
Published as a conference paper at ICLR 2025

MESHMASK: PHYSICS-BASED SIMULATIONS WITH
MASKED GRAPH NEURAL NETWORKS

Paul Garnier∗
Mines Paris - PSL University
Centre for Material Forming (CEMEF)
CNRS
paul.garnier@minesparis.psl.eu

Vincent Lannelongue
Mines Paris - PSL University
Centre for Material Forming (CEMEF)
CNRS
vincent.lannelongue@minesparis.psl.eu

Jonathan Viquerat
Mines Paris - PSL University
Centre for Material Forming (CEMEF)
CNRS
jonathan.viquerat@minesparis.psl.eu

Elie Hachem
Mines Paris - PSL University
Centre for Material Forming (CEMEF)
CNRS
elie.hachem@minesparis.psl.eu

ABSTRACT

We introduce a novel masked pre-training technique for graph neural networks
(GNNs) applied to computational fluid dynamics (CFD) problems. By randomly
masking up to 40% of input mesh nodes during pre-training, we force the model
to learn robust representations of complex fluid dynamics. We pair this masking
strategy with an asymmetric encoder-decoder architecture and gated multi-layer
perceptrons to further enhance performance. The proposed method achieves state-
of-the-art results on seven CFD datasets, including a new challenging dataset of 3D
intracranial aneurysm simulations with over 250,000 nodes per mesh. Moreover,
it significantly improves model performance and training efficiency across such
diverse range of fluid simulation tasks. We demonstrate improvements of up to
60% in long-term prediction accuracy compared to previous best models, while
maintaining similar computational costs. Notably, our approach enables effective
pre-training on multiple datasets simultaneously, significantly reducing the time
and data required to achieve high performance on new tasks. Through extensive
ablation studies, we provide insights into the optimal masking ratio, architectural
choices, and training strategies.

1 INTRODUCTION

The quest to efficiently supplement traditional computational fluid dynamics (CFD) Hachem et al.
(2010) with machine learning techniques was marked by multiple advances in the past decade,
progressing from convolutional neural network approaches Tompson et al. (2016); Thuerey et al.
(2018); Chen et al. (2019); Chu & Thuerey (2017) and physics informed neural networks Raissi et al.
(2019) to advanced graph neural networks (GNN) methods. Indeed, graph neural networks, and
more specifically the message-passing approach Battaglia et al. (2018), have emerged as a natural
candidates for the processing of mesh-based data, leading to a seamless coupling with CFD Pfaff
et al. (2021).

This architecture has brought spectacular results for the auto-regressive inference of non-stationary
physical phenomena Sanchez-Gonzalez et al. (2020); Lam et al. (2023). The recent introduction
of attention layers and transformer architectures in GNNs has brought even more improvements,
coupled with more complex training procedure such as diffusion models Price et al. (2024), although
with limited mesh sizes.

∗Corresponding author

1

Published as a conference paper at ICLR 2025

Figure 1: The proposed Masked Graph Neural Network architecture. During pre-training, we remove
a portion of the edges and nodes of the mesh (e.g. 50%) and use this new graph as input for the
Encoder. Masked nodes are then replaced by a [MASKED] token before the mesh is passed to the
Decoder. After pretraining, only the Encoder is finetuned on a specific dataset, without any nodes
being removed.

The refinement of the architectures and training techniques to overcome this limitation is still an
active research field, with multi-grid paradigms John (2002) showing promising results Lino et al.
(2021); Fortunato et al. (2022); Yang et al. (2022); Taghibakhshi et al. (2023); Garnier et al. (2024).
Yet, training times remain a major concern, and the required amount of training data can still represent
a prohibitive pre-processing cost.

Recently, pre-training techniques such as the Cloze Task Taylor (1953) have been introduced in
the domain of natural language processing (NLP) and computer vision that improve performance
while significantly reducing training times. Most of the contributions rely on masked auto-encoders,
an asymmetric architecture in which an encoder is provided with a random subset of the input, a
proportion of it being masked (usually around 70% of the data is randomly masked for computer
vision and 15% for NLP). The masked tokens are re-introduced on the latent representation, after
what a lightweight decoder reconstructs the full output. This pre-training step is usually followed by a
fine-tuning training on specific tasks. This approach has led to significant improvements in computer
vision He et al. (2021) and NLP Devlin et al. (2019); Radford et al. (2018).

Such methods have already been transferred in the context of GNNs. In Hu et al. (2019), the authors
consider graph classification datasets, and develop a pre-training approach mixing both local and
global representations. The authors in Hu et al. (2020) develop a generative framework for the
reconstruction of the inputs, leading to significant improvements against state of the art supervised
results. In Tan et al. (2022), the authors propose the masked graph auto-encoder (MGAE) paradigm
that makes use of a tailored cross-correlation decoder structure. The results show the superiority of
this approach for link prediction and node classification tasks. We also underline the contribution of
Zhou & Farimani (2024), who successfully apply computer vision approaches to the resolution of one-
and two-dimensional PDE problems, including the Burgers equation or the Kuramoto-Sivashinsky
system.

In the present contribution, we propose an architecture variation with a new masking pre-training
technique for CFD datasets. We also introduce a new dataset much more complex than previous ones,
both in terms of physics and mesh size (up to 250,000 nodes and 3 millions edges). We conduct
a comprehensive ablation study on model architecture, Encoder and Decoder asymmetry and on
key parameters of our pre-training method. Finally, we train our models on 7 different datasets, all
different in terms of physics, mesh size and trajectory length.

Our finding suggests that our pre-training technique gives large improvements in term of accuracy
(from 15 to 40%), and more importantly, offers a very convenient method to pre-train a model on
different datasets before being finetuned, making it much easier to train on large datasets.

The paper is organized as follows: the AutoEncoder architecture and masking strategy are presented
in subsection 2.1 and 2.2. The overall structure of each model is defined in 2.3. Training methodology

2

Published as a conference paper at ICLR 2025

Figure 2: Examples from test meshes in 3 different datasets: CYLINDER, BEZIER and 2D-
ANEURYSM. We show (left) the masked mesh with hidden nodes in gray, (middle) the prediction
from the AutoEncoder architecture, and (right) the ground truth prediction. We replace the masked
nodes by the ground truth ones.

and datasets are presented in section 3. We then perform a full ablation study in subsection 4.1 and
present the rest of the obtained results in section 4. Finally, future perspectives are given. The code
used in this paper will be released after publication.

2 THEORETICAL FRAMEWORK

We consider a mesh as an undirected graph G = (V,E). V = {vi}i=1:Nv is the set of nodes, where
each vi represents the attributes of node i. E = {(ek, rk, sk)}k=1:Ne is the set of edges, where each
ek represents the attributes of edge k, rk is the index of the receiver node, and sk is the index of the
sender node.

Each edge feature is made of the relative displacement vector in mesh space uij = ui − uj and its
norm ∥uij∥. Each node feature vi (such as the pressure, velocity) also receives a one-hot vector
indicating the node type (such as inflow or outflow for boundary conditions, obstacles to denote
where shapes are inside the domain, etc) and global information (viscosity, gravity) creating xi. In
the case of the ANEURSYM dataset, we also add the nodes positions and the acceleration as inputs.
Finally, given the complexity of the blood inflow (see subsection 3.1), we also add the next step
inflow velocity as inputs.

2.1 ENCODER-DECODER ARCHITECTURE

The proposed Encoder-Decoder architecture simply stacks 2 GNNs one after the other in an AutoEn-
coder fashion. Each of these two global networks is a multi-grid GNN built in an Encode-Process-
Decode fashion, as shown in Figure 1 (see subsection 2.3).

The aim is to make the next-step prediction (or the reconstruction) of a mesh given a partially visible
input. We follow the strategy of He et al. (2021) by having an asymetric architecture, meaning our
Encoder is much larger than our Decoder. This does not increase the training budget since most of it
is spent during pre-training, where the Encoder inputs are mostly masked.

In practice, we start by pre-training the Encoder and the Decoder on a next-step prediction or
reconstruction task with masked input (as detailed in 2.2). We then finetune the Encoder only on
a next-step prediction task. The Encoder architecture does not change between pretraining and
fine-tuning.

3

Published as a conference paper at ICLR 2025

Figure 3: The overall AutoEncoder architecture.

Figure 4: Predictions on the CYLINDER with different Masking Ratio. Even with a high ratio (85%),
the model is able to generalize well.

2.2 MASKING

At each training step, we randomly sample a fraction of the existing nodes in a given mesh. We then
proceed to completely remove them from the mesh, including all edges that are connected to at least
one masked node. To ensure that the model could process long range interactions even with high
masking ratios and disconnected sub-graphs, we considered computing the K-hop of each remaining
node in the original graph and adding those new longer edges if both nodes were not masked, for
different K values.

We refer to this simply as ”masking”. What we end up with as inputs is now a much smaller mesh
(up to 95% smaller in our experiments), thus being much faster to process. We display in Figure 4
examples of different masking ratio.

After being passed to the Encoder, we reconstruct the initial mesh by:

• Replacing hidden nodes by a shared learnable [MASKED] token (following Devlin et al.
(2019))

• Replacing other nodes by their predicted values from the Encoder

• Rebuilding hidden edges with geometric data

Theoretical justification This architecture is inspired by three factors: the inherent locality of finite
element solvers, the information propagation boundaries of message passing, and the scale of error
reduction in GNNs. First, since finite element solvers approximate solutions to equations such as
the Navier-Stokes equation on neighboring elements, masking an element naturally makes it a much

4

Published as a conference paper at ICLR 2025

more difficult task. We believe that by doing so, we force our model to find other relevant elements to
make predictions rather than relying solely on direct neighbors. Second, since a message passing
architecture is bounded by the number of steps multiplied by the length of edges, masking a large
part of the mesh drastically reduces both the available information and how far it can propagate. We
thus prevent the model from simply extrapolating from neighboring physics. Third, since GNNs can
only reduce errors locally, like Gauss-Seidel smoothers, we are forcing them to retrieve information
from more distant parts of the mesh than they usually do.

Finally, thanks to the unstructured nature of a mesh, uniform random masking allows the model to
focus more on fine-grained area of the mesh. The overall process is detailed in Figure 3.

2.3 OVERALL ARCHITECTURE

Both our Encoder and Decoder follow an Encode-Process-Decode architecture, following the work
from Battaglia et al. (2018). We encode nodes and edges features with 2 simple Multi Layer Perceptron
(MLP) into latent vectors of size p: ek = MLP(uij , ∥uij∥) ∀k ∈ E, vr = MLP(xr) ∀r ∈ V

where the MLP is made of 2 hidden layers of size p, ReLU activation and Layer Normalization.

Figure 5: (top) Each edge is updated from its own feature,
and the one from the nodes connected to it. (bottom) Each
node is updated from its own features, and from the edges its
connected to. (right) Information flow from a node perspec-
tive after one step of message passing.

The proposed process block is made
of m message passing blocks, each
being either a Graph Net block from
Battaglia et al. (2018) or UpScale and
DownScale blocks from Garnier et al.
(2024) to create Multigrid W-cycle
models. If not specified, our models
are W-cycle with 15 message passing,
and a latent size of 128 neurons.

Usually, the processing is done by an
MLP similar to the ones seen in the
Encoder. Here, we improve on that
architecture by replacing them with
Gated MLP (see subsection 2.4). We
also considered using Graph Atten-
tion Networks (GAT) as introduced
by Veličković et al. (2018) for pro-
cessing, since self-attentional layers
have proven to be effective for such applications Garnier et al. (2024). The message passing process
is detailed in Figure 5.

Finally, we add a Decoder to transform the latent v into the output features: yr = MLP(vr) ∀r ∈ V

2.4 GATED MLP

We replace the MLPs in the Processor by Gated MLP (see Dauphin et al. (2017)). The Gated MLP
takes an input of size p, creates two branches where linear layers are applied with an expansion factor
of size e and apply the GeLU non-linearity Hendrycks & Gimpel (2023) on one of those 2 branches.
We then merge the two branches with element-wise multiplication before applying a final linear layer
with an output of size p.

While this architecture leads to a much higher number of parameters, training and inference time are
similar as to their full MLP counterpart. We find this approach similar to Shazeer (2020) and that it
leads to improvements in the predictions.

3 TRAINING

3.1 DATASETS

We evaluated our models on different use cases. We detailed below the different datasets (see Table
3.1 and Figure 6), parameters used and the simulation time step ∆t. Each training set contains 100

5

Published as a conference paper at ICLR 2025

Figure 6: Sample of our datasets, in the same order as in Table 3.1.

trajectories, and testing set 20 trajectories. Datasets from the COMSOL solver are originally from
Pfaff et al. (2021). The MULTIPLE BEZIER dataset is from Garnier et al. (2024). The 3D ANEURYSM
dataset is from Goetz et al. (2024b). Given the considerable leap in complexity (both in terms of
mesh size, inputs and physics), a more detailed presentation is given below in 3.1.1.

Dataset Solver #
nodes Dimension #

traj
#

steps
∆t

s

CYLINDER COMSOL 2k 2D Fixed Mesh 100 600 0.01
PLATE COMSOL 1k 3D Fixed Mesh 100 400 -
FLAGSIMPLE ArcSim 2k 2D Fixed Mesh 100 400 0.02
AIRFOIL SU2 5k 2D Fixed Mesh 100 600 0.008
BEZIER Cimlib 30k 2D Fixed Mesh 100 6000 0.1
3D-ANEURYSM Cimlib 250k 3D Fixed Mesh 100 80 0.01
2D-ANEURYSM Cimlib 10k 2D Fixed Mesh 100 80 0.01

3.1.1 3D ANEURYSMS

Goetz et al. (2024b) developed 101 semi-idealized geometries derived from patient-specific intracra-
nial aneurysms, segmented from medical imaging data. They conducted CFD simulations of blood
flow within these vessels, numerically solving the transient incompressible Navier-Stokes equation
over a complete cardiac cycle. For a more detailed explanation of the methodology, refer to Goetz
et al. (2023; 2024a).

Training on this dataset (Figure 7) represents a significant advancement and introduces unprecedented
challenges. The transition to three-dimensional fluid dynamics substantially increases the complexity
of observed flow patterns and expands mesh sizes to over 250,000 nodes and 3 million edges, far
surpassing previous studies in this field, which typically didn’t exceed 40,000 nodes. Moreover, the
inflow conditions follow a pulsatile cardiac cycle, introducing time-dependent variations that require
accurate modeling. This pulsatile nature demands a more profound understanding of fluid dynamics
to simulate the rhythmic fluctuations in blood flow and pressure.

From the 3D-ANEURYSM dataset, we also derived the 2D-ANEURYSM dataset by re-meshing slices
extracted from the 3D simulations. This dataset allowed us to iterate more quickly while retaining the
challenges of varying geometry, pulsatile inflow, and complex flow patterns.

3.2 PARAMETERS

Network Architecture All of the MLPs (except the Gated MLPs) are made of 2 hidden layers of
size 128 with ReLU activation functions. Outputs are normalized with a LayerNorm. The Gated
MLPs are using a hidden dimension p of size 128 and an expansion factor e = 3.

In the case of MultiGrid model, DownScale blocks use a ratio of 0.5. We follow the state-of-the-art
and all our models are W-cycle with 15 message passing steps.

Training We trained our models using an L2 loss, with a batch size of 21. During pretraining, the
loss is only computed on masked nodes, similar to Devlin et al. (2019); He et al. (2021).

We start by pre-training our Encoder and Decoder for 500k training steps, using an exponential
learning rate decay from 10−4 to 10−6 over the last 250k steps. We then finetune the Encoder for

1In the case of the 3D ANEURYSM, we use a batch size of 1 with sub-mesh partitioning (see Appendix)

6

Published as a conference paper at ICLR 2025

Figure 7: (top-left) Overview of the 101 aneurysms. (top-right) Velocity inflow profile imposed
at the inlet boundary as a parabolic flow. (bottom-left) Presentation of the vy flow in 3 aneurysms.
(bottom-right) Example of a mesh.

another 500k training steps, with the same strategy for the learning rate. During the pre-training, if
not specified, we use a node masking ratio of 40% (roughly equivalent to masking 60 to 70% of the
mesh information depending on its geometry).

All models are trained using an Adam optimizer Kingma & Ba (2017). The baseline models are
trained for a million training steps to evenly compare to our models. Finally, following the same
strategy as Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021); Garnier et al. (2024), we introduce
noise to our inputs. More specifically, we add random noise N (0, σ) to the dynamical variables.

4 RESULTS

4.1 ABLATION STUDY

We trained our models on 7 very different datasets (results can be seen here) and compared it to
baseline models as well as state-of-the-art model. We also pretrained our models on multiple datasets
at the same time, before evaluating them in a 0-shot fashion and with finetuning. The main finding is
that masking a large portion of the input mesh during pretraining leads to a large improvement for
long-term autoregressive prediction (see table 2). We are also able to pretrain models on different
datasets at the same time, largely improving the time needed to fully train a model. Finally, our
models decreases inference time by a large margin in comparison to classical finite element solver
(see Table A.1.1). Even when taking the training time into account, it becomes more interesting
to train a GNN and use it for inference after roughly 250 simulations of Cylinder, and only 20 3D
Aneurysms.2

Masking Ratio Figure 8 shows how the masking ratio impacts the long-term autoregressive
prediction. We find that the best masking ratio lies between 25% and 40%. This represents masking
between 40% and 70% of the overall mesh (nodes and edges). While this is much higher than the
usual 15% from Devlin et al. (2019), this is similar to the results obtained by He et al. (2021). We
find that adding K-hop edges did not have a significant impact for masking values up to 20%, but
improved performance for larger values with K = 2 and K = 3.

2For the 3D Aneurysm, it takes 12 hours to simulate a full trajectory while only 80 seconds with a GNN that
took 10 days of training.

7

https://sites.google.com/view/masked-graph-neural-networ/

Published as a conference paper at ICLR 2025

Task 1-step all-rollout

Reconstruction 3.49 86

Next-step prediction 2.49 52

(a) Pre-training task. Training for next-
step prediction leads to much better re-
sults.

Layer Depth 1-step all-rollout

MLP 5 6.23 185
MLP 15 3.13 72

Gated MLP 5 3.6 71
Gated MLP 15 2.1 58

GAT 15 2.2 58.2

(b) Processing layers. Gated
MLP performs better.

Masking all-rollout FLOPS

encoder w/ [MASKED] 54.3 2.8×
encoder w/out [MASKED] 52 1×

(c) Encoder Mask token. No
mask token makes it faster.

Decoder Depth 1-step all-rollout

1 - 49
3 - 46
5 - 45

(d) Decoder Depth. Increasing
the number of message passing
steps only slightly increases per-
formances.

Table 1: Ablation study on the CYLINDER Dataset. We tracked one-step RMSE and the RMSE averaged over
the entire trajectory. We highlight the settings chosen by our model in the following experiments. All results

are ×10−3.

Figure 8: A masking ratio between 25% and 40% leads to the best finetuning results on the CYLIN-
DERFLOW dataset.

Impact of Masking Pretraining Table 2 shows the impact of masking pretraining on a simple
MeshGraphNet architecture. Overall, we find that keeping the same model but pretraining it for 500k
steps with a masking ratio of 40% leads to a 25% improvement consistently. This shows that our
novel method allows the model to learn the inherent physics with more depth. The improvement in
performances without any change in the underlying architecture nor extra training time makes it a
very robust technique to systematically improve the model’s performances.

Gated MLP We find that using a Gated MLP instead of a regular MLP yields much better results.
We find similar results for a model 3 times smaller using Gated MLP versus a model using MLP.
Using attention-based processing layers here did not prove to enhance the performance compared to
the Gated MLP.

At scale with 15 message passing steps, we still find improvements over the usual MeshGraphNet
architecture from Pfaff et al. (2021) (see table 1b)

Auto-Encoder Architecture The proposed Decoder architecture can be defined independently from
the Encoder. We study this in table 1d with different amount of message passing steps. Similarly to
He et al. (2021), we find that a Decoder with only one message passing step already yields very strong

8

Published as a conference paper at ICLR 2025

performance. Overall, we select a Decoder with 3 message passing steps since the performances are
on-par with bigger Decoder, but at a much lighter cost of training time.

4.2 COMPARISON

Our experiments demonstrate significant improvements in model performance across various ar-
chitectures when employing the proposed novel pre-training masking techniques. Regardless of
the underlying model, we observe performance gains of up to 25% compared to baseline models
without masking (Table 2). The most striking results come from our multigrid architecture combined
with masking pre-training, which establishes a new state-of-the-art in the field. This configuration
outperforms the previous best model by up to 60%, marking a substantial leap forward in predictive
accuracy for fluid dynamics simulations.

Notably, these improvements are achieved with the same number of training updates as baseline
models, underscoring the efficiency of our masking techniques in helping the model grasp the intricate
physics of fluid dynamics. This suggests that our approach not only enhances performance but also
accelerates the learning process, reducing computational costs for future large-scale simulations. A
comprehensive overview of our results is presented in Table 2, clearly illustrating the performance
gains across different model architectures and evaluation metrics.

Interestingly, we observe minimal or no improvements in 1-step RMSE across our experiments. This
observation points to two key insights: firstly, we may be approaching a performance plateau in terms
of pure 1-step loss prediction. Secondly, and perhaps more significantly, our models demonstrate an
improved ability to mitigate long-term error propagation, a crucial factor in extending the predictive
horizon of fluid dynamics simulations.

Table 2: All numbers are ×10−3. DATASET-1 means one-step RMSE, and DATASET-All means all-
rollout RMSE. MGN results are reproduced according to Pfaff et al. (2021), BSMS-GNN according
to Cao et al. (2023), MultiScaleGNN according to Lino et al. (2021) and Multigrid results are
reproduced according to Garnier et al. (2024).

MODEL CYLINDER SIMPLEFLAG PLATE AIRFOIL BEZIER 2D-ANEURYSM 3D-ANEURYSM
1-RMSE ↓ 1-RMSE ↓ 1-RMSE ↓ 1-RMSE ↓ 1-RMSE ↓ 1-RMSE ↓ 1-RMSE ↓

MGN 3.3 1.15 0.07 329 27.7 794 1795
Multigrid 2.8 1.02 0.17 302 24.1 638 749
MultiScaleGNN 2.7 - 0.10 300 24.8 - 823
BSMS-GNN 2.83 - 0.15 314 23.2 632 719
MGN w/ masking 2.5 - 0.09 - 26.5 718 -
Ours 2.5 1.04 0.11 310 22.7 645 725

ALL-RMSE ↓ ALL-RMSE ↓ ALL-RMSE ↓ ALL-RMSE ↓ ALL-RMSE ↓ ALL-RMSE ↓ ALL-RMSE ↓
MGN 71.4 146 16.9 11398 335 7513 13747
Multigrid 56.9 121 8.1 9871 275 7009 11327
MultiScaleGNN 61.2 - 15.7 10272 289 - 11612
BSMS-GNN 56.9 - 16.6 9418 262 6983 10993

MGN w/ masking 46.5 - 12.2 - 281 7112 -
Ours 29 98 4.5 8794 212 6489 8772

Table 3: Every model is trained for a total of 1M steps. vRAM and Inference Time are computed
on the CYLINDER dataset. The large increase of parameters in our method is mostly due to the
gatedMLP and the expansion factor e = 3.

MODEL # TRAINING STEPS # PARAMETERS VRAM (IN GB) INFERENCE TIME (MS/STEP)

MGN 1M 2.8M 7 49.3
Multigrid 1M 3.5M 11 55.2
MultiScaleGNN 1M 2.6M 8 53.7
BSMS-GNN 1M 2.1M 7 52.8
MGN w/ masking 500k + 500k 2.8M 7 49.3
Ours w/ GatedMLP 500k + 500k 9.2M 16 59.1

4.3 TRANSFER LEARNING EXPERIMENTS

9

Published as a conference paper at ICLR 2025

Pretraining on multiple datasets We evaluate transfer learning on two datasets: CYLINDER and
BEZIER. Both datasets share the same inputs and outputs (see subsubsection A.1.1), and are generated
from the simulation of an incompressible flow past one or multiple rigid bodies in a fixed Reynolds
number range, thus sharing physical similarities. We conducted three experiments:

• masked pretraining on CYLINDER → finetuned on BEZIER

• masked pretraining on BEZIER → finetuned on CYLINDER

• masked pretraining on both CYLINDER and BEZIER before being duplicated and → fine-
tuned on both datasets

We compare those experiments to both our best model without pretraining and our best model with
pretraining. Results are available in Table 4.

We find that pretraining on a similar (although with different physical parameters such as the viscosity
or the inlet velocity) dataset yields good performances similar to the models without any pretraining
(+7.5% on CYLINDER, +14.5% on BEZIER).

Our pretraining methods allows for efficient pretraining on multiple datasets at the same time before
re-using this model for a finetuning phase. A model pretrained on both CYLINDER and BEZIER
improves its results respectively by 22.7% and 15.6%, while being 33% faster to train those 2 models.
This highlights two important points:

1. This shows that our pretraining method not only allows to train multiple models faster, but
also that it can lead to the pretraining of a larger model on multiple datasets of different
physics use cases before being finetuned.

2. We find that pretraining, even on multiple datasets at the same time, always leads to better
performances in terms of all-rollout RMSE (-18% on average) than no pretraining at all.

Table 4: All numbers are ×10−3. Each row presents on which dataset the model was pretrained.
Each column presents on which dataset the model was finetuned and then evaluated.

PRETRAINING DATASET CYLINDER BEZIER
ALL-RMSE % DIFFERENCE ALL-RMSE % DIFFERENCE

↓ W/ BASELINE ↓ W/ BASELINE

NO PRETRAINING 56.9 - 275 -
CYLINDER 29 -49.0% 315 +14.5%
BEZIER 61.2 +7.5% 212 -22.9%
CYLINDER+BEZIER 44 -22.7% 229.6 -15.6%

Out-of-distribution meshes We evaluated the performance of our model on out-of-distribution
meshes by training a model on graphs with a given refinement and applying this model directly to a
much finer graph (from 10k to 250k nodes in our experiments). We find that even with this large gap
in refinement, our model is able to generalize well and make accurate predictions as it performs only
75% worse than a model fully trained on fine meshes, which remains on par with results from MGN
for example. These results also mean that we do not necessarily have to produce the entirety of the
training on large and costly meshes, but that a fraction might be sufficient.

5 CONCLUSION

In this study, we show on multiple datasets and through transfer learning that similar to NLP and
Computer Vision, our simple masking pretraining technique demonstrated significant improvements
in model performance and training efficiency.

Our approach achieved state-of-the-art results on the seven presented CFD datasets, including a new
challenging dataset of 3D intracranial aneurysm simulations. Importantly, our method allows for
efficient pre-training across multiple datasets simultaneously, greatly reducing both the time and data
needed to attain high performance on new tasks.

10

Published as a conference paper at ICLR 2025

Acknowledgements The authors acknowledge the financial support from ERC grant no 2021-CoG-
101045042, CURE. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them.

REFERENCES

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinı́cius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish
Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan
Wierstra, Pushmeet Kohli, Matthew M. Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261, 2018.
URL http://arxiv.org/abs/1806.01261.

Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based physical
simulation with bsms-gnn, 2023. URL https://arxiv.org/abs/2210.02573.

Junfeng Chen, Jonathan Viquerat, and Elie Hachem. U-net architectures for fast prediction of
incompressible laminar flows. arXiv e-prints, art. arXiv:1910.13532, October 2019. doi: 10.48550/
arXiv.1910.13532.

Mengyu Chu and Nils Thuerey. Data-driven synthesis of smoke flows with cnn-based feature
descriptors. ACM Transactions on Graphics, 36(4):1–14, July 2017. ISSN 1557-7368. doi:
10.1145/3072959.3073643. URL http://dx.doi.org/10.1145/3072959.3073643.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Hugues Digonnet, Luisa Silva, and Thierry Coupez. Cimlib: A fully parallel application for numerical
simulations based on components assembly. AIP Conference Proceedings, 908:269–274, 05 2007.
doi: 10.1063/1.2740823.

Thomas D. Economon, Francisco Palacios, Sean R. Copeland, Trent W. Lukaczyk, and Juan J. Alonso.
Su2: An open-source suite for multiphysics simulation and design. AIAA Journal, 54(3):828–846,
March 2016. ISSN 1533-385X. doi: 10.2514/1.j053813. URL http://dx.doi.org/10.
2514/1.J053813.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. MultiScale
MeshGraphNets. arXiv e-prints, art. arXiv:2210.00612, October 2022. doi: 10.48550/arXiv.2210.
00612.

Paul Garnier, Jonathan Viquerat, and Elie Hachem. Multi-grid graph neural networks with self-
attention for computational mechanics. arXiv preprint arXiv:2409.11899, 2024.

Aurèle Goetz, Pablo Jeken Rico, Yves Chau, Jacques Sédat, Aurélien Larcher, and Elie Hachem.
Proposal for numerical benchmarking of fluid-structure interaction in cerebral aneurysms, 2023.
URL https://arxiv.org/abs/2308.08301.

Aurèle Goetz, Pablo Jeken-Rico, Yves Chau, Jacques Sédat, Aurélien Larcher, and Elie Hachem.
Analysis of intracranial aneurysm haemodynamics altered by wall movement. Bioengineering,
11(3), 2024a. ISSN 2306-5354. doi: 10.3390/bioengineering11030269. URL https://www.
mdpi.com/2306-5354/11/3/269.

Aurèle Goetz, Pablo Jeken Rico, Ugo Pelissier, Yves Chau, Jacques Sédat, and Elie Hachem.
AnXplore: A comprehensive fluid-structure interaction study of 101 intracranial aneurysms.
Frontiers in Bioengineering and Biotechnology, 12, 2024b. ISSN 2296-4185. doi: 10.3389/fbioe.
2024.1433811. URL https://www.frontiersin.org/articles/10.3389/fbioe.
2024.1433811.

11

http://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2210.02573
http://dx.doi.org/10.1145/3072959.3073643
http://dx.doi.org/10.2514/1.J053813
http://dx.doi.org/10.2514/1.J053813
https://arxiv.org/abs/2308.08301
https://www.mdpi.com/2306-5354/11/3/269
https://www.mdpi.com/2306-5354/11/3/269
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1433811
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1433811

Published as a conference paper at ICLR 2025

E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, and T. Coupez. Stabilized finite element method
for incompressible flows with high reynolds number. Journal of Computational Physics, 229(23):
8643–8665, 2010. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2010.07.030. URL https:
//www.sciencedirect.com/science/article/pii/S0021999110004237.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs,
2018. URL https://arxiv.org/abs/1706.02216.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners, 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. CoRR, abs/1905.12265, 2019. URL
http://arxiv.org/abs/1905.12265.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. GPT-GNN: generative
pre-training of graph neural networks. CoRR, abs/2006.15437, 2020. URL https://arxiv.
org/abs/2006.15437.

Volker John. Higher order finite element methods and multigrid solvers in a benchmark problem for
the 3d navier–stokes equations. International Journal for Numerical Methods in Fluids, 40(6):
775–798, October 2002. ISSN 1097-0363. doi: 10.1002/fld.377. URL http://dx.doi.org/
10.1002/fld.377.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran
Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose, Stephan
Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mohamed, and
Peter Battaglia. Graphcast: Learning skillful medium-range global weather forecasting, 2023.
URL https://arxiv.org/abs/2212.12794.

Mario Lino, Chris Cantwell, Anil A. Bharath, and Stathi Fotiadis. Simulating continuum mechanics
with multi-scale graph neural networks, 2021.

Comsol multiphysics®. Comsol, 2020. URL http://comsol.com.

Rahul Narain, Armin Samii, and James F. O’Brien. Adaptive anisotropic remeshing for cloth
simulation. ACM Transactions on Graphics, 31(6):147:1–10, November 2012. URL http:
//graphics.berkeley.edu/papers/Narain-AAR-2012-11/. Proceedings of ACM
SIGGRAPH Asia 2012, Singapore.

David Padua, Amol Ghoting, John A. Gunnels, Mark S. Squillante, José Meseguer, James H.
Cownie, Duncan Roweth, Sarita V. Adve, Hans J. Boehm, Sally A. McKee, Robert W. Wisniewski,
George Karypis, Allen D. Malony, Steven Gottlieb, Rolf Riesen, Arthur B. Maccabe, Gianfranco
Bilardi, Andrea Pietracaprina, Arun Kejariwal, Alexandru Nicolau, Christian Lengauer, John L.
Gustafson, William Gropp, Jean-Pierre Prost, David Padua, Geoff Lowney, Patrick Amestoy,
Alfredo Buttari, Iain Duff, Abdou Guermouche, Jean-Yves L’Excellent, Bora Uçar, Robert H.
Halstead, Mario Nemirovsky, Patrick Amestoy, Alfredo Buttari, Iain Duff, Abdou Guermouche,
Jean-Yves L’Excellent, Bora Uçar, and Scott Pakin. METIS and ParMETIS, pp. 1117–1124.
Springer US, 2011. ISBN 9780387097664. doi: 10.1007/978-0-387-09766-4 500. URL http:
//dx.doi.org/10.1007/978-0-387-09766-4_500.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-
based simulation with graph networks, 2021.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R. Andersson, Andrew El-Kadi, Dominic
Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, Remi Lam, and Matthew
Willson. Gencast: Diffusion-based ensemble forecasting for medium-range weather, 2024. URL
https://arxiv.org/abs/2312.15796.

12

https://www.sciencedirect.com/science/article/pii/S0021999110004237
https://www.sciencedirect.com/science/article/pii/S0021999110004237
https://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1905.12265
https://arxiv.org/abs/2006.15437
https://arxiv.org/abs/2006.15437
http://dx.doi.org/10.1002/fld.377
http://dx.doi.org/10.1002/fld.377
https://arxiv.org/abs/2212.12794
http://comsol.com
http://graphics.berkeley.edu/papers/Narain-AAR-2012-11/
http://graphics.berkeley.edu/papers/Narain-AAR-2012-11/
http://dx.doi.org/10.1007/978-0-387-09766-4_500
http://dx.doi.org/10.1007/978-0-387-09766-4_500
https://arxiv.org/abs/2312.15796

Published as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2018. URL https://d4mucfpksywv.
cloudfront.net/better-language-models/language-models.pdf.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://
doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to simulate complex physics with graph networks, 2020.

Noam Shazeer. Glu variants improve transformer, 2020.

Ali Taghibakhshi, Nicolas Nytko, Tareq Uz Zaman, Scott MacLachlan, Luke Olson, and Matthew
West. Mg-gnn: Multigrid graph neural networks for learning multilevel domain decomposition
methods, 2023.

Qiaoyu Tan, Ninghao Liu, Xiao Huang, Rui Chen, Soo-Hyun Choi, and Xia Hu. MGAE: masked
autoencoders for self-supervised learning on graphs. CoRR, abs/2201.02534, 2022. URL https:
//arxiv.org/abs/2201.02534.

Wilson L Taylor. “cloze procedure”: A new tool for measuring readability. Journalism quarterly, 30
(4):415–433, 1953.

Nils Thuerey, Konstantin Weissenow, Harshit Mehrotra, Nischal Mainali, Lukas Prantl, and Xiangyu
Hu. Well, how accurate is it? A study of deep learning methods for reynolds-averaged navier-stokes
simulations. CoRR, abs/1810.08217, 2018. URL http://arxiv.org/abs/1810.08217.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
fluid simulation with convolutional networks. CoRR, abs/1607.03597, 2016. URL http://
arxiv.org/abs/1607.03597.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018.

Zhishuang Yang, Yidao Dong, Xiaogang Deng, and Laiping Zhang. Amgnet: multi-scale graph
neural networks for flow field prediction. Connection Science, 34:2500–2519, 10 2022. doi:
10.1080/09540091.2022.2131737.

Anthony Zhou and Amir Barati Farimani. Masked autoencoders are pde learners, 2024.

A APPENDIX

A.1 DATASETS

A.1.1 DETAILS

We give details below about the inputs and outputs used for each dataset (see Table A.1.1). CYLINDER,
PLATE were generated with COMSOL multiphysics® (2020) and were introduced by Pfaff et al.
(2021). FLAGSIMPLE was generated with ArcSim Narain et al. (2012) and was introduced by Pfaff
et al. (2021). AIRFOIL was generated with SU2 Economon et al. (2016) and was introduced by Pfaff
et al. (2021). BEZIER was generated with CimLib Digonnet et al. (2007) ans was was introduced by
Garnier et al. (2024). 2D-ANEURYSM, 3D-ANEURYSM were generated with CimLib Digonnet et al.
(2007) and were introduced by Goetz et al. (2024b).

13

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/2201.02534
https://arxiv.org/abs/2201.02534
http://arxiv.org/abs/1810.08217
http://arxiv.org/abs/1607.03597
http://arxiv.org/abs/1607.03597

Published as a conference paper at ICLR 2025

Figure 9: Overview of our unstructured mesh. (top) Mesh from the Bezier dataset with around 30k
nodes. (bottom) Mesh from the 3D-Aneurysm dataset with around 250k nodes.

Dataset Inputs Outputs History tgnn (ms/step) tgt (ms/step)
CYLINDER n, vx, vy vx, vy 0 33 820
PLATE n, x, y, z, fin x, y, z, σ 0 36 2893
FLAGSIMPLE n, x, y, z, fin x, y, z 1 22 4166
AIRFOIL n, vx, vy, ρ vx, vy, ρ 0 46 11015
BEZIER n, vx, vy vx, vy 0 57 986
2D-ANEURYSM n, vx, vy, vin vx, vy 1 243 -
3D-ANEURYSM n, vx, vy, vz, vin vx, vy, vz 1 981 540000

In A.1.1, n is the node type, fin the force being applied at the current time step to the object and
vin the inflow velocity at the current timestep. When history is different than 0, we use a first-order
derivative of the inputs as extra feature. For example, we also add ax, ay, az to each node from an
aneurysm mesh.

A.1.2 NOISE

Following the same strategy as Sanchez-Gonzalez et al. (2020), we make our inputs noisy. More
specifically, we add random noise N (0, σ) to the dynamical inputs. Each noise was either selected
from previous papers, or selected by looking at average one-step error in predictions. Noises are
presentend in Table A.1.2.

14

Published as a conference paper at ICLR 2025

Figure 10: Error distribution on different timesteps in a trajectory predicted from the 3D-Aneurysm
dataset. The magnitude evolves both with the axis and with the time.

Dataset Noise Sub-mesh
CYLINDER 0.02 -
PLATE 0.003 -
FLAGSIMPLE 0.001 -
AIRFOIL 10 -
BEZIER 0.02 -
2D-ANEURYSM 10 -
3D-ANEURYSM vx, vy: 10, vz: 0.5 100000, 10

A.1.3 ERROR DISTRIBUTION

In the case of 2D-ANEURYSM and 3D-ANEURYSM, since the velocity inflow is different depending
on the timesteps, the error distribution varies a lot (see Figure 10).

While this did not prove to be an issue in 2D, we had more trouble to find an acceptable noise in 3D.
One solution that was tried but proved to be unsuccessful was to use dynamic noise depending on the
time steps, using the error distribution seen above. This led to similar results to the static noise we
end up using.

A.2 SUB-MESH PARTITIONING

Some meshes from the 3D-ANEURYSM dataset were too large to fit in GPU memory and thus
necessitated to be split into sub-meshes. The strategy applied was to split one mesh into smaller
sub-meshes, and instead of one gradient descent apply multiples ones on each of the sub-mesh. Some
sub-meshes are presented Figure 11.

Sub-meshes were generated using two strategies: a random neighbor sampling strategy from Hamilton
et al. (2018) using between 50000 and 100000 random edges. The second strategy used the METIS
Padua et al. (2011) algorithm to generate between 7 and 15 disjoint sub-meshes.

We conducted an extensive study to compare results on model trained with and without this sub-meshs
strategy and found no meaningful difference in accuracy.

15

Published as a conference paper at ICLR 2025

Figure 11: Different sub-mesh generated at each batch update.

Figure 12: (left) Ablation study of the number of message passing steps. We encounter a plateau
starting from m = 10. (right) Impact of the number of neurons per layer. We encounter a plateau
starting from n = 128.

A.3 ABLATION STUDY

We also conducted an ablation study on the Cylinder dataset regarding the number of message passing
steps and the number of neurons per layer. Results can be seen in Figure 12.

A.4 ADDITIONAL RESULTS

Additional Results are presentend in Figures 13 and 14.

16

Published as a conference paper at ICLR 2025

Figure 13: Uncurated random shapes from the validation cylinder and bezier shapes. (left) masked,
(middle) predicted and (right) original.

Figure 14: Uncurated random shapes from the validation aneurysm and bezier shapes. (left) masked,
(middle) predicted and (right) original.

17

	Introduction
	Theoretical framework
	Encoder-Decoder Architecture
	Masking
	Overall architecture
	Gated MLP

	Training
	Datasets
	3D Aneurysms

	Parameters

	Results
	Ablation Study
	Comparison
	Transfer Learning Experiments

	Conclusion
	Appendix
	Datasets
	Details
	Noise
	Error Distribution

	Sub-mesh partitioning
	Ablation Study
	Additional Results

