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ABSTRACT

Autoregressive decoding in large language models (LLMs) requires O(n) se-
quential steps for n tokens, fundamentally limiting inference throughput. Re-
cent diffusion-based LLMs (dLLMs) enable parallel token generation through it-
erative denoising. However, current parallel decoding strategies rely on fixed,
input-agnostic heuristics (e.g., confidence thresholds), which fail to adapt to input-
specific characteristics, resulting in suboptimal speed-quality trade-offs across di-
verse NLP tasks. In this work, we explore a more flexible and dynamic approach
to parallel decoding. We propose Learning to Parallel Decode (Learn2PD),
a framework that trains a lightweight and adaptive filter model to predict, for
each token position, whether the current prediction matches the final output. This
learned filter approximates an oracle parallel decoding strategy that unmasks to-
kens only when correctly predicted. Importantly, the filter model is learned in a
post-training manner, requiring only a small amount of computation to optimize
it (minute-level GPU time). Additionally, we introduce End-of-Text Prediction
(EoTP) to detect decoding completion at the end of sequence, avoiding redun-
dant decoding of padding tokens. Experiments on the LLaDA [Nie et al., 2025]
benchmark demonstrate that our method achieves up to 22.58x speedup without
any performance drop, and up to 57.51x when combined with KV-Cache.

1 INTRODUCTION

Large Language Models (LLMs) [Zhao et al., 2023, Ziyu et al., 2023, Minaee et al., 2024] have
demonstrated remarkable capabilities across a wide spectrum of natural language processing (NLP)
tasks. However, most state-of-the-art LLMs rely on autoregressive (AR) decoding [Brown et al.,
2020, Radford et al., 2019, Vaswani et al., 2017], which generates output tokens sequentially. Al-
though this approach delivers strong generation quality, it inherently suffers from limited inference
efficiency due to its strictly sequential nature [Leviathan et al., 2023, Stern et al., 2018]. To overcome
this bottleneck, diffusion-based LLMs (dLLMs) [Nie et al., 2025, Ye et al., 2025] have been pro-
posed as a compelling alternative by enabling parallel token generation through iterative denoising,
potentially achieving sublinear complexity [Sohl-Dickstein et al., 2015, Li et al., 2022].

Diffusion-based LLMs (dLLMs) produce or iteratively refine the entire token sequence via denois-
ing steps rather than predicting tokens one by one, so token-wise predictions at each step can be
computed in parallel. Especially, most dLLMs adopt semi-autoregressive decoding [Arriola et al.,
2025], which divides the target sequence into contiguous blocks and decodes the blocks from left
to right. It facilitates token-parallelism by trading a small amount of autoregressive constraint for
substantially higher parallel throughput, while still preserving essential left-to-right dependencies.
To fully unlock these benefits, further development of a parallel decoding strategy that can leverage
this approach is needed. Current methods employ static heuristics, for example, confidence-based
sampling [Chang et al., 2022] prioritizes the most confident tokens for parallel decoding. Although
these methods speed up inference, their static decoding strategies lead to poor generation quality.

Targeting this static limitation, we pose an intuitive question: Instead of relying on a one-rule-fits-all
decoding strategy, can we adopt a flexible, case-by-case one for parallel decoding? To answer this,
we analyzed the model’s token-level decoding behavior and found that current models often remask
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GSMSK (5-shot) Generation Length=1024 Acc=77.6%

LLaDA TPS: 0.54 tokens/s
Learn2PD TPS: 6.63 tokens/s Acc = 77.3% i
(See.3.2) 12.21x i
EoTP TPS: 12.26 tokens/s Acc =79.8% i
(Sec. 3.3) 22.58% :
TPS: 16.37 tokens/s Acc =74.0% !
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Figure 1: Effectiveness of our proposed approaches. We report the throughput and accuracy on
GSMSK (5-shot, Generation Length=1024) with LLaDA and our proposed methods under four set-
tings: (1) vanilla decoding, (2) Learn2PD policy, (3) Learn2PD and EoTP mechanism, (4) Learn2PD
and EoTP integrated by KV Cache. Our proposed methods, Learn2PD and EoTP, yield a 22.58 x
speedup over the vanilla baseline while simultaneously preserving the original accuracy. Integra-
tion with KV Cache achieves a further improvement in throughput to 16.37 tokens/sec (a 57.51x
speedup), with only a minimal loss in accuracy.

tokens that have already been correctly predicted, leading to unnecessary computational redundancy.
Taking advantage of this finding, we propose that an effective parallel decoding strategy should be
capable of eliminating such redundancy. To realize this goal, we first establish an oracle baseline:
Extremely Greedy Parallel (EGP), which unmasks each token immediately upon correct predic-
tion. In the oracle, we use the reference answers to unmask a token when its prediction matches
the ground truth. Our analysis reveals that this oracle can achieve a 15-20x speedup without quality
loss, demonstrating substantial potential to improve parallel decoding. However, its dependence on
unavailable ground truth makes it infeasible in practice.

To approximate this oracle, we propose Learning to Parallel Decode (Learn2PD), the first learned
parallel decoding policy for dLLMs. The framework learns to predict when to finalize a token—that
is, when we have sufficient confidence to accept its current prediction. The key insight is that diffu-
sion models exhibit predictable confidence patterns [Song et al., 2020, Nichol & Dhariwal, 2021]:
the confidence score for each token can be treated as an informative feature. Fluctuations in these
scores capture the model’s internal state of acceptance or doubt regarding its predictions. Specif-
ically, we train a lightweight filter model fy that predicts whether each token has been correctly
generated. The filter model is optimized in the post-training phase, requiring minute-level GPU
time for convergence. Once trained, this filter model remains fixed and requires no gradient updates
during inference. The filter takes the model’s confidence scores as input and outputs a binary deci-
sion for each token to indicate whether it should be remasked. Surprisingly, a simple two-layer MLP
[Tolstikhin et al., 2021] performs exceptionally well at this task, as the block-level confidence pat-
terns provide sufficient information for accurate convergence prediction, thus eliminating the need
for complex architectures or task-specific feature engineering.

Another finding from the EGP oracle is that even when the [End-of-Text] token is unmasked, the
model continues the decoding process for subsequent tokens. When the generation length is 1024,
this inefficiency is responsible for 90% of the computational waste. To reduce the excessive decod-
ing steps after the [End-of-Text] token, we introduce an End-of-Text Prediction (EoTP) mecha-
nism. EoTP can terminate decoding as soon as the [End-of-Text] token is confidently generated,
which avoids redundant computation and further boosts decoding efficiency.

Our method accelerates dLLMs by eliminating redundant decoding operations, thereby preserving
generation quality. Experimental results demonstrate a remarkable 22.58x speed-up on LLaDA
while fully maintaining its performance. Importantly, our method is orthogonal to existing opti-
mizations: when combined with KV caching, the speedup compounds to 5§7.51x accompanied by
only a slight degradation in accuracy (See Figure 1). In summary, our contributions are threefold:

1. We propose a novel and adaptive framework, Learn2PD that predicts which tokens have been
correctly decoded, approximating the oracle Extremely Greedy Parallel Decoding strategy.

2. We also propose a End-of-Text Prediction (EoTP) mechanism to reduce the unnecessary decod-
ing steps, which significantly boosts inference efficiency.

3. We extensively evaluate our method on various dLLMs across four representative benchmarks:
GSMS8K, MATH, HumanEval, and MBPP. Our method consistently achieves order-of-magnitude
inference acceleration with negligible accuracy loss. Specifically, our method attains a significant
22.58x acceleration without any degradation in accuracy.
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2 RELATED WORK

2.1 DIFFUSION-BASED LARGE LANGUAGE MODELS

The integration of diffusion models with large language models (LLMs) is an emerging and promis-
ing direction in generative Al. Early work adapted continuous diffusion to discrete data domains
[Sohl-Dickstein et al., 2015, Hoogeboom et al., 202 1], leading to D3PM [Austin et al., 2021a], which
introduced a Markov chain-based framework for discrete noise injection and denoising trained via
ELBO maximization. This was extended to continuous time by CTMC [Campbell et al., 2022]. In
parallel, SEDD [Lou et al., 2023] learned the reverse process by modeling the ratio of marginal prob-
abilities using a denoising score entropy objective, while Masked Diffusion Models such as MDLM
[Shietal., 2024, Sahoo et al., 2024, Zheng et al., 2024] and RADD Ou et al. [2025] provided further
theoretical simplifications and formalized connections between parameterizations. A key break-
through has been the incorporation of diffusion into existing LLM architectures: Diffusion-NAT
[Zhou et al., 2023] aligned the denoising process with non-autoregressive decoding, enabling high-
speed generation, while models like LLaDA [Nie et al., 2025], DiffuLLaMA [Gong et al., 2025], and
Dream [Ye et al., 2025] successfully scaled diffusion-based decoding to billion-parameter models,
significantly improving inference efficiency without compromising output quality.

2.2 ACCELERATE DIFFUSION-BASED LARGE LANGUAGE MODELS

Followed by mature diffusion large language models, their acceleration methods are also under de-
velopment. Concretely, dllm-Cache [Liu et al., 2025] proposes a training-free, adaptive caching
framework that performs long-interval prompt caching and short-interval, value-similarity—guided
partial response updates. Fast-dLLM [Wu et al., 2025] introduces block-wise approximate KV
caching and a confidence-aware parallel decoding rule that only decodes tokens whose marginal
confidence exceeds a threshold. Hu et al. [2025] propose FreeCache to approximate KV states by
reusing stable prompt/block activations across steps. They also introduce Guided Diffusion to de-
cide which tokens to unmask each step without retraining. SlowFast-Sampling [Wei et al., 2025]
proposes a dynamic two-stage sampler that alternates a cautious exploratory phase with a fast phase
that aggressively decodes high-confidence tokens within that span. Prophet [Li et al., 2025] mon-
itors the top-2 logit gap and commits all remaining tokens in one shot via early-commit decoding
once it is sufficiently confident. However, these accelerate methods are often static and lack flexibil-
ity. To address this, we propose Learn2PD, a novel dynamic remasking method that achieves more
efficient inference acceleration by reducing the unnecessary and repetitive decoding steps. More-
over, we also introduce EoTP to avoid redundant decoding when the answer does not span the full
generation length.

3 METHODOLOGY

In this section, we present Learn2PD, a learned approach to accelerate diffusion language model
inference through adaptive parallel decoding. We begin by reviewing the fundamentals of diffusion
language models and their current parallel decoding strategies (Section 3.1.1). Through empiri-
cal analysis, we reveal a critical inefficiency: existing methods unnecessarily remask a significant
proportion of correctly predicted tokens, leading to redundant computation (Section 3.1.2). This
observation motivates our core contribution—training a lightweight filter model to predict token
stability and approximate an oracle parallel decoding strategy (Section 3.2). Finally, we introduce
an early-stopping mechanism to further eliminate padding token overhead (Section 3.3)

3.1 PRELIMINARY

3.1.1 DIFFUSION LARGE LANGUAGE MODELS

Forward Process. Given an input sentence xo € {0,1,...,V — 1}* and a noise level t € [0, 1],
where V' and L represent the vocabulary size and sentence length. The forward process randomly
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and independently masks out tokens through the following Markov chain:

L—-1

aol@e | o) = [ [(1 = 1) 1w = 2} + ¢ 1{a} = m} (1)
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where z* denotes the i-th element of &, m denotes the mask token [Devlin et al., 2019], =; denotes
the noisy data at time ¢, and ¢o(-) is the data distribution paae, (-) -

Reverse process. The reverse process iteratively recovers masked tokens by predicting data dis-
tribution from a masked sequence. Transitioning from corruption level ¢ to an earlier level s, where
0 < s <t <1 can be approximated as
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where m represent the [MASK] and gop(-) is the data prediction distribution by the model [Ho
et al., 2020]. Given a prompt ¢ = (cy, ..., cpr), the response y is generated in K discrete steps. In
each step k, a mask predictor py takes y(*) as input and predicts the distribution of sequence. The
estimate of the sequence §(?) is generated via greedy decoding:

t
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Low-Confidence Remasking. To improve the sample quality, the unmasking tokens with low
confidence would be remasked. This approach follows a common practice in non-autoregressive
generation for improving output fidelity [Ghazvininejad et al., 2019]. For each position ¢, the model

predicts gjg(k) and computes its confidence ¢;, which is given by:

¢i = Py(yo ™ | c,y®) 4)

The tokens corresponding to the n lowest confidence would be set to [MASK] again, where n is
calculated by the noise level ¢.

Gsmsk | [T GSMSK.

3.1.2 UNNECESSARY REPETITIVE DECODING

Building on the iterative inference process dis- !
played in Section 3.1.1, we investigate the un- .

necessary and repetitive decoding conditions in ——

diffusion-based large language models. We con-

ducted experimental analyses with LLaDA-8B-

Instruct[Nie et al., 2025] on two widely used

datasets: GSM8K [Cobbe et al., 2021] and Hu- -

manEval [Chen et al., 2021]. We choose LLaDA — i,
as our base model due to its state-of-the-art per- o e

formance and availability of pre-trained check- Figure 2: The unnecessary and repetitive de-
points across multiple scales. Specifically, we coding steps in different datasets: GSMS8K
measured the amount of unnecessary and repet- 534 HumanEval. (a) Distributions of gaps.
itive decoding, which is defined as the number of  Thege two histograms show the distribution of

times the model continues to decode a token after step gaps for each token between the decoding
that token has first matched the reference answer. step and the step with the first correct predic-

In this paper, we refer to the answer produced by  {ion. (b) Samples of gaps. The red line means
LLaDA under the stan(liard generation process as  the first correct prediction step, and the blue line
the reference answer. means the actual decoding step.

"For all analyses in this section, we set LLaDA’s Generation Length at 128 and Block Size at 32.
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Figure 3: A Conceptual Overview of pipeline and method. (a) Extremely Greedy Parallel (EGP).
This strategy compares the predicted tokens with the reference answer and only remasks the tokens
that do not match in these comparisons. (b) Learning to Parallel Decoding (Learn2PD). During
the inference process, after the model generates predictions and confidences for each token, the
confidence of each token is fed into a filter model fy to determine which tokens need to be remasked.
This determination then guides the subsequent remasking procedure.

Analysis of unnecessary repetition. As illustrated in Figure 2 (a), we tally up the distribution
of the step gaps between the decoding step and the step with the first correct prediction. For each
dataset, we randomly sample 10 questions to conduct the experiment. We find that most of the tokens
still need to be decoded more than 10 times, even though they are already correct. And Figure 2
(b) shows one sample from each dataset. The red line means the first correct prediction step, and
the blue line means the actual decoding step. It is clear that the model performs many unnecessary
decoding steps before unmasking the tokens.

3.1.3 EXPECTED INFERENCE PROCESS: EXTREMELY GREEDY PARALLEL (EGP)

Based on the above findings, we observe that a large portion of tokens are remasked as [MASK]
and decoded multiple times even after they have already been decoded to the reference answer.
Motivated by this, we define the Extremely Greedy Parallel (EGP) oracle as: at each step k,
unmask token i if and only if M (x*); = y;, where y; is the reference answer for token 7. This oracle
achieves optimal speedup by never remasking correct predictions.

sk socil bock2 o2

Acceleration Potential. To evaluate the effi-
ciency of our strategy, we compared the num- . .

ber of decoding steps required per block for ¥
LLaDA-8B-Instruct on the GSM8K dataset un- n

der the Extremely Greedy Parallel policy ver- " © “...0 © 7 .0
sus the standard decoding regime. Similarly,

we fix the Generation Length to 256 and the
Block Size to 32.

As shown in Figure 4, the results are striking. == 27 "= . ig "= T v
Our strategy achieves a median of 2 decodings
per block while maintaining the same accuracy.
In contrast, LLaDA with the vanilla setting re-
quires 32 decodings per block. This demon-
strates a substantial opportunity for efficiency
gains, without compromising output quality.

Figure 4: Distribution of decoding steps per
block with Extremely Greedy Parallel (EGP)
strategy. Histograms illustrate the number of de-
coding steps performed in each block when using
our strategy with LLaDA-8B-Instruct on GSM8K
based on 100 samples.

3.2 LEARNING TO PARALLEL DECODING

Although our Extremely Greedy Parallel strategy performs well, this oracle requires ground truth to-
kens that are unavailable during inference. To address this, we propose a novel approach: Learning
to Parallel Decoding (Learn2PD). Our goal is to simulate the EGP strategy after each decoding
step to select tokens and decide whether to remask. We can reformulate this as an optimization
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problem by using Binary Cross-Entropy Loss (BCELoss) [De Boer et al., 2005]:
1
argmin —— Z [yi log p; + (1 — y;) log(1 — pi)} ®)
i=1
where y; indicates whether token ¢; should be remasked under the EGP strategy: 0 means it should
be remasked and 1 means it can be unmasked. During the inference process, a threshold 7 is applied
to discretize p; into either O or 1. The p; is generated from which we called the filter model fy. In
this algorithm, the only trained parameters are 6. Therefore, the parameters of the diffusion large
language model remain unchanged. Then, the training loss should be:

Locs =~ [plogatz) + (1~ ) log(l (=) ©

where z; is the output of the filter model (logit). We show the algorithms for training and inference
in Algorithm 1 and Algorithm 2. The filter fy takes the confidence of the prediction as input and
returns the logits z to indicate the probability of no remask. And in order to ensure z remains in
the range [0, 1], we apply a sigmoid function on z before it is passed to the dLLMs. Critically, the
filter model fy adds negligible overhead during inference. Our experimental results in Section 4
quantitatively demonstrate that the achieved speedup vastly outweighs this minimal overhead.

Algorithm 1 Training Algorithm 2 Inference
Require: Diffusion large language model M, filter model fo, Require: Diffusion large language model M, filter model fg,
prompt set Tprompt, reference answer set Tieference, generation prompt set Tprompt, generation length Lge,, block size s, filter
length L., learning rate 7, block size s threshold 7
1: repeat 1: for each z:; € Tprompt dO
2: Ti € Tprompts Ti € Treferences bi = length(x;) 2: l; = length(z;), X « concat(z;, [MASK]L‘«%E")
3 X ¢ concat(z;, [MASK] sen) 3 forb=0,.., 2 1do
4 forb=0,.., 5= _1do 4 M {1,2,...,s}
5: M« {1,2,..,s} 5: while M # 0 do
6: while M # () do 6: conft, pre, = M(X), logit, = fo(confy)
7: conf, pre; = M(X) 7: if logit, ; > 7 then
8: ifp'rAetyj = r;,; then A 8: M= M\ {5}, Xiybstg < pre, ;
9: ¥y LM MA{j} 9: end if
10: Xij4b-stj < Pree; 10: end while
11: else 11: end for
12: ¥ < 0 12: response; = X1,.1, 4+ Loen—1
13: end if 13: end for
14: L < BCELoss(7, fo(conft)) 14: return response
15: 0+ 6—n- VoL
16: end while
17: end for
18: until converged
3.3 END-OF-TEXT PREDICTION Blocks ek
f ! ! == YSS
Besides the methods mentioned earlier, we ob- Ne
served that when the generation length of a
diffusion large language model is increased to
1024, the generation time rises significantly for g
the same question compared to a length of 256, %
even though the final answer length remains un- A
changed. According to the analysis of the gen- g
. ©w
erated output, we find that the extra length is
filled with the [EoT] token, and the additional
decoding time is spent repeatedly decoding the Replace all subseduent okens with (BT)
[EoT] token. Based on this, we propose
Masked block Unmasked block

the End-of-Text Prediction (EoTP) approach:
whenever the last decoded token is [EoT], the
model would terminate the decoding process Figure 5: Schematic of the End-of-Text Predic-
immediately and return the response. There- tion Policy. During the inference process, upon
fore, we update the inference process to han- detection of an [EoT] token in a decoded block,
dle the long generation length challenge in Ap- all subsequent tokens are assigned with [EoT],
pendix B. Our analysis shows that 89.59% of and the inference is halted immediately.
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Table 1: Benchmark results on the LLaDA-8B-Instruct suite. Each method was evaluated using
two generation lengths (128 and 1024) across four datasets. Performance is measured using three
metrics: TPS (tokens/sec), speedup, and accuracy score. The highest throughput and speedup values
for each configuration are highlighted in bold.

Task Methods Gen Length Inference Efficiency Performance
TPST Speed (TPS)1 Score
LLaDA-8B-Instruct 256 3.41 1.00x 78.70
1024 0.54 1.00x 77.60
CISSI\I/’IIS{( + Learn2PD 256 14.07+1(),(,‘(; 4.13x 78.62
(S-shot) 1024 6.6346.00 12.21x 77.26
Learn2PD + EoTP 256 14.35110.94 4.21x 78.62
1024 12.26411.72 22.58x 79.83
LLaDA-8B-Instruct 256 4.70 1.00x 32.90
1024 1.70 1.00x 35.21
i\/Iz;)th + Learn2PD 256 15.16410.46 3.21x 32.22
(4-shot) 1024 10.98 0.5 6.45x 34.01
Learn?PD + EoTP 256 15.21+10_51 3.23x 31.40
1024 12.27+10_57 7.22% 34.60
LLaDA-8B-Instruct 256 3.33 1.00x 39.63
1024 0.53 1.00x 37.21
Hu(r)nzf\lrllEtval + Learn2PD 256 11.6645.33 3.5x 38.41
(0-shot) 1024 4.6344.10 8.78x 37.84
Learn2PD + EoTP 256 11.8848.55 3.57x 38.41
1024 6.63+(,‘,1[] 12.55x 35.98
LLaDA-8B-Instruct 256 3.14 1.00x 31.22
1024 0.58 1.00x 10.61
I;/IBlFl: + Learn2PD 256 14.96411.82 4.77x 30.84
(3-shot) 1024 6.966.38 12.08 x 10.04
Learn2PD + EoTP 256 15.88 1 12.74 5.06% 31.03
1024 9.89 +9.31 17.16>< 11.02

computational cost comes from decoding padding tokens after [EoT]. EoTP eliminates this over-
head by detecting sequence completion when all non- [MASK] positions have unmasked. The ex-
periments and relevant analysis are in Appendix C.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Models and Datasets. We implement our methods on the representative dLLM: LLaDA-8B-
Instruct [Nie et al., 2025] to measure the acceleration of the inference process across various
benchmarks. To ensure the broad applicability of the methods, we conducted experiments on four
datasets covering three different types of problems, which are GSM8K[Cobbe et al., 2021], Math
[Lewkowycz et al., 2022], HumanEval[Chen et al., 2021], and MBPP [Austin et al., 2021b]. All
experiments are conducted on 4 NVIDIA A6000 GPUs.

Filter Model fy Training. To train a filter model that can be applied to a wide range of tasks, we
selected 40 samples from each of the 66 types of questions in the FLAN dataset, resulting in a total
of 2,640 samples for training. In this experiment, we used the simplest two-layer MLP as our filter
model. Since the dLLMs remains frozen and only fy is trained, the number of trainable parameters is
extremely limited. For example, for an LLaDA with a block size of 32, the total number of trainable
parameters is only 2,112. We trained fy for 5,000 epochs until the model converged. The learning
rate is set to 0.001, and the AdamW optimizer is used to optimize fj.
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Our training process consists of two stages. In the first stage, samples are collected by following an
Extremely Greedy Parallel policy, recording the confidence scores and token selections at each step
during parallel decoding. This data is then used in the second stage to train a filter model fy. The data
collection in the first stage was conducted on 4 NVIDIA RTX A6000 GPUs and took approximately
three hours. The subsequent training of the filter model in the second stage was deployed on a T4
GPU and required only 6 minutes. The details of training are in Appendix D.

Evaluation. We evaluate the inference acceleration and generation quality of Learn2PD and
EoTP methods by using quantitive metrics. The inference speed is quantified with Tokens Per
Second (TPS), indicating the average number of tokens generated per second. And the generation
quality is measured in task-specific metrics, such as accuracy for GSMS8K, showing the model’s
performance with acceleration methods. In addition to this, we set the Generation Length to 256 &
1024 and the Block Size to 32.

4.2 MAIN RESULTS

We present the inference performance and efficiency profits for Learn2PD and EoTP on the LLaDA-
8B-Instruct across four benchmarks, as shown in Table 1.

In summary, Learn2PD significantly enhances inference efficiency across all tasks. Compared to the
baseline model, our optimal method typically achieves a 3 to 4 times speedup at a generation length
of 256 and a 6 to 12 times speedup at a generation length of 1024. When EoTP is incorporated, the
improvements become even more pronounced, particularly with a generation length of 1024. For
instance, combining Learn2PD and EoTP results in a throughput increase of 22.58x (on GSM8K,
5-shot) and 17.16x (on MBPP, 3-shot) relative to the baseline. These results demonstrate that our
methods are not only effective individually but also highly orthogonal, resulting in compounded
acceleration. More importantly, these efficiency gains have negligible impact on accuracy. The
performance scores of our accelerated methods remain within 1-2 points of the baseline, and in
some cases, the score is even slightly improved.

4.3 COMPATIBILITY WITH KEY-VALUE CACHE

We further evaluate the compatibility of our approach with established Key-Value (KV) Cache tech-
niques by integrating both Dual Cache and Prefix Cache strategies [Wu et al., 2025]. Experiments
are conducted on GSM8K with a generation length of 1024 tokens. As summarized in Table 2, the
baseline model (Learn2PD & EoTP) achieves a throughput of 12.26 TPS, a speed-up of 22.58x%, and
an accuracy score of 79.83. When augmented with the Dual Cache, the system attains substantially
higher efficiency, reaching 31.23 TPS and a 57.51x speedup, albeit with a slight decrease in accu-
racy (74.00). Similarly, incorporating the Prefix Cache also brings noticeable improvements, yield-
ing 14.79 TPS and a 27.23x acceleration while maintaining a competitive score of 77.71. These
results confirm that our method is orthogonal to and fully compatible with standard KV caching
mechanisms, demonstrating its ability to leverage such strategies to enhance inference efficiency.

Table 2: A comparison of our method with and Table 3: A comparison of the acceleration perfor-
without KV Cache. The results show a signifi- mance using filter models of varying complex-
cant performance improvement when augmented ity (represented by the number of MLP layers).
with both Dual and Prefix Caches, underscoring The results indicate that a two-layer MLP model
that our method is orthogonal to and fully com- achieves the optimal balance by providing signif-

patible with existing KV caching strategies. icant speedup.
Methods | TPS | Speed | Score #Layers | TPS | Speed | Score
Learn2PD & EoTP | 12.26 | 22.58x | 79.83 Single-layer | 8.77 | 2.57x | 78.62
+ Dual Cache ‘ 31.23 ‘ 57.51x ‘ 74.00 Two-layer ‘ 14.07 ‘ 4.13x% ‘ 78.62
+ Prefix Cache | 14.79 | 27.23x | 77.71 Four-layer | 11.41 | 3.35x | 78.85

4.4 ANALYSIS: ABLATION STUDY

Effect of Filter Model fy Complexity. To investigate the impact of the filter model’s architec-
tural complexity on acceleration performance, we conduct an ablation study using MLP-based fil-
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ter models with varying depths. As illustrated in Table 3, a two-layer MLP achieves the highest
throughput (14.07 TPS) and speed-up (4.13x), while maintaining 78.62% accuracy. In comparison,
the single-layer model yields lower efficiency with a similar accuracy, suggesting limited represen-
tational capacity. Although the four-layer model attains a marginally better accuracy score, it results
in reduced inference speed, indicating increased computational overhead. These results demon-
strate that a two-layer configuration offers the optimal trade-off between efficiency and predictive
performance, effectively balancing model complexity and acceleration gain.

Effect of Generation Length. To examine the Typle 4: Performance comparison of our

impact of generation length on the performance methods across different generation lengths.
of our methods, we compare the speedup aqd While maintaining a comparable accuracy,
accuracy of Learn2PD and its enhanced vari- poth Learn2PD and EoTP deliver substantially

ant (Learn2PD & EoTP) across varying output  greater speedup at a length of 1024 compared to
lengths. As shown in Table 4, both methods ghorter sequences.

achieve greater acceleration as the generation

| ” X e Gen Length | Methods | Speed | Score
length increases, while consistently maintaining

" | Learn2PD | 3.29x | 73.92
competitive scores. At a shorter length of 128, 128
Learn2PD & EoTP reaches a speed-up of 3.36x. | Leam2PD & EoTP | 3.36x | 74.07
And the speed-up improves steadily with longer 256 | Leam2PD | 4.13x | 78.62
sequences, culminating in a substantial 22.58% | Learn2PD & EoTP | 4.21x | 78.62
agceleratlon at a length of. 1024. 'These results in- s | Leam2PD | 6.66x | 77.71
dicate that our approach is partlculgrly effective | Leam2PD & EoTP | 7.60x | 79.08
for long-sequence generation, efficiently reduc-
ing the unnecessary decodings to maximize infer- jo24 | Leam2PD | 12.21x | 77.26
ence speed without compromising output quality. | Learn2PD & EoTP | 22.58x | 79.83

Effect of Filter Model fo threshold 7. We = e
perform an ablation study to examine the im- Bk Siae-32
pact of the filtering threshold on inference ac-
curacy and throughput. As shown in Figure
6, reducing the threshold improves through-
put but leads to a corresponding decline in ac-
curacy. For example, at 7 = 0.99, the model
achieves a throughput of 4.68 TPS (vs. base-
line 3.41 TPS) with 78.92% accuracy. In con-
trast, lowering the threshold to 7 = 0.9 causes
a more pronounced reduction in accuracy. The 5.77%°
results indicate that a threshold of 7 = 0.96 of- 54 p . v 5 " e e -
fers an optimal balance, delivering both high Thronghput (Tokensisec)

throughput (4.13x speedup) and near-baseline  Fjgure 6: Impact of the filtering threshold on ac-
accuracy. These findings underscore the criti-  curacy and throughout. We find that a threshold
cal role of the filtering threshold in achieving  of 0.96 represents a favorable balance, maintaining

an effective trade-off between inference effi- high accuracy and comparable inference speed.
ciency and output quality.

3
e LLaDA: 78.7%

GSMSK (5-shot) Accuracy (%)

5 CONCLUSION

In this work, we investigate the issue of extensive repetitive decoding during inference in Diffusion-
based Large Language Models. To enable timely unmasking of correctly predicted tokens, we pro-
pose Learn2PD, a parallel decoding architecture that employs a filter model to make case-specific
selections. This filter model is lightweight and pre-trained, thus requiring no additional training dur-
ing inference. Furthermore, to address the time overhead caused by repeated encoding of the [EoT ]
token as the generation length increases, we introduce the EoTP mechanism, which halts decoding
immediately after [EoT] is generated, thereby reducing unnecessary computational cost. Exten-
sive experiments across multiple benchmarks and model baselines (LLaDA) demonstrate that our
approach achieves up to 22.58x speedup without sacrificing accuracy—and up to 57.51x when com-
bined with KV Cache. Our proposed method offers a compelling solution for deploying diffusion-
based LLMs as alternatives to autoregressive models in future applications.
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ETHICS STATEMENT

Potential for Misuse: We acknowledge that our acceleration techniques, by lowering the computa-
tional cost of inference, could inadvertently lower the barrier for malicious use. This could enable
bad actors to scale up harmful applications such as disinformation campaigns, spam, phishing, or
automated malicious code generation more efficiently.

REPRODUCIBILITY STATEMENT

To support reproducibility, a complete anonymized code repository is provided as supplementary
material. The repository encompasses all necessary components to replicate our work: the imple-
mentation source code for the proposed model and algorithms, the scripts required to run the exper-
iments, comprehensive hyperparameter configuration files, and detailed execution instructions.
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A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used in this work exclusively for the purpose of text polishing
and refinement. Their role was strictly limited to assisting with grammatical correction, improving
sentence fluency, and enhancing word choice to increase the overall clarity and readability of the
manuscript.

B UPDATE INFERENCE ALGORITHM

Algorithm 3 Update Inference

Require: Diffusion large language model M, filter model fy, prompt set Zprompi, generation length
Lgen, block size s, filter threshold 7
1: for each x; € Zpromp: do

2: ; + length(x;), X + concat(x;, [MASK] )
3: forb=0,..., L§ —1do

4: M+~ {1,2,..,s}

5: while M # () do

6: conf, pre; = M(X), logity = fo(conf)
7 if logit, ; > T then

8: M= M\ {5}, Xigpstj < preg;
9: end if

10: end while

11: if [endoftext] in X then

12: break

13: end if

14: end for

15: response; = Xy, + Lyn—1

16: end for

17: return response

C EXPERIMENTS AND ANALYSIS ON EOTP MECHANISM

Table 5: A comparison of LLaDA and EoTP mechanisms in different generation lengths.
Methods | Generation Length | TPS | Speed | Score

| 256 | 341 | 1.00x | 78.70
LLaDA 512 | 1.67 | 1.00x | 77.71
| 1024 | 0.54 | 1.00x | 77.62
| 256 376 | 1.10x | 7923
+EoTP 512 | 3.38 | 2.02x | 78.77
| 1024 | 325 | 5.98x | 79.38

This table 5 clearly demonstrates the significant advantage of integrating the EoTP mechanism with
the base LLaDA model, particularly for long-sequence generation. While the standalone LLaDA
model exhibits substantial performance degradation as generation length increases—evidenced by
the sharp decline in TPS from 3.41 to 0.54—the incorporation of EoTP not only mitigates this
degradation but also delivers considerable speedup. Most notably, at a sequence length of 1024,
EoTP achieves a dramatic 5.98x acceleration while simultaneously improving output quality, with
the Score increasing from 77.62 to 79.38. These gains can be largely attributed to the elimination
of redundant computation: quantitative analysis shows that 89.59% of the baseline computational
cost arises from decoding padding tokens after the [EoT] token. EoTP effectively removes this
overhead by dynamically detecting sequence completion once all original non- [MASK] positions
are unmasked, thereby optimizing inference efficiency without compromising performance.
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D TRAINING CURVE OF FILTER MODEL

As shown in Figure 7, this learning curve illustrates that both training (blue) and validation (red)
loss fall sharply in the earliest epochs (from 0.68 to 0.28), then decrease much more gradually
over the full 5,000-epoch run, approaching a plateau near 0.21-0.23. The validation curve remains
slightly above the training curve throughout, indicating only a modest generalization gap rather
than pronounced overfitting; the parallel, steady decline shows the model continues to improve on
unseen data but with diminishing returns. The long, flat tail of both curves indicates the model has
effectively converged.

0.7 |
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Figure 7: Learning curve of filter model fy. The learning curves illustrate the progression of
training and validation loss across 5,000 epochs, with the former in blue and the latter in red.
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