Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding

Kenton Lee*1 Mandar Joshi*1 Iulia Turc2 Hexiang Hu1 Fangyu Liu3 Julian Eisenschlos1 Urvashi Khandelwal1 Peter Shaw1 Ming-Wei Chang1 Kristina Toutanova1

Abstract

Visually-situated language is ubiquitous—sources range from textbooks with diagrams to web pages with images and tables, to mobile apps with buttons and forms. Perhaps due to this diversity, previous work has typically relied on domain-specific recipes with limited sharing of the underlying data, model architectures, and objectives. We present Pix2Struct, a pretrained image-to-text model for purely visual language understanding, which can be finetuned on tasks containing visually-situated language. Pix2Struct is pretrained by learning to parse masked screenshots of web pages into simplified HTML. The web, with its richness of visual elements cleanly reflected in the HTML structure, provides a large source of pretraining data well suited to the diversity of downstream tasks. Intuitively, this objective subsumes common pretraining signals such as OCR, language modeling, and image captioning. In addition to the novel pretraining strategy, we introduce a variable-resolution input representation and a more flexible integration of language and vision inputs, where language prompts such as questions are rendered directly on top of the input image. For the first time, we show that a single pretrained model can achieve state-of-the-art results in six out of nine tasks across four domains: documents, illustrations, user interfaces, and natural images.

1. Introduction

Research on the interaction between language and vision has traditionally focused on tasks where images and text can be separated into distinct channels, e.g., visual question answering or image captioning. However, visually-situated language is a far more pervasive way in which these modalities interact and blend together. For example, documents, tables, infographics, and user interfaces (UIs) are intended to be consumed holistically, without clear boundaries between textual and visual elements (Figure 1). Comprehensive understanding of this information requires a deep set of skills, including the ability to recognize text, understand language, and incorporate diverse visual context.

Previous work on understanding visually-situated language is scattered. The focus is typically on complex task-specific combinations of available inputs and tools. For example, document-understanding models (Huang et al., 2022) rely on external OCR systems, UI-understanding models rely on platform-specific metadata (e.g., Android view hierarchy) (Bai et al., 2021), and diagram-understanding models rely on diagram parses (Kembhavi et al., 2016). Domain-specific engineering can be effective for high-resource settings such as documents, where there is an abundance of tools and data available. However, these pipelined models lack sharing of the underlying data, model architectures, and objectives across domains, limiting their general applicability. Moreover, relying on external systems like OCR increases engineering complexity, limits adaptability, and can increase overall computational cost. Recent work on OCR-free, end-to-end document understanding from images (Kim et al., 2022; Davis et al., 2022) has attempted to remove such task-specific engineering and reliance on external components during inference by learning to decode OCR outputs during pretraining—a significant step towards more general-purpose models. However, the focus on text at the surface level limits the depth of knowledge transferred from unsupervised data.

We present Pix2Struct, a pretrained model that com-

1Equal contribution 1Google Research 2succinctly.ai 3University of Cambridge. Correspondence to: Kenton Lee <kentonl@google.com>, Mandar Joshi <mandarj@google.com>.

2For pretrained checkpoints and code, see https://github.com/google-research/pix2struct.
Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding

Figure 1: Examples of visually-situated language understanding tasks, including diagram QA (AI2D), app captioning (Screen2Words), and document QA (DocVQA). We also include an example of our proposed pretraining task (screenshot parsing) on the left. Pix2Struct encodes the pixels from the input image (above) and decodes the output text (below).

We train two variants with 282M and 1.3B parameters, which we refer to as Pix2Struct-Base and Pix2Struct-Large respectively, on 80M screenshots of web pages collected from the URLs in the C4 corpus [Raffel et al., 2020]. Experiments on four domains and nine tasks show that our finetuned models strongly outperform Donut (ranging from 9 to 53 points), the strongest existing baseline without pipelines. Compared with models with domain-specific pipelines, we lag behind the state of the art in high-resource domains such as documents and natural images but observe significant improvements (ranging from 1 to 44 points) in low-resource domains such as illustrations and UIs. We hope these results encourage the community to continue developing such general-purpose methods and further enable new applications in this currently fragmented intersection of language and vision.

To summarize, our major contributions are as follows:

- We introduce the area of general-purpose visually-situated language understanding, which consists of diverse tasks but common challenges.
- We propose a screenshot parsing pretraining objective based on the HTML source of web pages. Our objective is shown to be more effective than prior attempts to enable the elegant pixel-to-text design for general-purpose visually-situated language understanding.
- We introduce variable-resolution input representations to ViT and new fine-tuning strategies that seamlessly integrate language and vision inputs by directly rendering any text prompts on top of the input image.

2. Method

2.1. Background

Prior attempts at pixel-only modeling of visually situated language have largely focused on documents and natural images. For documents, Donut [Kim et al., 2022] and Dessert [Davis et al., 2022] combine pretrained objectives based on surface-level features from synthetic images or predicted OCR outputs. For natural images, recent work—GIT2 [Wang et al., 2022a] and PaLI [Chen et al., 2022]—...
focuses on collecting and training on large scale image captioning data that transfers well to datasets with natural images (e.g. TextCaps).

We aim to provide a single pretrained model that can be finetuned on a wider variety of tasks and domains. The input to our model is an image in the form of raw pixels only, and the output is text in the form of token sequences, similar to Donut. The goal is a visual analog of models like T5 (Raffel et al., 2020), where the generality of simple inputs and outputs is combined with the power of pretraining on large unsupervised sources of data. During finetuning, the complexity of adapting to diverse downstream tasks resides only in data preprocessing.

Even without visual context, pixel-only language modeling for text has only recently been attempted (Rust et al., 2022)—perhaps because it requires solving multiple hard sub-problems. First, the ability to read with high fidelity while also building rich high-level representations poses a difficult optimization problem. Second, encoding text-heavy inputs (e.g. long documents) involves processing high-resolution images with variable aspect ratios. State-of-the-art document understanding models (Huang et al., 2022) therefore rely on the combination of (possibly noisy) OCR outputs with low resolution images.

We show the components of Pix2Struct that address these challenges. Section 2.2 discusses modifications to the transformer inputs to handle variable aspect ratios and resolutions. Section 2.3 details our proposed screenshot parsing objective and Section 2.4 describes curriculum learning for more robust transfer learning. Finally, Section 2.5 shows how Pix2Struct consumes textual and visual inputs for downstream tasks (e.g. questions and images) in the same space by rendering text inputs onto images.

2.2. Architecture

Pix2Struct is an image-encoder-text-decoder based on ViT (Dosovitskiy et al., 2021). While the bulk of the model is fairly standard, we propose one small but impactful change to the input representation to make Pix2Struct more robust to various forms of visually-situated language. Before extracting fixed-size patches, the standard ViT scales the input images to a pre-defined resolution, which creates two undesirable effects: (1) rescaling the image distorts the true aspect ratio, which can be highly variable for documents, mobile UIs, and figures. (2) transferring these models to downstream tasks with higher resolution is non-trivial (Touvron et al., 2019; Wang et al., 2021b), since the model only observes one specific resolution during pretraining.

We instead propose to always scale our input image up or down such that we extract the maximal number of fixed-size patches that fit within the given sequence length (Figure 2). In order for the model to handle variable resolutions unambiguously, we use 2-dimensional absolute positional embeddings for the input patches. Together these changes to the standard ViT inputs provide two major advantages in terms of robustness to: (1) extreme aspect ratios, which is common in the domains that we experiment with, and (2) on-the-fly changes to the sequence length and resolution.

2.3. Pretraining

The goal of pretraining is for Pix2Struct to represent the underlying structure of the input image. To that end, we create self-supervised pairs of input images and target text from web pages. For each page in the pretraining corpus, we start by collecting its HTML source and a screenshot using a viewport of 1024 x 1024.

Screenshot parsing inputs & outputs The screenshot and HTML are modified to ensure rich and dense learning signal during pretraining. These modifications provide a reasonable trade-off between preserving the semantics of the page and requiring a practical decoder sequence length.

We condense the HTML DOM tree by (1) only keeping nodes with visible elements or descendants with visible elements and (2) if a node does not contain visible elements and it only has a single child, replacing the singleton child
with any grandchildren to remove chained nesting. In each node, we only use the text, along with filenames and alt-text of images. Much more information could be retained (e.g. element tags, style, titles and URLs) in future work. The decoder sequence length is further reduced by finding the largest linearized subtree that fits within a predefined sequence length. A bounding box indicating the region covered by the chosen subtree is also drawn on the screenshot.

For better context modeling, we introduce a BART-like (Lewis et al., 2020) learning signal by masking 50% of the text and decoding the entire subtree. The masked regions are randomly sampled spans of text from the chosen subtree where we render masks (Figure 3).

Comparison to existing pretraining strategies Our proposed screenshot parsing seamlessly integrates signals reminiscent of several well-known pretraining strategies:

- Recovering the unmasked parts of the parse is similar to OCR, a prerequisite skill for understanding language. OCR pretraining was proposed in Donut which uses synthetic renderings or OCR outputs. In Figure 3, predicting `<C++>` exemplifies this learning signal.
- Recovering the masked parts of the parse is much like masked language modeling (Devlin et al., 2019). A major difference is that the visual context often provides additional powerful cues. In Figure 3, predicting `<Python>` exemplifies this learning signal.
- Recovering the alt-text from images is a common pretraining strategy for image captioning (Sharma et al., 2018; Wang et al., 2022a; Chen et al., 2022c). A major difference is that the model is permitted to use the web page as additional context. In Figure 3, predicting `img_alt=C++` exemplifies this learning signal.

Appendix F contains more details including examples of screenshots paired with their gold and predicted parses.

2.4. Warming up with a reading curriculum

While we can directly pretrain Pix2Struct on the screenshot parsing task, we find that doing this naively can result in instability and slow learning. However, if we first expose the model to a short “warmup” stage of simply learning to read, we find a strong curriculum learning effect where (1) pretraining is more stable and converges faster, and (2) we observe better finetuning performance, as discussed in Section 5. We create images of text snippets with random colors and fonts. The model is simply trained to decode the original text (see Appendix E for examples). This type of curriculum learning was also used in Dessurt (Davis et al., 2022) and can also be viewed as a simplified version of Donut’s pretraining.

2.5. Finetuning

Finetuning Pix2Struct is straightforward and largely a matter of preprocessing the downstream data to unambiguously reflect the task in the image inputs and text outputs, analogous to the way T5 (Raffel et al., 2020) is used for text-based tasks. In this section, we cover the preprocessing strategies for the tasks described in Table 4. Examples of this preprocessing are shown in Figure 1.

Captioning is the most straightforward, since the input image and the output text can be directly used (as in TextCaps, Screen2Words). In the case where the focus of the caption is a specific bounding box (as in Widget Captioning), we draw the target bounding box on the image itself.

For visual question answering (as in OCR-VQA, ChartQA, DocVQA, InfographicsVQA), while multimodal models typically reserve a specialized text channel for the question, we opt to instead directly render the question as a header at the top of the original image. Pix2Struct reads both the question and the image jointly via the visual modality. This strategy is analogous to the common practice of simply concatenating all inputs during finetuning of pretrained text models, first proposed in GPT (Radford et al., 2018) and has been the default method in NLP since then. Intuitively, this strategy is effective because Pix2Struct has been pretrained to be sensitive to long-range interactions between various parts of the input image. In the case of multiple choice answers (as in AI2D), we also render the choices in the header as part of the question.

The most complex scenario is RefExp, where the task is choosing between UI components that a natural language expression could be referring to. For each candidate, we create a training instance where the input image contains the bounding box and referring expression, and the decod-
training data from other datasets (Powalski et al., 2021; each domain (see Section 4 for method descriptions). Sev-

Pix2Struct against state of the art (SotA) methods in

Across all tasks, we found a large number

Baselines can be found in Appendix D.

of 128 tokens, and we choose pretraining targets to have at

schedule uses a linear warmup of 1000 steps to 0.01, fol-

input sequence length of 2048 patches and are optimized

large model is pretrained for 170K steps with a batch size

for 270K steps with the screenshot parsing objective us-

model with 1.3B parameters including 18 layers with a hid-

model with 282M parameters including 12 encoder and 12

Pretraining We pretrain two model variants: (a) a base

3.2. Implementation and Baselines

Pretraining We pretrain two model variants: (a) a base

model with 282M parameters including 12 encoder and 12
decoder layers with a hidden size of 768, and (b) a large
model with 1.3B parameters including 18 layers with a hid-

3.1. Benchmarks

We evaluate Pix2Struct on multiple benchmarks for visually-situated language understanding across four do-
mains: illustrations, user interfaces, natural images, and
documents. Since we are the first to aggregate datasets with
this scope, we optimized for diversity in domains and in

task-format. Evaluation is restricted to standard splits with-
out additional labeled data. Table 4 in Appendix C provides
a summary of the datasets with details in Section 4.

We use evaluation metrics as defined in the original papers:
(a) average normalized Levenshtein similarity (ANLS) for
DocVQA and InfographicVQA, (b) exact match (EM) for
AI2D, RefExp, and OCR-VQA, (c) relaxed accuracy (RA)
for ChartQA, and (d) CIDEr for the generation tasks.

3.2. Implementation and Baselines

Baselines Across all tasks, we found a large number
of methods which could serve as baselines. We compare
Pix2Struct against state of the art (SotA) methods in
each domain (see Section 4 for method descriptions). Sev-

eral methods use model ensembles, multitask with labeled
training data from other datasets (Powalski et al., 2021)

Wang et al., 2022), or train with validation data (Li et al.,
2021a). For fair comparison and ease of experimentation,
we focus on single-model and single-task baselines trained
on standard splits. Several (per-task) SotA (Li et al., 2021b;
Masry et al., 2022) use domain-specific inputs (e.g. view
hierarchies for UIs or gold data tables for charts) making it
difficult to apply them to other domains. For a strong, con-
sistent visual baseline across domains, we finetuned Donut
on tasks where a purely visual baseline was unavailable.

4. Results

Table 1 compares Pix2Struct with prior work.

4.1. Illustrations

ChartQA (Masry et al., 2022) is a VQA dataset with ques-
tions based on charts, i.e. visual representations of tabular
data. VisionTaPas (Masry et al., 2022), the current SotA,
is a pipeline which operates on data tables predicted from
the given charts. It consists of (1) a ViT encoder for encoding
the chart image, (2) a TaPas encoder for encoding the question and the data table, and (3) a cross-modal encoder.
In contrast, Pix2Struct does not rely on table extractors
and uses the chart directly—improving the SotA from 45.5
to 58.6 with the large variant.

AI2D (Kembhavi et al., 2016) contains multiple choice
questions based on illustrative science diagrams (about geo-

cological processes, biological structures etc.). The dataset
comes with train and test splits. We set aside 1% of the train
split for validation. The current SotA DQA-NET (Kemb-
havi et al., 2016) focuses on modeling entity relationships
via a pipeline of tools for extracting arrows, blobs, and
other visual elements. Pix2Struct-Large outperforms
DQA-NET and Donut by 3.6 and 11.27 points respectively
without any domain-specific modifications.

OCR-VQA (Mishra et al., 2019) is a VQA dataset on im-
ages of book covers. The questions are based on book
metadata such as title, author, genre etc. Much of work on
OCR-VQA, including the pipeline SotA LATr (Biten et al.,
2022), uses off-the-shelf OCR. Recent work, GIT2 (Wang
et al., 2022a), the current SotA, is pretrained on 12.9B im-
age caption pairs. Their final finetuning stage is preceded
by intermediate finetuning on eight VQA datasets includ-
ing VQAv2 (Goyal et al., 2017), VizWiz-VQA (Chen et al.,
2022a), and OCR-VQA (Mishra et al., 2019) amongst oth-
ers. Despite not using more labeled training data, we out-
perform GIT2 by almost 1 point.

5Except RefExp due to the complexity inference.

6We evaluate on the task without the gold data table.
4.2. UIs

RefExp (Bai et al., 2021) Given a natural language referring expression, an app screenshot, and a set of components (via bounding boxes on the screenshot), the goal is to retrieve the component that the expression refers to. UIBert (Bai et al., 2021), the current SotA, is pretrained on a combination of inputs from mobile apps including screenshots, OCR text, and Android view hierarchies. Our models substantially outperform UI Bert by 1.4 and 3.4% absolute, with Pix2Struct-Large setting the new SotA.

Widget Captioning (Li et al., 2020b) is an image captioning task where the input is an app screenshot annotated with a single bounding box denoting a widget (e.g. a button or a scroll bar). The caption describes the functionality of the widget (e.g. find location). VUT (Li et al., 2021b), the current SotA uses a specialized UI encoder combining images, bounding boxes, and view hierarchies. Pix2Struct-Large improves the SotA CIDEr from 127.4 to 136.7.

Screen2Words (Wang et al., 2021a) is an image captioning task where the input is an app screenshot and the caption describes the functionality of the page (see Figure 1 for an example). Pix2Struct-Large improves the state of the art CIDEr by 64.3 to 109.4.

4.3. Natural Images

TextCaps Recently, GIT2 (5.1B parameters) and PaLI (17B parameters) have advanced the state of the art on TextCaps by pretraining on 10B+ image-caption pairs extracted from the web. PaLI (CIDEr 135.4) and GIT2 (CIDEr 145) show comparable performance without OCR inputs. PaLI achieves SotA (CIDEr 160.4) performance when finetuned with OCR, indicating that even for large-scale methods, end-to-end pixel-only performance lags behind pipeline SotA. While their image captioning-based pretraining understandably improves TextCaps, previous work (Kim et al., 2022) shows that captioning may not transfer to other domains (e.g. documents). Moreover, screenshot parsing subsumes signals from captioning (Section 2.3) while using a fraction of the data used for pretraining GIT2 and PaLI. These results suggest that Pix2Struct could further benefit from scaling in pretraining data and model size.

4.4. Documents

DocVQA (Mathew et al., 2021) is a dataset of questions about scanned documents including typewritten, printed, handwritten and born-digital text. Pix2Struct-Large outperforms Donut, the previous visual SotA on DocVQA by 9 points. Top-performing single-task methods like UDOP (Tang et al., 2022) (ANLS 84.7) typically use three components: (a) an off-the-shelf OCR system, (b) pretrained text and image encoders, and (c) additional pretraining on the IIT-CDIP scanned documents corpus. Despite using purely visual representations and no in-domain pretraining data, Pix2Struct achieves competitive performance (ANLS 76.6).

InfographicVQA (Mathew et al., 2022) is a dataset of questions about infographics from the web. A unique challenge of this dataset is its large images with extreme aspect ratios. Donut scales images to a fixed aspect ratio, which we speculate is the cause of its poor performance with an ANLS of 11.6. Pix2Struct-Large sets the state of the art amongst visual models with an ANLS of 40.

For both DocVQA and InfographicVQA, text-only baselines are at or near the state of the art. A T5-based model (T5 + 2D + U) with 2D positional biases (Borchmann et al., 2021) achieves ANLS of 81 on DocVQA and 46.1 on InfographicVQA. This is in part due to the text-heavy nature of the data (especially DocVQA) where visual context plays a lesser role, and the more mature pretrained text-based encoders can do the heavy lifting.

Common trends Overall, Pix2Struct outperforms Donut in all tasks, underscoring the effectiveness of our Table 1: Pix2Struct outperforms prior visual methods on 8 out of 9 benchmarks with SotA results on 6. While GIT2’s image captioning pretraining understandably helps on TextCaps, screenshot parsing transfers to a wider variety of downstream tasks. The individual pipeline SotA methods are described in Section 4 with full results in Appendix B.
pretraining. We also advance the single-task state of the art on six of nine benchmarks across four domains. Scaling up from base to large results in considerable improvements on all tasks despite the base model being trained for $3 \times$ more iterations than the large model. Previous work (Liu et al., 2019; Raffel et al., 2020) has shown that large batch sizes and many training steps contribute greatly to the quality of the pretrained model. Results indicate that further scaling up of Pix2Struct is a promising direction.

5. Analysis

Ablating pretraining objectives Table 2 analyzes the importance of each component of our pretraining recipe on DocVQA, Widget Captioning, and TextCaps validation sets. The full pretraining method consists of a warmup reading stage on the BooksCorpus followed by pretraining using the screenshot parsing objective. For these experiments, we use the base variant with a total of 100K steps of pretraining including 30K warmup steps followed by 70K steps of screenshot parsing. The screenshot parsing ablation removes the screenshot parsing stage altogether and uses an extended warmup stage of 100K steps. The warmup ablation skips the warmup stage and directly pretrains from random initialization for 100K steps. The masking ablation uses 30K steps warmup followed by 70K steps of screenshot parsing without masking.

The biggest drop in performance comes from ablating the screenshot parsing stage, effectively reducing the pretraining to reading linear text. Ablating the warmup and masking is nearly equivalent on DocVQA and Widget Captioning while the warmup is slightly more important in TextCaps. Overall, our results seem to indicate that reading and understanding visually-situated language is a complex problem involving skills including recognizing text, understanding language, and incorporating visual context.

Ablating variable-resolution inputs Figure 4 compares various ways to convert input images into a constant number of patches. This ablation is performed on the warmup stage (Section 2.4), where we measure full sequence accuracy. The ‘padded’ variant maintains the original aspect ratio, but introduces significant padding, which sacrifices the effective resolution. The ‘stretched’ variant, typically used in ViT, introduces no padding but distorts the original image. Our variable-resolution inputs get the best of both worlds by maintaining the original aspect ratio while maximally utilizing the budget specified by the sequence length. Experiments in Appendix A show that this benefit leads to more effective learning, even for a task as simple as transcribing text in the input image.

6. Discussion

This section lays out some of the challenges in training general-purpose visual language understanding models, and discuss a road map for future work.

Resolution Like Donut, we found that pretraining and finetuning performance are extremely sensitive to the input resolution. The difficulty in using high-resolution images has been a bottleneck for pixel-only models since higher resolutions often lead to longer sequence lengths. This bottleneck has in part been responsible for the dominance of OCR-based pipelines which are able to use lower image resolutions due to a dedicated text encoder. However, steady progress with Donut and Pix2Struct combined with recent progress in long range transformers (Press et al., 2022) provides hope that pixel-only models will bridge the gap with OCR-based pipelines.

The visual web As a first attempt towards a general-purpose visual language understanding model, we focused on simplicity both in terms of how we use the HTML source and our choice for the pretraining corpus, C4—a known public corpus used in previous work (Raffel et al., 2020) that is significantly smaller and narrower than corpora used to train the largest language models today. However, web data includes even richer multimodal signals such as videos and interactions. We posit that future ver-

Table 2: Ablations of pretraining components. Each ablation is a modification with respect to the full model, while keeping the total number of pretraining steps constant.

<table>
<thead>
<tr>
<th>Pretraining</th>
<th>Doc VQA</th>
<th>Widget Captioning</th>
<th>TextCaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>67.8</td>
<td>137.5</td>
<td>84.2</td>
</tr>
<tr>
<td>– Warmup</td>
<td>56.2</td>
<td>128.0</td>
<td>71.7</td>
</tr>
<tr>
<td>– Masking</td>
<td>55.7</td>
<td>129.4</td>
<td>77.4</td>
</tr>
<tr>
<td>– Screenshot Parsing</td>
<td>12.2</td>
<td>35.1</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Figure 4: Our variable-resolution inputs prevent aspect-ratio distortion while minimizing padding.
sions of general-purpose visual language understanding models will benefit from better data curation. This opportunity also comes with a caveat: just like text-based models, we must be careful of harmful content on the web, which multimodal models would also be sensitive to.

Generality While we have focused on general pixel-only models, we do acknowledge that using OCR-pipelines or metadata can be appropriate or even necessary in certain domains. For NLP, the scaling of pretrained text based models has led to not only simpler model architectures and preprocessing, but also emergent abilities on newer tasks which were hitherto considered far too difficult (Wei et al., 2022). A general-purpose model may also enable better applications for visual language, e.g. filling in missing accessibility annotations (Zhang et al., 2021). Finally, given that the overwhelming majority of prior work has leveraged OCR-based features, it seems necessary to advance OCR-free alternatives (as this paper does) in order to enable a clearer longer-term understanding around the proper role for OCR. The broader objective of this work is to bring pretraining for visually-situated language understanding a step closer to text-based counterparts and pave the way for similar benefits from data and model scaling.

7. Related Work

To the best of our knowledge, no prior work has pretrained and evaluated a visually-situated language understanding model on tasks spanning all four domains of documents, illustrations, user interfaces, and natural images. We build on prior work primarily focused on a single domain and briefly highlight the similarities as well as the points of departure with respect to such work here.

Document understanding State-of-the-art models in this domain are based on a pipeline of an external OCR system and a model that combines images and OCR annotations (Appalaraju et al., 2021; Powlarski et al., 2021; Xu et al., 2021), *inter alia*. Prominent representatives are LayoutLMv3 (Huang et al., 2022), which uses a simplified transformer-based architecture and losses that encourage patch–OCR alignment. TILT (Powlarski et al., 2021) pretrained a text decoder and an image + OCR-output encoder followed by intermediate finetuning on multiple QA tasks. Pix2Struct is more closely related to Donut and Dessurt (Davis et al., 2022), both image-to-text models without OCR at inference time; the main difference stems from our more powerful pretraining task from ground truth structures and resolution flexibility enabling transfer to a variety of visual language domains.

UI understanding Models in this group have focused solely on the UI domain using pretraining data from models.

11Some prior approaches have been evaluated on two domains.
focuses on a more limited domain of visual document understanding (e.g. excluding natural images and UIs), but integrates a more comprehensive set of tasks within the document understanding domain.

References

A. Resolution in visually-situated language understanding tasks

Previous methods rescale input images to fixed resolutions, which can introduce severe aspect ratio distortions for inputs such as webpages and documents. In contrast, we prevent aspect ratio distortion by rescaling input images up or down such that we extract the maximal number of patches that fit within the given sequence length (Figure 2).

Figure 5 gives an overview of the importance of input resolutions in visually-situated language understanding tasks. Though Pix2Struct is more efficient at making use of the input resolution, both Pix2Struct and Donut require high resolutions to perform well on DocVQA (note the log scale). For example, we only see significantly diminishing returns after about 1M pixels (4096 patches of 16 × 16 pixels for Pix2Struct and 1024 × 1024 for fixed-resolution models). However, ViT models typically pretrain with resolutions of 224 × 224 and finetune with up to 512 × 512. This is a subtle but critical detail that makes using standard ViT out of the box suboptimal.

On the right of Figure 5, we also present example inference speeds on a v3-8 Cloud TPU when performing inference on DocVQA. At full resolution (4096 sequence length or 1M pixels), the base model processes 62 documents per second, and the large model processes 20 documents per second.
Table 3: Amongst single-task single-model methods, Pix2Struct achieves state-of-the-art results on 6 out of 9 benchmarks spanning 4 domains. * indicates that the method used additional labeled data from other tasks and are not directly comparable to single task methods. VisionTaPas uses a table extraction tool. DQA-NET uses diagram processing tools for detecting arrows, blobs, etc in addition to standard OCR. UI Bert and VUT use Android view hierarchies. All other non-image methods use standard OCR.

B. Full Results

Table 3 reports full results for pipeline and pixel-only methods. For fair comparison and ease of experimentation, we focus on single-model and single-task baselines trained on standard splits. Several (per-task) SotA (Li et al., 2021b; Masry et al., 2022) use domain-specific inputs (e.g. view hierarchies for UIs or gold data tables for charts) making it difficult to apply them to other domains.

C. Finetuning Dataset Details

Table 4 show the datasets in our benchmark for visually-situated language understanding.
D. Hyperparameters

The base and large models are finetuned with an input sequence length of 4096 and 3072 respectively, except the base model on InfographicVQA which benefits from a longer sequence length of 6144. We cannot use a longer sequence length for the large variant due to TPU/GPU memory constraints. We finetune for 5000 or 10000 steps with a batch size of 32, 128, or 256, with hyperparameter tuning and early stopping based on the validation set. Table 5 contains hyperparameter values for all tasks.

E. Warmup Stage Data

For the warmup stage, we create images of text snippets from the BooksCorpus (Zhu et al. 2015) with random colors (uniformly sampled from all possible RGB values), fonts (uniformly sampled from all possible Google Fonts), and font sizes (uniformly sampled from 12pt to 36pt) on a white background. The text snippets are up to 128 bytes long. The width of the images are 640 pixels, and the text is wrapped if it exceeds the width of the image. The height of the image is fit to the content height. The text is unmasked as this stage is intended purely as a learning-to-read task.

Exposing the model to a short “warmup” stage of simply learning to read, results in a strong curriculum learning effect where (1) pretraining is more stable and converges faster, and (2) we observe better finetuning performance. Figure 6 shows an example of rendered text from the BooksCorpus with its “parse”.

F. Pretraining Data

The pretraining data is constructed from URLs in the C4 corpus. We collect 80M (about one third of the total number of documents) pairs of screenshots paired with their HTML source. The screenshots have a width of 1024 pixels, and the height of the image is fit to the content height. The figures below show screenshots of our pretraining data along with ground-truth and predicted parses.
Ground-truth Parse

CrossFit Thunderhawk | Rio Rancho
dedicated to promote healthy kids and teens in Rio Rancho, NM
Home About Schedule Media Blog Contact Us Free Class
Drop-ins
Bring your child in for a drop-in to get a WOD in!
If you are visiting from out of town or traveling for club sports, make sure your child’s routine is not disrupted. Bring them in for a drop in to get a WOD in!
1-day CrossFit Athlete $15
1-day Competitor $25
Become A Member
We’d love to meet you and show you around.

Predicted Parse

Thunderhawk Sports & Fitness
Home About Programs Team Blog Contact Us Get Started
Drop-ins
Bring your child in for a drop-in to get a workout
If you are visiting from out of town or traveling for club sports, make sure your child’s routine is not disrupted. Bring them to our drop-in for a full session!
Ground-truth Parse

<, I tried something Valentine’s themed. If you’d like to help raise money for fighting children’s cancer you can follow the link right above and help out, too. As inspiration for this semi-homemade recipe, I looked at the two recipes on the bag of sweet dough, I got an idea and today I’m going to share with you how that worked out. \\x00 I got the bag of Sweet Dough using a coupon for a free product that was sent to my by Rhodes BakeNServ in exchange for testing out their products and sharing the results with all of you; no other form of compensation was received.>

Predicted Parse

<, I tried something Valentine’s themed. If you’d like to help out, I think you’d go right ahead and do a post. Click on the link right above and help out, too. As inspiration for this semi-homemade recipe, I’ve shared up two recipes on the bag of sweet dough. I got an idea and today I’m going to share with you the second one. Thank you for any of the amazing baking ideas plus this free product that was sent to my by Rhodes BakeNServ in exchange for testing. I’m really excited and sharing this recipe with all of you
Fall is undeniably the best season for fashion for a multitude of reasons.
Ground-truth Parse

<<Menu>>

<<Spin-Off Games>>
<<Fairytale Games is a growing universe. Because of this, we have and will continue to grow spin-off games that utilize characters, storylines, and even poke fun of our games. Keep checking back and you just might be surprised at what you see!>>
<<Rumplestiltskin!>>
<<Super Fairytale Fighters 2>>
<<Share this!>>
<<Twitter> <Facebook>>>
<<Leave a Reply>>
<<Your email address will not be published.>>
<<Required fields are marked> <*>>>
<<Comment> <*>>>>>

Predicted Parse

<<Menu>>

<<Fairytale Games>>
<<Fairytale Games is a growing universe. Because of this, we are excited to continue to grow spin-off games that utilize characters, storylines, and even poke fun of our games. Keep checking back and you just might be surprised at what you see!>>
<<Fairytale Games on Steam>>
<<Share this!>>
<<Twitter> <Facebook>>>
<<Leave a Reply>>
<<Your email address will not be published.>>
<<Required fields are marked>>
Coronavirus Update! We are open and ready to help you.

We are conducting most of our appointments via phone to help prevent the spread of the virus.

Chapter 13 Coronavirus Update

We can provide the guidance you need to get through stressful family disputes with your rights and interests intact.

CLICK HERE FOR MORE INFO

Contact for a free initial consultation

Call Us: (904) 222-2222

Text Us: (904) 222-2222

Home | About | Articles | Videos | Testimonials | Tax Relief | News | Podcasts | Rate Us | Contact

We are conducting most of our appointments via phone to help prevent the spread of infection.

Call Us: (904) 222-2222

Text Us: (904) 222-2222

Home | About | Articles