and hence
d
ds exp(λ0s)‖Y − f̃m(W (s)(ω), X;α)‖22 ≤ 0.

Therefore, by observing that exp(λ0s)‖Y − f̃m(W (s)(ω), X;α)‖22 is a decreasing function of s > 0, then we
write

‖Y − f̃m(W (s)(ω), X;α)‖22 ≤ exp(−λ0s)‖Y − f̃m(W (0)(ω), X;α)‖22.

In the next theorem we summarize the main finding on the large-width training dynamics of α-Stable ReLU
NNs.
Theorem 3.2. For k ≥ 1 let the NN’s inputs x1, . . . , xk be linearly independent and such that ‖xj‖ = 1.
For any α ∈ (0, 2), under the training dynamics (8), if the learning rate ηm = (logm)2/α then for every
δ > 0 there exists λ0 > 0 such that, for m sufficiently large and any t > 0, with probability at least 1 − δ it
holds true that

‖Y − f̃m(W (t), X;α)‖22 ≤ exp(−λ0t)‖Y − f̃m(W (0), X;α)‖22.

4 Discussion

In this paper, we investigated large-width asymptotics and training dynamics of α-Stable ReLU-NNs, namely
NNs with a ReLU activation function and α-Stable distributed weights. With regards to the large-width
asymptotics, our result (Theorem 2.1) extends the main result of Favaro et al. (2020; 2021) to the ReLU
activation function, showing the need of an additional logarithmic term in the scaling of the NN to achieve the
infinite-width α-Stable process. With regards to the large-width training dynamics, our results (Theorem 3.1
and Theorem 3.2) extends some of the main results of Jacot et al. (2018) to α-Stable ReLU-NNs, showing
that randomness of the α-Stable ReLU-NN at initialization does not vanish in the large-width training
dynamics.

It remains open to establish a large-width equivalence between training an α-Stable ReLU-NN and performing
a kernel regression with the α-Stable NTK. For Gaussian NN, Jacot et al. (2018) showed that during training
t > 0, if m is sufficiently large then the fluctuations of the squared Frobenious norm ‖Hm(W (t), X) −
Hm(W (0), X)‖2F are vanishing. This suggested to replace ηmHm(W (t), X) with the NTK H∗(X,X) in the
dynamics (2), and write

df∗(t,X)
dt = −(f∗(t,X)− Y )H∗(X,X).

This is the dynamics of a kernel regression under gradient flow, for which at t → +∞ the prediction for
a generic test point x ∈ Rd is of the form f∗(x) = Y H∗(X,X)−1H∗(X,x)T . In particular, the prediction
of the Gaussian NN f̃m(W (t), x) at t → +∞, for m sufficiently large, is equivalent to the kernel regression
prediction f∗(x) (Arora et al., 2019). Within the α-Stable setting, it is not clear whether the fluctuations
of H̃m(W (t), X) = H̃

(1)
m (W (t), X) + H̃

(2)
m (W (t), X) during the training vanish, as m→∞. Proposition 3.2

shows that the fluctuations of H̃(2)
m (W (t), X) vanish, as m→∞. Such a result is based on the fact that for

every δ > 0 it holds that

(logm)2/α
∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥2

F

< cm−2γ/α,
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for every j = 1, . . . , k, and for every W such that ‖W −W (0)‖F ≤ (logm)2/α, with probability at least 1−δ,
if m is sufficiently large. In particular, we refer to Lemma A.8 for details. The same large-width property is
not true if the partial derivatives with respect to w are replaced by the partial derivatives with respect to
w(0). Accordingly, it is not clear whether the fluctuations of H̃(1)

m (W (t), X) during training also vanish, as
m→∞.

Another interesting avenue for future research would be to extend our results to the more general setting of
deep NNs, with D ≥ 2 being the depth. Let us consider the following setting: i) for d, k ≥ 1 let X be the
d×k NN’s input, with xj = (xj1, . . . , xjd)T being the j-th input (column vector); ii) for D,m ≥ 1 and n ≥ 1
let: i) (W (1), . . . ,W (D)) be the NN’s weights such thatW (1) = (w(1)

1,1, . . . , w
(1)
m,d) andW (l) = (w(l)

1,1, . . . , w
(1)
m,m)

for 2 ≤ l ≤ D, where the w(l)
i,j ’s are i.i.d. as an α-Stable distribution with scale σ > 0, e.g. we can assume

σ = 1. Then,

f
(1)
i (X;α) =

d∑
j=1

w
(1)
i,j xj

and

f
(l)
i,m(X;α) =

m∑
j=1

w
(l)
i,jf

(l−1)
j (X,m)I(f (l−1)

j (X,m) > 0)

with f
(1)
i,m(X;α) = f

(1)
i (X;α), is a deep α-Stable ReLU-NN of depth D and width m. If the NN’s width

grows sequentially over the NN’s layers, i.e. m→ +∞ one layer at a time, it is easy to extend Theorem 2.1
to f (l)

i,m(X;α). Under the same assumption on the growth of m, we expect the analysis of the large-width
training dynamics to follow along lines similar to that of Theorem 3.1 and Theorem 3.2, though computations
may be more involved. A more challenging task would to extend our results to deep α-Stable ReLU-NNs
under the assumptions that the NN’s width grows jointly over the NN’s layers, i.e. m→ +∞ simultaneously
over the layers
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A

A.1 Proof of Theorem 2.1

To simplify the notation, we set in this section: w := w(0), w(0) := w(0)(0), and W := W (0). First, we will
prove that [〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)]j belongs to the domain of attraction of an α-stable law with spectral

measure

Γ1 = CαEu∼Γ0

(
‖[〈u, xj〉I(〈u, xj〉 > 0)]j‖αδ

(
[〈u, xj〉I(〈u, xj〉 > 0)]j
‖[〈u, xj〉I(〈u, xj〉 > 0)]j‖

))
,

where Γ0 is the spectral measure of w(0)
i . For this, it is sufficient to show that

rαP

(
[〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)]j

‖[〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)]j‖
∈ B, ‖[〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)]j‖ > r

)
→ CαΓ1(B),

for every Borel set B of Sk−1 such that Γ1(∂B) = 0 (see Appendix B). Let T : Sk−1 7→ [0, 1]k and C :
Rk \ {0} → Sk−1 be defined as T (u) = [〈u, xj〉I(〈u, xj〉 > 0]j and C(v) = v/‖v‖, respectively. Fix a Borel
set B of Sk−1 such that Γ1(∂B) = 0. This condition implies that

Γ0
({
u ∈ Sk−1 : ‖T (u)‖ 6= 0, T (u) ∈ C−1(∂B)

})
= Γ0

({
u ∈ Sk−1 : ‖T (u)‖ 6= 0, T (u)

‖T (u)‖ ∈ ∂B
})

= 0.

Hence

Γ0
(
T−1 ({z ∈ [0, 1]k : ‖z‖ 6= 0, z ∈ ∂C−1(B)

}))
= Γ0

(
T−1 ({z ∈ [0, 1]k : ‖z‖ 6= 0, z ∈ C−1(∂B)

}))
= 0.

Now, let Z = T (w(0)
i /‖w(0)

i ‖)I(‖w(0)
i ‖ 6= 0). We can write that

rαP

(
[〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)]j

‖[〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)]j‖
∈ B, ‖[〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)]j‖ > r

)

= rαP

(
‖Z‖ 6= 0, Z

‖Z‖
∈ B, ‖w(0)

i ‖‖Z‖ > r

)
=
∫
C−1(B)∩[0,1]k

rαP(‖w(0)
i ‖ > r‖z‖−1, Z ∈ dz)

=
∫
C−1(B)∩[0,1]k

‖z‖α(r‖z‖−1)αP(‖w(0)
i ‖ > r‖z‖−1,

w
(0)
i

‖w(0)
i ‖
∈ T−1(dz)).

Since Γ0
(
T−1 ({z ∈ [0, 1]k : z 6= 0, z ∈ ∂(C−1(B))

}))
= 0, then the points of discontinuity of the function

‖z‖αI(C−1(B))(z) have zero Γ0(T−1(·))-measure. It follows that∫
C−1(B)∩[0,1]k

‖z‖α(r‖z‖−1)αP(‖w(0)
i ‖ > r‖z‖−1, w

(0)
i ∈ T

−1(dz))

→ Cα

∫
C−1(B)∩[0,1]k

‖z‖αΓ0(T−1(dz))

= Cα

∫
Sk−1

I(u ∈ B)
(

T (u)
‖T (u)‖

)
‖T (u)‖αΓ0(du)

= CαΓ1(B),
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as r →∞, which completes the proof that [〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)]j belongs to the domain of attraction
of an α-stable law with spectral measure Γ1. Then, for every k-dimensional vector s,

1
m1/α

m∑
i=1

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0),

as a sequence of random variables in m, converges in distribution, as m → +∞, to a random variable with
α-stable distribution and characteristic function

exp
(
−|t|αEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
))
.

Thus, the distribution of
∑k
j=1 sj〈w

(0)
i , xj〉I(〈w(0)

i , xj〉 > 0) belongs to the domain of attraction of an α-stable
law. In particular, this implies that as m→ +∞

rαP

(
|
k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)| > r

)

→ CαEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
)
.

We now study the tail behaviour of
∣∣wi∑k

j=1 sj〈w
(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)
∣∣. By Cline (1986, Section 5),

P

(
|wi| |

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)| > et
)

= F ∗G(t),

where

F (t) = P

(
|wi| > et

)
, G(t) = P

(
|
k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)| > et
)
.

We now prove that F and G satisfy the assumptions of Cline (1986, Theorem 4) with β = γ = 0. The
distribution functions F and G have exponential tails with rate α. Indeed, for all real u,

lim
t→∞

F (t− u)
F (t)

= lim
t→∞

P(|wi| > et−u)
P(|wi| > et) = e−α(t−u)

e−αt
= eαu.

Analogously for G. Moreover the functions b(t) = eαtF (t) and c(t) = eαtG(t) are regularly varying with
exponent zero: for all y > 0,

lim
t→∞

b(yt)
b(t) = lim

t→∞

eαytP(|wi| > eyt)
eαtP(|wi| > et) = lim

t→∞

eαyte−αyt

eαte−αt
= 1 = y0.

The same property holds for c(t). By Cline (1986, Theorem 4 (v)), as t→∞,

P

(
|wi| |

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)| > et
)

= F ∗G(t)

∼ C2
αEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
)
αte−αt,
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as t→∞. Thus, for r →∞,

rαP

(
|wi| |

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)| > r

)

∼ C2
αEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
)
α log r.

Let L̃(r) = C2
αEu∼Γ0

(
|
∑k
j=1 sj〈u, xj〉I(〈u, xj〉 > 0)|α

)
α log r. Since the distribution of

wi
∑k
j=1 sj〈w

(0)
i , xj〉I(〈w(0)

i , xj〉 > 0) is symmetric, then we can write that

1
am

m∑
i=1

wi

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0),

as a sequence of random variables in m, converges in distribution, as m → +∞, to a random variable with
symmetric α-stable law with scale 1 provided (am)m≥1 satisfies

mL̃(am)
aαm

→ Cα

as m→∞. The condition is satisfied if

am =

CαEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
)
m logm

1/α

.

It follows that
1

(m logm)1/α

m∑
i=1

wi

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0),

as a sequence of random variables in m, converges in distribution, as m → +∞, to a random variable with
symmetric α-stable distribution with scale of the formCαEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
)1/α

.

Since this holds for every vector s, then

1
(m logm)1/α

m∑
i=1

wi[〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)]j ,

as a sequence of random variables in m, converges in distribution, as m → +∞, to a random vector with
symmetric α-stable law with the spectral measure

ΓX = 1
2CαEu∼Γ0

(
‖[〈u, xj〉I(〈u, xj〉 > 0)]j‖α

δ

(
[〈u, xj〉I(〈u, xj〉 > 0)]j
‖[〈u, xj〉I(〈u, xj〉 > 0)]j‖

)
+ δ

(
− [〈u, xj〉I(〈u, xj〉 > 0)]j
‖[〈u, xj〉I(〈u, xj〉 > 0)]j‖

))
.

Since Γ0 = 1
2
∑d
i=1(δ(ei) + δ(−ei)), where eij = 1 if j = i and 0 otherwise, then

ΓX = Cα
4

d∑
i=1

(
‖[xjiI(xji > 0)]j‖α

(
δ
( [xjiI(xji > 0)]j
‖[xjiI(xji > 0)]j‖

)
+ δ
(
− [xjiI(xji > 0)]j
‖[xjiI(xji > 0)]j‖

))

+‖[xjiI(xji < 0)]j‖α
(
δ
( [xjiI(xji < 0)]j
‖[xjiI(xji < 0)]j‖

)
+ δ
(
− [xjiI(xji < 0)]j
‖[xjiI(xji < 0)]j‖

)))
.
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A.2 Proof of Theorem 3.1

To simplify the notation, we set in this section: w := w(0), w(0) := w(0)(0), W := W (0), H̃(1)
m :=

H̃
(1)
m (W (0), X) and H̃

(2)
m := H̃

(2)
m (W (0), X), with H̃

(1)
m (W,X) and H̃

(2)
m (W,X) defined in (12) and (13).

The proof of Theorem 3.1 is split into several steps.
Lemma A.1. If m→ +∞ then

H̃(1)
m

w−→ H̃∗1 (α),

where H̃∗1 (α) is an (α/2)-Stable positive semi-definite random matrix with spectral measure

Γ∗1 = Cα/2
∑

u∈{0,1}k

P(w(0)
i ∈ Bu)(

∑
j,j′

〈xj , xj′〉2ujuj′)α/4δ
(

[〈xj , xj′〉ujuj′ ]j,j′
(
∑
j,j′〈xj , xj′〉2ujuj′)1/2

)
,

where, for every u ∈ {0, 1}k, Bu = {v ∈ Rd : 〈v, xj〉 > 0 if uj = 1, 〈v, xj〉 ≤ 0 if uj = 0, j = 1, . . . , k}, and
Cα/2 is the constant defined in (4).

Proof. Since H̃(1)
m is symmetric, is is sufficient to show that, for every k-dimensional vector s,

sT H̃(1)
m s

w→ sT H̃∗1 (α)s.

We first prove that the functions defined, for t ∈ (−∞,+∞), by F (t) = P

(
w2
i > et

)
, and

G(t) = P

( k∑
j,j′=1

sjsj′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0) > et
)

= P

(
‖

k∑
j=1

sjxjI(〈w(0)
i , xj〉 > 0)‖2 > et

)
satisfy the assumptions of Cline (1986, Lemma 1). Indeed, F has exponentail tails with rate α/2, since by
the properties of the stable law,

lim
t→∞

F (t− u)
F (t)

= lim
t→∞

P(|wi| > e(t−u)/2)
P(|wi| > et/2)

= eαu/2.

Moreover, for any γ,

mG(γ) =
∫ ∞

0
eγuG(du) = E

(
‖

k∑
j=1

sjxjI(〈w(0)
i , xj〉 > 0)‖γ

)
<∞.

By Cline (1986), Section 5 and Lemma 1, as t→∞,

P

(
w2
i

k∑
j,j′=1

sjsj′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0) > et
)

= F ∗G(t) ∼ mG(α/2)F (t)

∼ Cα/2(et)−α/2E
(( k∑
j,j′=1

sjsj′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)
)α/2)

.

By the properties of the stable law,

sT H̃(1)
m s = 1

m2/α

m∑
i=1

w2
i

k∑
j,j′=1

sjsj′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)
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converges weakly, as m → ∞, to a totally skewed to the right, α/2-stable random variable, with scale
parameter E

(∣∣∑k
j,j′=1 sjsj′〈xj , xj′〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)

∣∣α/2)2/α. Hence, for every t ∈ R, as
m→∞,

E
(

exp(itsT H̃(1)
m s)

)
→ exp

(
−|t|α/2E

(∣∣ k∑
j,j′=1

sjsj′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)
∣∣α/2)(1− i sign u tan(πα/4)

))

= exp
(
−
∫
Sk2−1

∣∣∑
j,j′

tsjsj′vj,j′ |α/2
(
1− i sign

(
t
∑
j,j′

sjsj′vj,j′
)

tan(πα/4)Γ∗1(dv)
)
,

where

Γ∗1 = Cα/2E

(
‖[〈xj , xj′〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)]j,j′‖α/2F

· δ
(

[〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)]j,j′
‖[〈xj , xj′〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)]j,j′‖F

))
.

It follows that, as m→ +∞,

H̃(1)
m

w−→ H̃∗1 (α),

where H̃∗1 (α) is an (α/2)-Stable random matrix with spectral measure Γ∗1 of the form

Γ∗1 = Cα/2
∑

u∈{0,1}k

P(w(0)
i ∈ Bu)(

∑
j,j′

〈xj , xj′〉2ujuj′)α/4δ
(

[〈xj , xj′〉ujuj′ ]j,j′
(
∑
j,j′〈xj , xj′〉2ujuj′)1/2

)
.

We will now prove that H̃∗1 (α) is positive semi-definite. By definition, H̃(1)
m (ω) is positive semi-definite for

every ω and every m. By Portmanteau Theorem, for every vector u ∈ Sk−1,

P
(
uT H̃∗1 (α)u ≥ 0

)
≥ lim sup

m
P
(
uT H̃(1)

m u ≥ 0
)

= 1.

Let A be a countable dense subset of Sk−1. Then, with probability one, aT H̃∗1 (α)a ≥ 0 for every a ∈ A. By
continuity, this implies that the same property holds true with probability one for every u ∈ Sk−1, which
proves that H̃∗1 (α) is almost surely positive semi-definite. By eventually modifying H̃∗1 (α) on a null set, we
obtain a positive semi-definite random matrix.

Lemma A.2. If m→ +∞ then

H̃(2)
m

w−→ H̃∗2 (α),

where H̃∗2 (α) is an (α/2)-Stable positive semi-definite random matrix with spectral measure

Γ∗2 = Cα/2
∑

u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

(
∑
j

x2
jiuj)α/2δ

(
[xjiujxj′iuj′ ]j,j′∑

j x
2
jiuj

)
,

where Bu = {v ∈ Rd : 〈v, xj〉 > 0 if uj = 1, 〈v, xj〉 ≤ 0 if uj = 0, j = 1, . . . , k}, ei is a d-dimensional vector
satisfying eij = 1 if j = i, and eij = 0 if j 6= i (i, j = 1, . . . , d), and Cα/2 is the constant defined in (4).
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Proof. By the properties of the multivariate stable distribution (see Appendix B), it is sufficient to show
that

P


[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′

‖
[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′
‖F
∈ ·,

‖
[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′
‖F > r

)
∼ Cα/2r−α/2Γ∗2(·),

as r → +∞. We can write that

P


[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′

‖
[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′
‖F
∈ ·,

‖
[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′
‖F > r

)

=
∑

u∈{0,1}k

P


[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′

‖
[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′
‖F
∈ ·,

‖
[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′
‖F > r,w

(0)
1 ∈ Bu

)
.

For every u ∈ {0, 1}k, let Xu be the d× k matrix, defined as

Xu = [xjiuj ]j=1,...,k,i=1,...,d.

Then we can write that

P


[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′

‖
[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′
‖F
∈ ·,

‖
[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′
‖F > r,w

(0)
1 ∈ Bu

)
= P

(
XT
u w

(0)
1 (w(0)

1 )TXu

(tr(XT
u (w(0)

1 )Tw(0)
1 XuXT

u (w(0)
1 )Tw(0)

1 Xu))1/2
∈ ·,

tr(XT
u (w(0)

1 )Tw(0)
1 XuX

T
u (w(0)

1 )Tw(0)
1 Xu) > r2, w

(0)
1 ∈ Bu

)
= P

(
XT
u (w(0)

1 )Tw(0)
1 Xu

w
(0)
1 XuXT

u (w(0)
1 )T

∈ ·, w(0)
1 XuX

T
u (w(0)

1 )T > r,w
(0)
1 ∈ Bu

)
.

Notice that the maximum eigenvalue of the matrixXuX
T
u is smaller than or equal to k, since the norm of each

column of Xu is smaller than or equal to one. Then w(0)
1 XuX

T
u (w(0)

1 )T > r implies that ‖w(0)
1 ‖ > (r/k)1/2.

We can therefore write that

P

(
XT
u (w(0)

1 )Tw(0)
1 Xu

w
(0)
1 XuXT

u (w(0)
1 )T

∈ ·, w(0)
1 XuX

T
u (w(0)

1 )T > r,w
(0)
1 ∈ Bu

)

= P

(
XT
u (w(0)

1 )Tw(0)
1 Xu

w
(0)
1 XuXT

u (w(0)
1 )T

∈ ·, w(0)
1 XuX

T
u (w(0)

1 )T > r, ‖w(0)
1 ‖ > (r/k)1/2, w

(0)
1 ∈ Bu

)
.
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Since Bu is a cone and the spectral measure of w(0)
1 is given by

∑
i(δ(ei) + δ(−ei)), by the properties of the

multivariate stable distribution, we can write that

P

(
XT
u (w(0)

1 )Tw(0)
1 Xu

w
(0)
1 XuXT

u (w(0)
1 )T

∈ ·, w(0)
1 XuX

T
u (w(0)

1 )T > r, ‖w(0)
1 ‖ > (r/k)1/2, w

(0)
1 ∈ Bu

)

∼ Cα/2r−α/2
∑

{i:{e1,−ei}∩Bu 6=∅}

(
k∑
j=1

x2
jiuj)α/2δ

(
[xjixj′iujuj′ ]j,j′∑

j x
2
jiuj

)
,

as r → +∞. The proof that H̃∗2 (α) is positive semi-definite can be done by following the same line of
reasoning as in the proof of Lemma A.1.

Lemma A.3. As m → +∞, the probability distribution of (H̃(1)
m , H̃

(1)
m ) converges weakly to the law of

independent stable random matrices, with spectral measures Γ∗1 and Γ∗2 as in (14) and (15), respectively.

Proof. Since H̃(1)
m and H

(2)
m converge marginally to α/2-stable random matrices, by the properties of the

multivariate stable distributions it is sufficient to show that they converge to stochastically independent
random matrices. By Theorem B.1, we know that

nP

(
‖[w2

i 〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)]j,j′‖F > n2/α,

‖[〈xj , w(0)
i 〉〈xj′ , w

(0)
i 〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)]j,j′‖F > n2/α

)

and

nP

(
‖[w2

i 〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)]j,j′‖F > n2/α

)

converge to finite limits, as n→∞. Hence, again by Theorem B.1, it is sufficient to show that

lim
n→∞

nP

(
‖[w2

i 〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)]j,j′‖F > n2/α,

‖[〈xj , w(0)
i 〉〈xj′ , w

(0)
i 〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)]j,j′‖F > n2/α

)
= 0,

which ensures that the Lévy measure of the limit infinitely divisible distribution of (H̃(1)
m , H̃

(2)
m ) is the sum of

a measure ν1 concentrated on the space spanned by the first k2 coordinates and a measure ν2 on the space
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spanned by the last k2 coordinates. We can write that

nP

(
‖[w2

i 〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)]j,j′‖F > n2/α,

‖[〈xj , w(0)
i 〉〈xj′ , w

(0)
i 〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)]j,j′‖F > n2/α

)
= n

∑
u∈{0,1}k

P(w(0)
i ∈ Bu)

P

(
‖[w2

i 〈xj , xj′〉ujuj′ ]j,j′‖F > n2/α, ‖[〈xj , w(0)
i 〉〈xj′ , w

(0)
i 〉ujuj′ ]j,j′‖F > n2/α | w(0)

i ∈ Bu
)

= n
∑

u∈{0,1}k

P(w(0)
i ∈ Bu)P

(
‖[〈xj , w(0)

i 〉〈xj′ , w
(0)
i 〉ujuj′ ]j,j′‖F > n2/α | w(0)

i ∈ Bu
)

P

(
‖[w2

i 〈xj , xj′〉ujuj′ ]j,j′‖F > n2/α
)

=
∑

u∈{0,1}k

nP

(
‖[〈xj , w(0)

i 〉〈xj′ , w
(0)
i 〉ujuj′ ]j,j′‖F > n2/α, w

(0)
i ∈ Bu

)

P

(
‖[w2

i 〈xj , xj′〉ujuj′ ]j,j′‖F > n2/α
)
→ 0,

as n→∞.

Now, we are in the position of proving Theorem 3.1. By Lemma A.1, Lemma A.1, Lemma A.3, and the
properties of stable distributions, H̃m(W (0), X) converges in distribution to a positive semi-definite random
matrix, with (α/2)-stable distribution, and spectral measure Γ∗1 + Γ∗2. This completes the proof of Theorem
3.1.

A.3 Proof of Proposition 3.1

To simplify the notation, we set in this section: w := w(0), w(0) := w(0)(0), W := W (0), H̃(1)
m :=

H̃
(1)
m (W (0), X) and H̃(2)

m := H̃
(2)
m (W (0), X), with H̃(1)

m (W,X) and H̃(2)
m (W,X) defined in (12) and (13).

From (11), H̃m(W (0), X)) is the sum of two positive semi-definite random matrices, H̃(1)
m and H̃

(2)
m . The

following results show that for every δ > 0, there exist λ1 > 0 and λ2 > 0 such that, for m sufficiently large,
with probability at least 1− δ

λmin(H̃(i)
m ) > λi.

with the large-width behaviour of H̃(i)
m being characterized in Lemma A.1 and Lemma A.2, through an

(α/2)-Stable limiting random matrix H̃∗i (α) with spectral measure Γ∗i of the form (14) and (15). To prove
that the minumum eigenvales of H̃(1)

m and H̃
(2)
m are bounded away from zero, we first need to inspect the

characteristics of the distributions of H̃∗1 (α) and of H̃∗2 (α). This is the content of Lemma A.4 and of Lemma
A.6. Then, the results concerning the minumum eigenvalues of H̃(1)

m and H̃(2)
m are given in Lemma A.5 and

Lemma A.7.
Lemma A.4. Under the assumptions of Theorem 3.2, the distribution of the random matrix H̃∗1 (α) is
absolutely continuous in the subspace of the symmetric positive semi-definite matrices with zero entries in
the positions (j, j′) such that 〈xj , xj′〉 = 0, with j, j′ ∈ {1, . . . , k}, with the topology of Frobenius norm.

Proof. From Nolan (2010), it is sufficient to show that

inf
s∈Sk2−1

0

∫
|〈s, u〉|α/2Γ∗1(du) 6= 0,
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where Γ∗1 is the spectral measure (14), Sk
2−1

0 is the unit sphere in the space of the k× k symmetric matrices
such that sj,j′ = 0 if 〈xj , xj′〉 = 0, with the Frobenius metric. Now, since∫

|〈s, u〉|α/2Γ∗1(du)

= Cα/2E

|∑
j,j′

sj,j′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)|α/2


is a continuous function of s that takes value in a compact set, then the minimum is attained. Thus it is
sufficient to show that for every s ∈ Sk

2−1
0 ,

E

|∑
j,j′

sj,j′〈xj , xj′〉I〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)|α/2
 6= 0.

For every j and every uj ∈ {0, 1}, let A
uj

j be the event (〈w(0)
i , xj〉 > 0) if uj = 1 and its complement if

uj = 0. Then

E

|∑
j,j′

sj,j′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)|α/2


=
∑

u1,...,uk

P(Au1
1 ∩ · · · ∩A

uk

k )|
∑
j,j′

ujuj′sj,j′〈xj , xj′〉|α/2.

Since x1, . . . , xk are linearly independent, then for every u1, . . . , uk, P(Au1
1 ∩ . . . , A

uk

k ) > 0. To prove it,
assume, without loss of generality, that ui = 1 for every i. Since x1, . . . , xk are linearly independent, then we
can complete the matrix X = [x1 . . . xk] by adding k− d columns in such a way that the completed matrix
X̃ is non-singular. For every d-dimensional vector v such that v1 > 0, . . . , vk > 0 there exists a vector u such
that u = (X̃T )−1v. Thus,

{u ∈ Rd : 〈u, x1〉 > 0, . . . , 〈u, xk〉 > 0} = {(X̃T )−1v : v1 > 0, . . . , vk > 0}

is an open non-empty set. Since w(0)
i has independent and identically distributed components, with stable

distribution, then
P
(
w

(0)
i ∈ {(X̃)−1v : v1 > 0, . . . , vk > 0}

)
> 0.

This concludes the proof that P(Au1
1 ∩ . . . , A

uk

k ) > 0 for every (u1, . . . , uk) ∈ {0, 1}k}. It follows that∫
|〈s, u〉|α/2Γ∗1(du) is zero if and only if, for every (u1, . . . , uk) ∈ {0, 1}k, it holds∑

j,j′

uj , uj′〈xj , xj′〉sj,j′ = 0.

The only solution of the above system of equations in the space of symmetric matrices s such that sj,j′ = 0
if 〈xj , xj′〉 = 0 is s = 0, which is not consistent with ‖s‖F = 1.

We observe that the space of the symmetric positive semi-definite matrices with zeros in the entries (j, j′)
such that 〈xj , xj′〉 = 0 contains all the matrices with non-zero diagonal element since 〈xj , xj〉 = 1 6= 0 for
every index j.
Lemma A.5. Under the assumptions of Theorem 3.2, for every δ > 0 there exists λ1 > 0 such that with
probability at least 1− δ

λmin(H̃∗1 (α)) > λ1.
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Proof. Since the distribution of H̃∗1 (α) is absolutely continuous in the space of symmetric positive semi-
definite matrices with zero entries in the positions j, j′ such that 〈x,xj′〉 = 0, and since this space contains
all the symmetric positive semi-definite matrices with non-zero diagonal entries, then we can write that
P(det(H̃∗1 (α)) = 0) = 0. Moreover, since H̃∗1 (α) is positive semi-definite, then P(λmin(H̃∗1 (α)) > 0) = 1.
Thus, for every δ > 0, the exists λ1 > 0 such that P(λmin(H̃∗1 (α)) > λ1) > 1− δ.

Lemma A.6. Under the assumptions of Theorem 3.2, the distribution of the random matrix H̃∗2 (α) is
absolutely continuous in the subspace of the symmetric positive semi-definite matrices, with the topology of
Frobenius norm.

Proof. From Nolan (2010), it is sufficient to show that

inf
s∈Sk2−1

∫
|〈s, u〉|α/2Γ∗2(du) 6= 0,

where Γ∗2 is the spectral measure (15), Sk2−1 is the unit sphere in the space of the k × k symmetric positive
semi-definite matrices, with the Frobenius norm. For every u ∈ {0, 1}k, let Bu = {v ∈ Rd : 〈v, xj〉 > 0 if uj =
1, 〈v, xj〉 ≤ 0 if uj = 0}. Moreover, for every i = 1, . . . , k, let ei be a d-dimensional random vector satisfying
eij = 1 for j = i and eij = 0 for j 6= i. Finally, let Cα/2 be the constant defined in (4). Then∫

|〈s, u〉|α/2Γ∗2(du) = Cα/2|
∑
j,j′

sj,j′
∑

u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

xjiujxj′iuj′ |α/2.

Since
∑
j,j′ sj,j′

∑
u∈U

∑
E zu,ixjiujxj′iuj′ is continuous as a function of s and s takes values in a compact

set, then the minimum is attained. Thus it is sufficient to show that for every s ∈ Sk2−1,∑
u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

∑
j,j′

sj,j′xjiujxj′iuj′ 6= 0.

Since ‖s‖F = 1, then s is not the null matrix. Hence there exist c > 0, a vector a with ‖a‖ = 1 and a positive
semi-definite, symmetric matrix s′ such that

s = caaT + s′.

Since Bu ∩Bu′ = ∅, when u 6= u′, then, for every i = 1, . . . , d and j = 1, . . . , k, there exists one and only one
u ∈ {0, 1}k such that uj = 1 and {ei,−ei} ∩Bu 6= ∅. Then we can write that∑

u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

∑
j,j′

sj,j′xjiujxj′iuj′

≥ c
∑

u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

(
∑
j

ajxjiuj)2

=
d∑
i=1

(
k∑
j=1

ajxji)2
∑

{u:{ei,−ei}∩Bu 6=∅}

uj


=

d∑
i=1

(
k∑
j=1

ajxji)2,

which is strictly positive, since the xj are linearly independent, and ‖a‖ = 1. This concludes the proof.

Lemma A.7. Under the assumptions of Theorem 3.2, for every δ > 0 there exists λ2 > 0 such that with
probability at least 1− δ

λmin(H̃∗2 (α)) > λ2.
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Proof. Since the distribution of H̃∗2 (α) is absolutely continuous in the space of symmetric positive semi-
definite matrices then we can write that P(det(H̃∗2 (α)) = 0) = 0. Moreover, since H̃∗2 (α) is positive semi-
definite, then P(λmin(H̃∗2 (α)) > 0) = 1. Thus, for every δ > 0, the exists λ2 > 0 such that P(λmin(H̃∗2 (α)) >
λ2) > 1− δ.

Now, we are in the position of proving Proposition 3.1. Let δ > 0 be a fixed number. By Lemmas A.5
and A.7, there exist λ1 > 0 and λ2 > 0 such that, for i = 1, 2, P(λmin(H̃∗i (α)) > λi) ≥ 1 − δ/2. Since the
minimum eigenvalue map is continuous with respect to Frobenius norm then, by Portmanteau theorem, for
i = 1, 2,

lim inf
m

P(λmin(H̃(i)
m (W (0), X)) > λi) ≥ P(λmin(H̃∗i (α)) > λi) ≥ 1− δ/2.

Let λ0 = λ1 + λ2. Since the minimum eigenvalue of a sum of symmetric, positive semi-definite matrices
is greater than or equal to the sum of the eigenvalues of the two matrices (see Horn and Johnson (1985)
Theorem 4.3.1), then we can write that

lim inf
m

P(λmin(H̃m(W (0), X)) > λ0)

≥ lim inf
m

P(λmin(H̃(1)
m (W (0), X)) + λmin(H̃(2)

m (W (0), X)) > λ0)

≥ lim inf
m

P(∩i=1,2(λmin(H̃(i)
m (W (0), X)) > λi))

≥ 1− lim sup
m

( 2∑
i=1

P(λmin(H̃(i)
m (W (0), X)) ≤ λi)

)
≥ 1− δ,

thus completing the proof of Proposition 3.1.

A.4 Proof of Proposition 3.2

Before proving Proposition 3.2, we give some preliminary results.
Lemma A.8. Let γ ∈ (0, 1) and c > 0 be fixed numbers. For every δ > 0 the following property holds true,
for m sufficiently large, with probability at least 1− δ:

(logm)2/α
∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥2

F

< cm−2γ/α,

for every W such that ||W −W (0)||F ≤ (logm)2/α and every NN’s input xj, with j = 1, . . . , k.

Proof. For a fixed W (0), let W be such that ‖W −W (0)‖F ≤ (logm)2/α. Then it holds ‖w(0)−w(0)(0)‖2F ≤
‖W −W (0)‖2F ≤ (logm)4/α. Accordingly, we can write the following

(logm)2/α
∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥2

F

≤ 1
m2/α

m∑
i=1

(
〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)− 〈w(0)

i (0), xj〉I(〈w(0)
i (0), xj〉 > 0)

)2

≤ 2
m2/α

m∑
i=1

(
〈w(0)

i , xj〉 − 〈w(0)
i (0), xj〉

)2
I(〈w(0)

i , xj〉 > 0)

+ 2
m2/α

m∑
i=1
〈w(0)

i (0), xj〉2
(
I(〈w(0)

i , xj〉 > 0)− I(〈w(0)
i (0), xj〉 > 0)

)2
.
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We will bound the two terms of the sum separately. First, we define ri = |〈w(0)
i −w

(0)
i (0), xj〉| for i = 1, . . . ,m.

Then, we can write that

m∑
i=1

r2
i ≤

m∑
i=1
‖w(0)

i − w
(0)
i (0)‖2 · ‖xj‖2 ≤ ‖w(0) − w(0)(0)‖2F ≤ (logm)4/α.

Since γ < 1,

2
m2/α

m∑
i=1

(
〈w(0)

i , xj〉 − 〈w(0)
i (0), xj〉

)2
I(〈w(0)

i , xj〉 > 0)

≤ 2m−2/α(logm)4/α <
c

4m
−2γ/α,

for m sufficiently large. In order to bound the second term, we observe that the following set

{w(0)(0) : ∃w(0)s.t.|〈w(0)
i − w

(0)
i (0), xj〉| = ri, I(〈w(0), xj〉 > 0) 6= I(〈w(0)(0), xj〉 > 0)}

is included in the set {w(0)
i (0) : |〈w(0)

i (0), xj〉| ≤ ri}. Therefore, we can write that

sup∑
i
r2

i
≤logm

sup
|w(0)

i
−w(0)

i
(0)|≤ri

2
m2/α

m∑
i=1
〈w(0)

i (0), xj〉2
(
I(〈w(0)

i , xj〉 > 0)− I(〈w(0)
i (0), xj〉 > 0)

)2

≤ sup∑
i
r2

i
≤logm

sup
|w(0)

i
−w(0)

i
(0)|≤ri

2
m2/α

m∑
i=1
〈w(0)

i (0), xj〉2I(〈w(0)
i (0), xj〉 < ri)

≤ sup∑
i
r2

i
≤logm

sup
|w(0)

i
−w(0)

i
(0)|≤ri

2
m2/α

m∑
i=1

r2
i

≤ 1
m2/α (logm)4/α <

c

4m
−2γ/α,

for m sufficiently large.

Lemma A.9. For every δ > 0 there exist λ > 0 such that the following two properties hold true, for m
sufficiently large, with a probability at least 1− δ:

i)

‖H̃(2)
m (W,X)− H̃(2)

m (W (0), X)‖F < λm−γ/α;

ii)

λmin(H̃m(W,X)) > λ

2 ;

for every W such that ‖W −W (0)‖F ≤ (logm)2/α.

Proof. By Lemma A.7, for every δ > 0 there exists λ such that

λmin(H̃∗2 (α)) > λ
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with probability at least 1− δ/2. For every vector W , we can write that

|H̃(2)
m (W,X)[i, j]− H̃(2)

m (W (0), X)[i, j]|

= (logm)2/α
∣∣∣∣〈∂f̃m∂w (W,xi;α), ∂f̃m

∂w
(W,xj ;α)

〉
−
〈
∂f̃m
∂w

(W (0), xi;α), ∂f̃m
∂w

(W (0), xj ;α)
〉∣∣∣∣

≤ (logm)2/α
∥∥∥∥∂f̃m∂w (W,xi;α)

∥∥∥∥
F

∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m
∂w

(W (0), xj ;α)
∥∥∥∥
F

+ (logm)2/α
∥∥∥∥∂f̃m∂w (W (0), xj ;α)

∥∥∥∥
F

∥∥∥∥∂f̃m∂w (W,xi;α)− ∂f̃m
∂w

(W (0), xi;α)
∥∥∥∥
F

≤ (logm)2/α
(∥∥∥∥∂f̃m∂w (W (0), xi;α)

∥∥∥∥
F

+
∥∥∥∥∂f̃m∂w (W (0), xi;α)− ∂f̃m

∂w
(W,xi;α)

∥∥∥∥
F

)
×
∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥
F

+ (logm)2/α
∥∥∥∥∂f̃m∂w (W (0), xj ;α)

∥∥∥∥
F

∥∥∥∥∂f̃m∂w (W,xi;α)− ∂f̃m
∂w

(W (0), xi;α)
∥∥∥∥
F

.

For every i = 1, . . . , k,

(logm)2/α
∥∥∥∥∂f̃m∂w (W (0), xi;α)

∥∥∥∥2

F

= 1
m2/α

m∑
i=1
〈w(0)

i (0), xi〉2I(|〈w(0)
i (0), xi〉| > 0)

≤ 1
m2/α

m∑
i=1
〈w(0)

i (0), xi〉2,

which converges in distribution, as m → ∞. Thus there exist M > 0 and m0 such that for every m ≥ m0
and every i = 1, . . . , k,

P

(
(logm)1/α

∥∥∥∥∂f̃m∂w (W (0), xi;α)
∥∥∥∥
F

> M

)
<

δ

8k2 .

By Lemma A.8, for m sufficiently large, with probability at least 1− δ/(4k2)

(logm)1/α
(∥∥∥∥∂f̃m∂w (W (0), xi;α)

∥∥∥∥
F

+
∥∥∥∥∂f̃m∂w (W (0), xi;α)− ∂f̃m

∂w
(W,xi;α)

∥∥∥∥
F

)
< 2M

whenever ‖W −W (0)‖F < (logm)2/α. Lemma A.8 also implies that, for every γ ∈ (0, 1), and i = 1, . . . , k,
with probability at least 1− δ/(8k2)

(logm)1/α
∥∥∥∥∂f̃m∂w (W,xi;α)− ∂f̃m

∂w
(W (0), xi;α)

∥∥∥∥
F

<
λ

4Mk2m
−γ/α

whenever ‖W −W (0)‖2F < (logm)4/α, provided m is sufficiently large,. Thus, with probability at least 1−δ,
if m is sufficiently large

max
i,j
|H̃(2)

m (W,X)[i, j]− H̃(2)
m (W (0), X)[i, j]| < λ

k2m
−γ/α,

whenever ‖W −W (0)‖F < (logm)2/α. Thus

‖H̃(2)
m (W,X)− H̃(2)

m (W (0), X)‖2

≤ ‖H̃(2)
m (W,X)− H̃(2)

m (W (0), X)‖F < λm−γ/α <
λ

2 ,

whenever ‖W −W (0)‖F < (logm)2/α, provided m is sufficiently large. The last inequality and Lemma A.6
imply that, with probability at least 1− δ, if m is sufficiently large, then

‖H̃(2)
m (W,X)‖2 > λ/2,

26



Published in Transactions on Machine Learning Research (11/2024)

for every W such that ‖W −W (0)‖F < (logm)2/α. Since H̃m(W,X) is the sum of two positive semi-definite
matrices H̃(1)

m (W,X) and H̃(2)
m (W,X), then

‖H̃m(W,X)‖2 ≥ ‖H̃(2)
m (W,X)‖2 > λ/2,

for every W such that ‖W −W (0)‖F < (logm)2/α, if m is sufficiently large.

Lemma A.10. For every δ > 0 the following property holds true, for m sufficiently large, with probabillity
at least 1− δ: there exists M > 0 such that

(logm)1/α
∥∥∥∥ ∂f̃m∂w(0) (W,xj ;α)− ∂f̃m

∂w(0) (W (0), xj ;α)
∥∥∥∥
F

< M,

for every j = 1, . . . , k, and for every W such that ‖W −W (0)‖F ≤ (logm)2/α.

Proof. Let us define ri = |〈w(0)
i − w

(0)
i (0), xj〉| for i = 1, . . . ,m. Now, since ‖xj‖ = 1 by assumption, for

j = 1, . . . , k, then we can write∑
i

r2
i ≤ ‖xj‖2 · ‖w

(0)
i − w

(0)(0)‖2F ≤ ‖W −W (0)‖2F ≤ (logm)4/α.

It holds

(logm)2/α
∥∥∥∥ ∂f̃m∂w(0) (W,xj ;α)− ∂f̃m

∂w(0) (W (0), xj ;α)
∥∥∥∥2

F

≤ 1
m2/α

m∑
i=1

(
wiI(〈w(0)

i , xj〉 > 0)− wi(0)I(〈w(0)
i (0), xj〉 > 0)

)2

≤ 2
m2/α

m∑
i=1

(wi − wi(0))2I(〈w(0)
i , xj〉 > 0)

+ 2
m2/α

m∑
i=1

wi(0)2|I(〈w(0)
i , xj〉 > 0)− I(〈w(0)

i (0), xj〉 > 0)|.

We will bound the two terms separately. First,

2
m2/α

m∑
i=1

(wi − wi(0))2I(〈w(0)
i , xj〉 > 0)

≤ 1
m2/α

m∑
i=1

(wi − wi(0))2

≤ 2
m2(1−γ)/α ‖w − w(0)‖2F

≤ 2
m2/α (logm)4/α <

c

4m
−2γ/α,

if m is sufficiently large. To bound the second term, we can write that

2
m2/α

m∑
i=1

wi(0)2|I(〈w(0)
i , xj〉 > 0)− I(〈w(0)

i (0), xj〉 > 0)|

≤ 2
m2/α

m∑
i=1

wi(0)2,

which converges in distribution to a stable random variable, as m → ∞. Hence there exists M1 such that,
with probability at least 1− δ/4,

2
m2/α

m∑
i=1

(wi − wi(0))2I(〈w(0)
i , xj〉 > 0) < M2

1
2k2
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and
2

m2/α

m∑
i=1

wi(0)2|I(〈w(0)
i , xj〉 > 0)− I(〈w(0)

i (0), xj〉 > 0)| < M2
1

2k2 ,

for m sufficiently large, which entail

(logm)1/α
∥∥∥∥ ∂f̃m∂w(0) (W,xj ;α)− ∂f̃m

∂w(0) (W (0)(ω), xj ;α)
∥∥∥∥
F

<
M1

k
.

On the other hand, there exist N3 ∈ F and M2 with P (N3) > 1 − δ/4 such that, for every ω ∈ N3 and for
m sufficiently large,

‖f̃m(W (0)(ω), X;α)− Y ‖F < M2,

and
max

1≤i≤k

∥∥∥∥ ∂

∂W
f̃m(W (0)(ω), xi;α)

∥∥∥∥
F

< M2(logm)−1/α.

The above inequalities follow from the convergence in distribution of f̃m(W (0), xi;α) and of

(logm)2/α
∥∥∥∥ ∂

∂W
f̃m(W (0), xi;α)

∥∥∥∥2

F

= H̃(W (0), X;α)[i, i] (i = 1, . . . , k),

as m→∞.

Lemma A.11. Let γ ∈ (0, 1) and c > 0 be fixed numbers. For every δ > 0 the following property holds true,
for m sufficiently large, with probability at least 1− δ:

‖W (t)−W (0)‖F < (logm)2/α.

if

(logm)2/α
∥∥∥∥∂f̃m∂w (W (s), xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥2

F

≤ cm−2γ/α

for every NN’s input xj, with j = 1, . . . , k, and for every s ≤ t.

Proof. By Lemmas A.8 and A.9, there exists N1 ∈ F with probability at least 1 − δ/2 such that, for every
ω ∈ N1,

(logm)2/α
∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m

∂w
(W (0)(ω), xj ;α)

∥∥∥∥2

F

< cm−2γ/α,

for arbitrarily fixed c > and γ ∈ (0, 1/2), and

λmin(H̃m(W,X)) > λ

2 ,

for some λ > 0, for every W such that ‖W −W (0)(ω)‖F ≤ (logm)2/α and every j = 1, . . . , k, provided m
is sufficiently large. Moreover, by Lemma A.10, there exist, for m sufficiently large, M1 > 0 and N2 with
P(N2) > 1− δ, such that

(logm)1/α
∥∥∥∥ ∂f̃m∂w(0) (W,xj ;α)− ∂f̃m

∂w(0) (W (0)(ω), xj ;α)
∥∥∥∥
F

<
M1

k
,

for every j = 1, . . . , k, and for every W such that ‖W − W (0)(ω)‖F ≤ (logm)2/α. We will prove, by
contradiction, that for every ω ∈ N1 ∩ N2 ∩ N3, ‖W (t) − W (0)‖F < (logm)2/α for every t > 0. In the
following we will write W (s) in the place of W (s)(ω) and always assume that ω belongs to N1 ∩N2 ∩N3.
Suppose that there exists t such that ‖W (t)−W (0)‖F ≥ (logm)2/α, and let

t0 = argmint≥0{t : ‖W (t)−W (0)‖F ≥ (logm)2/α}.
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Since ‖W (s)−W (0)‖F ≤ (logm)2/α for every s ≤ t0, then, for every s ≤ t0,

λmin(H̃m(W (s), X)) > λ

2 ,∥∥∥∥∂f̃m∂w (W (s), xj ;α)− ∂f̃m
∂w

(W (0), xj ;α)
∥∥∥∥
F

< cm−γ/α(logm)−1/α,∥∥∥∥ ∂f̃m∂w(0) (W (s), xj ;α)− ∂f̃m
∂w(0) (W (0)(ω), xj ;α)

∥∥∥∥
F

<
M1

k
(logm)−1/α (j = 1, . . . , k),

‖f̃m(W (0)(ω), X;α)− Y ‖F < M2,

max
1≤i≤k

∥∥∥∥ ∂

∂W
f̃m(W (0)(ω), xi;α)

∥∥∥∥
F

< M2(logm)−1/α.

Let us now consider the gradient descent dynamic, with continuous learning rate η = (logm)2/α:

dW (s)
ds = −(logm)2/α∇W

1
2

k∑
i=1

(
f̃m(W (s), xi;α)− yi

)2
= −(logm)2/α

k∑
i=1

(
f̃m(W (s), xi)− yi

) ∂f̃m
∂W

(W (s), xi;α).

This expression allows to write

‖W (t0)−W (0)‖F

≤
∥∥∥∥∫ t0

0

d
dsW (s)ds

∥∥∥∥
F

≤ (logm)2/α

∥∥∥∥∥
∫ t0

0

k∑
i=1

(f̃m(W (s), xi;α)− yi)
∂f̃m
∂W

(W (s), xi;α)ds

∥∥∥∥∥
F

≤ (logm)2/α max
0≤s≤t0

k∑
i=1

∥∥∥∥∂f̃m∂W
(W (s), xi;α)

∥∥∥∥
F

∫ t0

0
‖f̃m(W (s), X;α)− Y ‖ds.

To bound the term ‖f̃m(W (s), X;α)− Y ‖ we will exploit the dynamics of the NN output

df̃m(W (s), X;α)
ds = ∂f̃m

∂W
(W (s), X;α)dWT (s)

ds
= −(logm)2/α(f̃m(W (s), X;α)− Y )Hm(W (s), X)
= −(f̃m(W (s), X;α)− Y )H̃m(W (s), X),

that gives

d
ds‖f̃m(W (s), X;α)− Y ‖22 = −2

(
f̃m(W (s), X;α)− Y

)
H̃m(W (s), X)

(
f̃m(W (s), X;α)− Y

)T
.

Since λmin(H̃m(W (s), X)) > λ/2 for every s ≤ t0, then

d
ds‖f̃m(W (s), X;α)− Y ‖22 ≤ −λ‖f̃m(W (s), X;α)− Y ‖22,

which implies that
d
ds
(
exp(λs)‖f̃m(W (s), X;α)− Y ‖22

)
≤ 0.

It follows that exp(λs)‖f̃m(W (s), X;α)− Y ‖22 is a decreasing function of s, and therefore

‖f̃m(W (s), X;α)− Y ‖2 ≤ exp(−λ/2)‖f̃m(W (0), X;α)− Y ‖2,

29



Published in Transactions on Machine Learning Research (11/2024)

for every s ≤ t0. Substituting in the integral, we can write that

‖W (t0)−W (0)‖F

≤ (logm)2/α max
0≤s≤t0

k∑
i=1

∥∥∥∥∂f̃m∂W
(W (s), xi;α)

∥∥∥∥
F

∫ t0

0
exp(−λs/2)ds · ‖f̃m(W (0), X;α)− Y ‖

≤ 2(logm)2/α

λ
max

0≤s≤t0

k∑
i=1

(∥∥∥∥∂f̃m∂W
(W (0), xi;α)

∥∥∥∥
F

+
∥∥∥∥∂f̃m∂W

(W (s), xi;α)− ∂f̃m
∂W

(W (0), xi;α)
∥∥∥∥
F

)
× ‖f̃m(W (0), X;α)− Y ‖

≤ 2(logm)2/α

λ
max

0≤s≤t0

k∑
i=1

(∥∥∥∥∂f̃m∂W
(W (0), xi;α)

∥∥∥∥
F

+
∥∥∥∥ ∂f̃m∂w(0) (W (s), xi;α)− ∂f̃m

∂w(0) (W (0), xi;α)
∥∥∥∥
F

+
∥∥∥∥∂f̃m∂w (W (s), xi;α)− ∂f̃m

∂w
(W (0), xi;α)

∥∥∥∥
F

)
‖f̃m(W (0), X;α)− Y ‖

≤ 2(logm)1/α

λ

(
M2 +M1 + kcm−γ/α

)
M2,

which, for m large, contradicts ‖W (t0)−W (0)‖F ≥ (logm)2/α .

Now, we are in the position of proving Proposition 3.2. Let m ∈ N and N ∈ F be such that P(N) > 1 − δ
and the properties mentioned in Lemma A.8, Lemma A.9, Lemma A.10 and Lemma A.11 hold true for every
ω ∈ N . Therefore, by means of Lemma A.8 and of Lemma A.9, it is sufficient to show that

‖W (t)−W (0)‖2F (ω) < (logm)2/α

for every t > 0 and ω ∈ N . By contradiction, suppose that there exists, for some ω ∈ N , t0(ω) finite with

t0(ω) := inf
t≥0
{t : ‖W (t)−W (0)‖F (ω) ≥ (logm)2/α}.

Since W (t)(ω) is a continuous function of t, then ‖W (t0(ω)) −W (0)‖2F (ω) = (logm)2/α. Then, by Lemma
A.8,

(logm)2/α
∥∥∥∥∂f̃m∂W

(W (s), xj ;α)− ∂f̃m
∂W

(W (0), xj ;α)
∥∥∥∥2

F

(ω) < cm−2γ/α,

for every s ≤ t0 and every j. Therefore, by Lemma A.11 it holds true that ‖W (t0(ω)) − W (0)‖F (ω) <
(logm)2/α, which contradicts the definition of t0. This completes the proof of Proposition 3.2.

B

The distribution of a random vector ξ is said to be infinitely divisible if, for every n, there exist some i.i.d.
random vectors ξn1, . . . , ξnn such that

∑
k ξnk

d= ξ. A k-dimensional random vector ξ is infinitely divisible if
and only if its characteristic function admits the representation eψ(u), where

ψ(u) = iuT b− 1
2u

Tau+
∫ (

eiu
T x − 1− iuTxI(||x|| ≤ 1)

)
ν(dx) (16)

where ν is a measure on Rk \ {0} satisfying
∫

(||x||2 ∧ 1)ν(dx) < ∞, a is a k × k positive semi-definite,
symmetric matrix and b is a vector. The measure ν is called the Lévy measure of ξ and (a, b, ν) are called
the characteristics of the infinitely divisible distribution. We will write ξ ∼ i.d.(a, b, ν). Other kinds of
truncation can be used for the term iuTx. This affects only the vector of centering constants b. An i.i.d.
array of random vectors is a collection of random vectors {ξnj , j ≤ mn, n ≥ 1} such that, for every n,
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ξn1, . . . , ξnmn
are i.i.d. The class of infinitely divisible distributions coincides with the class of limits of sums

of i.i.d. arrays (Kallenberg, 2002, Theorem 13.12).

To state a general criterion of convergence, we first introduce some notations. Let ξ ∼ i.d.(a, b, ν). Define,
for each h > 0,

a(h) = a+
∫
||x||<h

xxT ν(dx),

b(h) = b−
∫
h<||x||≤1

xν(dx),

where
∫
h<||x||≤1 = −

∫
1<||x||≤h if h > 1. Denote by v→ vague convergence, that is convergence of measures

with respect to the topology induced by bounded, measurable functions with compact support. Moreover,
let Rk be the one-point compactification of Rk. The following criterion for convergence holds (Kallenberg,
2002, Corollary 13.16).
Theorem B.1. Consider in Rk an i.i.d. array (ξnj)j=1,...,mn,n≥1 and let ξ be i.d.(a, b, ν). Let h > 0 be such
that ν(||x|| = h) = 0. Then

∑
j ξnj

d→ ξ if and only if the following conditions hold:

(i) mnP (ξn1 ∈ ·)
v→ ν(·) on Rk \ {0}

(ii) mnE(ξn1ξ
T
n1I(||ξn1|| < h))→ a(h)

(iii) mnE(ξn1I(||ξn1|| < h))→ b(h)

Inside the class of infinitely divisible distribution, we can distinguish the subclass of stable distributions. A
k-dimensional random vector ξ has stable distribution if, for every independent random vectors ξ1 and ξ2

with ξ1
d= ξ2

d= ξ and every a, b ∈ R, there exists c ∈ R and d ∈ Rk such that aξ1 + bξ2
d= cξ + d. This is

equivalent to the condition: for every n ≥ 1,

ξ1 + · · ·+ ξn
d= n1/αξ + dn (17)

where α ∈ (0, 2], ξ1, . . . , ξn are i.i.d. copies of ξ and dn is a vector. The random vector ξ is said to be strictly
stable if (17) holds with dn = 0. A stable vector ξ is strictly stable if and only if all its components are
strictly stable. The coefficient α is called the index of stability of ξ and the law of ξ is called α-stable. A
stable vector ξ is symmetric stable if P(ξ ∈ A) = P(−ξ ∈ A) for every Borel set A. A symmetric stable
vector is strictly stable. The class of stable distributions coincides with the class of limit laws of sequences
((
∑n
k=1Xk − bn)/an), where (Xn) are i.i.d. random variables.

A stable distribution is infinitely divisible. Thus its characteristic function admits the Lévy representation
(16). If α = 2, then the Lévy measure is the null measure and, therefore, the stable distribution coincides
with the multivariate normal distribution with covariance matrix a and mean vector b. If α < 2, then a = 0
(the zero matrix) and the α-stability implies that there exists a measure σ on the unit sphere Sk−1 such that
ν(dx) = r−(α+1)drσ(ds), where r = ||x|| and s = x/||x||. Substituting in (16), we obtain

ψ(u) = iuT b+
∫
S

∫ ∞
0

(
eiru

T s − 1− iruT sI(r ≤ 1)
) 1
r1+α drσ(ds)

For α < 1, the centering iruT sI(r ≤ 1) is not needed, since the function (of r) is integrable, and we can
write

ψ(u) = iuT b′ +
∫
S

∫ ∞
0

(
eiru

T s − 1
) 1
r1+α drσ(ds),

for some vector b′. After evaluating the inner integrals as in Feller (1968, Example XVII.3), we obtain

ψ(u) = iuT b′ −
∫
S

|uT s|αΓ(1− α)
(
cos(πα/2)− i sign(uT s) sin(πα/2)

)
σ(ds)
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= iuT b′ −
∫
S

|uT s|α
(
1− i sign(uT s) tan(πα/2)

)
Γ(1− α) cos(πα/2)σ(ds).

For α > 1, using the centering iruT s, we can write

ψ(u) = iuT b′′ +
∫
S

∫ ∞
0

(
eiru

T s − 1− iruT s
) 1
r1+α drσ(ds),

for some b′′. After evaluating the inner integrals as in Feller (1968, Example XVII.3), we obtain

ψ(u) = iuT b′′ +
∫
S

|uT s|αΓ(2− α)
α− 1

(
cos(πα/2)− i sign(uT s) sin(πα/2)

)
σ(ds)

= iuT b′′ −
∫
S

|uT sα
(
1− i sign(uT s) tan(πα/2)

) Γ(2− α)
1− α cos(πα/2)σ(ds).

Since, for α < 1, Γ(2−α) = (1−α)Γ(1−α), we can encompass the above results in one equation, and write,
for α 6= 1,

ψ(u) = iuT b′′′ −
∫
S

|uT s|α
(
1− i sign(uT s) tan(πα/2)

) Γ(2− α)
1− α cos(πα/2)σ(ds),

for some b′′′. Finally, for α = 1, using the centering ir sin ruT s, we can write

ψ(u) = iuT b′′′′ +
∫
S

∫ ∞
0

(
eiru

T s − 1− ir sin ruT s
) 1
r2 drσ(ds),

for some b′′′′. Evaluating the inner integral as in Feller (1968, Example XVII.3), we obtain

ψ(u) = iuT b′′′′ −
∫
S

|uT s|
(π

2 + isign(uT s) log |uT s|
)
σ(ds)

= iuT b′′′′ −
∫
S

|uT s|
(

1 + i
2
π
sign(uT s) log |uT s|

)
π

2 σ(ds).

Considering the spectral representation eψ(u) of the multivariate stable characteristic function

ψ(u) =

 −
∫
S
|uT s|α

(
1− i sign(uT s) tan(πα/2)

)
Γ(ds) + iuTµ(0) α 6= 1

−
∫
S
|uT s|

(
1 + i 2

π sign(uT s) log |uT s|
)

Γ(ds) + iuTµ(0) α = 1,

we can establish the following relationship between the Lévy measure ν and the spectral measure Γ:

ν(dx) = Cα
1

rα+1 Γ(ds),

where r = ||x||, s = x/||x|| and

Cα =


1− α

Γ(2− α) cos(πα/2) α 6= 1

2/π α = 1

A Stable random vector ξ is strictly stable if and only if{
µ(0) = 0 α 6= 1∫
S
sjΓ(ds) = 0 for every j α = 1.

(see e.g. Samoradnitsky and Taqqu (1994, Theorem 2.4.1)). By Theorem B.1, the spectral measure Γ of a
symmetric stable random vector ξ satisfies

lim
n→∞

nP
(
||ξ|| > n1/αx,

ξ

||ξ||
∈ A

)
= Cαx

−αΓ(A) (18)

for every Borel set A of S such that Γ(∂A) = 0. Moreover, the distribution of a random vector ξ belongs
to the domain of attraction of the Stk(α,Γ) distribution, with α ∈ (0, 2) and Γ simmetric finite measure on
Sk−1, if and only if (18) holds (see e.g. Davydov et al. (2008, Theorem 4.3)).
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