
Multi-Session Budget Optimization for Forward Auction-based Federated Learning

Xiaoli Tang¹ Han Yu¹ Zengxiang Li¹ Xiaoxiao Li²³

Abstract

Auction-based Federated Learning (AFL) has emerged as an important research field in recent years. The prevailing strategies for FL data consumers (DCs) assume that the entire team of the required data owners (DOs) for an FL task must be assembled before training can commence. In practice, a DC can trigger the FL training process multiple times. DOs can thus be gradually recruited over multiple FL model training sessions. Existing bidding strategies for AFL DCs are not designed to handle such scenarios. Therefore, the problem of multi-session AFL remains open. To address this problem, we propose the Multi-session Budget Optimization Strategy for forward Auction-based Federated Learning (MBOS-AFL). Based on hierarchical reinforcement learning, MBOS-AFL jointly optimizes intersession budget pacing and intra-session bidding for AFL DCs, with the objective of maximizing the total utility. Extensive experiments on six benchmark datasets show that it significantly outperforms seven state-of-the-art approaches. On average, MBOS-AFL achieves 12.28% higher utility, 14.52% more data acquired through auctions for a given budget, and 1.23% higher test accuracy achieved by the resulting FL model compared to the best baseline. To the best of our knowledge, it is the first budget optimization decision support method with budget pacing capability designed for DCs in multi-session forward AFL.

1. Introduction

Federated Learning (FL) (Fan et al., 2025; Rendle, 2012; Yang, 2020; Meng et al., 2024) has gained great attention for its ability to safeguard data privacy and user confidentiality in both academia (Qi et al., 2025b;a; Tang et al., 2024c) and industry (Sun et al., 2024). Traditional FL approaches often assume that data owners (DOs), also known as FL clients, are willing participants in FL tasks, assisting data consumers (DCs), or FL servers, in training models. However, this assumption may not always hold in practice, as DOs often weigh their participation against self-interest and cost-benefit considerations. To address this challenge, auction-based Federated Learning (AFL) has emerged as a promising solution (Jiao et al., 2019; Deng et al., 2021; Zhang et al., 2021; He et al., 2024).

As shown in Fig. 1, the key participants in AFL are the auctioneer, DOs, and DCs. The data trading process between DOs and DCs is modeled as an auction, coordinated by the auctioneer. The auctioneer facilitates the flow of asking prices from DOs and bid prices from DCs. After receiving the bids, the auctioneer consolidates the results, notifies participants of the match-making outcomes, and determines the auction winners. Through these auction processes, DCs recruit DOs for FL training tasks. Once FL teams (i.e., DOs recruited for the FL training tasks) are formed, DCs proceed with the FL model training following standard FL protocols.

AFL methods can be divided into three categories (Tang et al., 2024a; Tang & Yu, 2023c): 1) data owner-oriented (DO-oriented), 2) auctioneer-oriented, and 3) data consumeroriented (DC-oriented). DO-oriented AFL methods focus on helping DOs determine the amount of resources to com-

¹College of Computing and Data Science, Nanyang Technological University, Singapore ²Department of Electrical and Computer Engineering, The University of British Columbia, Canada ³Vector Institute, Canada. Correspondence to: Han Yu <han.yu@ntu.edu.sg>.

Proceedings of the 42^{nd} International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

mit to FL tasks, and set their respective reserve prices for profit maximization. Auctioneer-oriented AFL methods investigate how to optimally match DOs with DCs as well as provide the necessary governance oversight to ensure desirable operational objectives can be achieved (e.g., fairness, social cost minimization (Zhang et al., 2023)). DC-oriented AFL methods examine how to help DCs select which DOs to bid and for how much, in order to optimize key performance indicators (KPIs) within budget constraints, possibly in competition with other DCs.

This paper focuses on DC-oriented AFL, helping DCs bid for DOs. The prevailing methods in this domain require that the budget of a DC shall be maximally spent to recruit the entire team of necessary DOs before FL model training can commence (Tang & Yu, 2023b; Tang et al., 2024b; Tang & Yu, 2023a). In practice, throughout the FL model training process, a DC can recruit DOs over multiple training sessions. This is especially useful in continual FL (Yoon et al., 2021; Pan et al., 2016) settings where DOs' local data are continuously updated over time. Existing AFL approaches designed to optimize KPIs within a single auctioning session cannot be directly applied in multi-session AFL scenarios, especially in scenarios with multiple DCs competing to bid for DOs from a common pool of candidates. This is primarily due to the limitation that they are unable to perform budget pacing, which pertains to the strategic dispersion of a limited overall budget across multiple AFL sessions to achieve optimal KPIs over a given time frame.

To address this issue, we propose the Multi-session Budget Optimization Strategy for forward Auction-based Federated Learning (MBOS-AFL). It is designed to empower a DC with the ability to dynamically allocate its limited budget over multiple AFL DO recruitment sessions, and then optimize the distribution of budget for each session among DOs through effective bidding. The ultimate goal is to maximize the DC's winning utility. MBOS-AFL is grounded in Hierarchical Reinforcement Learning (HRL) (Pateria et al., 2021) to effectively deal with the intricate decision landscape and the absence of readily available analytical remedies. Specifically, MBOS-AFL consists of two agents for each DC: 1) the Inter-Session Budget Pacing Agent (InterBPA), and 2) the Intra-Session Bidding Agent (IntraBMA). For each auctioning session, each DC's InterBPA opportunistically determines how much of the total budget shall be spent in this session based on jointly considering the quantity and quality of the currently available candidate DOs, as well as bidding outcomes from previous sessions. Then, the DC's IntraBMA determines the bid price for each data resource offered by DOs in the AFL market within the session budget.

To our best knowledge, MBOS-AFL is the first budget optimization decision support method with budget pacing capability designed for DCs in multi-session forward auctionbased FL. Extensive experiments on six benchmark datasets show that it significantly outperforms seven state-of-theart approaches. On average, MBOS-AFL achieves 12.28% higher utility, 14.52% more data acquired through auctions for a given budget, and 1.23% higher test accuracy achieved by the resulting FL model compared to the best baseline.

2. Related Work

Existing methods for DC-oriented issues can be further divided into two subcategories (Tang, 2024; Tang & Yu, 2025): i) reverse auction-based methods, and ii) forward auction-based methods.

Reverse Auction-based Methods: Developed primarily for monopoly AFL markets where there is only one DC facing multiple DOs, reverse auction-based methods like (Deng et al., 2021; Zhang et al., 2021; Jiao et al., 2020; Zeng et al., 2020; Tang & Yu, 2024c; Le et al., 2020; Thi Le et al., 2021) address the challenge of DO selection through reverse auctions. The key idea of these methods is to optimally resolve the DO selection problem, targeting the maximization of KPIs specific to the target DC. Particularly relevant in scenarios where disparate DOs vie for the attention of a sole DC, these methods have progressed by integrating diverse mechanisms such as graph neural networks, blockchains, and reputation assessment.

Forward Auction-based Methods: These methods are designed for situations where multiple DCs compete for the same pool of DOs (Tang & Yu, 2023b; 2024a; 2023a; 2024b; Tang et al., 2024b). The key idea of these methods lies in determining the optimal bidding strategy for DCs. The goal is to maximize model-specific key performance indicators. A notable example is Fed-Bidder (Tang & Yu, 2023b) which assists DCs to determine their bids for DOs. It leverages a wealth of auction-related insights, encompassing aspects like DOs' data distributions and suitability to the task, DCs' success probabilities in ongoing auctions and budget constraints. However, this method ignores the complex relationships among DCs, which are both competitive and cooperative. To deal with this issue, (Tang & Yu, 2023a) models the AFL ecosystem as a multi-agent system to steer DCs to bid strategically toward an equilibrium with desirable overall system characteristics.

MBOS-AFL falls into the forward auction-based methods category. Distinct from existing methods which focus on optimizing the objectives within a single auctioning session, it is designed to solve the problem of multi-session AFL budget optimization.

3. Preliminaries

AFL Market: Generally, an AFL market consists of three types of participants (Tang et al., 2024a): 1) Data Owners (DOs): entities possessing potentially sensitive yet valuable data, who are willing to share or sell access to their data resources for FL task training in exchange for appropriate compensation. 2) Data Consumers (DCs): organizations or individuals requiring data to train their machine learning models via FL. 3)Auctioneer: a trusted third-party entity orchestrating the auction process between DOs and DCs. It facilitates the exchange of data resources for FL training tasks through an auction mechanism, such as the Second-Price Sealed-Bid (SPSB) auction (Yang et al., 2023).

When a DO is ready to offer its services for FL task training, it notifies the auctioneer, specifying its bid request and the reserve price.¹ The auctioneer then announces the auction to all DCs currently participating in the AFL market. Any DC whose required the corresponding data resources aligns with the DO's offering submits a bid for the auction.

Multi-Session Budget Constrained AFL Bidding: During the course of FL model training, a DC can initiate the FL training procedure (i.e., a training session) on multiple occasions, with the aim of recruiting DOs to improve model performance. Consider the scenario of multiple banks engaging in FL. The dynamic nature of user data within these banks sets in motion a perpetual cycle of updates, with continually refreshed data stored locally by each bank. As a result, these banks systematically engage in repeated sessions of federated model training periodically, during which the standard FL training protocol is followed. Let S denote the number of training sessions for the target DC, who has a budget Bfor all training sessions [S]. In each FL training session s $(s \in [S])$, there are C_s available qualified DOs, which can help train the FL model of the target DC. Each DO $i \in [C_s]$ possesses a private dataset $D_i = \{(\boldsymbol{x}_j, y_j)\}_{j=1}^{|D_i|}$.

Following (Tang & Yu, 2023b), we assume that each DO *i* become gradually available over time. Each DO *i* can trigger the following auction process: 1) **Bid Request Initiation**: DO $i \in [C_s]$ generates a bid request about itself (e.g., identity, data quantity, etc.) and sends it along with the the reserve price (i.e., the lowest price it is willing to accept for selling the corresponding resources (Vincent, 1995)) to the auctioneer. 2) **Bid Request Dissemination**: The auctioneer disseminates the received bid request to the relevant DCs whose FL tasks are relevant to the data resources of the DO being auctioned. 3) **Bidding Response**: Each relevant DC evaluates the potential value and cost of the received bid request, and decides on a bid price based on its bidding strategy. The DCs submit their bids to the auctioneer. When

a DC has exhausted its budget, it will forfeit future auctions. 4) **Outcome Determination**: Upon receiving bids from relevant DCs, the auctioneer determines the winning price based on an auction mechanism. It then compares the winning price with the reserve price set by each DO. If the winning price is lower than the reserve price, the auctioneer terminates the auction and informs the DO to initiate another auction for the same resources. Otherwise, the auctioneer informs the winning DC about the cost (i.e., the winning price) it needs to pay, informs the losing DCs, and informs the DO about the winning DC it shall join.

When the auctioning process for session *s* has been completed or the DC has exhausted its budget, it initiates FL model training with the recruited DOs. Each DC pays the corresponding market prices to the DOs it has recruited.

FL with Recruited DOs: After the auction-based DO recruitment process, the DC triggers the FL training process with the recruited DOs in session s, which is detailed in Appendix A.1.

Let v_s^i denote the reputation of DO $i \in [C_s]$ (Shi & Yu, 2023) and $x_s^i \in \{0, 1\}$ denote whether the target DC wins i. Then, the goal of the target DC across S sessions is to maximize the total utility of winning DOs² under the budget B, which can be formulated as:

$$\max \sum_{s \in [S]} \sum_{i \in [C_s]} x_s^i \times v_s^i, \quad s.t. \quad \sum_{s \in [S]} \sum_{i \in [C_s]} x_s^i \times p_s^i \le B,$$
(1)

Data Owner Reputation Calculation: Following (Shi & Yu, 2023; Tang & Yu, 2024b), we calculate the reputation of each DO based on the GTG-Shapley method (Liu et al., 2022) technique and Beta Reputation System (BRS) (Josang & Ismail, 2002).

We start by adopting the SV approach to calculate the contribution ϕ_i of each DO *i* during each training round towards the performance of the resulting FL model as

$$\phi_i = \alpha \sum_{\mathcal{S} \subseteq \mathcal{N} \setminus \{i\}} \frac{f(w_{\mathcal{S} \cup \{i\}}) - f(w_{\mathcal{S}})}{\binom{|\mathcal{N}| - 1}{|\mathcal{S}|}}.$$
 (2)

 α is a constant. S represents the subset of DOs drawn from \mathcal{N} . $f(w_S)$ denotes the performance of the FL model w when trained on data owned by S. The contributions made by the DOs can be divided into two types: 1) positive contribution (i.e., $\phi_i \geq 0$); and 2) negative contribution (i.e., $\phi_i < 0$). We use the variables pc_i and nc_i to record the number of positive contributions and the number of negative contributions made by each DO i, respectively.

¹Following (Tang & Yu, 2023b), we assume that DOs arrive and make their bid requests sequentially, one after the other.

²Following (Zhang et al., 2021; Tang & Yu, 2023b; Zhang et al., 2022a;b; Tang & Yu, 2023a), maximizing the total utility is equivalent to optimizing the performance of the global FL model obtained by the target DC.

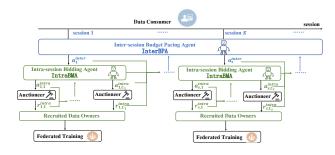


Figure 2. An overview of the proposed MBOS-AFL approach.

Following BRS, the reputation value v^i of i can be computed as follows:

$$v^{i} = \mathbb{E}[Beta(pc_{i}+1, nc_{i}+1)] = \frac{pc_{i}+1}{pc_{i}+nc_{i}+2}.$$
 (3)

It is important to highlight that, as depicted in Eq. (3), the reputation of each DO *i* undergoes dynamic updates as the FL model training process unfolds. Furthermore, in cases where there is no prior information available, the default initialization for the reputation value of *i* is set to the uniform distribution, denoted as $v^i = N(0, 1) = Beta(1, 1)$.

The basics of Reinforcement Learning (RL) could be found in Appendix A.2.

4. The Proposed MBOS-AFL Approach

Our primary objective is to help DCs recruit DOs across multiple sessions while adhering to budget constraints, with the overarching goal of maximizing the total utility. To accomplish this, we must tackle two fundamental challenges: 1) Budget Allocation: Determining the allocation of the total budget B to a given session $s, B_s; 2$) Bidding Strategy: Determining the bid price b_s^i for any given DO *i* in session *s* under the session budget B_s . Since the AFL market is highly dynamic, it is difficult for DCs to obtain a closed-form analytical solution for the above two problems. Therefore, we design MBOS-AFL based on RL (Sutton & Barto, 2018) to solve these problems without requiring prior knowledge. To determine the optimal budget allocation strategy and bidding strategy for a DC to realize the objective outlined in Eq. (1), we design MBOS-AFL based on HRL (Pateria et al., 2021). It consists of two HRL-based budget allocation agents: 1) Inter-session Budget Pacing Agent (InterBPA), and 2) Intra-session Bidding Agent (IntraBMA). An overview of MBOS-AFL is shown in Figure 2.

During each FL training session s, the InterBPA observes the current state within the model training environment. Subsequently, this observed state is channeled into the policy network of the InterBPA, generating the recommended inter-session action (i.e., setting the budget B_s for session s). This action aims to enhance the current FL model performance, ultimately influencing the outcome across all training sessions. Moreover, this inter-session action serves as an initial state for the IntraBMA. It is worth noting that the InterBPA will stay static throughout a given session s. It is only updated when the session s is concluded. Funneling the inter-session action B_s into the policy network of the IntraBMA helps determine the intra-session actions, especially the initial intra-session action.

The primary function of the IntraBMA is to help a DC bid for each DO $i \in [C_s]$ in session s in an efficient way, thus contributing to the crafting of the optimal budget allocation strategies under MBOS-AFL. The IntraBMA takes the dynamic DC state as the input, and produces the optimal action a_s^i as the bid price for data owner i to be submitted to the auctioneer. As a result, the IntraBMA will be updated upon every DO auction in session s. The synthesis of inter-session and intra-session actions culminates in the formulation of the DC's budget allocation strategy. In the following sections, we provide detailed descriptions of these two agents.

4.1. Inter-session Budget Pacing Agent (InterBPA)

State: The state of the InterBPA in session $s \in [S]$, denoted as s_s^{inter} , comprises two main segments. The first segment contains historical data derived from the preceding S' sessions. These include the budgets allocated for each of the historical sessions, and the bidding outcomes of IntraBMA in these sessions (including the bid prices for DOs, payment for DOs, and reputation of the recruited DOs). The second segment contains current session information (including the number of available DOs and the remaining budget). Thus, the formulation of s_s^{inter} is as follows:

$$s_{s}^{inter} = \{ \boldsymbol{b}_{s-S'}, \cdots, \boldsymbol{b}_{s-1}, \boldsymbol{p}_{s-S'}, \cdots, \boldsymbol{p}_{s-1}, \boldsymbol{v}_{s-S'}, \cdots, \boldsymbol{v}_{s-1}, \\ C_{s}, B, s \}.$$
(4)

 $\boldsymbol{b}_{s-1} = \{b_{s-1}^i\}_{t \in [C_{s-1}]}, \ \boldsymbol{p}_{s-1} = \{p_{s-1}^i\}_{i \in [C_{s-1}]}, \ \text{and} \ \boldsymbol{v}_{s-1} = \{v_{s-1}^i\}_{i \in [C_{s-1}]}.$ The integration of historical context into the state design is pivotal, as it empowers the agent to understand the impact of its strategies on FL training over time.

Action: In session s, the action to be taken by the InterBPA is to determine the budget allocated to the current session, a_s^{inter} , which is expressed as:

$$a_s^{inter} = B_s. (5)$$

Here, B_s denotes the budget for session s to bid for the data owners involved. This inter-session action plays a pivotal role in regulating the amount of budget to be disbursed by the DC during session s, thereby helping preserve the total budget B for potential future FL training sessions.

Reward: The inter-session reward for session s, r_s^{inter} , is

determined by the average reputation of DOs recruited in s:

$$r_s^{inter} = \frac{1}{\sum_{i \in [C_s]} x_s^i} \sum_{i \in [C_s]} x_s^i v_s^i.$$
 (6)

 $x_s^i \in \{0, 1\}$ denotes if the DC wins the auction for DO *i*.

Discount factor: As the goal of a DC is to maximize the total utility derived from the recruited DOs for a given total budget B regardless of time, the reward discount factor of InterBPA is set to 1.

4.2. Intra-session Budget Management Agent

(IntraBMA)

State: The state of the IntraBMA in session s during an auction for DO *i*, denoted as $s_{s,i}^{intra}$, consists of: 1) $C_s - i$: the remaining DOs in session s, 2) B_s : the remaining budget of session s, and 3) v_s^i : the reputation of DO i:

$$\boldsymbol{s}_{s,i}^{intra} = \{C_s - i, B_s, v_s^i\}.$$
(7)

Action: The action, denoted as $a_{s,i}^{intra}$, to be taken by the IntraBMA in session s for DO $i \in [C_s]$ is to determine the bid price for i, i.e., b_s^i .

Reward: The intra-session reward for session s following the bid for DO *i* is defined as the utility obtained from *i*, which is formulated as:

$$r_{s,i}^{intra} = x_s^i v_s^i. \tag{8}$$

Discount factor: Similar to InterBPA, the discount factor for the IntraBMA is also set to 1.

4.3. Training Procedure for InterBPA and IntraBMA

Following (Tang & Yu, 2023a), InterBPA and IntraBMA leverage the Deep Q-Network (DQN) technique (Mnih et al., 2015). Both agents use deep neural networks (DNNs) to model the action-value function Q(s, a), parameterized by θ^{inter} and θ^{intra} , respectively. To improve stability during training, we pair these networks with a similar DNN architecture parameterized by $\hat{\theta}^{inter}$ and $\hat{\theta}^{intra}$, respectively (referred to as the *target networks*), which also approximates Q(s, a). To update θ^{inter} and θ^{intra} , the training is conducted by minimizing the following loss function: $\mathcal{L}(\theta) = \frac{1}{2} \mathbb{E}_{(s,a,r,s') \sim \mathcal{D}}[(y - Q(s,a;\theta))^2].$ The *replay buffer*, D, is a storage mechanism for transition tuples $\{(s, a, r, s')\}_{i=1}^{n}$, where s' is the new observation following action a based on the state s, resulting in reward r. This buffer allows the agent to learn from its past experiences by randomly sampling batches of transitions during training. y represents the temporal difference target, and is computed as $y = r + \gamma \max_{a'} Q(s, a'; \hat{\theta})$. γ is the discount factor, $\hat{\theta}$ represents the parameters of the target network

Algorithm 1 The training procedure of MBOS-AFL

Initialize Q^{intra} , Q^{inter} with parameters θ^{intra} , θ^{inter} ; target networks of Q^{intra} and Q^{inter} with parameters $\hat{\theta}^{intra}$ and $\hat{\theta}^{inter}$; replay memories \mathcal{D}^{intra} and \mathcal{D}^{inter} ; target networks' update frequency Γ .

- 1: for $s \in [S]$ do
- Observe state s_s^{inter} : 2:
- Compute B_s according to ϵ -greedy policy w.r.t Q^{inter} ; 3:
- for $i \in [C_s]$ do 4:
- Observe state $s_{s,i}^{intra}$: 5:
- 6: Compute b_s^i according to ϵ -greedy policy w.r.t Q^{intra} ;
- 7: Submit b_s^i to the auctioneer;
- 8: Obtain rewards v_s^i and the payment p_s^i ;
- 9: $B_s \leftarrow B_s - p_s^i;$
- 10: Store transition tuples in \mathcal{D}^{intra} ;
- 11: Sample a random minibatch of m samples from \mathcal{D} ; 12:

$$y^{intra} = r_s^{i}$$
$$\gamma \max_{a^{intra'}} Q^{intra}(s^{intra}_{s,i+1}, a^{intra'}_s; \hat{\theta}^{intra});$$

Update θ^{intra} by minimizing $\sum_{m} [(y^{intra}$ 13: $Q^{intra}(s^{intra}_{s,i}, a^{intra}_{s,i}; \theta^{intra})^2];$

 r_s^i

 $\hat{\theta}^{intra} \leftarrow \theta^{intra}$ every Γ steps; 14:

15: end for

- Obtain rewards r_s^{inter} and the total payment p_s^i during 16: session s;
- 17: $B \leftarrow B - \sum_{i \in [C_s]} p_s^i;$
- Store transition tuples in \mathcal{D}^{inter} ; 18:
- 19: Sample a random minibatch of m samples from \mathcal{D} ;
- $y^{inter} = r_s + \gamma \max_{a^{inter'}} Q^{inter}(s_{s+1}^{inter}, a_s^{inter'}; \hat{\theta}^{inter});$ 20:
- Update θ^{inter} by minimizing $\sum_{m} [(y^{inter} -$ 21: $Q^{inter}(s_s^{inter}, a_s^{inter}; \theta^{inter})^2];$
- $\hat{\theta}^{inter} \leftarrow \theta^{inter}$ every Γ steps; 22:
- 23: end for

associated with the corresponding agent. $Q(s, a'; \hat{\theta})$ is the predicted action-value function of the corresponding agent for its next state s' and all possible actions a'. This target network is used to stabilize the learning process by providing a fixed target during training, which is updated periodically (every Γ steps) to match the current action-value network. Algorithm 1 is the training procedure for MBOS-AFL.

5. Experimental Evaluation

5.1. Experiment Settings

Dataset: The performance assessment of MBOS-AFL is conducted on the following six widely-adopted datasets in FL studies: 1) MNIST³, 2) CIFAR-10⁴, 3) Fashion-MNIST (i.e., FMNIST) (Xiao et al., 2017), 4) EMNISTdigits (i.e., EMNISTD), 5) EMNIST-letters (i.e., EMNISTL) (Cohen et al., 2017) and 6) Kuzushiji-MNIST (i.e., KM-NIST) (Clanuwat et al., 2018). The FL models used are the same as those employed in (Tang & Yu, 2023b).

³http://yann.lecun.com/exdb/mnist/

⁴https://www.cs.toronto.edu/kriz/cifar.html

Comparison Approaches: We evaluate the performance of MBOS-AFL against the following seven AFL bidding approaches in our experiments: Constant Bid (**Const**) (Zhang et al., 2014), Randomly Generated Bid (**Rand**) (Zhang et al., 2021; 2022b), Below Max Utility Bid (**Bmub**), Linear-Form Bid (**Lin**) (Perlich et al., 2012), Bidding Machine (**BM**) (Ren et al., 2017), Reinforcement Learning-based Bid (**RLB**) (Tang & Yu, 2023a; 2024b), FedBidder-sim (**FBs**), and Fed-Bidder-com (**FBc**) (Tang & Yu, 2023b). Details can be found in (Tang et al., 2024b).

Experiment Scenarios: We compare MBOS-AFL with baselines under two main experiment scenarios with each containing 10,000 DOs: 1) IID data, varying dataset sizes, without noise: In this scenario, the sizes of datasets owned by various DOs are randomly generated, ranging from 500 to 5,000 samples. Additionally, all the data are independent and identically distributed (IID), with no noise. 2) Non-**IID data, with noise**: In this experimental scenario, we deliberately introduce data heterogeneity by adjusting the class distribution among individual DOs. Following (Tang et al., 2024b), we implement the following Non-IID setup. We designate 1 class (on datasets other than EMNISTL) or 6 classes (on EMNISTL) as the minority class and assign this minority class to 100 DOs. As a result, these 100 DOs possess images for all classes, while all other DOs exclusively have images for the remaining nine classes, excluding the minority class. In this experiment scenario, each DO holds 3,000 images. Additionally, we simulate scenarios in which the minority DOs contain 10% or 25% noisy data. The implementation details can be found in Appendix A.3.

Evaluation Metrics: To evaluate the effectiveness of all the comparison methods, we adopt the following three metrics: 1) the number of data samples won by the DC (**#data**), 2) the utility obtained by the DC (**utility**), and 3) the test accuracy (**Acc**). More details could be found in Appendix A.4.

5.2. Results and Discussion

To conduct a comparative analysis of bidding strategies based on these metrics, we carry out experiments across six datasets, each with varying budget settings. These settings span the range of $\{100, 200, 400, 600, 800\}$. The results are shown in Tables 1, 2, and Figure 3.

Table 1 shows the results of various comparison methods under the IID data, different sizes of DOs datasets without noisy samples scenario. It can be observed that under all six datasets and five budget settings, MBOS-AFL consistently outperforms all baseline methods in terms of both evaluation metrics. Specifically, compared to the best-performing baseline, MBOS-AFL achieves 12.28% and 14.52% improvement in terms of total utility and the number of data samples won, respectively. Figure 3 shows the corresponding test accuracy. The results align with the auction performance shown in Table 1 with MBOS-AFL improving the test accuracy by 1.23% on average.

In addition, the comparative results under the Non-IID data with noise scenario can be found in Table 2. It can be observed that under these two different settings, the proposed method MBOS-AFL consistently outperforms existing methods in terms of achieving higher FL model accuracy. In particular, on average, MBOS-AFL achieves 1.49% and 1.72% higher FL model accuracy compared to the best performance achieved by baselines under the 10% noisy data and 25% noisy data settings, respectively. All these results demonstrate the effectiveness of our approach in helping DCs optimize their budget pacing and bidding strategies for DOs under the emerging multi-session AFL scenarios.

Lin and Bmub typically outperform Const and Rand due to the use of utility in the bidding process. However, Bmub is less effective than Lin due to the reliance on randomness. Meanwhile, the more advanced methods BM, FBs, FBc, RLB and MBOS-AFL perform significantly better than the simpler approaches. This is largely due to the inclusion of auction records (including auction history and bidding records) and the use of advanced learning methods.

RLB and MBOS-AFL both outperform BM, FBs, and FBc, due to their ability of adaptive adjustment to the highly dynamic auction environment. While BM does consider market price distribution, it derives this distribution by learning the prediction of each bid request's market price density, which may lead to overfitting. In contrast, FBs and FBc obtain the market price distribution via a predefined winning function, which helps predict the expected bid costs more accurately. However, BM, FBs and FB are still static bidding strategies. They are essentially represented by linear or non-linear functions whose parameters are derived from historical auction data using heuristic techniques. Subsequently, these parameters are applied to new auctions, even if the dynamics of these new auctions may vary significantly from those in the historical data. The inherent dynamism of the AFL market poses a considerable challenge for these static bidding methods, making it hard for them to consistently achieve desired outcomes in subsequent auctions.

While RLB optimize its bidding process with dynamic programming, it is susceptible to the drawback of immediate rewards, which might result in indiscriminate bidding for data samples without considering their associated costs. This issue is effectively addressed by MBOS-AFL. Moreover, it is worth highlighting that RLB is not designed for optimizing budget allocation across multiple sessions. This is a distinction where MBOS-AFL offers significant advantages.

The test accuracy achieved by the FL models trained under all bidding strategies on CIFAR-10 is consistently lower than that on other datasets. This can be attributed to the base

Table 1. Comparison results under the scenario of IID data, different sizes of DOs datasets without noisy samples. The best results	ts are
highlighted in Bold. Ours represents MBOS-AFL.	

	d . Ours r														
	Budget	Method	MN	IST	CIF	AR	FMN	IST	EMN	IST	EMN	ISTL	KMNIST		
	Биадег	Method	#data	utility	#data	utility	#data	utility	#data	utility	#data	utility	#data	utility	
		Const	8,832	7.36	9,897	7.87	10,722	6.46	7,638	6.52	7,359	7.02	7,810	6.75	
		Rand	9,125	8.41	8,721	8.43	9,743	8.09	8,853	8.10	6,822	7.97	8,940	7.96	
		Bmub	9,246	9.03	11,302	9.19	12,274	8.76	10,382	8.91	6,485	9.15	10,551	8.62	
							13,523	9.84	10,582	10.33			10,551	9.97	
		Lin	9,461	10.28	11,426	10.17					8,220	10.51			
	100	BM	12,324	11.95	13,367	11.85	15,321	12.65	14,399	12.19	15,157	12.27	14,501	12.46	
		FBs	13,985	14.51	14,259	13.51	16,373	13.53	15,321	13.46	14,408	13.44	15,509	13.54	
		FBc	13,869	13.84	13,984	13.70	15,843	13.42	16,772	14.23	14,168	13.67	16,927	13.64	
		RLB	13,892	14.42	14,263	14.26	17,783	13.95	15,989	13.51	15,544	14.40	16,027	14.33	
		Ours	14,944	16.59	17,397	17.47	19,064	18.19	18,674	17.46	16,317	18.59	18,687	16.55	
		Const	11,037	8.49	12,043	9.31	16,374	8.52	13,826	9.46	10,876	10.33	13,950	9.31	
		Rand	10,895	10.06	11,894	10.00	14,898	9.90	12,452	10.34	12,808	10.42	12,601	10.05	
		Bmub	16,582	9.58	17,021	10.60	25,327	10.60	17,817	10.40	20,966	11.43	17,878	10.97	
	200	Lin	17,803	13.14	17,849	12.88	26,880	12.88	19,435	12.64	27,860	12.70	19,553	12.97	
		BM	23,584	14.97	20,836	15.11	31,945	15.92	21,656	15.03	35,016	15.29	21,722	15.70	
		FBs	27,813	17.70	28,456	17.61	34,936	17.09	26,994	17.01	31,743	17.40	27,087	17.49	
		FBc	28,005		29,835	17.01			27,863	16.60	34,686	16.99	27,892	17.89	
				17.51			36,873	17.58							
		RLB	29,468	17.77	30,138	17.82	35,548	17.04	26,748	17.45	37,122	17.82	26,819	17.23	
		Ours	33,045	21.99	35,163	21.08	39,982	23.72	35,656	19.59	37,645	22.43	35,737	18.08	
		Const	14,395	8.72	15,362	8.11	18,475	8.34	17,877	7.82	10,177	8.04	17,940	8.41	
		Rand	13,195	9.86	16,372	9.71	17,844	6.87	17,003	7.13	6,431	9.02	17,051	9.20	
		Bmub	23,378	10.90	25,631	11.16	31,487	10.86	24,756	10.05	23,639	10.63	24,869	11.33	
		Lin	24,523	14.58	26,830	14.41	32,677	14.24	25,669	14.28	36,261	14.31	25,802	14.46	
	400	BM	38,516	16.46	30,173	16.54	38,552	16.90	30,878	17.26	41,050	17.66	31,077	17.61	
		FBs	50,983	19.32	38,452	19.24	39,236	18.54	38,452	18.69	40,605	19.04	38,566	19.09	
		FBc	50,146	19.23	39,817	19.10	41,582	18.37	40,663	18.40	39,555	18.85	40,768	18.88	
		RLB	51,643	19.54	42,731	19.63	45,667	18.84	37,748	19.18	43,077	19.71	37,843	19.55	
		Ours	56,872	23.65	53,672	22.71	52,386	23.00	47,135	19.32	46,341	23.83	47,262	19.73	
		Const	17,895	9.71	19,378	9.60	21,394	9.33	19,832	10.08	10,596	9.55	19,982	8.92	
		Rand	19,803	8.68	20,184	9.07	20,853	11.69	18,838	10.37	24,581	9.15	18,966	9.83	
		Bmub	30,164	12.07	29,174	11.93	37,421	11.85	29,669	12.06	33,768	11.94	29,845	11.97	
		Lin	32,973	15.62	30,375	15.59	40,128	15.08	34,452	15.16	47,484	15.61	34,629	15.62	
	(00														
	600	BM	49,807	17.09	49,272	17.43	47,533	18.06	38,743	17.85	51,454	18.23	38,943	18.54	
		FBs	62,396	20.49	50,384	20.58	46,731	19.54	45,232	19.64	50,482	20.29	45,288	20.29	
		FBc	61,478	20.31	52,836	20.24	52,843	19.92	48,767	19.38	49,468	20.04	48,958	20.06	
		RLB	63,672	20.64	58,273	20.64	50,472	19.26	42,534	19.69	59,455	20.53	42,692	20.44	
		Ours	66,654	21.72	60,737	22.82	63,824	24.17	58,462	23.01	63,441	23.54	58,522	21.72	
			23,047					11.13	22,644	10.79					
	800	Const		11.04	24,753	11.35	26,311				17,875	11.40	22,705	11.30	
		Rand	24,853	14.09	22,845	13.34	22,734	13.68	20,474	13.60	26,563	13.57	20,642	13.26	
		Bmub	36,703	12.99	35,777	12.70	40,275	13.47	36,648	12.91	38,570	13.08	36,732	13.17	
		Lin	39,651	16.79	38,561	16.88	47,823	16.55	40,537	16.67	59,390	16.86	40,727	16.76	
				18.57	52,735	18.68	51,272	19.16	46,772	19.34	65,086	19.41	46,933	19.59	
	800							17.10	40,772		05,000		+0,755		
	800	BM	57,442					21.07	510(2	21.02	(7 470		51042	21 (0	
	800	FBs	70,496	22.09	62,842	22.07	54,453	21.07	51,863	21.02	67,470	21.54	51,942	21.69	
	800	FBs FBc	70,496 72,845	22.09 22.04	62,842 63,112	22.07 22.06	54,453 55,388	21.18	56,991	21.09	61,598	21.54 21.57	57,152	21.53	
	800	FBs	70,496	22.09	62,842	22.07	54,453					21.54		21.53 21.92	
	800	FBs FBc	70,496 72,845	22.09 22.04	62,842 63,112	22.07 22.06	54,453 55,388	21.18	56,991	21.09	61,598	21.54 21.57	57,152	21.53	
		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57	61,598 68,943 70,393	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
		FBs FBc RLB Ours	70,496 72,845 70,381	22.09 22.04 22.31	62,842 63,112 66,843 71,244	22.07 22.06 22.37	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823	21.09 20.95	61,598 68,943 70,393	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92	
Γ		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 Bmub	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57	61,598 68,943 70,393	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
87		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 Bmub	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57	61,598 68,943 70,393	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
87.		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 Bmub	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 FE	61,598 68,943 70,393	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
87.		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 80 78	61,598 68,943 70,393	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
86		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 80 78 76	61,598 68,943 70,393 Bc	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
86		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 80 78 76	61,598 68,943 70,393 Bc	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
86		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 80 78 76	61,598 68,943 70,393 Bc	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
86		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 	61,598 68,943 70,393 Bc	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
86 85		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 80 78 76	61,598 68,943 70,393 Bc	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
86 85		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 Bmub 48 46	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 	61,598 68,943 70,393 Bc	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
86 · 85 · 84 ·		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 44 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 	61,598 68,943 70,393 Bc	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
86 85 84		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 44 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 	61,598 68,943 70,393 Bc	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
86- 85- 84- 83-		FBs FBc RLB Ours	70,496 72,845 70,381 77,821	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 (%) 42 40 80 42 40 80 42 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 80 40 40 40 40 40 40 40 40 40 40 40 40 40	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12	56,991 53,823 62,579	21.09 20.95 22.57 	61,598 68,943 70,393 Bc	21.54 21.57 21.78 23.04	57,152 57,900 59,711	21.53 21.92 22.18	
86 · 85 · 84 · 83 ·	co	FBs FBc RLB Ours mst	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 (%) 42 40 38 36 5 7	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12 BM -	56,991 53,823 62,579 FBs	21.09 20.95 22.57 *** Ff 80 78 76 $\frac{3}{20}74$ 72 70 68	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82		FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 (%) 42 40 80 42 40 80 42 40 80 42 40 80 42 40 80 42 40 80 42 40 40 40 40 40 40 40 40 40 40 40 40 40	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 *** Ff 80 78 76 $\frac{3}{20}74$ 72 70 68	61,598 68,943 70,393 Bc	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18	
86 85 84 83 82	co	FBs FBc RLB Ours mst	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 (%) 42 40 38 36 5 7	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 *** Ft 80 78 76 $\frac{3}{20}$ 74 72 70 68 0	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 50 40 50 40 50 40 50 40 50 50 50 50 50 50 50 50 50 50 50 50 50	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 *** Ff 80 78 76 $\frac{3}{20}74$ 72 70 68	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 - 85 - 84 - 83 - 82 - 1 85 -	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 (%) 42 40 38 36 5 7	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 *** Ft 80 78 76 $\frac{3}{20}$ 74 72 70 68 0	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82 1 85	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 10	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 *** Ft 80 78 76 $\frac{3}{20}$ 74 72 70 68 0	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82 1 85 82 1 85	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 38mub 48 46 44 44 38 36 36 76 76	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82 1 85 82 1 85	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 10	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 *** Ft 80 78 76 $\frac{3}{20}$ 74 72 70 68 0	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82 1 85 84 83	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 76 76 74	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82 1 85 84 83	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 76 76 74	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 - 85 - 84 - 83 - 82 - 1 85 - 84 - 83 -	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 76 76 74	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82 1 85 84 84 83	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 76 76 74	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 - 85 - 84 - 83 - 82 - 1 85 - 84 - 83 - 83 - 83 - 83 - 83 - 81 -	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 38mub 48 46 44 44 38 36 36 76 76	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 - 85 - 84 - 83 - 82 - 1 85 - 84 - 83 - 83 - 83 - 83 - 83 - 81 -	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 76 76 74	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82 1 85 84 83 83 83 83 83 83 83 83 83 80	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 38mub 48 46 44 (%) 20 40 50 40 50 40 50 76 76 76 74 50 70 70 70 70 70	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82 1 85 84 83 83 83 83 83 83 83 83 83 80	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 76 76 74	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 · 85 · 84 · 83 · 82 1 83 · 84 · 83 · 83 · 83 · 81 · 80 · 79 ·	co	FBs FBc RLB Ours MNIST 400	70,496 72,845 70,381 77,821 • Rand	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 38mub 48 46 44 (%) 20 40 50 40 50 40 50 76 76 76 74 50 70 70 70 70 70	22.07 22.06 22.37 23.46	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST	21.53 21.92 22.18 BOS-AFL	
86 · 85 · 84 · 83 · 82 1 83 · 84 · 83 · 83 · 83 · 81 · 80 · 79 ·	Co	FBs FBc RLB Ours MNIST 400 Budget EMNIST	70,496 72,845 70,381 77,821 Rand 600	22.09 22.04 22.31 22.40 800	62,842 63,112 66,843 71,244 38mub 48 46 44 (%) 20 40 50 40 50 40 50 76 76 76 74 50 70 70 70 70 70	22.07 22.06 22.37 23.46 Lin	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F	57,152 57,900 59,711 MNIST 400 8udget MNIST	21.53 21.92 22.18 BOS-AFL 600	
86 85 84 83 82 1 83 83 84 83 83 81 80 79 78	co	FBs FBc RLB Ours nst MNIST 400 Budget EMNIST	70,496 72,845 70,381 77,821 600 600	22.09 22.04 22.31 22.40	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 76 74 50 70 70 68 68 42	22.07 22.06 22.37 23.46 Lin 0 20	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F 200 E K	57,152 57,900 59,711 MNIST 400 30dget MNIST	21.53 21.92 22.18 BOS-AFL	
86 85 84 83 82 1 85 84 83 83 83 81 80 79 78	Co	FBs FBc RLB Ours MNIST 400 Budget EMNIST	70,496 72,845 70,381 77,821 600 600	22.09 22.04 22.31 22.40 800	62,842 63,112 66,843 71,244 3mub 48 46 44 40 38 36 76 74 (%) UO 40 38 36 76 74 (%) UO 40 5 72 70 68 66 4 40 5 72 70 70 6 8 70 70 70 70 70 70 70 70 70 70 70 70 70	22.07 22.06 22.37 23.46 Lin	54,453 55,388 52,621 64,739 CIF/	21.18 20.92 23.12 BM - AR 0 60 3et 5TL	56,991 53,823 62,579 FBs	21.09 20.95 22.57 	61,598 68,943 70,393 3c	21.54 21.57 21.78 23.04 - RLB F 200 E K	57,152 57,900 59,711 MNIST 400 8udget MNIST	21.53 21.92 22.18 BOS-AFL 600	

Figure 3. Comparison of accuracy under the scenario of IID data, different sizes of DOs datasets without noisy samples.

Bud. Method 10% 25% 10%			MNIST		CIFAR		FMNIST		EMNIST		EMNISTL		KMNIST	
Const 70.11 70.03 12.88 13.97 61.48 57.87 77.02 76.46 64.92 63.30 58.21 59. Bruub 71.22 70.61 15.37 112.94 63.32 60.45 77.97 63.97 66.38 65.19 61.83 61.1 Lin 72.36 70.32 18.65 17.41 64.04 64.13 78.62 77.44 66.47 64.07 62.72 62.2 BM 72.31 71.65 19.50 19.62 67.35 66.25 79.51 78.35 68.54 64.78 65.37 65.38 63.30 Ours 73.79 75.22 23.88 23.24 72.21 71.42 80.66 79.29 78.33 68.26 65.57 65.38 63.38 63.3 63.38 63.3 63.3 63.3 63.3 63.3 69.0 63.44 65.44 65.47 65.38 63.30 63.3 63.39 63.36 65.57 65.36 65.36 <td>Bud.</td> <td>Method</td> <td></td> <td>25%</td>	Bud.	Method												25%
Rand 69.61 65.42 10.57 10.83 62.70 59.48 78.69 77.97 63.97 62.83 57.10 91.83 Bmub 72.30 70.51 15.37 12.94 63.32 60.45 78.42 77.37 66.86 65.19 61.83 61.1 100 BM 72.31 71.65 19.50 19.62 67.35 66.25 79.50 78.42 67.17 64.62 64.55 63.3 FBs 73.11 22.94 22.26 71.29 70.66 79.92 78.93 67.69 64.78 74.78 77.87 78.37 67.90 64.76 64.70 64.79 64.34 64.16 79.47 78.37 69.09 64.76 64.70 64.64 <td< td=""><td></td><td>Const</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>59.6</td></td<>		Const												59.6
Braub 71.22 70.61 15.37 12.94 63.32 60.45 78.42 77.37 66.88 61.91 61.83 61.7 100 BM 72.31 71.65 19.50 19.62 77.34 66.74 64.76 64.78 70.73 71.82 23.89 22.08 70.26 79.51 78.35 86.76 66.76 66.76 66.76 66.76 66.76 66.85 59.25 88. Rund 67.18 70.25 13.90 13.03 63.83 67.86 78.19 68.24 68.16 63.74 63. 100 M 73.31 70.55 19.07 17.96 64.43 67.13 81.16 70.25 58.91 63.75														59.1
Lin 72.36 70.32 18.65 17.41 64.04 64.13 78.62 77.44 66.47 64.07 62.72 62.72 100 BM 72.31 71.65 19.50 19.62 67.35 66.25 79.50 78.35 68.35 65.34 63.55 65.37 63.55 65.38 63.7 63.75 67.83 78.66 86.20 65.57 65.38 63.7 66.38 67.92 79.29 79.20 69.26 66.66 66.15 65.7 67.81 78.73 69.09 67.81 87.93 78.46 68.20 65.7 65.78 63.81 59.63 78.63 78.19 68.24 68.86 59.63 78.63 78.19 68.24 68.86 69.01 59.33 53.33 63.83 59.63 78.43 78.43 67.24 63.04 63.3 100 71.83 72.17 73.82 22.27 71.74 80.48 79.27 79.65 75.77 67.77 68.7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>61.7</td></td<>														61.7
100 BM 72.31 71.65 19.50 19.62 67.35 66.25 79.50 78.42 67.17 64.62 64.62 64.53 63.3 FBs 73.31 72.32 23.59 22.03 70.97 70.26 79.51 78.35 68.35 65.47 65.82 64. FBs 73.07 73.11 22.94 22.98 71.03 69.55 78.33 78.66 68.20 65.57 65.38 63.3 Ours 73.79 75.22 23.88 23.24 72.31 71.42 80.66 79.29 75.25 67.44 66.16 58.44 58.3 Samb 71.51 70.53 10.51 10.22 13.39 13.03 63.83 62.18 79.37 78.43 69.90 67.42 63.44 67.07 66. 200 BM 73.43 70.55 10.70 17.06 64.33 61.01 80.37 79.43 69.96 67.75 69.17 63.5 <									1					62.9
FBs 73.23 72.32 23.59 22.03 70.97 70.26 79.51 78.35 68.35 65.94 65.82 64. FBc 73.11 74.80 23.42 22.26 71.29 70.56 79.27 78.36 66.20 65.76 65.37 65.38 63.38 63.64 66.15 65.57 65.38 63.36 60.64 79.29 79.29 79.26 67.84 66.16 58.44 58.58 Ours 70.73 66.38 10.88 10.88 63.86 59.63 78.63 78.19 68.24 66.16 58.44 63.4 63.14	100													63.7
FBc 73.11 74.80 23.42 22.26 71.29 70.68 79.92 78.93 67.69 64.78 65.7 65.38 63.3 Ours 73.07 75.22 23.88 23.24 72.31 71.42 80.66 79.29 69.26 66.76 66.16 55. Const 70.73 66.38 10.68 11.08 63.74 60.16 77.83 78.54 66.24 66.85 59.25 58. Bmub 71.81 70.52 13.39 13.33 63.38 62.18 79.37 78.37 69.09 67.42 63.44 63.4 200 BM 73.43 72.48 20.36 20.14 64.43 64.16 78.43 79.27 60.65 67.75 67.04 68.76 67.7 2100 BM 73.43 72.49 70.13 81.14 79.22 70.13 68.14 67.07 68.76 67.7 2100 Cottst 71.69 71.37 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
RLB 73.07 73.11 22.94 22.98 71.03 69.55 79.83 78.66 68.20 65.77 65.38 63.3 Ours 70.73 75.22 23.88 23.24 72.31 71.42 80.66 79.29 69.26 66.76 66.15 65.3 Rand 69.48 66.89 10.32 10.26 63.86 59.63 78.63 78.19 68.24 66.85 59.25 58. Bmub 71.81 70.55 19.07 17.96 64.43 64.16 79.43 78.43 60.90 67.42 63.04 63. C0 BM 73.43 72.48 0.32 20.14 64.53 70.01 80.28 79.40 70.06 66.56 67.57 69.07 67.7 69.43 71.09 80.28 79.27 70.06 68.5 76.2 70.0 68.11 70.52 70.1 86.48 68.10 66.09 66.66 68. 68.0 66.66 68. <														
Ours 73.79 75.22 23.88 23.24 72.31 71.42 80.66 79.29 69.26 66.76 66.15 65.5 Const 70.73 66.38 10.08 11.08 63.74 60.16 77.98 77.52 67.84 66.16 58.44 58.8 Bmub 71.81 70.52 13.39 13.03 63.83 62.18 79.37 78.37 69.09 67.42 63.04 63.8 Lin 72.98 72.55 19.07 17.96 64.43 64.16 79.43 78.43 69.09 67.42 69.01 67.75 69.01 67.7 FBs 74.69 72.17 23.82 22.77 71.49 71.98 80.28 79.27 70.05 67.75 67.77 70.27 70.26 72.17 71.13 81.31 80.10 71.39 80.45 70.70 68.19 66.19 66.59 68.17 69.1 Mult 70.50 75.50 75.74 20.90 <td></td>														
Const 70.73 66.38 10.68 11.08 63.74 60.16 77.98 77.52 67.84 66.16 58.44 58. Rand 69.48 68.96 10.32 10.26 63.86 59.63 78.63 78.19 68.24 66.88 59.25 58. Bmub 71.81 70.52 13.39 13.03 63.83 62.18 79.37 78.43 69.96 68.44 67.07 66. 200 BM 73.43 72.48 20.36 20.14 64.53 70.01 80.52 79.40 70.19 67.35 69.01 67.7 FBs 74.69 72.17 23.82 22.79 71.49 71.99 80.28 79.27 70.13 68.17 70.72 70.13 68.17 70.71 80.45 74.72 70.13 68.17 70.71 80.45 64.25 60.58 78.49 77.98 68.19 66.69 68.66 68. Rand 70.05 67.77														
Rand 69.48 68.96 10.32 10.26 63.86 59.63 78.63 78.19 68.24 66.88 59.25 58.7 Bmub 71.81 70.52 13.39 13.03 63.83 62.18 79.37 78.37 69.09 67.42 63.04 63. 200 BM 73.43 72.48 20.36 20.14 64.33 70.10 80.52 79.40 70.19 67.55 69.77 68.5 67.77 68.7 67.7 68.7 67.7 68.75 67.7 68.7 67.7 68.7 67.7 68.7 67.7 68.7 67.7 68.7 67.7 68.7 67.7 70.7 80.48 70.52 70.10 68.17 70.7 80.48 70.50 67.17 70.3 67.7 70.7 67.7 70.80 68.74 68.89 67.64 70.36 67.7 70.7 69.7 78.00 69.71 68.1 69.9 68.1 67.67 70.36 67.7 69														
Bmub 71.81 70.52 13.39 13.03 63.83 62.18 79.37 78.37 69.09 67.42 63.04 63. 200 BM 73.43 72.98 70.55 19.07 17.96 64.43 64.16 79.43 78.43 69.96 68.44 67.07 66. BM 73.43 73.42 23.82 22.79 71.49 71.99 80.28 79.27 69.05 67.57 69.77 68.7 FBc 74.29 72.99 23.61 22.58 71.86 71.61 80.37 79.52 70.13 68.11 70.52 70.7 Ours 75.60 75.72 24.94 24.52 72.98 73.49 77.80 68.19 66.06 68.66 68. Rand 70.05 67.74 20.90 20.45 64.57 65.81 80.10 79.99 78.90 69.71 68.11 69.92 69.1 69.1 69.1 69.1 69.1 69.1														
Lin 72.98 70.55 19.07 17.96 64.43 64.16 79.43 78.43 69.96 68.44 67.07 66.7 200 BM 73.43 72.48 20.36 20.14 64.53 70.01 80.52 79.40 70.19 67.35 69.01 67.7 FBs 74.29 72.361 22.58 71.86 71.97 80.48 79.27 69.65 67.57 69.07 68.5 FBs 74.29 72.361 22.58 71.86 71.03 71.97 78.03 75.20 70.10 68.41 70.52 70. Ours 75.60 75.72 24.94 24.52 72.98 73.13 81.31 80.10 71.39 66.05 71.13 71.13 71.3 71.33 71.3 71.3 71.3 70.5 67.11 69.93 68.9 67.64 70.37 69.9 70.53 69.12 70.37 69.9 71.53 70.17 71.05 69.0 71.15														
200 BM 73.43 72.48 20.36 20.14 64.53 70.10 80.52 79.40 70.19 67.35 69.01 67.37 FBs 74.69 72.17 23.82 22.79 71.49 71.99 80.28 79.27 69.65 67.57 69.77 69.7 70.70 68.47 67.72 20.97 23.14 71.52 70.74 80.48 79.52 70.13 60.11 70.52 70.13 71.13 71. 0urs 75.60 75.72 24.94 24.52 72.98 73.13 81.31 80.10 71.39 60.13 60.91 60.71 60.8 68.91 60.71 60.8 60.8 68.91 60.71 60.8 60.71 70.8 70.17 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
FBs 74.69 72.17 23.82 22.79 71.49 71.99 80.28 79.27 69.65 67.57 69.77 68.8 FBc 74.29 72.99 23.61 22.58 71.86 71.61 80.37 79.52 70.70 68.45 68.75 67.7 Ours 75.60 75.72 24.94 24.52 70.78 81.31 80.10 71.39 66.69 68.66 68. Const 71.06 68.34 70.09 10.90 64.37 63.15 78.49 77.98 68.19 66.69 68.66 68. Rand 70.05 67.74 20.90 20.45 64.25 60.58 78.40 78.90 69.71 68.11 69.93 68. Bmub 72.27 70.26 22.21 20.49 65.27 63.58 78.40 78.99 70.53 69.11 70.37 69.3 Mu0 P4.96 73.01 25.59 23.54 74.53 71.10	200													
FBc 74.29 72.99 23.61 22.58 71.86 71.61 80.37 79.52 70.70 68.45 68.75 67.7 Ours 75.60 75.72 24.94 24.52 72.98 73.13 81.13 80.10 71.39 69.05 71.13 71.3 Const 71.06 68.34 17.09 64.25 60.58 78.49 77.98 68.19 66.69 68.66 68. Rand 70.05 67.74 20.90 20.45 64.25 65.52 78.40 78.49 68.19 66.69 68.66 68. Bmub 72.27 70.26 22.21 20.49 64.25 65.52 65.44 80.01 78.99 70.53 69.12 70.37 69.1 400 BM 74.96 73.01 25.59 23.74 65.27 63.34 80.00 79.31 71.62 70.47 70.17 70.18 70.77 65.87 75.65 73.77 26.21	200						1		1					
RLB 74.33 73.26 23.77 23.14 71.52 70.74 80.48 79.52 70.13 68.11 70.52 70.70 Ours 75.60 75.72 24.94 24.52 72.98 73.13 81.31 80.10 71.39 69.05 71.13 71. Const 71.06 68.34 17.09 16.96 64.01 58.93 78.49 77.98 68.19 66.05 68.66 68. Rand 70.05 67.74 20.90 20.45 64.25 65.58 78.49 77.98 68.19 66.11 69.19 68.11 69.93 68.1 Bmb 72.97 70.26 22.21 20.49 65.52 65.44 80.01 78.99 70.53 69.12 70.37 69.1 400 BM 74.96 73.01 25.59 23.74 65.87 68.38 80.90 79.91 71.62 70.37 71.93 70.7 41B 75.55 76.33 <														
Ours 75.60 75.72 24.94 24.52 72.98 73.13 81.31 80.10 71.39 69.05 71.13 71. Const 71.06 68.34 17.09 16.96 64.01 58.93 78.49 77.98 68.19 66.69 68.66 68. Rand 70.05 67.74 20.90 20.45 64.25 60.58 78.62 78.43 68.88 67.54 70.36 69.0 Bmub 72.27 70.26 22.21 20.49 64.52 65.44 80.01 78.99 70.53 69.12 70.37 69.12 70.37 69.12 70.37 69.12 70.37 69.12 70.37 69.12 70.37 70.17 71.03 70.0 R1.33 71.03 70.17 71.03 70.17 71.03 70.17 71.03 70.17 71.93 70.17 71.83 73.38 71.14 71.93 70.17 71.83 73.38 71.01 80.14 71.95 78.43 <														
Const 71.06 68.34 17.09 16.96 64.01 58.93 78.49 77.98 68.19 66.69 68.66 68. Rand 70.05 67.74 20.90 20.45 64.25 60.58 78.42 78.43 68.88 67.64 70.36 69.1 Bmub 72.29 70.26 22.21 20.49 65.52 65.44 80.01 78.90 69.71 68.11 69.93 68. 400 BM 74.96 73.01 25.59 23.74 65.52 65.44 80.01 78.99 70.53 69.12 70.35 71.58 70.37 69. FBs 75.85 73.53 26.47 24.50 71.72 70.06 81.36 80.22 71.75 70.17 71.93 70. FBs 75.65 76.33 27.65 23.86 73.85 73.63 81.86 80.69 72.54 71.84 73.38 71. Ours 76.59 76.33														
Rand 70.05 67.74 20.90 20.45 64.25 60.58 78.62 78.43 68.88 67.64 70.36 69.9 Bmub 72.27 70.26 22.21 20.49 64.37 63.15 79.97 78.90 69.71 68.11 69.93 68. Lin 72.99 71.02 24.18 22.94 65.52 65.44 80.01 78.99 70.53 69.12 70.37 69. HM 74.96 73.01 25.9 23.74 65.87 68.38 80.09 79.91 71.62 70.35 71.58 70.7 FBc 75.66 73.77 26.21 24.27 72.03 71.95 80.18 71.88 70.38 71.16 70.39 70.59 72.45 71.84 70.38 71.07 71.99 70.59 72.45 70.17 71.93 70.16 81.36 80.69 72.54 71.84 73.38 71.1 69.3 70.17 71.93 70.17 71.93														
Brnub 72.27 70.26 22.21 20.49 64.37 63.15 79.97 78.90 69.71 68.11 69.93 68. Lin 72.99 71.02 24.18 22.94 65.52 65.44 80.01 78.99 70.53 69.12 70.37 69. 400 BM 74.96 73.01 25.59 23.74 65.87 68.38 80.09 79.91 71.62 70.35 71.58 70.7 FBs 75.85 73.33 26.47 24.27 72.03 71.95 81.29 80.18 71.88 70.38 71.01 71.93 70. FBs 75.65 76.33 27.65 25.86 73.85 73.63 81.86 80.69 72.54 71.84 73.8 71.1 Ours 76.59 76.33 27.65 25.86 73.85 73.63 81.86 80.69 72.54 71.84 73.8 71.1 63.1 Bmub 71.05 61.07 17									1					
Lin 72.99 71.02 24.18 22.94 65.52 65.44 80.01 78.99 70.53 69.12 70.37 69. 400 BM 74.96 73.01 25.59 23.74 65.87 68.38 80.90 79.91 71.62 70.35 71.58 70.7 70.9 70.9 71.62 70.35 71.58 70.9 70.9 71.62 70.35 71.93 70.9 FBc 75.66 73.77 26.21 24.27 72.03 71.95 81.29 80.18 71.88 70.83 71.04 69.9 <i>Ours</i> 76.59 76.33 27.65 25.86 73.85 73.63 81.86 80.47 71.99 70.59 70.19 69.9 <i>Ours</i> 70.55 74.35 25.86 73.85 73.63 81.86 80.47 71.99 70.59 70.19 69.9 Mub 71.55 71.07 18.90 22.02 64.41 63.78 80.68 <td></td>														
400 BM 74.96 73.01 25.59 23.74 65.87 68.38 80.90 79.91 71.62 70.35 71.58 70.7 FBs 75.85 73.53 26.47 24.50 71.72 70.06 81.36 80.22 71.75 70.17 71.93 70. RBc 75.25 74.96 26.78 24.83 72.31 72.24 81.55 80.47 71.88 70.38 71.69 70.38 71.64 70.99 72.45 70. Ours 76.59 76.33 27.65 25.86 73.85 73.63 81.65 80.69 72.44 71.99 70.45 70.17 69.0 Ours 70.55 69.36 23.10 21.66 64.61 61.77 79.28 78.49 68.39 67.01 69.0 69.0 69.0 69.0 69.0 69.0 62.16 63.78 80.68 79.38 69.31 67.95 70.19 70.78 69.0 69.1 69.1									1					
FBs 75.85 73.53 26.47 24.50 71.72 70.06 81.36 80.22 71.75 70.17 71.93 70. FBc 75.66 73.77 26.21 24.27 72.03 71.95 81.29 80.18 71.88 70.38 71.01 69. RLB 75.25 74.96 26.78 24.83 72.31 72.24 81.55 80.47 71.99 70.59 72.45 70. Ours 76.59 76.33 27.65 25.86 73.85 73.63 81.86 80.69 72.54 73.88 71.01 69.0 69.0 62.9 79.25 78.43 69.31 67.01 69.0 69.0 62.49 79.25 78.43 69.31 67.05 70.17 69.0 69.0 61.41 63.78 80.68 79.38 70.49 68.71 60.9 61.8 80.66 79.35 71.41 69.0 71.07 71.07 71.07 70.0 71.58 71.05 73.55														
FBc 75.66 73.77 26.21 24.27 72.03 71.95 81.29 80.18 71.88 70.38 71.01 69. RLB 75.25 74.96 26.78 24.83 72.31 72.24 81.55 80.47 71.99 70.59 72.45 70. Ours 76.59 76.33 27.65 25.86 73.85 73.63 81.86 80.69 72.54 71.84 73.38 71.01 69.21 68.71 69.21 68.71 69.21 68.71 69.21 68.71 69.21 68.71 69.21 68.83 67.01 69.21 68.71 Bmub 71.95 71.07 18.90 22.02 64.41 63.78 80.68 79.38 70.49 68.71 70.79 70.8 70.49 68.71 70.79 70.8 67.92 71.01 70.93 71.17 70.90 71.17 70.90 71.21 69.20 61.8 80.86 79.38 71.44 69.92 71.21 7	400													
RLB 75.25 74.96 26.78 24.83 72.31 72.24 81.55 80.47 71.99 70.59 72.45 70. Ours 76.59 76.33 27.65 25.86 73.85 73.63 81.86 80.69 72.45 71.84 73.38 71.37 Const 71.05 69.36 23.10 21.66 64.61 61.77 79.28 78.49 68.39 67.01 69.21 68.38 Rand 68.79 69.05 22.72 20.32 64.39 62.49 79.28 78.49 68.31 67.01 69.21 68.38 Bmub 71.95 71.07 18.90 22.02 64.41 63.78 80.68 79.38 70.49 68.71 70.78 69.2 G00 BM 75.25 73.58 28.30 26.62 67.21 67.80 81.42 80.31 72.51 71.06 72.26 72.17 60.3 G00 BM 75.25 73.58														
Ours 76.59 76.33 27.65 25.86 73.85 73.63 81.86 80.69 72.54 71.84 73.38 71. Const 71.05 69.36 23.10 21.66 64.61 61.77 79.28 78.49 68.39 67.01 69.21 68. Rand 68.79 69.05 22.72 20.32 64.39 62.49 79.25 78.83 69.31 67.95 70.19 69. Bmub 71.95 71.07 18.90 22.02 64.41 63.78 80.68 79.38 70.49 68.71 70.79 69. Lin 73.54 72.57 24.43 24.79 66.22 66.18 80.86 79.58 71.44 69.92 71.07 71.07 71.07 71.07 70.7 FBs 76.18 74.16 28.85 27.25 73.55 71.81 81.47 80.34 72.51 71.06 72.26 72.4 FBc 76.25 73.98														
Const 71.05 69.36 23.10 21.66 64.61 61.77 79.28 78.49 68.39 67.01 69.21 68.8 Rand 68.79 69.05 22.72 20.32 64.39 62.49 79.25 78.83 69.31 67.95 70.19 69.9 Bmub 71.95 71.07 18.90 22.02 64.41 63.78 80.68 79.38 70.49 68.71 70.78 69.9 Lin 73.54 72.57 24.43 24.79 66.92 66.18 80.86 79.58 71.44 69.92 71.21 69.9 MM 75.25 73.58 28.30 26.62 67.21 67.80 81.42 80.26 72.47 71.07 71.97 70.9 71.97 70.9 72.16 72.10 71.97 70.9 72.16 72.4 72.17 71.07 71.97 70.9 72.18 72.1 71.07 71.97 70.17 71.97 70.17 71.97 70.4														
Rand 68.79 69.05 22.72 20.32 64.39 62.49 79.25 78.83 69.31 67.95 70.19 69.9 Bmub 71.95 71.07 18.90 22.02 64.41 63.78 80.68 79.35 70.49 68.71 70.78 69.9 Lin 73.54 72.57 24.43 24.79 66.92 66.18 80.68 79.35 71.44 69.92 71.21 69.9 600 BM 75.25 73.58 28.30 26.62 67.21 67.80 81.42 80.26 72.47 71.07 71.97 70.9 FBs 76.18 74.16 28.85 27.25 73.55 71.81 81.47 80.31 72.51 71.06 72.26 72.7 FBs 76.18 76.17 29.90 28.55 74.14 73.11 81.49 80.31 72.51 71.06 72.46 72.4 RLB 76.06 73.15 28.52 29.60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
Bmub 71.95 71.07 18.90 22.02 64.41 63.78 80.68 79.38 70.49 68.71 70.78 69.7 Lin 73.54 72.57 24.43 24.79 66.92 66.18 80.86 79.58 71.44 69.92 71.21 69.7 600 BM 75.25 73.58 28.30 26.62 67.21 67.80 81.42 80.26 72.47 71.07 71.97 70.7 FBs 76.18 74.16 28.85 27.25 73.55 71.81 81.47 80.34 72.51 70.90 72.18 72.7 70.9 71.18 70.9 70.17 70.9 71.21 70.9 71.18 70.9 70.18 72.6 72.5 73.55 71.81 81.49 80.30 72.51 70.99 72.18 72.18 72.9 70.18 71.97 70.9 72.18 72.19 70.9 72.18 73.1 81.49 80.50 73.21 71.64 73.0	600													
Lin 73.54 72.57 24.43 24.79 66.92 66.18 80.86 79.58 71.44 69.92 71.21 69.9 600 BM 75.25 73.58 28.30 26.62 67.21 67.80 81.42 80.26 72.47 71.07 71.97 70. FBs 76.18 74.16 28.85 27.25 73.55 71.81 81.47 80.34 72.51 71.06 72.26 72. FBc 76.05 73.98 29.07 28.95 74.14 73.31 81.49 80.31 72.51 71.06 72.26 72. RLB 76.06 73.15 28.52 29.60 73.85 73.05 81.68 80.60 73.07 71.64 73.41 72. <i>Ours</i> 76.93 76.71 29.91 30.55 74.46 74.05 82.16 80.93 73.21 71.86 74.46 74.35 Rand 68.95 71.02 24.54 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>									1					
600 BM 75.25 73.58 28.30 26.62 67.21 67.80 81.42 80.26 72.47 71.07 71.97 70. FBs 76.18 74.16 28.85 27.25 73.55 71.81 81.47 80.34 72.51 71.06 72.26 72. FBc 76.05 73.98 29.07 28.95 74.14 73.31 81.49 80.31 72.51 71.06 72.26 72. RLB 76.06 73.15 28.52 29.60 73.85 73.05 81.68 80.03 72.51 70.09 72.18 72. <i>Ours</i> 76.93 76.71 29.91 30.55 74.46 74.05 82.16 80.93 73.21 71.86 74.40 73.8 Mand 68.95 71.02 24.54 20.66 68.15 65.32 79.78 79.23 70.13 68.75 70.91 70. Bmub 71.90 72.16 25.97 19.														69.6
FBs 76.18 74.16 28.85 27.25 73.55 71.81 81.47 80.34 72.51 71.06 72.26 72.72 FBc 76.25 73.98 29.07 28.95 74.14 73.31 81.49 80.31 72.51 70.99 72.18 72.72 RLB 76.06 73.15 28.52 29.60 73.85 73.05 81.68 80.60 73.07 71.64 73.41 72.73 Ours 76.93 76.17 29.91 30.55 74.46 74.05 82.16 80.93 73.07 71.64 73.41 73.41 Const 67.21 66.43 23.63 71.95 67.40 79.64 78.81 68.85 67.49 69.49 Rand 68.95 71.02 24.54 20.66 68.15 65.32 79.78 79.23 70.13 68.75 70.91 70.7 Bmub 71.90 72.16 25.97 19.45 69.24 66.51 81.08														
FBc 76.25 73.98 29.07 28.95 74.14 73.31 81.49 80.31 72.51 70.99 72.18 72. RLB 76.06 73.15 28.52 29.60 73.85 73.05 81.68 80.60 73.07 71.64 73.41 72. Ours 76.93 76.71 29.91 30.55 74.66 74.05 82.16 80.93 73.21 71.86 74.63 73.37 Const 67.21 66.43 23.63 21.95 68.17 64.97 79.64 78.81 68.85 67.49 69.49 69.3 Rand 68.95 71.02 24.54 20.66 68.15 65.32 79.78 79.23 70.13 68.75 70.91 70.3 Bmub 71.90 72.16 25.97 19.45 69.24 66.51 81.08 70.77 70.80 69.05 71.52 70.9 71.61 71.64 73.41 Bmub 75.11 72.66														70.8
RLB 76.06 73.15 28.52 29.60 73.85 73.05 81.68 80.60 73.07 71.64 73.41 72. Ours 76.93 76.71 29.91 30.55 74.66 74.05 82.16 80.93 73.21 71.86 74.63 73.7 Const 67.21 66.43 23.63 21.95 68.17 64.97 79.64 78.81 68.85 67.49 69.49 69.7 Rand 68.95 71.02 24.54 20.66 68.15 65.32 79.78 79.23 70.13 68.75 70.91 70.7 Bmub 71.90 72.16 25.97 19.45 69.24 66.51 81.08 79.77 70.80 69.05 71.52 70.7 Bmub 71.91 72.66 25.97 19.45 69.24 66.51 81.08 79.77 70.80 69.05 71.52 70.7 Lin 75.11 72.66 25.97 19.45 69.24														72.2
Ours 76.93 76.71 29.91 30.55 74.46 74.05 82.16 80.93 73.21 71.86 74.63 73.7 Const 67.21 66.43 23.63 21.95 68.17 64.97 79.64 78.81 68.85 67.49 69.49 69.7 Rand 68.95 71.02 24.54 20.66 68.15 65.32 79.78 79.23 70.13 68.75 70.91 70.70 Bmub 71.90 72.16 25.97 19.45 69.24 66.51 81.08 79.77 70.80 69.05 71.52 70.70 Lin 75.11 72.66 25.97 19.45 69.03 81.37 80.12 71.61 70.60 70.70 B00 M5.13 72.66 25.97 19.45 69.03 81.37 80.12 71.61 71.60 71.69 70.70 Lin 75.11 72.66 25.97 19.45 69.03 81.37 80.58 72.89							1							
Const 67.21 66.43 23.63 21.95 68.17 64.97 79.64 78.81 68.85 67.49 69.49 69.9 69.9 Rand 68.95 71.02 24.54 20.66 68.15 65.32 79.78 79.23 70.13 68.75 70.91 70. Bmub 71.90 72.16 25.97 19.45 69.24 66.51 81.08 79.77 70.80 69.05 71.52 70. Lin 75.11 72.66 25.97 19.45 69.24 66.51 81.08 79.77 70.80 69.05 71.52 70. BM 75.28 73.89 28.76 29.00 72.83 70.31 81.64 80.58 72.89 71.63 73.09 71. FBs 76.09 75.34 29.54 30.18 75.29 73.86 81.87 80.83 72.99 71.72 73.42 72. RLB 76.31 76.34 30.05 30.81		RLB												72.8
Rand 68.95 71.02 24.54 20.66 68.15 65.32 79.78 79.23 70.13 68.75 70.91 70. Bmub 71.90 72.16 25.97 19.45 69.24 66.51 81.08 79.77 70.80 69.05 71.52 70.7 Lin 75.11 72.66 25.97 19.45 69.04 69.03 81.37 80.12 71.61 70.16 71.76 70.90 BM 75.28 73.89 28.76 29.00 72.83 70.31 81.64 80.58 72.89 71.61 70.16 71.76 70.90 FBs 76.09 75.04 29.54 30.18 75.29 73.86 81.87 80.83 72.99 71.72 73.42 72.3 RLB 76.31 76.34 30.05 30.81 76.39 74.72 82.06 81.07 73.62 72.37 74.90 73.														73.7
Bmub 71.90 72.16 25.97 19.45 69.24 66.51 81.08 79.77 70.80 69.05 71.52 70. Lin 75.11 72.66 25.46 28.06 71.87 69.03 81.37 80.12 71.61 70.16 71.76 70.80 800 BM 75.28 73.89 28.76 29.00 72.83 70.31 81.64 80.58 72.89 71.63 73.09 71. FBs 76.09 75.04 29.54 30.18 75.92 73.86 81.87 80.83 72.99 71.72 73.42 72. RLB 76.31 76.34 30.05 30.81 76.39 74.72 82.06 81.07 73.62 72.37 74.90 73.		Const	67.21	66.43							68.85		69.49	69.0
Lin 75.11 72.66 25.46 28.06 71.87 69.03 81.37 80.12 71.61 70.16 71.76 70. 800 BM 75.28 73.89 28.76 29.00 72.83 70.31 81.64 80.58 72.89 71.63 73.09 71. FBs 76.09 75.04 29.54 30.18 75.92 73.86 81.87 80.83 72.99 71.72 73.42 72. RLB 76.31 76.34 30.05 30.81 76.39 74.72 82.06 81.07 73.62 72.37 74.90 73.				71.02									70.91	70.1
800 BM 75.28 73.89 28.76 29.00 72.83 70.31 81.64 80.58 72.89 71.63 73.09 71. FBs 76.09 75.04 29.54 30.18 75.92 73.86 81.87 80.83 72.99 71.72 73.42 72. RLB 76.31 76.34 30.05 30.81 76.39 74.72 82.06 81.07 73.62 72.37 74.90 73.				72.16					1				71.52	70.6
FBs 76.09 75.04 29.54 30.18 75.92 73.86 81.87 80.83 72.99 71.72 73.42 72. RLB 76.31 76.34 30.05 30.81 76.39 74.72 82.06 81.07 73.62 72.37 74.90 73.		Lin	75.11	72.66		28.06	71.87	69.03	81.37	80.12	71.61	70.16	71.76	70.4
RLB 76.31 76.34 30.05 30.81 76.39 74.72 82.06 81.07 73.62 72.37 74.90 73.	800			73.89		29.00			81.64				73.09	71.7
		FBs	76.09	75.04	29.54	30.18	75.92	73.86	81.87	80.83	72.99	71.72	73.42	72.2
Ours 77.29 76.78 32.82 32.46 77.10 75.57 82.47 82.69 73.77 73.55 75.39 73.		RLB	76.31	76.34	30.05	30.81	76.39	74.72	82.06	81.07	73.62	72.37	74.90	73.1
		Ours	77.29	76.78	32.82	32.46	77.10	75.57	82.47	82.69	73.77	73.55	75.39	73.8

Table 2. Comparison of accuracy under the Non-IID data with noise scenario. 10% and 25% represents 10% and 25% noisy data, respectively. Bud. represent budget and *Ours* represents MBOS-AFL.

model adopted for FL training. As mentioned in Section 5.1, the accuracy reported in these two figures is with regard to the VGG11 network. Nevertheless, even with such a less effective base model, MBOS-AFL still significantly outperforms other baselines.

6. Conclusions

In this paper, we propose the Multi-session Budget Optimization Strategy for forward Auction-based FL (MBOS-AFL). It is designed to empower FL DCs with the ability to strategically allocate budgets over multiple FL training sessions and judiciously distribute the budget among DOs within each session by bidding with different bid prices, in order to maximize total utility. Based on the hierarchical reinforcement learning, MBOS-AFL jointly optimizes inter-session budget pacing and intra-session bidding for DCs in the AFL ecosystem. To the best of our knowledge, it is the first budget optimization decision support method with budget pacing capability designed for DCs in multi-session forward auction-based FL.

Acknowledgements

This research is supported, in part, by the Ministry of Education, Singapore, under its Academic Research Fund Tier 1 (RG101/24); the RIE2025 Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) (Award I2301E0026), administered by A*STAR, as well as supported by Alibaba Group and NTU Singapore through Alibaba-NTU Global e-Sustainability CorpLab (ANGEL); and the National Research Foundation, Singapore and DSO National Laboratories under the AI Singapore Programme (AISG Award No. AISG2-RP-2020-019). Xiaoxiao Li is supported by CIFAR AI Chair Awards and Canada Research Chair Fellowship.

Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

References

- Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and Ha, D. Deep learning for classical japanese literature. *arXiv preprint*, pp. 1812.01718, 2018.
- Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. EMNIST: Extending MNIST to handwritten letters. In *IJCNN*, pp. 2921–2926, 2017.
- Deng, Y., Lyu, F., Ren, J., Chen, Y.-C., Yang, P., Zhou, Y., and Zhang, Y. Fair: Quality-aware federated learning with precise user incentive and model aggregation. In *INFOCOM*, 2021.
- Fan, T., Gu, H., Cao, X., Chan, C. S., Chen, Q., Chen, Y., Feng, Y., Gu, Y., Geng, J., Luo, B., et al. Ten challenging problems in federated foundation models. *IEEE Transactions on Knowledge and Data Engineering*, 2025.
- He, Y., Ma, L., and Zhang, W. Should the title of talents be necessary? a study on the "open bidding for selecting the best candidates" mechanism. *International Journal* of Crowd Science, 8(1):49–55, 2024.
- Jiao, Y., Wang, P., Niyato, D., and Suankaewmanee, K. Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks. *IEEE Transactions* on Parallel and Distributed Systems, 30(9):1975–1989, 2019.
- Jiao, Y., Wang, P., Niyato, D., Lin, B., and Kim, D. I. Toward an automated auction framework for wireless federated learning services market. *IEEE Transactions on Mobile Computing*, 20(10):3034–3048, 2020.
- Josang, A. and Ismail, R. The beta reputation system. In *Bled eConference*, volume 5, pp. 2502–2511. Citeseer, 2002.
- Le, T. H. T., Tran, N. H., Tun, Y. K., Han, Z., and Hong, C. S. Auction based incentive design for efficient federated learning in cellular wireless networks. In WCNC, pp. 1–6, 2020.
- Liu, Z. et al. GTG-Shapley: Efficient and accurate participant contribution evaluation in federated learning. *TIST*, 13(4):1–21, 2022.
- McMahan, B. et al. Communication-efficient learning of deep networks from decentralized data. In *AISTATS*, pp. 1273–1282, 2017.

- Meng, L., Qi, Z., Wu, L., Du, X., Li, Z., Cui, L., and Meng, X. Improving global generalization and local personalization for federated learning. *IEEE Transactions* on Neural Networks and Learning Systems, 36, 2024.
- Mnih, V. et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.
- Pan, Z., Yu, H., Miao, C., and Leung, C. Efficient collaborative crowdsourcing. In AAAI, pp. 4248–4249, 2016.
- Pateria, S., Subagdja, B., hwee Tan, A., and Quek, C. Hierarchical reinforcement learning: A comprehensive survey. ACM Computing Surveys, 54(5):109:1–109:35, 2021.
- Perlich, C., Dalessandro, B., Hook, R., Stitelman, O., Raeder, T., and Provost, F. Bid optimizing and inventory scoring in targeted online advertising. In *KDD*, pp. 804–812, 2012.
- Qi, Z., Meng, L., Li, Z., Hu, H., and Meng, X. Cross-silo feature space alignment for federated learning on clients with imbalanced data. In *The 39th Annual AAAI Conference* on Artificial Intelligence (AAAI-25), pp. 19986–19994, 2025a.
- Qi, Z., Zhang, R., Meng, L., Wu, W., Zhang, Y., and Meng, X. Global intervention and distillation for federated out-of-distribution generalization. *arXiv preprint arXiv:2504.00850*, 2025b.
- Ren, K., Zhang, W., Chang, K., Rong, Y., Yu, Y., and Wang, J. Bidding machine: Learning to bid for directly optimizing profits in display advertising. *TKDE*, 30(4):645–659, 2017.
- Rendle, S. Factorization machines with libFM. *TIST*, 3(3): 57:1–57:22, 2012.
- Robbins, H. and Monro, S. A stochastic approximation method. *The annals of mathematical statistics*, pp. 400– 407, 1951.
- Shi, Y. and Yu, H. Fairness-aware client selection for federated learning. In *ICME*, 2023.
- Sun, H., Tang, X., Yang, C., Yu, Z., Wang, X., Ding, Q., Li, Z., and Yu, H. Hifi-gas: Hierarchical federated learning incentive mechanism enhanced gas usage estimation. In *he 36th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-24)*, pp. 22824–22832, 2024.
- Sutton, R. S. and Barto, A. G. *Reinforcement learning: An introduction*. MIT press, 2018.
- Tang, X. Stakeholder-oriented decision support for auctionbased federated learning. In *Proceedings of the 33rd International Joint Conference on Artificial Intelligence* (*IJCAI*'24), pp. 8514–8515, 2024.

- Tang, X. and Yu, H. Competitive-cooperative multi-agent reinforcement learning for auction-based federated learning. In *Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI'23)*, pp. 4262–4270, 2023a.
- Tang, X. and Yu, H. Utility-maximizing bidding strategy for data consumers in auction-based federated learning. In *Proceedings of the 2023 IEEE International Conference on Multimedia and Expo (ICME'23)*, pp. 330–335, 2023b.
- Tang, X. and Yu, H. Agent-oriented joint decision support for data owners in auction-based federated learning. In Proceedings of the 2024 IEEE International Conference on Multimedia and Expo (ICME'24), 2023c.
- Tang, X. and Yu, H. A cost-aware utility-maximizing bidding strategy for auction-based federated learning. *IEEE Transactions on Neural Networks and Learning Systems*, 2024a.
- Tang, X. and Yu, H. Efficient large-scale personalizable bidding for multi-agent auction-based federated learning. *IEEE Internet of Things Journal*, 2024b.
- Tang, X. and Yu, H. Fairness-aware reverse auction-based federated learning. *IEEE Internet of Things Journal*, 2024c.
- Tang, X. and Yu, H. Reputation-aware revenue allocation for auction-based federated learning. In *Proceedings of the* AAAI Conference on Artificial Intelligence, volume 39, pp. 20832–20840, 2025.
- Tang, X., Yu, H., Li, X., and Kraus, S. Intelligent agents for auction-based federated learning: A survey. In Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI'24), pp. 8253–8261, 2024a.
- Tang, X., Yu, H., Li, Z., and Li, X. A bias-free revenuemaximizing bidding strategy for data consumers in auction-based federated learning. In *Proceedings of the* 33rd International Joint Conference on Artificial Intelligence (IJCAI'24), pp. 4991–4999, 2024b.
- Tang, X., Yu, H., Tang, R., Ren, C., Li, A., and Li, X. Dual calibration-based personalised federated learning. In *Proceedings of the 33rd International Joint Conference on Artificial Intelligence (IJCAI'24)*, pp. 4982–4990, 2024c.
- Thi Le, T. H., Tran, N. H., Tun, Y. K., Nguyen, M. N. H., Pandey, S. R., Han, Z., and Hong, C. S. An incentive mechanism for federated learning in wireless cellular networks: An auction approach. *IEEE Transactions on Wireless Communications*, 20(8):4874–4887, 2021.

- Vincent, D. R. Bidding off the wall: Why reserve prices may be kept secret. *Journal of Economic Theory*, 65(2): 575–584, 1995.
- Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. *arXiv preprint*, pp. 1708.07747, 2017.
- Yang, S. A task offloading solution for internet of vehicles using combination auction matching model based on mobile edge computing. *IEEE Access*, 8:53261–53273, 2020.
- Yang, Z., Liu, Q., Zhao, X., and Zhao, Y. Empirical evidence of idea generation in open innovation community. *International Journal of Crowd Science*, 7(1):40–45, 2023.
- Yoon, J., Jeong, W., Lee, G., Yang, E., and Hwang, S. J. Federated continual learning with weighted inter-client transfer. In *Proceedings of the 38 th International Conference on Machine Learning (ICML'21)*, 2021.
- Zeng, R., Zhang, S., Wang, J., and Chu, X. Fmore: An incentive scheme of multi-dimensional auction for federated learning in MEC. In *ICDCS*, pp. 278–288, 2020.
- Zhang, J., Wu, Y., and Pan, R. Incentive mechanism for horizontal federated learning based on reputation and reverse auction. In *WWW*, pp. 947–956, 2021.
- Zhang, J., Wu, Y., and Pan, R. Auction-based ex-postpayment incentive mechanism design for horizontal federated learning with reputation and contribution measurement. arXiv preprint arXiv:2201.02410, 2022a.
- Zhang, J., Wu, Y., and Pan", R. Online auction-based incentive mechanism design for horizontal federated learning with budget constraint. *arXiv preprint*, pp. 2201.09047, 2022b.
- Zhang, J., Shu, Y., and Yu, H. Fairness in design: A framework for facilitating ethical artificial intelligence designs. *International Journal of Crowd Science*, 7(1): 32–39, 2023.
- Zhang, W., Yuan, S., and Wang, J. Optimal real-time bidding for display advertising. In *KDD*, pp. 1077–1086, 2014.

A. Appendix

A.1. Federated Learning with Recruited Data Owners

After the auction-based DO recruitment process, the DC triggers the FL training process with the recruited DOs in session s, which is detailed in Appendix A.1. Specifically, the FL process operates through communication between the recruited DOs and the target DC in a round-by-round manner. In each training round t in session s, the target DC broadcasts the current global model parameters w_s^{t-1} to the recruited DOs. Upon receiving w_s^{t-1} , each DO i performs a local update to obtain $w_{s,i}^t$ based on its private data D_i , guided by the objective function

$$\underset{\boldsymbol{w}_{s,i}^{t}}{\operatorname{argmin}} \mathbb{E}_{(\boldsymbol{x},y)\sim D_{i}}[\mathcal{L}(\boldsymbol{w}_{s,i}^{t};(\boldsymbol{x},y)]. \tag{9}$$

 $\mathcal{L}(\cdot)$ represents the loss function, which depends on the FL model aggregation algorithm and the current global model parameters \boldsymbol{w}_{s}^{t-1} . For instance, FedAvg (McMahan et al., 2017) calculates $\boldsymbol{w}_{s,i}^{t}$ by employing SGD (Robbins & Monro, 1951) for a certain number of epochs using the cross-entropy loss. At the end of round t, DO i sends its optimized parameters $\boldsymbol{w}_{s,i}^{t}$ to the target DC. The global model is then updated by aggregating these parameter updates from the DOs as

$$\boldsymbol{w}_{s}^{t} = \sum_{i} \frac{|D_{i}|}{\sum_{i} |D_{i}|} \boldsymbol{w}_{s,i}^{t}.$$
(10)

 $\sum_i |D_i|$ denotes the total number of data samples of all the recruited DOs in session s.

A.2. Reinforcement Learning Basics

A Markov Decision Process (MDP) is a mathematical framework for modeling decision-making in which an agent interacts with an environment through discrete time steps. MDP is formally defined by the tuple $\langle S, A, P, R, \gamma \rangle$: 1) S represents the possible states in the environment, denoted as $s \in S$. 2) A encompasses the feasible actions the agent can take. 3) $P: S \times A \times S \rightarrow [0,1]$ is the transition probability function for the likelihood of transitioning between states when an action is taken, capturing environmental dynamics. 4) $R: S \times A \times S \rightarrow \mathbb{R}$ is the reward function, specifying immediate rewards upon state transitions due to specific actions, with the agent's aim to maximize cumulative rewards. 5) $\gamma \in [0,1]$ serves as the discount factor, reflecting the agent's preference for immediate rewards versus future rewards.

During the MDP process, the agent interacts with the environment across discrete time steps. At each time step, it selects an action $a \in A$ based on policy $\pi : S \to A$, subsequently receiving a reward r, and the environment undergoes state transitions according to P.

The goal of MDP is to identify an optimal policy $\pi: S \to A$ that maximizes the expected sum of discounted rewards over time, given by $\max_{\pi} \mathbb{E}\left[\sum_{t=1}^{T} \gamma^{t-1} r^t\right]$. This entails finding the policy maximizing expected cumulative rewards. The value function $V^{\pi}: S \to \mathbb{R}$ is associated with each policy, quantifying expected cumulative rewards. The optimal value function $V^*: S \to \mathbb{R}$ represents the maximum achievable expected cumulative reward achievable with the best policy from each state.

A.3. Implementation Details

In our experiments, we faced the challenge of not having a publicly available AFL bidding behaviour dataset. To address this issue, we track the behaviors of DCs over time during simulations to gradually accumulate data in four different settings. Each setting contains 160 DCs who adopted one of the eight bidding strategies listed in the Compared Approaches section.

In the first setting, each of the eight baseline bidding methods is adopted by one eighth of the DCs. In the second setting, as BM, Fed-Bidder variants (FBs and FBc) and RLB have AI techniques similar to MBOS-AFL, these four bidding strategies are adopted by three sixteenths of the total population, while the remaining four baselines are adopted by one sixteenth of the total population. In the third and fourth settings, as both Fed-Bidder variants and MBOS-AFL are designed specifically for AFL, we set the percentage of DCs adopting FBs and FBc to be higher than those adopting the other six baselines. Specifically, under the third setting, 50 DCs adopt FBs and FBc, while 10 DCs adopt each of the other six baselines. Under the fourth setting, 65 DCs adopted FBs and FBc, while 5 DCs adopted each of the other six baselines. We adopt the second-price sealed-bid (SPSB) auction mechanism in our experiments. By tracking the behaviors of DCs over time, we can gradually accumulate data in the absence of a publicly available dataset related to AFL bidding behaviours.

To evaluate the effectiveness of MBOS-AFL, we create nine DCs, each utilizing one of the aforementioned bidding approaches to join the auction for each bid request (i.e., each DO) in each session *s*. Following (Tang & Yu, 2023b), bid requests are delivered in chronological order. Upon receiving a bid request, each DC derives its bid price based on its adopted bidding strategy. Subsequently, the auctioneer gathers the bid prices, identifies the winner, and determines the market price using the SPSB auction mechanism. The winning DC pays the market price to the DO. The process concludes when there are no more bid requests or when the budget is depleted.

MBOS-AFL utilizes fully connected neural networks with three hidden layers each containing 64 nodes to generate bid prices for a target DO on behalf of their respective DCs. The replay buffer \mathcal{D} of both the InterBPA and the IntraBMA are set to 5,000. During training, both agents explore the environment using an ϵ -greedy policy with an annealing rate from 1.0 to 0.05. In updating both Q^{intra} and Q^{inter} , 64 tuples uniformly sampled from \mathcal{D} are used for each training step, and the corresponding target networks are updated once every 20 steps. In our experiments, we use RMSprop with a learning rate of 0.0005 to train all neural networks, and set the discount factor γ to 1. In addition, we have set the number of candidate DOs within each session to 200 (i.e., $C_s = 200$). The communication round in each session is set at 100, while the local training epoch is set at 30. All experiments were conducted five times, and the averaged results are reported.

A.4. Evaluation Metrics

To evaluate the effectiveness of all the comparison methods, we adopt the following three metrics: 1) The number of data samples won by the DC (**#data**) is defined as the cumulative number of data samples owned by all DOs recruited by the corresponding DC until the budget or session limits are reached. 2) The utility obtained by the DC (**utility**) is defined as the cumulative reputation of DOs recruited by the corresponding DC until the budget or session limits are reached. 3) The test accuracy (**Acc**) is determined as the accuracy of the final FL model for the respective DC, up to the point where either the budget or session limits are reached.