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Abstract

There is a recent literature on large-width properties of Gaussian neural networks (NNs),
namely NNs with Gaussian distributed weights. Two popular results are: i) the characteri-
zation of the large-width asymptotic behavior of NNs in terms of Gaussian processes; ii) the
characterization of the large-width training dynamics of NNs in terms of the so-called neural
tangent kernel (NTK). In this paper, we investigate large-width asymptotics and training
dynamics of α-Stable NNs, namely NNs whose weights are distributed according to α-Stable
distributions, with α ∈ (0, 2]. First, for α-Stable NNs with a ReLU activation function, we
show that if the NN’s width goes to infinity then a rescaled NN converges weakly to an α-
Stable process, generalizing Gaussian processes. Differently from the Gaussian setting, our
result shows that the choice of the activation function affects the scaling of the NN, that is:
to achieve the infinitely wide α-Stable process, the ReLU activation requires an additional
logarithmic term in the scaling with respect to sub-linear activations. Then, we character-
ize the large-width training dynamics of α-Stable ReLU-NNs in terms of a random kernel,
referred to as the α-Stable NTK, showing that, for a sufficiently large width, the gradient
descent achieves zero training error at a linear rate. The randomness of the α-Stable NTK
is a further difference with respect to the Gaussian setting, that is: in the α-Stable setting,
the randomness of the NN at initialization does not vanish in the large-width regime of the
training.

1 Introduction

There is a growing literature on large-width properties of Gaussian neural networks (NNs), namely NNs
with weights are Gaussian distributed (Neal, 1996; Williams, 1997; Der and Lee, 2006; Garriga-Alonso et al.,
2018; Jacot et al., 2018; Lee et al., 2018; Matthews et al., 2018; Novak et al., 2018; Arora et al., 2019; Lee
et al., 2019; Yang, 2019;a;b; Bracale et al., 2021; Eldan et al., 2021; Klukowski, 2021; Yang and Hu, 2021;
Yang and Littwin, 2021; Basteri and Trevisan, 2022). Consider this setting: i) for d, k ≥ 1 let X be the
d× k NN’s input, with xj = (xj1, . . . , xjd)T being the j-th input (column vector); ii) let φ be an activation
function; iii) for m ≥ 1 let W = (w(0)

1 , . . . , w
(0)
m , w) be the NN’s weights, such that w(0)

i = (w(0)
i1 , . . . , w

(0)
id )

and w = (w1, . . . , wm) with the w(0)
ij ’s and the wi’s being i.i.d. as a Gaussian distribution with mean 0 and

variance σ2. If

fm(xj) =
m∑
i=1

wiφ(〈w(0)
i , xj〉)

for j = 1, . . . , k, then fm(X) = (fm(x1), . . . , fm(xk)) defines a (fully connected feed-forward) Gaussian φ-
NN of width m. Neal (1996) investigated the large-width asymptotic behaviour of Gaussian φ-NNs. In
particular, under suitable assumptions on φ, Neal (1996) showed that an application of the central limit
theorem (CLT) leads to characterize the large-width distribution of the NN as follows: if m→ +∞ then the
rescaled NN m−1/2fm(X) converges weakly to a Gaussian stochastic process with covariance function ΣX,φ
such that ΣX,φ[r, s] = σ2E[φ(〈w(0)

i , xr〉φ(〈w(0)
i , xs〉]. Extensions are obtained for deep NNs (Matthews et

al., 2018), general NN’s architectures such as convolutional NNs (Yang, 2019a;b), and infinite-dimensional
inputs (Bracale et al., 2021; Eldan et al., 2021).
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In addition to the large-width asymptotic behavior, recent works have investigated the large-width training
dynamics of Gaussian NNs, with the training being performed through gradient descent (Jacot et al., 2018;
Arora et al., 2019; Du et al. , 2019; Lee et al., 2019). Let (X,Y ) be the training set, where Y = (y1, . . . , yk)
is the (training) output, with yj being the (training) output for the j-th input xj , let fm(X) be the Gaussian
φ-NN, with φ to be the ReLU activation function, and set

f̃m(W,X) = 1
m1/2 fm(X).

In particular, at random initialization W (0) for the NN’s weights, and assuming the squared-error loss
function, the gradient flow of W (t) leads to the training dynamics of f̃m(W (t), X), that is for t ≥ 0

df̃m(W (t), X)
dt = −(f̃m(W (t), X)− Y )ηmHm(W (t), X), (1)

where ηm > 0 is the (continuous) learning rate, and Hm(W (t), X) is a k × k matrix whose (j, j′) entry
is 〈∂f̃m(W (t), xj)/∂W, ∂f̃m(W (t), xj′)/∂W 〉. In such a context, Du et al. (2019) showed that if ηm = 1,
then: i) the kernel Hm(W (0), X) converges in probability, as m→ +∞, to a deterministic kernel H∗(X,X),
which is referred to as the neural tangent kernel (NTK) (Jacot et al., 2018; Arora et al., 2019); ii) the least
eigenvalue of H∗(X,X) is bounded from below by a positive constant λ0; iii) for m sufficiently large, the
gradient descent achieves zero training error at a linear rate, i.e.

‖Y − f̃m(W (t), X)‖22 ≤ exp(−λ0t)‖Y − f̃m(W (0), X)‖22,

with high probability. We refer to the works of Arora et al. (2019), Yang (2019) and Yang and Littwin (2021)
for several extensions of these results to deep NNs and also to more general architectures.

1.1 Our contributions

In this paper, we study large-width properties of α-Stable ReLU-NNs, namely NNs with a ReLU activation
function and weights distributed according to α-Stable distributions (Samoradnitsky and Taqqu, 1994). For
α ∈ (0, 2], α-Stable distributions form a class of heavy tails distributions, with α = 2 being the Gaussian
distribution. In his seminal work, Neal (1996) first considered α-Stable distributions to initialize NNs’
weights, showing that while all Gaussian weights vanish in the infinitely wide limit, some α-Stable weights
retain a non-negligible contribution, allowing to represent “hidden features" (Der and Lee, 2006; Fortuin et
al., 2019; Lee et al., 2022). This is attributed to the diversity of the NN’s path properties as α ∈ (0, 2] varies,
which makes α-Stable NNs more flexible than Gaussian NNs. Motivated by these works, Favaro et al. (2020;
2021) characterized the large-width distribution of α-Stable φ-NN fm(X;α) as follows: for α ∈ (0, 2) and a
sub-linear φ, if m→ +∞ then the rescaled NN m−1/αfm(X;α) converges weakly to an α-Stable stochastic
process, that is a process with α-Stable finite-dimensional distributions. Here, we extend this result to the
ReLU activation, this being the most popular linear activation function. We show that if m → +∞, then
the α-Stable ReLU-NN (m logm)−1/αfm(X;α) converges weakly to an α-Stable process. While for NNs
with a single input, i.e. k = 1, such a result follows by an application of the generalized CLT for heavy tails
distributions (Uchaikin and Zolotarev, 2011; Bordino et al., 2022), for k > 1 the generalized CLT does not
apply, leading us to develop an alternative proof that may be of independent interest for multidimensional
α-Stable distributions. It turns out that in the α-Stable setting, differently from the Gaussian setting, the
choice of φ affects the scaling of the NN, that is: to achieve the infinitely wide α-Stable process, the use of
the ReLU activation in place of a sub-linear activation results in a change of the scaling m−1/α of the NN
through the additional (logm)−1/α term.

Then, our main contribution consists in the study of the large-width training dynamics of α-Stable ReLU-
NNs, generalizing to the α-Stable setting the result of Du et al. (2019), as well as soome results of Jacot et
al. (2018) and Arora et al. (2019). For α ∈ (0, 2) and a training set (X,Y ), we denote by

f̃m(W,X;α) = 1
(m logm)1/α fm(X;α)
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the rescaled (model) output, and we consider the training of the NN performed through gradient descent
under the squared-error loss function. By writing the training dynamics of f̃m(W (t), X;α) as in equation 1,
with ηm being the (continuous) learning rate and Hm(W (t), X) the kernel in the α-Stable setting, we show
that if ηm = (logm)2/α then: i) the rescaled kernel (logm)2/αHm(W (0), X) converges in distribution, asm→
+∞, to an (α/2)-Stable (almost surely) positive definite random kernel H̃∗(X,X;α), which is referred to as
the α-Stable NTK; ii) during training t > 0, for every δ > 0 the least eigenvalue of (logm)2/αH̃m(W (t), X;α)
remains bounded away from zero, for m sufficiently large, with probability 1 − δ; iii) for every δ > 0 the
gradient descent achieves zero training loss at a linear rate, form sufficiently large, with probability 1−δ. The
randomness of the α-Stable NTK is a further difference with respect to the Gaussian setting, and it makes
the convergence analysis of the gradient descent more challenging than in the Gaussian setting. Our work is
the first to investigate the large-width training dynamics of NNs with weights initialized through heavy tails
distributions, and it shows that, within the α-Stable setting, the randomness of the NN at initialization does
not vanish in the large-width regime of the training. Such a behaviour may be viewed as the counterpart,
at the training level, of the large-width behaviour described in Neal (1996).

1.2 Organization of the paper

The paper is organized as follows. Section 2 contains some preliminary definitions on the multidimensional
α-Stable distribution. In Section 3 we the study of the large-width distributions of α-Stable ReLU-NNs,
characterizing the infinitely wide limit of a rescaled NN in terms of an α-Stable process. In Section 4 we
study the large-width training dynamics of α-Stable ReLU-NNs, characterizing the infinitely wide dynamics
in terms of the α-Stable NTK, and showing that, for a sufficiently large width, the gradient descent achieves
zero training error at a linear rate, with high probability. Section 5 contains a discussion of our results, their
extension to deep α-Stable NNs, and some directions for future work. Appendices contain the proofs and a
brief review of α-Stable distributions.

2 Preliminaries on multidimensional α-Stable distributions

We recall the definition of the multidimensional α-Stable distribution. See Samoradnitsky and Taqqu (1994,
Chapter 1 and Chapter 2). For α ∈ (0, 2], a random variable S ∈ R is distributed as a symmetric and
centered 1-dimensional α-Stable distribution with scale σ > 0 if its characteristic function is

E(exp{izS}) = exp {−σα|z|α} ,

and we write S ∼ St(α, σ). The parameter α is typically referred to as the stability parameter. In particular,
if α = 2 then S is distributed according to a Gaussian distribution with mean 0 and variance σ2. Let Sk−1

be the unit sphere in Rk, with k ≥ 1, and let Γ be a symmetric finite measure on Sk−1. For α ∈ (0, 2],
we say that a random variable S ∈ Rk is distributed as a symmetric and centered k-dimensional α-Stable
distribution with spectral measure Γ if its characteristic function is

E(exp{i〈z, S〉}) = exp
{
−
∫
Sk−1
|〈z, s〉|αΓ(ds)

}
,

and we write S ∼ Stk(α,Γ). Let 1r be the r-dimensional (column) vector with 1 in the r-th entry and
0 elsewhere, for any r = 1, . . . , k. Then, the r-th element of S, that is S1r is distributed as an α-Stable
distribution with scale

σ =
(∫

Sk−1
|〈1r, s〉|αΓ(ds)

)1/α
.

We deal mostly with k-dimensional α-Stable distributions with discrete spectral measure, that is we consider
measures of the form Γ(·) =

∑
1≤i≤n γiδsi(·) with n ∈ N, γi ∈ R and si ∈ Sk−1, for i = 1, . . . , n (Samorad-

nitsky and Taqqu, 1994, Chapter 2). Throughout this paper, it is assumed that all the random variables are
defined on a common probability space, say (Ω,F ,P), unless otherwise stated.
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We make use several times of the following characterization of the spectral measure of α-stable distributions:
if S ∼ Stk(α,Γ), then for every Borel set B of Sk−1 such that Γ(∂B) = 0, it holds true that

lim
r→∞

rαP

(
‖S‖ > r,

S

‖S‖
∈ B

)
= CαΓ(B),

where

Cα =
{ 1−α

Γ(2−α) cos(πα/2) α 6= 1
2
π α = 1.

(2)

The proof of this result is reported in Appendix B for completeness (Samoradnitsky and Taqqu, 1994,
Chapter 2). Moreover, the distribution of a random vector ξ belongs to the domain of attraction of the
Stk(α,Γ) distribution, with α ∈ (0, 2) and Γ simmetric finite measure on Sk−1, if and only if

lim
n→∞

nP
(
||ξ|| > n1/α,

ξ

||ξ||
∈ A

)
= CαΓ(A) (3)

for every Borel set A of S such that Γ(∂A) = 0. We refer to Appendix B for more details. In genera, we
refer to the monograph Samoradnitsky and Taqqu (1994, Chapter 1 and Chapter 2) for further details on
Cα within the context of the definition of the class of multidimensional α-Stable distributions.

3 Large-width asymptotics of α-Stable ReLU-NNs

To define an α-Stable ReLU-NNs, consider the following setting: i) for any d, k ≥ 1 let X be the d ×
k NN’s input, with xj = (xj1, . . . , xjd)T being the j-th input (column vector); ii) for m ≥ 1 let W =
(w(0)

1 , . . . , w
(0)
m , w) be the NN’s weights, such that w(0)

i = (w(0)
i1 , . . . , w

(0)
id ) and w = (w1, . . . , wm). If

fm(W,xj ;α) =
m∑
i=1

wi〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)

for j = 1, . . . , k, where I(·) being the indicator function, then the ReLU-NN of width m is fm(W,X;α) =
(fm(W,x1;α), . . . , fm(W,xk;α)). Throughout the paper, we denote by W (0) = (w(0)

1 (0), . . . , w(0)
m (0), w(0))

the NN weights at random initialization. In particular, if the weight w(0)
ij ’s and wi’s are initialized as i.i.d.

α-Stable random variables, with α ∈ (0, 2) and σ > 0, then fm(W (0), X;α) defines an α-Stable ReLU-NN
of width m. Without loss of generality we assume the scale parameter σ = 1. Further, the case α = 2,
which corresponds to the Gaussian setting, is excluded by our analysis, though some of our results remain
valid also for α = 2. The next theorem characterizes the infinitely wide limit of α-Stable ReLU-NNs. In
particular, we denote by Zm

w−→ Z the weak convergence, as m → +∞, of the sequence of random vectors
(Zm)n≥1 to the random vector Z.
Theorem 3.1. Let fm(W (0), X;α) be an α-Stable ReLU-NN. If m→ +∞ then

1
(m logm)1/α fm(W (0), X;α) w−→ f(X),

where f(X) ∼ Stk(α,ΓX), with the spectral measure ΓX being of the following form:

ΓX = Cα
4

d∑
i=1

(‖[xjiI(xji > 0)]j‖α)D+
i (X) + ‖[xjiI(xji < 0)]j‖α)D−i (X)

such that
D+
i (X) = δ

(
[xjiI(xji > 0)]j
‖[xjiI(xji > 0)]j‖

)
+ δ

(
− [xjiI(xji > 0)]j
‖[xjiI(xji > 0)]j‖

)
and

D−i (X) = δ

(
[xjiI(xji < 0)]j
‖[xjiI(xji < 0)]j‖

)
+ δ

(
− [xjiI(xji < 0)]j
‖[xjiI(xji < 0)]j‖

)
,
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where, for any s ∈ Sk−1, δ(s) is probability measure degenerate in s, and Cα is a constant defined in
equation 2. The stochastic process f(X) = (f(x1), . . . , f(xk)), as a process indexed by the NN’s input X, is
an α-Stable process with spectral measure ΓX .

See Appendix A.1 for the proof of Theorem 3.1. For a broad class of bounded or sub-linear activation
functions, Favaro et al. (2021) characterizes the large-width distribution of deep α-Stable NNs. In particular,
let

fm(xj ;α) =
m∑
i=1

wiφ〈w(0)
i , xj〉

be the α-Stable NN of width m for the input xj , for j = 1, . . . , k, with φ being a bounded activation function.
Let fm(X;α) = (fm(x1;α), . . . , fm(xk;α)). From Favaro et al. (2021, Theorem 1.2), if m→ +∞ then

1
m1/α fm(X;α) w−→ f(X), (4)

with f(X) being an α-Stable process with spectral measure ΓX,φ. Theorem 3.1 provides an extension
of Favaro et al. (2021, Theorem 1.2) to the ReLU activation function, which is one of the most popular
unbounded activation function. It is useful to discuss Theorem 3.1 with respect to the scaling (m logm)−1/α,
which is required to achieve the infinitely wide α-Stable process. In particular, Theorem 3.1 shows that the
use of the ReLU activation in place of a bounded activation results in a change of the scaling m−1/α in
equation 4, through the inclusion of the (logm)−1/α term. This is a critical difference between the α-Stable
setting and Gaussian setting, as in the latter the choice of the activation function φ does not affect the
scaling m−1/2 required to achieve the infinitely wide Gaussian process. For k = 1, we refer to Bordino et
al. (2022) for a detailed analysis of infinitely wide limits of α-Stable NNs with general classes of sub-linear,
linear and super-linear activation functions.

4 Large-width training dynamics of α-Stable ReLU-NNs

Let fm(W,X;α) be an α-Stable ReLU-NN, and let (X,Y ) be the training set, such that Y = (y1, . . . , yk) is
the (training) output, with yj being the (training) output for the j-th input xj . We consider

f̃m(W,X;α) = 1
(m logm)1/α fm(W,X;α),

and denote by f̃m(W,xj ;α) = (m logm)−1/αfm(W,xj ;α) the (model) output of xj , for j = 1, . . . , k. With
the squared-error loss function `(yj , f̃m(W,xj ;α)) = 2−1∑

1≤j≤k(f̃m(W,xj ;α)−yj)2, a direct application of
the chain rule leads to the NN’s training dynamics. That is for any t ≥ 0 we write

df̃m(W (t), X;α)
dt = −(f̃m(W (t), X;α)− Y )ηmHm(W (t), X), (5)

where the kernel Hm(W (t), X) in the NN’s training dynamics is a k × k matrix whose (j, j′) entry is

Hm(W (t), X)[j, j′] =
〈
∂f̃m(W (t), xj ;α)

∂W
,
∂f̃m(W (t), xj′ ;α)

∂W

〉
, (6)

and ηm is the (continuous) learning rate. We show that if ηm = (logm)2/α then: i) the rescaled kernel at
initialization H̃m(W (0), X) = ηmHm(W (0), X) converges in distribution to an (α/2)-Stable (almost surely)
positive definite random kernel H̃∗(X,X;α), as m → ∞; ii) during training t > 0, for every δ > 0 the
least eigenvalue of the kernel H̃m(W (t), X) remains bounded away from zero, for m sufficiently large, with
probability 1 − δ; iii) for every δ > 0 the gradient descent achieves zero training loss at a linear rate, with
probability 1− δ. Denote by λmin(·), ‖ · ‖F and ‖ · ‖2 the minimum eigenvalue, the Frobenius and operator
norms of symmetric and positive semi-definite matrices.
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4.1 Infinitely wide limits of H̃m(W (0), X)

For α-Stable ReLU-NNs, we study the large-width behaviour of the kernel Hm(W (0), X) in equation 6. In
particular, if

H̃m(W,X) = (logm)2/αHm(W,X), (7)

then H̃m(W (0), X) converges in distribution, as m→∞, to a positive definite random matrix H̃∗(X,X,α),
with (α/2)-stable distribution. In particular, this result allows to prove that the minimum eigenvalue of
H̃m(W (0), X) is bounded away from zero, with arbitrarily high probability, for m sufficiently large. Critical
for these results is the fact that H̃m(W,X) can be decomposed as follows:

H̃m(W,X) = H̃(1)
m (W,X) + H̃(2)

m (W,X), (8)

with H̃(1)
m (W,X) and H̃(2)

m (W,X) being two matrices whose (j, j′) entries are of the following form:

H̃(1)
m (W,X)[j, j′] = 1

m2/α

m∑
i=1

w2
i 〈xj , xj′〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0), (9)

and

H̃(2)
m (W,X)[j, j′] = 1

m2/α

m∑
i=1
〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)〈w(0)

i , xj′〉I(〈w(0)
i , xj′〉 > 0), (10)

respectively. The next theorem characterizes the infinitely wide limits of the random matrices H̃(1)
m (W (0), X),

H̃
(2)
m (W (0), X), and H̃m(W (0), X), and provides expressions for their spectral measures.

Theorem 4.1. Let H̃m(W,X), H̃(1)
m (W,X) and H̃(2)

m (W,X) be the matrices defined in equation 7, equation 9,
and equation 10, respectively. Moreover, for every u ∈ {0, 1}k, let

Bu = {v ∈ Rd : 〈v, xj〉 > 0 if uj = 1, 〈v, xj〉 ≤ 0 if uj = 0, j = 1, . . . , k},

and for every i = 1, . . . , d, let ei denote the d-dimensional vector satisfying

eij = 1 for j = i, eij = 0 for j 6= i.

As m→ +∞,
(H̃(1)

m (W (0), X), H̃(2)
m (W (0), X)) w−→ (H̃∗1 (α), H̃∗2 (α)),

where H̃∗1 (α) and H̃∗2 (α) are stochastically independent, positive semi-definite random matrices, distributed
as (α/2)-Stable distributions with spectral measures

Γ∗1 = Cα/2
∑

u∈{0,1}k

P(w(0)
i (0) ∈ Bu)

δ

(
[〈xj ,xj′ 〉ujuj′ ]j,j′

(
∑

j,j′
〈xj ,xj′ 〉2ujuj′ )1/2

)
(∑

j,j′〈xj , xj′〉2ujuj′
)−α/4 , (11)

and

Γ∗2 = Cα/2
∑

u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

δ

(
[xjiujxj′iuj′ ]j,j′∑

j
x2

ji
uj

)
(∑

j x
2
jiuj

)−α/2 , (12)

respectively, where Cα/2 is a constant defined in equation 2. Furthermore, as m→∞,

H̃m(W (0), X) w−→ H̃∗(X,X;α),

where H̃∗(X,X;α) is a positive semi-definite random matrix, distributed according to an (α/2)-Stable dis-
tribution with spectral measure of the form Γ∗ = Γ∗1 + Γ∗2.
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See Appendix A.2 for the proof of Theorem 4.1. It turns out that the probability distributions of the random
matrices H̃∗1 (α) and H̃∗2 (α) are absolutely continuous in suitable subspaces of the space of symmetric and
positive semi-definite matrices. In turn, this fact implies that the minimum eigenvalues of H̃(1)

m (W (0), X)
and of H̃(2)

m (W (0), X) are bounded away from zero, uniformly in m, for m sufficiently large, with arbitrarily
high probability. This is precisely the statement of the next theorem.
Theorem 4.2. Under the assumptions of Theorem 4.1, for every δ > 0 there exist strictly positive numbers
λ0, λ1 and λ2 such that, for m sufficiently large,

λmin(H̃(i)
m (W (0), X)) > λi i = 1, 2,

and
λmin(H̃m(W (0), X)) > λ0.

with probability at least 1− δ.

See Appendix A.3 for the proof of Theorem 4.2. In the setting of Gaussian ReLU-NN, Du et al. (2019)
showed that if ηm = 1, then: i) the kernel Hm(W (0), X) converges in probability, as m→ +∞, to the NTK
H∗(X,X), which is a deterministic kernel; ii) the least eigenvalue of H∗(X,X) is bounded from below by
a positive constant λ0. See also the works of Jacot et al. (2018), Arora et al. (2019) and Lee et al. (2019),
and references therein, for the study of large-width training dynamics of Gaussian ReLU NNs, as well as
the work of Yang (2019) for some extensions to more general NN’s architectures. Theorem 4.1 and Theorem
4.2 extend the main results of Du et al. (2019) to the α-Stable setting, for α ∈ (0, 2), showing that: i)
the rescaled kernel (logm)2/αHm(W (0), X) converges in distribution, as m → +∞, to the α-Stable NTK
H̃∗(X,X;α), which is (α/2)-Stable (almost surely) positive definite random kernel; ii) during training t > 0,
for every δ > 0 the least eigenvalue of the kernel H̃m(W (t), X;α) remains bounded away from zero, for m
sufficiently large, with probability 1− δ. The randomness of the α-Stable NTK provides a critical difference
between the α-Stable setting and the Gaussian setting, showing that in the α-Stable setting the randomness
of the NN at initialization does not vanish in the large-width regime of the training for the NN’s.

4.2 Large-width training dynamics of α-Stable ReLU-NNs

We conclude our analysis by exploiting Theorem 4.1 and Theorem 4.2 to study the large-width training
dynamics of α-Stable NNs. In particular, the next theorem shows that, if m is sufficiently large, then with
high probability the minumum eigenvalue of the random matrix H̃m(W (t), X) remains bounded away from
zero. This property is critical in order to establish the rate of convergence of the training.
Theorem 4.3. For any k ≥ 1 let the collection of NN’s inputs x1, . . . , xk be linearly independent, and such
that ‖xj‖ = 1. Let γ ∈ (0, 1) and c > 0 be fixed numbers. Further, let H̃m(W,X) and H̃

(2)
m (W,X) be

the random matrices defined as in equation 7 and equation 10, respectively. For every δ > 0 the following
properties hold true for every t ≥ 0, with probability at least 1− δ, for m sufficiently large:

(i) for every j = 1, . . . , k,

(logm)2/α
∥∥∥∥∂f̃m∂w (W (t), xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥2

F

< cm−2γ/α;

(ii) there exists λ0 > 0 such that

‖H̃(2)
m (W (t), X)− H̃(2)

m (W (0), X)‖F < λ0m
−γ/α

and
λmin(H̃m(W (t), X)) > λ0

2 .

See Appendix A.4 for the proof of Theorem 4.3. Theorem 4.3 is critical to study on the large-width training
dynamics of α-Stable ReLU-NNs. From Theorem 4.3, for a fixed δ > 0, let m and λ0 > 0 be such that

λmin(H̃m(W (s), X)) > λ0

2 .

7
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for every s ≤ t, on a set N ∈ F with P[N ] > 1 − δ. According to such a construction, for any random
initialization W (0)(ω) of the α-Stable ReLU-NN , with ω ∈ N , the following inequality holds

d
ds‖Y − f̃m(W (s)(ω), X;α)‖22 ≤ −λ0‖Y − f̃m(W (s)(ω), X;α)‖22,

and hence
d
ds exp(λ0s)‖Y − f̃m(W (s)(ω), X;α)‖22 ≤ 0.

Since exp(λ0s)‖Y − f̃m(W (s)(ω), X;α)‖22 is a decreasing function of s > 0, then we can write that

‖Y − f̃m(W (s)(ω), X;α)‖22 ≤ exp(−λ0s)‖Y − f̃m(W (0)(ω), X;α)‖22.

The next theorem summarizes the main result of this section, completing our study on the training dynamics.
Theorem 4.4. For any k ≥ 1 let the collection of NN’s inputs x1, . . . , xk be linearly independent, and such
that ‖xj‖ = 1. Under the dynamics equation 5, if ηm = (logm)2/α then for every δ > 0 there exists λ0 > 0
such that, for m sufficiently large and any t > 0, with probability at least 1− δ it holds true that

‖Y − f̃m(W (t), X;α)‖22 ≤ exp(−λ0t)‖Y − f̃m(W (0), X;α)‖22.

5 Discussion

In this paper, we investigated large-width properties of α-Stable ReLU-NNs, focusing on the popular ques-
tions of large-width asymptotics and training dynamics of the NN. With regards to large-width asymptotics,
we showed that, as the NN’s width goes to infinity, a rescaled α-Stable ReLU-NN converges weakly to an
α-Stable process. As a novelty with respect to the Gaussian setting, it turns out that in the α-Stable setting
the choice of the activation function affects the scaling of the NN, that is: to achieve the infinitely wide
α-Stable process, the ReLU activation requires an additional logarithmic term in the scaling with respect to
sub-linear activations. With regards to large-width training dynamics, we characterized the infinitely wide
dynamics in terms of the α-Stable NTK, and we showed that, for a sufficiently large width, the gradient
descent achieves zero training error at a linear rate. The randomness of the α-Stable NTK is a further nov-
elty with respect to the Gaussian setting, that is: within the α-Stable setting, the randomness of the NN at
initialization does not vanish in the large-width regime of the training. Our work extends the main result of
Favaro et al. (2020; 2021) to the popular ReLU activation function, and then presents the first analysis of the
large-width training dynamics of NNs in the α-Stable setting, thus generalizing to heavy-tails distributions
the main result of Du et al. (2019), as well as some results of Jacot et al. (2018) and Arora et al. (2019). The
use of the α-Stable distributions to initialize NNs, in place of the classical Gaussian distributions, brought
some interesting phenomena, paving the way to future research.

It remains open to establish a large-width equivalence between training an α-Stable ReLU-NN and per-
forming a kernel regression with the α-Stable NTK. In particular, Jacot et al. (2018) showed that for
Gaussian NNs, during training t > 0, if m is sufficiently large then the fluctuations of the squared Frobe-
nious norm ‖Hm(W (t), X) − Hm(W (0), X)‖2F are vanishing. Accordingly, this result suggested to replace
ηmHm(W (t), X) with the NTK H∗(X,X) in the dynamics equation 1, and write

df∗(t,X)
dt = −(f∗(t,X)− Y )H∗(X,X).

This is precisely the dynamics of a kernel regression under gradient flow, for which at t→ +∞ the prediction
for a generic test point x ∈ Rd is of the form f∗(x) = Y H∗(X,X)−1H∗(X,x)T . In particular, Arora et al.
(2019) have proved that the prediction of the Gaussian NN f̃m(W (t), x) at t→ +∞, for m sufficiently large,
is equivalent to the kernel regression prediction f∗(x). Within the α-Stable setting, it is not clear whether
the fluctuations of H̃m(W (t), X) = H̃

(1)
m (W (t), X) + H̃

(2)
m (W (t), X) during the training vanish, as m→∞.

8
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Theorem 4.3 shows that the fluctuations of H̃(2)
m (W (t), X) vanish, as m→∞. Such a result is based on the

fact that for every δ > 0 it holds that

(logm)2/α
∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥2

F

< cm−2γ/α,

for every j = 1, . . . , k, and for every W such that ‖W −W (0)‖F ≤ (logm)2/α, with probability at least
1 − δ, if m is sufficiently large. See Lemma A.8 for details. The same property is not true if the partial
derivatives with respect to w are replaced by the partial derivatives with respect to w(0). Therefore, it is not
clear whether the fluctuations of H̃(1)

m (W (t), X) during training also vanish, as m→∞.

Another interesting avenue for future research would be to extend our results of Section 3 and Section 4 to the
more general setting of deep α-Stable NNs, with D ≥ 2 being the depth. Let us consider the following setting:
i) for d, k ≥ 1 let X be the d×k NN’s input, with xj = (xj1, . . . , xjd)T being the j-th input (column vector);
ii) for D,m ≥ 1 and n ≥ 1 let: i) (W (1), . . . ,W (D)) be the NN’s weights such that W (1) = (w(1)

1,1, . . . , w
(1)
m,d)

and W (l) = (w(l)
1,1, . . . , w

(1)
m,m) for 2 ≤ l ≤ D, where the w(l)

i,j ’s are i.i.d. as an α-Stable distribution with scale
σ > 0, e.g. we can assume σ = 1. Then,

f
(1)
i (X;α) =

d∑
j=1

w
(1)
i,j xj

and

f
(l)
i,m(X;α) =

m∑
j=1

w
(l)
i,jf

(l−1)
j (X,m)I(f (l−1)

j (X,m) > 0)

with f (1)
i,m(X;α) := f

(1)
i (X;α), is a deep α-Stable ReLU-NN of depth D and width m. Under the assumption

that the NN’s width grows sequentially over the NN’s layers, i.e. m → +∞ one layer at a time, it is easy
to extend Theorem 3.1 to f (l)

i,m(X;α). Under the same assumption on the growth of m, we expect the NTK
analysis of deep α-Stable ReLU-NNs to follow along lines similar to that we have developed for the α-Stable
ReLU-NN, though computations may be more involved. A more challenging task would to extend our results
to deep α-Stable ReLU-NNs under the assumptions that the NN’s width grows jointly over the NN’s layers,
i.e. m→ +∞ simultaneously over the layers.
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A

A.1 Proof of Theorem 3.1

To simplify the notation, we set in this section: w := w(0), w(0) := w(0)(0), and W := W (0). First, we will
prove that [〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)]j belongs to the domain of attraction of an α-stable law with spectral

measure

Γ1 = CαEu∼Γ0

(
‖[〈u, xj〉I(〈u, xj〉 > 0)]j‖αδ

(
[〈u, xj〉I(〈u, xj〉 > 0)]j
‖[〈u, xj〉I(〈u, xj〉 > 0)]j‖

))
,

where Γ0 is the spectral measure of w(0)
i . For this, it is sufficient to show that

rαP

(
[〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)]j

‖[〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)]j‖
∈ B, ‖[〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)]j‖ > r

)
→ CαΓ1(B),

for every Borel set B of Sk−1 such that Γ1(∂B) = 0 (see Appendix B). Let T : Sk−1 7→ [0, 1]k and C :
Rk \ {0} → Sk−1 be defined as T (u) = [〈u, xj〉I(〈u, xj〉 > 0]j and C(v) = v/‖v‖, respectively. Fix a Borel
set B of Sk−1 such that Γ1(∂B) = 0. This condition implies that

Γ0
({
u ∈ Sk−1 : ‖T (u)‖ 6= 0, T (u) ∈ C−1(∂B)

})
= Γ0

({
u ∈ Sk−1 : ‖T (u)‖ 6= 0, T (u)

‖T (u)‖ ∈ ∂B
})

= 0.

Hence

Γ0
(
T−1 ({z ∈ [0, 1]k : ‖z‖ 6= 0, z ∈ ∂C−1(B)

}))
= Γ0

(
T−1 ({z ∈ [0, 1]k : ‖z‖ 6= 0, z ∈ C−1(∂B)

}))
= 0.

Now, let Z = T (w(0)
i /‖w(0)

i ‖)I(‖w(0)
i ‖ 6= 0). We can write that

rαP

(
[〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)]j

‖[〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)]j‖
∈ B, ‖[〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)]j‖ > r

)

= rαP

(
‖Z‖ 6= 0, Z

‖Z‖
∈ B, ‖w(0)

i ‖‖Z‖ > r

)
=
∫
C−1(B)∩[0,1]k

rαP(‖w(0)
i ‖ > r‖z‖−1, Z ∈ dz)

=
∫
C−1(B)∩[0,1]k

‖z‖α(r‖z‖−1)αP(‖w(0)
i ‖ > r‖z‖−1,

w
(0)
i

‖w(0)
i ‖
∈ T−1(dz)).

Since Γ0
(
T−1 ({z ∈ [0, 1]k : z 6= 0, z ∈ ∂(C−1(B))

}))
= 0, then the points of discontinuity of the function

‖z‖αI(C−1(B))(z) have zero Γ0(T−1(·))-measure. It follows that∫
C−1(B)∩[0,1]k

‖z‖α(r‖z‖−1)αP(‖w(0)
i ‖ > r‖z‖−1, w

(0)
i ∈ T

−1(dz))

→ Cα

∫
C−1(B)∩[0,1]k

‖z‖αΓ0(T−1(dz))

= Cα

∫
Sk−1

I(u ∈ B)
(

T (u)
‖T (u)‖

)
‖T (u)‖αΓ0(du)

= CαΓ1(B),
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as r →∞, which completes the proof that [〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)]j belongs to the domain of attraction
of an α-stable law with spectral measure Γ1. Then, for every k-dimensional vector s,

1
m1/α

m∑
i=1

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0),

as a sequence of random variables in m, converges in distribution, as m → +∞, to a random variable with
α-stable distribution and characteristic function

exp
(
−|t|αEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
))
.

Thus, the distribution of
∑k
j=1 sj〈w

(0)
i , xj〉I(〈w(0)

i , xj〉 > 0) belongs to the domain of attraction of an α-stable
law. In particular, this implies that as m→ +∞

rαP

(
|
k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)| > r

)

→ CαEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
)
.

We now study the tail behaviour of
∣∣wi∑k

j=1 sj〈w
(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)
∣∣. By Cline (1986, Section 5),

P

(
|wi| |

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)| > et
)

= F ∗G(t),

where

F (t) = P

(
|wi| > et

)
, G(t) = P

(
|
k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)| > et
)
.

We now prove that F and G satisfy the assumptions of Cline (1986, Theorem 4) with β = γ = 0. The
distribution functions F and G have exponential tails with rate α. Indeed, for all real u,

lim
t→∞

F (t− u)
F (t)

= lim
t→∞

P(|wi| > et−u)
P(|wi| > et) = e−α(t−u)

e−αt
= eαu.

Analogously for G. Moreover the functions b(t) = eαtF (t) and c(t) = eαtG(t) are regularly varying with
exponent zero: for all y > 0,

lim
t→∞

b(yt)
b(t) = lim

t→∞

eαytP(|wi| > eyt)
eαtP(|wi| > et) = lim

t→∞

eαyte−αyt

eαte−αt
= 1 = y0.

The same property holds for c(t). By Cline (1986, Theorem 4 (v)), as t→∞,

P

(
|wi| |

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)| > et
)

= F ∗G(t)

∼ C2
αEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
)
αte−αt,
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as t→∞. Thus, for r →∞,

rαP

(
|wi| |

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)| > r

)

∼ C2
αEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
)
α log r.

Let L̃(r) = C2
αEu∼Γ0

(
|
∑k
j=1 sj〈u, xj〉I(〈u, xj〉 > 0)|α

)
α log r. Since the distribution of

wi
∑k
j=1 sj〈w

(0)
i , xj〉I(〈w(0)

i , xj〉 > 0) is symmetric, then we can write that

1
am

m∑
i=1

wi

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0),

as a sequence of random variables in m, converges in distribution, as m → +∞, to a random variable with
symmetric α-stable law with scale 1 provided (am)m≥1 satisfies

mL̃(am)
aαm

→ Cα

as m→∞. The condition is satisfied if

am =

CαEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
)
m logm

1/α

.

It follows that
1

(m logm)1/α

m∑
i=1

wi

k∑
j=1

sj〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0),

as a sequence of random variables in m, converges in distribution, as m → +∞, to a random variable with
symmetric α-stable distribution with scale of the formCαEu∼Γ0

(
|
k∑
j=1

sj〈u, xj〉I(〈u, xj〉 > 0)|α
)1/α

.

Since this holds for every vector s, then

1
(m logm)1/α

m∑
i=1

wi[〈w(0)
i , xj〉I(〈w(0)

i , xj〉 > 0)]j ,

as a sequence of random variables in m, converges in distribution, as m → +∞, to a random vector with
symmetric α-stable law with the spectral measure

ΓX = 1
2CαEu∼Γ0

(
‖[〈u, xj〉I(〈u, xj〉 > 0)]j‖α

δ

(
[〈u, xj〉I(〈u, xj〉 > 0)]j
‖[〈u, xj〉I(〈u, xj〉 > 0)]j‖

)
+ δ

(
− [〈u, xj〉I(〈u, xj〉 > 0)]j
‖[〈u, xj〉I(〈u, xj〉 > 0)]j‖

))
.

Since Γ0 = 1
2
∑d
i=1(δ(ei) + δ(−ei)), where eij = 1 if j = i and 0 otherwise, then

ΓX = Cα
4

d∑
i=1

(
‖[xjiI(xji > 0)]j‖α

(
δ
( [xjiI(xji > 0)]j
‖[xjiI(xji > 0)]j‖

)
+ δ
(
− [xjiI(xji > 0)]j
‖[xjiI(xji > 0)]j‖

))

+‖[xjiI(xji < 0)]j‖α
(
δ
( [xjiI(xji < 0)]j
‖[xjiI(xji < 0)]j‖

)
+ δ
(
− [xjiI(xji < 0)]j
‖[xjiI(xji < 0)]j‖

)))
.
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A.2 Proof of Theorem 4.1

To simplify the notation, we set in this section: w := w(0), w(0) := w(0)(0), W := W (0), H̃(1)
m :=

H̃
(1)
m (W (0), X) and H̃

(2)
m := H̃

(2)
m (W (0), X), with H̃

(1)
m (W,X) and H̃

(2)
m (W,X) defined in equation 9 and

equation 10. The proof of Theorem 4.1 is split into several steps.
Lemma A.1. If m→ +∞ then

H̃(1)
m

w−→ H̃∗1 (α),

where H̃∗1 (α) is an (α/2)-Stable positive semi-definite random matrix with spectral measure

Γ∗1 = Cα/2
∑

u∈{0,1}k

P(w(0)
i ∈ Bu)(

∑
j,j′

〈xj , xj′〉2ujuj′)α/4δ
(

[〈xj , xj′〉ujuj′ ]j,j′
(
∑
j,j′〈xj , xj′〉2ujuj′)1/2

)
,

where, for every u ∈ {0, 1}k, Bu = {v ∈ Rd : 〈v, xj〉 > 0 if uj = 1, 〈v, xj〉 ≤ 0 if uj = 0, j = 1, . . . , k}, and
Cα/2 is the constant defined in Equation equation 2.

Proof. Since H̃(1)
m is symmetric, is is sufficient to show that, for every k-dimensional vector s,

sT H̃(1)
m s

w→ sT H̃∗1 (α)s.

We first prove that the functions defined, for t ∈ (−∞,+∞), by F (t) = P

(
w2
i > et

)
, and

G(t) = P

( k∑
j,j′=1

sjsj′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0) > et
)

= P

(
‖

k∑
j=1

sjxjI(〈w(0)
i , xj〉 > 0)‖2 > et

)
satisfy the assumptions of Cline (1986, Lemma 1). Indeed, F has exponentail tails with rate α/2, since by
the properties of the stable law,

lim
t→∞

F (t− u)
F (t)

= lim
t→∞

P(|wi| > e(t−u)/2)
P(|wi| > et/2)

= eαu/2.

Moreover, for any γ,

mG(γ) =
∫ ∞

0
eγuG(du) = E

(
‖

k∑
j=1

sjxjI(〈w(0)
i , xj〉 > 0)‖γ

)
<∞.

By Cline (1986), Section 5 and Lemma 1, as t→∞,

P

(
w2
i

k∑
j,j′=1

sjsj′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0) > et
)

= F ∗G(t) ∼ mG(α/2)F (t)

∼ Cα/2(et)−α/2E
(( k∑
j,j′=1

sjsj′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)
)α/2)

.

By the properties of the stable law,

sT H̃(1)
m s = 1

m2/α

m∑
i=1

w2
i

k∑
j,j′=1

sjsj′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)

14
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converges weakly, as m → ∞, to a totally skewed to the right, α/2-stable random variable, with scale
parameter E

(∣∣∑k
j,j′=1 sjsj′〈xj , xj′〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)

∣∣α/2)2/α. Hence, for every t ∈ R, as
m→∞,

E
(

exp(itsT H̃(1)
m s)

)
→ exp

(
−|t|α/2E

(∣∣ k∑
j,j′=1

sjsj′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)
∣∣α/2)(1− i sign u tan(πα/4)

))

= exp
(
−
∫
Sk2−1

∣∣∑
j,j′

tsjsj′vj,j′ |α/2
(
1− i sign

(
t
∑
j,j′

sjsj′vj,j′
)

tan(πα/4)Γ∗1(dv)
)
,

where

Γ∗1 = Cα/2E

(
‖[〈xj , xj′〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)]j,j′‖α/2F

· δ
(

[〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)]j,j′
‖[〈xj , xj′〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)]j,j′‖F

))
.

It follows that, as m→ +∞,
H̃(1)
m

w−→ H̃∗1 (α),

where H̃∗1 (α) is an (α/2)-Stable random matrix with spectral measure Γ∗1 of the form

Γ∗1 = Cα/2
∑

u∈{0,1}k

P(w(0)
i ∈ Bu)(

∑
j,j′

〈xj , xj′〉2ujuj′)α/4δ
(

[〈xj , xj′〉ujuj′ ]j,j′
(
∑
j,j′〈xj , xj′〉2ujuj′)1/2

)
.

We will now prove that H̃∗1 (α) is positive semi-definite. By definition, H̃(1)
m (ω) is positive semi-definite for

every ω and every m. By Portmanteau Theorem, for every vector u ∈ Sk−1,

P
(
uT H̃∗1 (α)u ≥ 0

)
≥ lim sup

m
P
(
uT H̃(1)

m u ≥ 0
)

= 1.

Let A be a countable dense subset of Sk−1. Then, with probability one, aT H̃∗1 (α)a ≥ 0 for every a ∈ A. By
continuity, this implies that the same property holds true with probability one for every u ∈ Sk−1, which
proves that H̃∗1 (α) is almost surely positive semi-definite. By eventually modifying H̃∗1 (α) on a null set, we
obtain a positive semi-definite random matrix.

Lemma A.2. If m→ +∞ then
H̃(2)
m

w−→ H̃∗2 (α),

where H̃∗2 (α) is an (α/2)-Stable positive semi-definite random matrix with spectral measure

Γ∗2 = Cα/2
∑

u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

(
∑
j

x2
jiuj)α/2δ

(
[xjiujxj′iuj′ ]j,j′∑

j x
2
jiuj

)
,

where Bu = {v ∈ Rd : 〈v, xj〉 > 0 if uj = 1, 〈v, xj〉 ≤ 0 if uj = 0, j = 1, . . . , k}, ei is a d-dimensional vector
satisfying eij = 1 if j = i, and eij = 0 if j 6= i (i, j = 1, . . . , d), and Cα/2 is the constant defined in Equation
equation 2.

15
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Proof. By the properties of the multivariate stable distribution (see Appendix B), it is sufficient to show
that

P


[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′

‖
[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′
‖F
∈ ·,

‖
[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′
‖F > r

)
∼ Cα/2r−α/2Γ∗2(·),

as r → +∞. We can write that

P


[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′

‖
[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′
‖F
∈ ·,

‖
[
〈w(0)

1 , xj〉〈w(0)
1 , xj′〉I(〈w(0)

1 , xj〉 > 0)I(〈w(0)
1 , xj′〉 > 0)

]
j,j′
‖F > r

)

=
∑

u∈{0,1}k

P


[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′

‖
[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′
‖F
∈ ·,

‖
[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′
‖F > r,w

(0)
1 ∈ Bu

)
.

For every u ∈ {0, 1}k, let Xu be the d× k matrix, defined as

Xu = [xjiuj ]j=1,...,k,i=1,...,d.

Then we can write that

P


[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′

‖
[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′
‖F
∈ ·,

‖
[
〈w(0)

1 , ujxj〉〈w(0)
1 , uj′xj′〉

]
j,j′
‖F > r,w

(0)
1 ∈ Bu

)
= P

(
XT
u w

(0)
1 (w(0)

1 )TXu

(tr(XT
u (w(0)

1 )Tw(0)
1 XuXT

u (w(0)
1 )Tw(0)

1 Xu))1/2
∈ ·,

tr(XT
u (w(0)

1 )Tw(0)
1 XuX

T
u (w(0)

1 )Tw(0)
1 Xu) > r2, w

(0)
1 ∈ Bu

)
= P

(
XT
u (w(0)

1 )Tw(0)
1 Xu

w
(0)
1 XuXT

u (w(0)
1 )T

∈ ·, w(0)
1 XuX

T
u (w(0)

1 )T > r,w
(0)
1 ∈ Bu

)
.

Notice that the maximum eigenvalue of the matrixXuX
T
u is smaller than or equal to k, since the norm of each

column of Xu is smaller than or equal to one. Then w(0)
1 XuX

T
u (w(0)

1 )T > r implies that ‖w(0)
1 ‖ > (r/k)1/2.

We can therefore write that

P

(
XT
u (w(0)

1 )Tw(0)
1 Xu

w
(0)
1 XuXT

u (w(0)
1 )T

∈ ·, w(0)
1 XuX

T
u (w(0)

1 )T > r,w
(0)
1 ∈ Bu

)

= P

(
XT
u (w(0)

1 )Tw(0)
1 Xu

w
(0)
1 XuXT

u (w(0)
1 )T

∈ ·, w(0)
1 XuX

T
u (w(0)

1 )T > r, ‖w(0)
1 ‖ > (r/k)1/2, w

(0)
1 ∈ Bu

)
.
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Since Bu is a cone and the spectral measure of w(0)
1 is given by

∑
i(δ(ei) + δ(−ei)), by the properties of the

multivariate stable distribution, we can write that

P

(
XT
u (w(0)

1 )Tw(0)
1 Xu

w
(0)
1 XuXT

u (w(0)
1 )T

∈ ·, w(0)
1 XuX

T
u (w(0)

1 )T > r, ‖w(0)
1 ‖ > (r/k)1/2, w

(0)
1 ∈ Bu

)

∼ Cα/2r−α/2
∑

{i:{e1,−ei}∩Bu 6=∅}

(
k∑
j=1

x2
jiuj)α/2δ

(
[xjixj′iujuj′ ]j,j′∑

j x
2
jiuj

)
,

as r → +∞. The proof that H̃∗2 (α) is positive semi-definite can be done by following the same line of
reasoning as in the proof of Lemma A.1.

Lemma A.3. As m → +∞, the probability distribution of (H̃(1)
m , H̃

(1)
m ) converges weakly to the law of

independent stable random matrices, with spectral measures Γ∗1 and Γ∗2 as in equation 11 and equation 12,
respectively.

Proof. Since H̃(1)
m and H

(2)
m converge marginally to α/2-stable random matrices, by the properties of the

multivariate stable distributions it is sufficient to show that they converge to stochastically independent
random matrices. By Theorem B.1, we know that

nP

(
‖[w2

i 〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)]j,j′‖F > n2/α,

‖[〈xj , w(0)
i 〉〈xj′ , w

(0)
i 〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)]j,j′‖F > n2/α

)

and

nP

(
‖[w2

i 〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)]j,j′‖F > n2/α

)

converge to finite limits, as n→∞. Hence, again by Theorem B.1, it is sufficient to show that

lim
n→∞

nP

(
‖[w2

i 〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)]j,j′‖F > n2/α,

‖[〈xj , w(0)
i 〉〈xj′ , w

(0)
i 〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)]j,j′‖F > n2/α

)
= 0,

which ensures that the Lévy measure of the limit infinitely divisible distribution of (H̃(1)
m , H̃

(2)
m ) is the sum of

a measure ν1 concentrated on the space spanned by the first k2 coordinates and a measure ν2 on the space

17
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spanned by the last k2 coordinates. We can write that

nP

(
‖[w2

i 〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)]j,j′‖F > n2/α,

‖[〈xj , w(0)
i 〉〈xj′ , w

(0)
i 〉I(〈w(0)

i , xj〉 > 0)I(〈w(0)
i , xj′〉 > 0)]j,j′‖F > n2/α

)
= n

∑
u∈{0,1}k

P(w(0)
i ∈ Bu)

P

(
‖[w2

i 〈xj , xj′〉ujuj′ ]j,j′‖F > n2/α, ‖[〈xj , w(0)
i 〉〈xj′ , w

(0)
i 〉ujuj′ ]j,j′‖F > n2/α | w(0)

i ∈ Bu
)

= n
∑

u∈{0,1}k

P(w(0)
i ∈ Bu)P

(
‖[〈xj , w(0)

i 〉〈xj′ , w
(0)
i 〉ujuj′ ]j,j′‖F > n2/α | w(0)

i ∈ Bu
)

P

(
‖[w2

i 〈xj , xj′〉ujuj′ ]j,j′‖F > n2/α
)

=
∑

u∈{0,1}k

nP

(
‖[〈xj , w(0)

i 〉〈xj′ , w
(0)
i 〉ujuj′ ]j,j′‖F > n2/α, w

(0)
i ∈ Bu

)

P

(
‖[w2

i 〈xj , xj′〉ujuj′ ]j,j′‖F > n2/α
)
→ 0,

as n→∞.

Now, we are in the position of proving Theorem 4.1. By Lemma A.1, Lemma A.1, Lemma A.3, and the
properties of stable distributions, H̃m(W (0), X) converges in distribution to a positive semi-definite random
matrix, with (α/2)-stable distribution, and spectral measure Γ∗1 + Γ∗2. This completes the proof of Theorem
4.1.

A.3 Proof of Theorem 4.2

To simplify the notation, we set in this section: w := w(0), w(0) := w(0)(0), W := W (0), H̃(1)
m :=

H̃
(1)
m (W (0), X) and H̃

(2)
m := H̃

(2)
m (W (0), X), with H̃

(1)
m (W,X) and H̃

(2)
m (W,X) defined in equation 9 and

equation 10.

From equation 8, H̃m(W (0), X)) is the sum of two positive semi-definite random matrices, H̃(1)
m and H̃(2)

m .
The following results show that for every δ > 0, there exist λ1 > 0 and λ2 > 0 such that, for m sufficiently
large, with probability at least 1− δ

λmin(H̃(i)
m ) > λi.

with the large-width behaviour of H̃(i)
m being characterized in Lemma A.1 and Lemma A.2, through an (α/2)-

Stable limiting random matrix H̃∗i (α) with spectral measure Γ∗i of the form equation 11 and equation 12. To
prove that the minumum eigenvales of H̃(1)

m and H̃(2)
m are bounded away from zero, we first need to inspect

the characteristics of the distributions of H̃∗1 (α) and of H̃∗2 (α). This is the content of Lemma A.4 and of
Lemma A.6. Then, the results concerning the minumum eigenvalues of H̃(1)

m and H̃(2)
m are given in Lemma

A.5 and Lemma A.7.
Lemma A.4. Under the assumptions of Theorem 4.4, the distribution of the random matrix H̃∗1 (α) is
absolutely continuous in the subspace of the symmetric positive semi-definite matrices with zero entries in
the positions (j, j′) such that 〈xj , xj′〉 = 0, with j, j′ ∈ {1, . . . , k}, with the topology of Frobenius norm.

Proof. From Nolan (2010), it is sufficient to show that

inf
s∈Sk2−1

0

∫
|〈s, u〉|α/2Γ∗1(du) 6= 0,

18
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where Γ∗1 is the spectral measure equation 11, Sk
2−1

0 is the unit sphere in the space of the k × k symmetric
matrices such that sj,j′ = 0 if 〈xj , xj′〉 = 0, with the Frobenius metric. Now, since∫

|〈s, u〉|α/2Γ∗1(du)

= Cα/2E

|∑
j,j′

sj,j′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)|α/2


is a continuous function of s that takes value in a compact set, then the minimum is attained. Thus it is
sufficient to show that for every s ∈ Sk

2−1
0 ,

E

|∑
j,j′

sj,j′〈xj , xj′〉I〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)|α/2
 6= 0.

For every j and every uj ∈ {0, 1}, let A
uj

j be the event (〈w(0)
i , xj〉 > 0) if uj = 1 and its complement if

uj = 0. Then

E

|∑
j,j′

sj,j′〈xj , xj′〉I(〈w(0)
i , xj〉 > 0)I(〈w(0)

i , xj′〉 > 0)|α/2


=
∑

u1,...,uk

P(Au1
1 ∩ · · · ∩A

uk

k )|
∑
j,j′

ujuj′sj,j′〈xj , xj′〉|α/2.

Since x1, . . . , xk are linearly independent, then for every u1, . . . , uk, P(Au1
1 ∩ . . . , A

uk

k ) > 0. To prove it,
assume, without loss of generality, that ui = 1 for every i. Since x1, . . . , xk are linearly independent, then we
can complete the matrix X = [x1 . . . xk] by adding k− d columns in such a way that the completed matrix
X̃ is non-singular. For every d-dimensional vector v such that v1 > 0, . . . , vk > 0 there exists a vector u such
that u = (X̃T )−1v. Thus,

{u ∈ Rd : 〈u, x1〉 > 0, . . . , 〈u, xk〉 > 0} = {(X̃T )−1v : v1 > 0, . . . , vk > 0}

is an open non-empty set. Since w(0)
i has independent and identically distributed components, with stable

distribution, then
P
(
w

(0)
i ∈ {(X̃)−1v : v1 > 0, . . . , vk > 0}

)
> 0.

This concludes the proof that P(Au1
1 ∩ . . . , A

uk

k ) > 0 for every (u1, . . . , uk) ∈ {0, 1}k}. It follows that∫
|〈s, u〉|α/2Γ∗1(du) is zero if and only if, for every (u1, . . . , uk) ∈ {0, 1}k, it holds∑

j,j′

uj , uj′〈xj , xj′〉sj,j′ = 0.

The only solution of the above system of equations in the space of symmetric matrices s such that sj,j′ = 0
if 〈xj , xj′〉 = 0 is s = 0, which is not consistent with ‖s‖F = 1.

We observe that the space of the symmetric positive semi-definite matrices with zeros in the entries (j, j′)
such that 〈xj , xj′〉 = 0 contains all the matrices with non-zero diagonal element since 〈xj , xj〉 = 1 6= 0 for
every index j.
Lemma A.5. Under the assumptions of Theorem 4.4, for every δ > 0 there exists λ1 > 0 such that with
probability at least 1− δ

λmin(H̃∗1 (α)) > λ1.
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Proof. Since the distribution of H̃∗1 (α) is absolutely continuous in the space of symmetric positive semi-
definite matrices with zero entries in the positions j, j′ such that 〈x,xj′〉 = 0, and since this space contains
all the symmetric positive semi-definite matrices with non-zero diagonal entries, then we can write that
P(det(H̃∗1 (α)) = 0) = 0. Moreover, since H̃∗1 (α) is positive semi-definite, then P(λmin(H̃∗1 (α)) > 0) = 1.
Thus, for every δ > 0, the exists λ1 > 0 such that P(λmin(H̃∗1 (α)) > λ1) > 1− δ.

Lemma A.6. Under the assumptions of Theorem 4.4, the distribution of the random matrix H̃∗2 (α) is
absolutely continuous in the subspace of the symmetric positive semi-definite matrices, with the topology of
Frobenius norm.

Proof. From Nolan (2010), it is sufficient to show that

inf
s∈Sk2−1

∫
|〈s, u〉|α/2Γ∗2(du) 6= 0,

where Γ∗2 is the spectral measure equation 12, Sk2−1 is the unit sphere in the space of the k × k symmetric
positive semi-definite matrices, with the Frobenius norm. For every u ∈ {0, 1}k, let Bu = {v ∈ Rd : 〈v, xj〉 >
0 if uj = 1, 〈v, xj〉 ≤ 0 if uj = 0}. Moreover, for every i = 1, . . . , k, let ei be a d-dimensional random vector
satisfying eij = 1 for j = i and eij = 0 for j 6= i. Finally, let Cα/2 be the constant defined in Equation
equation 2. Then∫

|〈s, u〉|α/2Γ∗2(du) = Cα/2|
∑
j,j′

sj,j′
∑

u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

xjiujxj′iuj′ |α/2.

Since
∑
j,j′ sj,j′

∑
u∈U

∑
E zu,ixjiujxj′iuj′ is continuous as a function of s and s takes values in a compact

set, then the minimum is attained. Thus it is sufficient to show that for every s ∈ Sk2−1,∑
u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

∑
j,j′

sj,j′xjiujxj′iuj′ 6= 0.

Since ‖s‖F = 1, then s is not the null matrix. Hence there exist c > 0, a vector a with ‖a‖ = 1 and a positive
semi-definite, symmetric matrix s′ such that

s = caaT + s′.

Since Bu ∩Bu′ = ∅, when u 6= u′, then, for every i = 1, . . . , d and j = 1, . . . , k, there exists one and only one
u ∈ {0, 1}k such that uj = 1 and {ei,−ei} ∩Bu 6= ∅. Then we can write that∑

u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

∑
j,j′

sj,j′xjiujxj′iuj′

≥ c
∑

u∈{0,1}k

∑
{i:{ei,−ei}∩Bu 6=∅}

(
∑
j

ajxjiuj)2

=
d∑
i=1

(
k∑
j=1

ajxji)2
∑

{u:{ei,−ei}∩Bu 6=∅}

uj


=

d∑
i=1

(
k∑
j=1

ajxji)2,

which is strictly positive, since the xj are linearly independent, and ‖a‖ = 1. This concludes the proof.

Lemma A.7. Under the assumptions of Theorem 4.4, for every δ > 0 there exists λ2 > 0 such that with
probability at least 1− δ

λmin(H̃∗2 (α)) > λ2.
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Proof. Since the distribution of H̃∗2 (α) is absolutely continuous in the space of symmetric positive semi-
definite matrices then we can write that P(det(H̃∗2 (α)) = 0) = 0. Moreover, since H̃∗2 (α) is positive semi-
definite, then P(λmin(H̃∗2 (α)) > 0) = 1. Thus, for every δ > 0, the exists λ2 > 0 such that P(λmin(H̃∗2 (α)) >
λ2) > 1− δ.

Now, we are in the position of proving Theorem 4.2. Let δ > 0 be a fixed number. By Lemmas A.5 and A.7,
there exist λ1 > 0 and λ2 > 0 such that, for i = 1, 2, P(λmin(H̃∗i (α)) > λi) ≥ 1 − δ/2. Since the minimum
eigenvalue map is continuous with respect to Frobenius norm then, by Portmanteau theorem, for i = 1, 2,

lim inf
m

P(λmin(H̃(i)
m (W (0), X)) > λi) ≥ P(λmin(H̃∗i (α)) > λi) ≥ 1− δ/2.

Let λ0 = λ1 + λ2. Since the minimum eigenvalue of a sum of symmetric, positive semi-definite matrices
is greater than or equal to the sum of the eigenvalues of the two matrices (see Horn and Johnson (1985)
Theorem 4.3.1), then we can write that

lim inf
m

P(λmin(H̃m(W (0), X)) > λ0)

≥ lim inf
m

P(λmin(H̃(1)
m (W (0), X)) + λmin(H̃(2)

m (W (0), X)) > λ0)

≥ lim inf
m

P(∩i=1,2(λmin(H̃(i)
m (W (0), X)) > λi))

≥ 1− lim sup
m

( 2∑
i=1

P(λmin(H̃(i)
m (W (0), X)) ≤ λi)

)
≥ 1− δ,

thus completing the proof of Theorem 4.2.

A.4 Proof of Theorem 4.3

Before proving Theorem 4.3, we give some preliminary results.
Lemma A.8. Let γ ∈ (0, 1) and c > 0 be fixed numbers. For every δ > 0 the following property holds true,
for m sufficiently large, with probability at least 1− δ:

(logm)2/α
∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥2

F

< cm−2γ/α,

for every W such that ||W −W (0)||F ≤ (logm)2/α and every NN’s input xj, with j = 1, . . . , k.

Proof. For a fixed W (0), let W be such that ‖W −W (0)‖F ≤ (logm)2/α. Then it holds ‖w(0)−w(0)(0)‖2F ≤
‖W −W (0)‖2F ≤ (logm)4/α. Accordingly, we can write the following

(logm)2/α
∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥2

F

≤ 1
m2/α

m∑
i=1

(
〈w(0)

i , xj〉I(〈w(0)
i , xj〉 > 0)− 〈w(0)

i (0), xj〉I(〈w(0)
i (0), xj〉 > 0)

)2

≤ 2
m2/α

m∑
i=1

(
〈w(0)

i , xj〉 − 〈w(0)
i (0), xj〉

)2
I(〈w(0)

i , xj〉 > 0)

+ 2
m2/α

m∑
i=1
〈w(0)

i (0), xj〉2
(
I(〈w(0)

i , xj〉 > 0)− I(〈w(0)
i (0), xj〉 > 0)

)2
.
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We will bound the two terms of the sum separately. First, we define ri = |〈w(0)
i −w

(0)
i (0), xj〉| for i = 1, . . . ,m.

Then, we can write that

m∑
i=1

r2
i ≤

m∑
i=1
‖w(0)

i − w
(0)
i (0)‖2 · ‖xj‖2 ≤ ‖w(0) − w(0)(0)‖2F ≤ (logm)4/α.

Since γ < 1,

2
m2/α

m∑
i=1

(
〈w(0)

i , xj〉 − 〈w(0)
i (0), xj〉

)2
I(〈w(0)

i , xj〉 > 0)

≤ 2m−2/α(logm)4/α <
c

4m
−2γ/α,

for m sufficiently large. In order to bound the second term, we observe that the following set

{w(0)(0) : ∃w(0)s.t.|〈w(0)
i − w

(0)
i (0), xj〉| = ri, I(〈w(0), xj〉 > 0) 6= I(〈w(0)(0), xj〉 > 0)}

is included in the set {w(0)
i (0) : |〈w(0)

i (0), xj〉| ≤ ri}. Therefore, we can write that

sup∑
i
r2

i
≤logm

sup
|w(0)

i
−w(0)

i
(0)|≤ri

2
m2/α

m∑
i=1
〈w(0)

i (0), xj〉2
(
I(〈w(0)

i , xj〉 > 0)− I(〈w(0)
i (0), xj〉 > 0)

)2

≤ sup∑
i
r2

i
≤logm

sup
|w(0)

i
−w(0)

i
(0)|≤ri

2
m2/α

m∑
i=1
〈w(0)

i (0), xj〉2I(〈w(0)
i (0), xj〉 < ri)

≤ sup∑
i
r2

i
≤logm

sup
|w(0)

i
−w(0)

i
(0)|≤ri

2
m2/α

m∑
i=1

r2
i

≤ 1
m2/α (logm)4/α <

c

4m
−2γ/α,

for m sufficiently large.

Lemma A.9. For every δ > 0 there exist λ > 0 such that the following two properties hold true, for m
sufficiently large, with a probability at least 1− δ:

i)

‖H̃(2)
m (W,X)− H̃(2)

m (W (0), X)‖F < λm−γ/α;

ii)

λmin(H̃m(W,X)) > λ

2 ;

for every W such that ‖W −W (0)‖F ≤ (logm)2/α.

Proof. By Lemma A.7, for every δ > 0 there exists λ such that

λmin(H̃∗2 (α)) > λ

22



Under review as submission to TMLR

with probability at least 1− δ/2. For every vector W , we can write that

|H̃(2)
m (W,X)[i, j]− H̃(2)

m (W (0), X)[i, j]|

= (logm)2/α
∣∣∣∣〈∂f̃m∂w (W,xi;α), ∂f̃m

∂w
(W,xj ;α)

〉
−
〈
∂f̃m
∂w

(W (0), xi;α), ∂f̃m
∂w

(W (0), xj ;α)
〉∣∣∣∣

≤ (logm)2/α
∥∥∥∥∂f̃m∂w (W,xi;α)

∥∥∥∥
F

∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m
∂w

(W (0), xj ;α)
∥∥∥∥
F

+ (logm)2/α
∥∥∥∥∂f̃m∂w (W (0), xj ;α)

∥∥∥∥
F

∥∥∥∥∂f̃m∂w (W,xi;α)− ∂f̃m
∂w

(W (0), xi;α)
∥∥∥∥
F

≤ (logm)2/α
(∥∥∥∥∂f̃m∂w (W (0), xi;α)

∥∥∥∥
F

+
∥∥∥∥∂f̃m∂w (W (0), xi;α)− ∂f̃m

∂w
(W,xi;α)

∥∥∥∥
F

)
×
∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥
F

+ (logm)2/α
∥∥∥∥∂f̃m∂w (W (0), xj ;α)

∥∥∥∥
F

∥∥∥∥∂f̃m∂w (W,xi;α)− ∂f̃m
∂w

(W (0), xi;α)
∥∥∥∥
F

.

For every i = 1, . . . , k,

(logm)2/α
∥∥∥∥∂f̃m∂w (W (0), xi;α)

∥∥∥∥2

F

= 1
m2/α

m∑
i=1
〈w(0)

i (0), xi〉2I(|〈w(0)
i (0), xi〉| > 0)

≤ 1
m2/α

m∑
i=1
〈w(0)

i (0), xi〉2,

which converges in distribution, as m → ∞. Thus there exist M > 0 and m0 such that for every m ≥ m0
and every i = 1, . . . , k,

P

(
(logm)1/α

∥∥∥∥∂f̃m∂w (W (0), xi;α)
∥∥∥∥
F

> M

)
<

δ

8k2 .

By Lemma A.8, for m sufficiently large, with probability at least 1− δ/(4k2)

(logm)1/α
(∥∥∥∥∂f̃m∂w (W (0), xi;α)

∥∥∥∥
F

+
∥∥∥∥∂f̃m∂w (W (0), xi;α)− ∂f̃m

∂w
(W,xi;α)

∥∥∥∥
F

)
< 2M

whenever ‖W −W (0)‖F < (logm)2/α. Lemma A.8 also implies that, for every γ ∈ (0, 1), and i = 1, . . . , k,
with probability at least 1− δ/(8k2)

(logm)1/α
∥∥∥∥∂f̃m∂w (W,xi;α)− ∂f̃m

∂w
(W (0), xi;α)

∥∥∥∥
F

<
λ

4Mk2m
−γ/α

whenever ‖W −W (0)‖2F < (logm)4/α, provided m is sufficiently large,. Thus, with probability at least 1−δ,
if m is sufficiently large

max
i,j
|H̃(2)

m (W,X)[i, j]− H̃(2)
m (W (0), X)[i, j]| < λ

k2m
−γ/α,

whenever ‖W −W (0)‖F < (logm)2/α. Thus

‖H̃(2)
m (W,X)− H̃(2)

m (W (0), X)‖2

≤ ‖H̃(2)
m (W,X)− H̃(2)

m (W (0), X)‖F < λm−γ/α <
λ

2 ,

whenever ‖W −W (0)‖F < (logm)2/α, provided m is sufficiently large. The last inequality and Lemma A.6
imply that, with probability at least 1− δ, if m is sufficiently large, then

‖H̃(2)
m (W,X)‖2 > λ/2,
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for every W such that ‖W −W (0)‖F < (logm)2/α. Since H̃m(W,X) is the sum of two positive semi-definite
matrices H̃(1)

m (W,X) and H̃(2)
m (W,X), then

‖H̃m(W,X)‖2 ≥ ‖H̃(2)
m (W,X)‖2 > λ/2,

for every W such that ‖W −W (0)‖F < (logm)2/α, if m is sufficiently large.

Lemma A.10. For every δ > 0 the following property holds true, for m sufficiently large, with probabillity
at least 1− δ: there exists M > 0 such that

(logm)1/α
∥∥∥∥ ∂f̃m∂w(0) (W,xj ;α)− ∂f̃m

∂w(0) (W (0), xj ;α)
∥∥∥∥
F

< M,

for every j = 1, . . . , k, and for every W such that ‖W −W (0)‖F ≤ (logm)2/α.

Proof. Let us define ri = |〈w(0)
i − w

(0)
i (0), xj〉| for i = 1, . . . ,m. Now, since ‖xj‖ = 1 by assumption, for

j = 1, . . . , k, then we can write∑
i

r2
i ≤ ‖xj‖2 · ‖w

(0)
i − w

(0)(0)‖2F ≤ ‖W −W (0)‖2F ≤ (logm)4/α.

It holds

(logm)2/α
∥∥∥∥ ∂f̃m∂w(0) (W,xj ;α)− ∂f̃m

∂w(0) (W (0), xj ;α)
∥∥∥∥2

F

≤ 1
m2/α

m∑
i=1

(
wiI(〈w(0)

i , xj〉 > 0)− wi(0)I(〈w(0)
i (0), xj〉 > 0)

)2

≤ 2
m2/α

m∑
i=1

(wi − wi(0))2I(〈w(0)
i , xj〉 > 0)

+ 2
m2/α

m∑
i=1

wi(0)2|I(〈w(0)
i , xj〉 > 0)− I(〈w(0)

i (0), xj〉 > 0)|.

We will bound the two terms separately. First,

2
m2/α

m∑
i=1

(wi − wi(0))2I(〈w(0)
i , xj〉 > 0)

≤ 1
m2/α

m∑
i=1

(wi − wi(0))2

≤ 2
m2(1−γ)/α ‖w − w(0)‖2F

≤ 2
m2/α (logm)4/α <

c

4m
−2γ/α,

if m is sufficiently large. To bound the second term, we can write that

2
m2/α

m∑
i=1

wi(0)2|I(〈w(0)
i , xj〉 > 0)− I(〈w(0)

i (0), xj〉 > 0)|

≤ 2
m2/α

m∑
i=1

wi(0)2,

which converges in distribution to a stable random variable, as m → ∞. Hence there exists M1 such that,
with probability at least 1− δ/4,

2
m2/α

m∑
i=1

(wi − wi(0))2I(〈w(0)
i , xj〉 > 0) < M2

1
2k2
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and
2

m2/α

m∑
i=1

wi(0)2|I(〈w(0)
i , xj〉 > 0)− I(〈w(0)

i (0), xj〉 > 0)| < M2
1

2k2 ,

for m sufficiently large, which entail

(logm)1/α
∥∥∥∥ ∂f̃m∂w(0) (W,xj ;α)− ∂f̃m

∂w(0) (W (0)(ω), xj ;α)
∥∥∥∥
F

<
M1

k
.

On the other hand, there exist N3 ∈ F and M2 with P (N3) > 1 − δ/4 such that, for every ω ∈ N3 and for
m sufficiently large,

‖f̃m(W (0)(ω), X;α)− Y ‖F < M2,

and
max

1≤i≤k

∥∥∥∥ ∂

∂W
f̃m(W (0)(ω), xi;α)

∥∥∥∥
F

< M2(logm)−1/α.

The above inequalities follow from the convergence in distribution of f̃m(W (0), xi;α) and of

(logm)2/α
∥∥∥∥ ∂

∂W
f̃m(W (0), xi;α)

∥∥∥∥2

F

= H̃(W (0), X;α)[i, i] (i = 1, . . . , k),

as m→∞.

Lemma A.11. Let γ ∈ (0, 1) and c > 0 be fixed numbers. For every δ > 0 the following property holds true,
for m sufficiently large, with probability at least 1− δ:

‖W (t)−W (0)‖F < (logm)2/α.

if

(logm)2/α
∥∥∥∥∂f̃m∂w (W (s), xj ;α)− ∂f̃m

∂w
(W (0), xj ;α)

∥∥∥∥2

F

≤ cm−2γ/α

for every NN’s input xj, with j = 1, . . . , k, and for every s ≤ t.

Proof. By Lemmas A.8 and A.9, there exists N1 ∈ F with probability at least 1 − δ/2 such that, for every
ω ∈ N1,

(logm)2/α
∥∥∥∥∂f̃m∂w (W,xj ;α)− ∂f̃m

∂w
(W (0)(ω), xj ;α)

∥∥∥∥2

F

< cm−2γ/α,

for arbitrarily fixed c > and γ ∈ (0, 1/2), and

λmin(H̃m(W,X)) > λ

2 ,

for some λ > 0, for every W such that ‖W −W (0)(ω)‖F ≤ (logm)2/α and every j = 1, . . . , k, provided m
is sufficiently large. Moreover, by Lemma A.10, there exist, for m sufficiently large, M1 > 0 and N2 with
P(N2) > 1− δ, such that

(logm)1/α
∥∥∥∥ ∂f̃m∂w(0) (W,xj ;α)− ∂f̃m

∂w(0) (W (0)(ω), xj ;α)
∥∥∥∥
F

<
M1

k
,

for every j = 1, . . . , k, and for every W such that ‖W − W (0)(ω)‖F ≤ (logm)2/α. We will prove, by
contradiction, that for every ω ∈ N1 ∩ N2 ∩ N3, ‖W (t) − W (0)‖F < (logm)2/α for every t > 0. In the
following we will write W (s) in the place of W (s)(ω) and always assume that ω belongs to N1 ∩N2 ∩N3.
Suppose that there exists t such that ‖W (t)−W (0)‖F ≥ (logm)2/α, and let

t0 = argmint≥0{t : ‖W (t)−W (0)‖F ≥ (logm)2/α}.
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Since ‖W (s)−W (0)‖F ≤ (logm)2/α for every s ≤ t0, then, for every s ≤ t0,

λmin(H̃m(W (s), X)) > λ

2 ,∥∥∥∥∂f̃m∂w (W (s), xj ;α)− ∂f̃m
∂w

(W (0), xj ;α)
∥∥∥∥
F

< cm−γ/α(logm)−1/α,∥∥∥∥ ∂f̃m∂w(0) (W (s), xj ;α)− ∂f̃m
∂w(0) (W (0)(ω), xj ;α)

∥∥∥∥
F

<
M1

k
(logm)−1/α (j = 1, . . . , k),

‖f̃m(W (0)(ω), X;α)− Y ‖F < M2,

max
1≤i≤k

∥∥∥∥ ∂

∂W
f̃m(W (0)(ω), xi;α)

∥∥∥∥
F

< M2(logm)−1/α.

Let us now consider the gradient descent dynamic, with continuous learning rate η = (logm)2/α:

dW (s)
ds = −(logm)2/α∇W

1
2

k∑
i=1

(
f̃m(W (s), xi;α)− yi

)2
= −(logm)2/α

k∑
i=1

(
f̃m(W (s), xi)− yi

) ∂f̃m
∂W

(W (s), xi;α).

This expression allows to write

‖W (t0)−W (0)‖F

≤
∥∥∥∥∫ t0

0

d
dsW (s)ds

∥∥∥∥
F

≤ (logm)2/α

∥∥∥∥∥
∫ t0

0

k∑
i=1

(f̃m(W (s), xi;α)− yi)
∂f̃m
∂W

(W (s), xi;α)ds

∥∥∥∥∥
F

≤ (logm)2/α max
0≤s≤t0

k∑
i=1

∥∥∥∥∂f̃m∂W
(W (s), xi;α)

∥∥∥∥
F

∫ t0

0
‖f̃m(W (s), X;α)− Y ‖ds.

To bound the term ‖f̃m(W (s), X;α)− Y ‖ we will exploit the dynamics of the NN output

df̃m(W (s), X;α)
ds = ∂f̃m

∂W
(W (s), X;α)dWT (s)

ds
= −(logm)2/α(f̃m(W (s), X;α)− Y )Hm(W (s), X)
= −(f̃m(W (s), X;α)− Y )H̃m(W (s), X),

that gives

d
ds‖f̃m(W (s), X;α)− Y ‖22 = −2

(
f̃m(W (s), X;α)− Y

)
H̃m(W (s), X)

(
f̃m(W (s), X;α)− Y

)T
.

Since λmin(H̃m(W (s), X)) > λ/2 for every s ≤ t0, then

d
ds‖f̃m(W (s), X;α)− Y ‖22 ≤ −λ‖f̃m(W (s), X;α)− Y ‖22,

which implies that
d
ds
(
exp(λs)‖f̃m(W (s), X;α)− Y ‖22

)
≤ 0.

It follows that exp(λs)‖f̃m(W (s), X;α)− Y ‖22 is a decreasing function of s, and therefore

‖f̃m(W (s), X;α)− Y ‖2 ≤ exp(−λ/2)‖f̃m(W (0), X;α)− Y ‖2,
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for every s ≤ t0. Substituting in the integral, we can write that

‖W (t0)−W (0)‖F

≤ (logm)2/α max
0≤s≤t0

k∑
i=1

∥∥∥∥∂f̃m∂W
(W (s), xi;α)

∥∥∥∥
F

∫ t0

0
exp(−λs/2)ds · ‖f̃m(W (0), X;α)− Y ‖

≤ 2(logm)2/α

λ
max

0≤s≤t0

k∑
i=1

(∥∥∥∥∂f̃m∂W
(W (0), xi;α)

∥∥∥∥
F

+
∥∥∥∥∂f̃m∂W

(W (s), xi;α)− ∂f̃m
∂W

(W (0), xi;α)
∥∥∥∥
F

)
× ‖f̃m(W (0), X;α)− Y ‖

≤ 2(logm)2/α

λ
max

0≤s≤t0

k∑
i=1

(∥∥∥∥∂f̃m∂W
(W (0), xi;α)

∥∥∥∥
F

+
∥∥∥∥ ∂f̃m∂w(0) (W (s), xi;α)− ∂f̃m

∂w(0) (W (0), xi;α)
∥∥∥∥
F

+
∥∥∥∥∂f̃m∂w (W (s), xi;α)− ∂f̃m

∂w
(W (0), xi;α)

∥∥∥∥
F

)
‖f̃m(W (0), X;α)− Y ‖

≤ 2(logm)1/α

λ

(
M2 +M1 + kcm−γ/α

)
M2,

which, for m large, contradicts ‖W (t0)−W (0)‖F ≥ (logm)2/α .

Now, we are in the position of proving Theorem 4.3. Let m ∈ N and N ∈ F be such that P(N) > 1− δ and
the properties mentioned in Lemma A.8, Lemma A.9, Lemma A.10 and Lemma A.11 hold true for every
ω ∈ N . Therefore, by means of Lemma A.8 and of Lemma A.9, it is sufficient to show that

‖W (t)−W (0)‖2F (ω) < (logm)2/α

for every t > 0 and ω ∈ N . By contradiction, suppose that there exists, for some ω ∈ N , t0(ω) finite with

t0(ω) := inf
t≥0
{t : ‖W (t)−W (0)‖F (ω) ≥ (logm)2/α}.

Since W (t)(ω) is a continuous function of t, then ‖W (t0(ω)) −W (0)‖2F (ω) = (logm)2/α. Then, by Lemma
A.8,

(logm)2/α
∥∥∥∥∂f̃m∂W

(W (s), xj ;α)− ∂f̃m
∂W

(W (0), xj ;α)
∥∥∥∥2

F

(ω) < cm−2γ/α,

for every s ≤ t0 and every j. Therefore, by Lemma A.11 it holds true that ‖W (t0(ω)) − W (0)‖F (ω) <
(logm)2/α, which contradicts the definition of t0. This completes the proof of Theorem 4.3.

B

The distribution of a random vector ξ is said to be infinitely divisible if, for every n, there exist some i.i.d.
random vectors ξn1, . . . , ξnn such that

∑
k ξnk

d= ξ. A k-dimensional random vector ξ is infinitely divisible if
and only if its characteristic function admits the representation eψ(u), where

ψ(u) = iuT b− 1
2u

Tau+
∫ (

eiu
T x − 1− iuTxI(||x|| ≤ 1)

)
ν(dx) (13)

where ν is a measure on Rk \ {0} satisfying
∫

(||x||2 ∧ 1)ν(dx) < ∞, a is a k × k positive semi-definite,
symmetric matrix and b is a vector. The measure ν is called the Lévy measure of ξ and (a, b, ν) are called
the characteristics of the infinitely divisible distribution. We will write ξ ∼ i.d.(a, b, ν). Other kinds of
truncation can be used for the term iuTx. This affects only the vector of centering constants b. An i.i.d.
array of random vectors is a collection of random vectors {ξnj , j ≤ mn, n ≥ 1} such that, for every n,
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ξn1, . . . , ξnmn
are i.i.d. The class of infinitely divisible distributions coincides with the class of limits of sums

of i.i.d. arrays (Kallenberg, 2002, Theorem 13.12).

To state a general criterion of convergence, we first introduce some notations. Let ξ ∼ i.d.(a, b, ν). Define,
for each h > 0,

a(h) = a+
∫
||x||<h

xxT ν(dx),

b(h) = b−
∫
h<||x||≤1

xν(dx),

where
∫
h<||x||≤1 = −

∫
1<||x||≤h if h > 1. Denote by v→ vague convergence, that is convergence of measures

with respect to the topology induced by bounded, measurable functions with compact support. Moreover,
let Rk be the one-point compactification of Rk. The following criterion for convergence holds (Kallenberg,
2002, Corollary 13.16).
Theorem B.1. Consider in Rk an i.i.d. array (ξnj)j=1,...,mn,n≥1 and let ξ be i.d.(a, b, ν). Let h > 0 be such
that ν(||x|| = h) = 0. Then

∑
j ξnj

d→ ξ if and only if the following conditions hold:

(i) mnP (ξn1 ∈ ·)
v→ ν(·) on Rk \ {0}

(ii) mnE(ξn1ξ
T
n1I(||ξn1|| < h))→ a(h)

(iii) mnE(ξn1I(||ξn1|| < h))→ b(h)

Inside the class of infinitely divisible distribution, we can distinguish the subclass of stable distributions. A
k-dimensional random vector ξ has stable distribution if, for every independent random vectors ξ1 and ξ2

with ξ1
d= ξ2

d= ξ and every a, b ∈ R, there exists c ∈ R and d ∈ Rk such that aξ1 + bξ2
d= cξ + d. This is

equivalent to the condition: for every n ≥ 1,

ξ1 + · · ·+ ξn
d= n1/αξ + dn (14)

where α ∈ (0, 2], ξ1, . . . , ξn are i.i.d. copies of ξ and dn is a vector. The random vector ξ is said to be strictly
stable if equation 14 holds with dn = 0. A stable vector ξ is strictly stable if and only if all its components
are strictly stable. The coefficient α is called the index of stability of ξ and the law of ξ is called α-stable.
A stable vector ξ is symmetric stable if P(ξ ∈ A) = P(−ξ ∈ A) for every Borel set A. A symmetric stable
vector is strictly stable. The class of stable distributions coincides with the class of limit laws of sequences
((
∑n
k=1Xk − bn)/an), where (Xn) are i.i.d. random variables.

A stable distribution is infinitely divisible. Thus its characteristic function admits the Lévy representation
equation 13. If α = 2, then the Lévy measure is the null measure and, therefore, the stable distribution
coincides with the multivariate normal distribution with covariance matrix a and mean vector b. If α < 2,
then a = 0 (the zero matrix) and the α-stability implies that there exists a measure σ on the unit sphere
Sk−1 such that ν(dx) = r−(α+1)drσ(ds), where r = ||x|| and s = x/||x||. Substituting in equation 13, we
obtain

ψ(u) = iuT b+
∫
S

∫ ∞
0

(
eiru

T s − 1− iruT sI(r ≤ 1)
) 1
r1+α drσ(ds)

For α < 1, the centering iruT sI(r ≤ 1) is not needed, since the function (of r) is integrable, and we can
write

ψ(u) = iuT b′ +
∫
S

∫ ∞
0

(
eiru

T s − 1
) 1
r1+α drσ(ds),

for some vector b′. After evaluating the inner integrals as in Feller (1968, Example XVII.3), we obtain

ψ(u) = iuT b′ −
∫
S

|uT s|αΓ(1− α)
(
cos(πα/2)− i sign(uT s) sin(πα/2)

)
σ(ds)
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= iuT b′ −
∫
S

|uT s|α
(
1− i sign(uT s) tan(πα/2)

)
Γ(1− α) cos(πα/2)σ(ds).

For α > 1, using the centering iruT s, we can write

ψ(u) = iuT b′′ +
∫
S

∫ ∞
0

(
eiru

T s − 1− iruT s
) 1
r1+α drσ(ds),

for some b′′. After evaluating the inner integrals as in Feller (1968, Example XVII.3), we obtain

ψ(u) = iuT b′′ +
∫
S

|uT s|αΓ(2− α)
α− 1

(
cos(πα/2)− i sign(uT s) sin(πα/2)

)
σ(ds)

= iuT b′′ −
∫
S

|uT sα
(
1− i sign(uT s) tan(πα/2)

) Γ(2− α)
1− α cos(πα/2)σ(ds).

Since, for α < 1, Γ(2−α) = (1−α)Γ(1−α), we can encompass the above results in one equation, and write,
for α 6= 1,

ψ(u) = iuT b′′′ −
∫
S

|uT s|α
(
1− i sign(uT s) tan(πα/2)

) Γ(2− α)
1− α cos(πα/2)σ(ds),

for some b′′′. Finally, for α = 1, using the centering ir sin ruT s, we can write

ψ(u) = iuT b′′′′ +
∫
S

∫ ∞
0

(
eiru

T s − 1− ir sin ruT s
) 1
r2 drσ(ds),

for some b′′′′. Evaluating the inner integral as in Feller (1968, Example XVII.3), we obtain

ψ(u) = iuT b′′′′ −
∫
S

|uT s|
(π

2 + isign(uT s) log |uT s|
)
σ(ds)

= iuT b′′′′ −
∫
S

|uT s|
(

1 + i
2
π
sign(uT s) log |uT s|

)
π

2 σ(ds).

Considering the spectral representation eψ(u) of the multivariate stable characteristic function

ψ(u) =

 −
∫
S
|uT s|α

(
1− i sign(uT s) tan(πα/2)

)
Γ(ds) + iuTµ(0) α 6= 1

−
∫
S
|uT s|

(
1 + i 2

π sign(uT s) log |uT s|
)

Γ(ds) + iuTµ(0) α = 1,

we can establish the following relationship between the Lévy measure ν and the spectral measure Γ:

ν(dx) = Cα
1

rα+1 Γ(ds),

where r = ||x||, s = x/||x|| and

Cα =


1− α

Γ(2− α) cos(πα/2) α 6= 1

2/π α = 1

A Stable random vector ξ is strictly stable if and only if{
µ(0) = 0 α 6= 1∫
S
sjΓ(ds) = 0 for every j α = 1.

(see e.g. Samoradnitsky and Taqqu (1994, Theorem 2.4.1)). By Theorem B.1, the spectral measure Γ of a
symmetric stable random vector ξ satisfies

lim
n→∞

nP
(
||ξ|| > n1/αx,

ξ

||ξ||
∈ A

)
= Cαx

−αΓ(A) (15)

for every Borel set A of S such that Γ(∂A) = 0. Moreover, the distribution of a random vector ξ belongs
to the domain of attraction of the Stk(α,Γ) distribution, with α ∈ (0, 2) and Γ simmetric finite measure on
Sk−1, if and only if equation 15 holds (see e.g. Davydov et al. (2008, Theorem 4.3)).
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