
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING TO PARALLEL: ACCELERATING DIFFUSION
LARGE LANGUAGE MODELS VIA ADAPTIVE PARAL-
LEL DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive decoding in large language models (LLMs) requires O(n) se-
quential steps for n tokens, fundamentally limiting inference throughput. Re-
cent diffusion-based LLMs (dLLMs) enable parallel token generation through it-
erative denoising. However, current parallel decoding strategies rely on fixed,
input-agnostic heuristics (e.g., confidence thresholds), which fail to adapt to input-
specific characteristics, resulting in suboptimal speed-quality trade-offs across di-
verse NLP tasks. In this work, we explore a more flexible and dynamic approach
to parallel decoding. We propose Learning to Parallel Decode (Learn2PD),
a framework that trains a lightweight and adaptive filter model to predict, for
each token position, whether the current prediction matches the final output. This
learned filter approximates an oracle parallel decoding strategy that unmasks to-
kens only when correctly predicted. Importantly, the filter model is learned in a
post-training manner, requiring only a small amount of computation to optimize
it (minute-level GPU time). Additionally, we introduce End-of-Text Prediction
(EoTP) to detect decoding completion at the end of sequence, avoiding redun-
dant decoding of padding tokens. Experiments on the LLaDA [Nie et al., 2025]
benchmark demonstrate that our method achieves up to 22.58× speedup without
any performance drop, and up to 57.51× when combined with KV-Cache.

1 INTRODUCTION

Large Language Models (LLMs) [Zhao et al., 2023, Ziyu et al., 2023, Minaee et al., 2024] have
demonstrated remarkable capabilities across a wide spectrum of natural language processing (NLP)
tasks. However, most state-of-the-art LLMs rely on autoregressive (AR) decoding [Brown et al.,
2020, Radford et al., 2019, Vaswani et al., 2017], which generates output tokens sequentially. Al-
though this approach delivers strong generation quality, it inherently suffers from limited inference
efficiency due to its strictly sequential nature [Leviathan et al., 2023, Stern et al., 2018]. To overcome
this bottleneck, diffusion-based LLMs (dLLMs) [Nie et al., 2025, Ye et al., 2025] have been pro-
posed as a compelling alternative by enabling parallel token generation through iterative denoising,
potentially achieving sublinear complexity [Sohl-Dickstein et al., 2015, Li et al., 2022].

Diffusion-based LLMs (dLLMs) produce or iteratively refine the entire token sequence via denois-
ing steps rather than predicting tokens one by one, so token-wise predictions at each step can be
computed in parallel. Especially, most dLLMs adopt semi-autoregressive decoding [Arriola et al.,
2025], which divides the target sequence into contiguous blocks and decodes the blocks from left
to right. It facilitates token-parallelism by trading a small amount of autoregressive constraint for
substantially higher parallel throughput, while still preserving essential left-to-right dependencies.
To fully unlock these benefits, further development of a parallel decoding strategy that can leverage
this approach is needed. Current methods employ static heuristics, for example, confidence-based
sampling [Chang et al., 2022] prioritizes the most confident tokens for parallel decoding. Although
these methods speed up inference, their static decoding strategies lead to poor generation quality.

Targeting this static limitation, we pose an intuitive question: Instead of relying on a one-rule-fits-all
decoding strategy, can we adopt a flexible, case-by-case one for parallel decoding? To answer this,
we analyzed the model’s token-level decoding behavior and found that current models often remask

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Effectiveness of our proposed approaches. We report the throughput and accuracy on
GSM8K (5-shot, Generation Length=1024) with LLaDA and our proposed methods under four set-
tings: (1) vanilla decoding, (2) Learn2PD policy, (3) Learn2PD and EoTP mechanism, (4) Learn2PD
and EoTP integrated by KV Cache. Our proposed methods, Learn2PD and EoTP, yield a 22.58×
speedup over the vanilla baseline while simultaneously preserving the original accuracy. Integra-
tion with KV Cache achieves a further improvement in throughput to 16.37 tokens/sec (a 57.51×
speedup), with only a minimal loss in accuracy.
tokens that have already been correctly predicted, leading to unnecessary computational redundancy.
Taking advantage of this finding, we propose that an effective parallel decoding strategy should be
capable of eliminating such redundancy. To realize this goal, we first establish an oracle baseline:
Extremely Greedy Parallel (EGP), which unmasks each token immediately upon correct predic-
tion. In the oracle, we use the reference answers to unmask a token when its prediction matches
the ground truth. Our analysis reveals that this oracle can achieve a 15-20× speedup without quality
loss, demonstrating substantial potential to improve parallel decoding. However, its dependence on
unavailable ground truth makes it infeasible in practice.

To approximate this oracle, we propose Learning to Parallel Decode (Learn2PD), the first learned
parallel decoding policy for dLLMs. The framework learns to predict when to finalize a token—that
is, when we have sufficient confidence to accept its current prediction. The key insight is that diffu-
sion models exhibit predictable confidence patterns [Song et al., 2020, Nichol & Dhariwal, 2021]:
the confidence score for each token can be treated as an informative feature. Fluctuations in these
scores capture the model’s internal state of acceptance or doubt regarding its predictions. Specif-
ically, we train a lightweight filter model fθ that predicts whether each token has been correctly
generated. The filter model is optimized in the post-training phase, requiring minute-level GPU
time for convergence. Once trained, this filter model remains fixed and requires no gradient updates
during inference. The filter takes the model’s confidence scores as input and outputs a binary deci-
sion for each token to indicate whether it should be remasked. Surprisingly, a simple two-layer MLP
[Tolstikhin et al., 2021] performs exceptionally well at this task, as the block-level confidence pat-
terns provide sufficient information for accurate convergence prediction, thus eliminating the need
for complex architectures or task-specific feature engineering.

Another finding from the EGP oracle is that even when the [End-of-Text] token is unmasked, the
model continues the decoding process for subsequent tokens. When the generation length is 1024,
this inefficiency is responsible for 90% of the computational waste. To reduce the excessive decod-
ing steps after the [End-of-Text] token, we introduce an End-of-Text Prediction (EoTP) mecha-
nism. EoTP can terminate decoding as soon as the [End-of-Text] token is confidently generated,
which avoids redundant computation and further boosts decoding efficiency.

Our method accelerates dLLMs by eliminating redundant decoding operations, thereby preserving
generation quality. Experimental results demonstrate a remarkable 22.58× speed-up on LLaDA
while fully maintaining its performance. Importantly, our method is orthogonal to existing opti-
mizations: when combined with KV caching, the speedup compounds to 57.51× accompanied by
only a slight degradation in accuracy (See Figure 1). In summary, our contributions are threefold:

1. We propose a novel and adaptive framework, Learn2PD that predicts which tokens have been
correctly decoded, approximating the oracle Extremely Greedy Parallel Decoding strategy.

2. We also propose a End-of-Text Prediction (EoTP) mechanism to reduce the unnecessary decod-
ing steps, which significantly boosts inference efficiency.

3. We extensively evaluate our method on various dLLMs across four representative benchmarks:
GSM8K, MATH, HumanEval, and MBPP. Our method consistently achieves order-of-magnitude
inference acceleration with negligible accuracy loss. Specifically, our method attains a significant
22.58× acceleration without any degradation in accuracy.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 DIFFUSION-BASED LARGE LANGUAGE MODELS

The integration of diffusion models with large language models (LLMs) is an emerging and promis-
ing direction in generative AI. Early work adapted continuous diffusion to discrete data domains
[Sohl-Dickstein et al., 2015, Hoogeboom et al., 2021], leading to D3PM [Austin et al., 2021a], which
introduced a Markov chain-based framework for discrete noise injection and denoising trained via
ELBO maximization. This was extended to continuous time by CTMC [Campbell et al., 2022]. In
parallel, SEDD [Lou et al., 2023] learned the reverse process by modeling the ratio of marginal prob-
abilities using a denoising score entropy objective, while Masked Diffusion Models such as MDLM
[Shi et al., 2024, Sahoo et al., 2024, Zheng et al., 2024] and RADD Ou et al. [2025] provided further
theoretical simplifications and formalized connections between parameterizations. A key break-
through has been the incorporation of diffusion into existing LLM architectures: Diffusion-NAT
[Zhou et al., 2023] aligned the denoising process with non-autoregressive decoding, enabling high-
speed generation, while models like LLaDA [Nie et al., 2025], DiffuLLaMA [Gong et al., 2025], and
Dream [Ye et al., 2025] successfully scaled diffusion-based decoding to billion-parameter models,
significantly improving inference efficiency without compromising output quality.

2.2 ACCELERATE DIFFUSION-BASED LARGE LANGUAGE MODELS

Followed by mature diffusion large language models, their acceleration methods are also under de-
velopment. Concretely, dllm-Cache [Liu et al., 2025] proposes a training-free, adaptive caching
framework that performs long-interval prompt caching and short-interval, value-similarity–guided
partial response updates. Fast-dLLM [Wu et al., 2025] introduces block-wise approximate KV
caching and a confidence-aware parallel decoding rule that only decodes tokens whose marginal
confidence exceeds a threshold. Hu et al. [2025] propose FreeCache to approximate KV states by
reusing stable prompt/block activations across steps. They also introduce Guided Diffusion to de-
cide which tokens to unmask each step without retraining. SlowFast-Sampling [Wei et al., 2025]
proposes a dynamic two-stage sampler that alternates a cautious exploratory phase with a fast phase
that aggressively decodes high-confidence tokens within that span. Prophet [Li et al., 2025] mon-
itors the top-2 logit gap and commits all remaining tokens in one shot via early-commit decoding
once it is sufficiently confident. However, these accelerate methods are often static and lack flexibil-
ity. To address this, we propose Learn2PD, a novel dynamic remasking method that achieves more
efficient inference acceleration by reducing the unnecessary and repetitive decoding steps. More-
over, we also introduce EoTP to avoid redundant decoding when the answer does not span the full
generation length.

3 METHODOLOGY

In this section, we present Learn2PD, a learned approach to accelerate diffusion language model
inference through adaptive parallel decoding. We begin by reviewing the fundamentals of diffusion
language models and their current parallel decoding strategies (Section 3.1.1). Through empiri-
cal analysis, we reveal a critical inefficiency: existing methods unnecessarily remask a significant
proportion of correctly predicted tokens, leading to redundant computation (Section 3.1.2). This
observation motivates our core contribution—training a lightweight filter model to predict token
stability and approximate an oracle parallel decoding strategy (Section 3.2). Finally, we introduce
an early-stopping mechanism to further eliminate padding token overhead (Section 3.3)

3.1 PRELIMINARY

3.1.1 DIFFUSION LARGE LANGUAGE MODELS

Forward Process. Given an input sentence x0 ∈ {0, 1, . . . , V − 1}L and a noise level t ∈ [0, 1],
where V and L represent the vocabulary size and sentence length. The forward process randomly

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and independently masks out tokens through the following Markov chain:

qt|0(xt | x0) =

L−1∏
i=0

[
(1− t)1{xi

t = xi
0}+ t · 1{xi

t = m}
]

(1)

where xi denotes the i-th element of x, m denotes the mask token [Devlin et al., 2019], xt denotes
the noisy data at time t, and q0(·) is the data distribution pdata(·) .

Reverse process. The reverse process iteratively recovers masked tokens by predicting data dis-
tribution from a masked sequence. Transitioning from corruption level t to an earlier level s, where
0 ≤ s < t ≤ 1 can be approximated as

qs|t(xs | xt) =

L−1∏
i=0

qs|t
(
xi
s | xt

)
, qs|t

(
xi
s | xt

)
=


1, xi

t ̸= m, xi
s = xi

t,
s

t
, xi

t = m, xi
s = m,

t− s

t
q0|t

(
xi
s | xt

)
, xi

t = m, xi
s ̸= m,

(2)
where m represent the [MASK] and q0|t(·) is the data prediction distribution by the model [Ho
et al., 2020]. Given a prompt c = (c1, ..., cM ), the response y is generated in K discrete steps. In
each step k, a mask predictor pθ takes y(k) as input and predicts the distribution of sequence. The
estimate of the sequence ŷ(0) is generated via greedy decoding:

ŷ(0) = argmax
y∈T

Pθ

(
y | c,y(k)

)
= argmax

y∈T
pθ
(
c,y(k); θ

)
(3)

Low-Confidence Remasking. To improve the sample quality, the unmasking tokens with low
confidence would be remasked. This approach follows a common practice in non-autoregressive
generation for improving output fidelity [Ghazvininejad et al., 2019]. For each position i, the model
predicts ŷ0(k) and computes its confidence ci, which is given by:

ci = Pθ

(
ˆy0,i

(k) | c,y(k)
)

(4)

The tokens corresponding to the n lowest confidence would be set to [MASK] again, where n is
calculated by the noise level t.

3.1.2 UNNECESSARY REPETITIVE DECODING

Figure 2: The unnecessary and repetitive de-
coding steps in different datasets: GSM8K
and HumanEval. (a) Distributions of gaps.
These two histograms show the distribution of
step gaps for each token between the decoding
step and the step with the first correct predic-
tion. (b) Samples of gaps. The red line means
the first correct prediction step, and the blue line
means the actual decoding step.

Building on the iterative inference process dis-
played in Section 3.1.1, we investigate the un-
necessary and repetitive decoding conditions in
diffusion-based large language models. We con-
ducted experimental analyses with LLaDA-8B-
Instruct[Nie et al., 2025] on two widely used
datasets: GSM8K [Cobbe et al., 2021] and Hu-
manEval [Chen et al., 2021]. We choose LLaDA
as our base model due to its state-of-the-art per-
formance and availability of pre-trained check-
points across multiple scales. Specifically, we
measured the amount of unnecessary and repet-
itive decoding, which is defined as the number of
times the model continues to decode a token after
that token has first matched the reference answer.
In this paper, we refer to the answer produced by
LLaDA under the standard generation process as
the reference answer.1

1For all analyses in this section, we set LLaDA’s Generation Length at 128 and Block Size at 32.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: A Conceptual Overview of pipeline and method. (a) Extremely Greedy Parallel (EGP).
This strategy compares the predicted tokens with the reference answer and only remasks the tokens
that do not match in these comparisons. (b) Learning to Parallel Decoding (Learn2PD). During
the inference process, after the model generates predictions and confidences for each token, the
confidence of each token is fed into a filter model fθ to determine which tokens need to be remasked.
This determination then guides the subsequent remasking procedure.

Analysis of unnecessary repetition. As illustrated in Figure 2 (a), we tally up the distribution
of the step gaps between the decoding step and the step with the first correct prediction. For each
dataset, we randomly sample 10 questions to conduct the experiment. We find that most of the tokens
still need to be decoded more than 10 times, even though they are already correct. And Figure 2
(b) shows one sample from each dataset. The red line means the first correct prediction step, and
the blue line means the actual decoding step. It is clear that the model performs many unnecessary
decoding steps before unmasking the tokens.

3.1.3 EXPECTED INFERENCE PROCESS: EXTREMELY GREEDY PARALLEL (EGP)

Based on the above findings, we observe that a large portion of tokens are remasked as [MASK]
and decoded multiple times even after they have already been decoded to the reference answer.
Motivated by this, we define the Extremely Greedy Parallel (EGP) oracle as: at each step k,
unmask token i if and only if M(xk)i = yi, where yi is the reference answer for token i. This oracle
achieves optimal speedup by never remasking correct predictions.

Figure 4: Distribution of decoding steps per
block with Extremely Greedy Parallel (EGP)
strategy. Histograms illustrate the number of de-
coding steps performed in each block when using
our strategy with LLaDA-8B-Instruct on GSM8K
based on 100 samples.

Acceleration Potential. To evaluate the effi-
ciency of our strategy, we compared the num-
ber of decoding steps required per block for
LLaDA-8B-Instruct on the GSM8K dataset un-
der the Extremely Greedy Parallel policy ver-
sus the standard decoding regime. Similarly,
we fix the Generation Length to 256 and the
Block Size to 32.

As shown in Figure 4, the results are striking.
Our strategy achieves a median of 2 decodings
per block while maintaining the same accuracy.
In contrast, LLaDA with the vanilla setting re-
quires 32 decodings per block. This demon-
strates a substantial opportunity for efficiency
gains, without compromising output quality.

3.2 LEARNING TO PARALLEL DECODING

Although our Extremely Greedy Parallel strategy performs well, this oracle requires ground truth to-
kens that are unavailable during inference. To address this, we propose a novel approach: Learning
to Parallel Decoding (Learn2PD). Our goal is to simulate the EGP strategy after each decoding
step to select tokens and decide whether to remask. We can reformulate this as an optimization

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

problem by using Binary Cross-Entropy Loss (BCELoss) [De Boer et al., 2005]:

argmin − 1

m

m∑
i=1

[
yi log pi + (1− yi) log(1− pi)

]
(5)

where yi indicates whether token ti should be remasked under the EGP strategy: 0 means it should
be remasked and 1 means it can be unmasked. During the inference process, a threshold τ is applied
to discretize pi into either 0 or 1. The pi is generated from which we called the filter model fθ. In
this algorithm, the only trained parameters are θ. Therefore, the parameters of the diffusion large
language model remain unchanged. Then, the training loss should be:

LBCE = − 1

m

m∑
i=1

[
yi log σ(zi) + (1− yi) log(1− σ(zi))

]
(6)

where zi is the output of the filter model (logit). We show the algorithms for training and inference
in Algorithm 1 and Algorithm 2. The filter fθ takes the confidence of the prediction as input and
returns the logits z to indicate the probability of no remask. And in order to ensure z remains in
the range [0, 1], we apply a sigmoid function on z before it is passed to the dLLMs. Critically, the
filter model fθ adds negligible overhead during inference. Our experimental results in Section 4
quantitatively demonstrate that the achieved speedup vastly outweighs this minimal overhead.

Algorithm 1 Training
Require: Diffusion large language model M , filter model fθ ,

prompt set xprompt, reference answer set xreference, generation
length Lgen, learning rate η, block size s

1: repeat
2: xi ∈ xprompt, ri ∈ xreference, li = length(xi)

3: X ← concat(xi, [MASK]Lgen )

4: for b = 0, ...,
Lgen
s − 1 do

5: M← {1, 2, ..., s}
6: whileM ̸= ∅ do
7: conft, pret = M(X)
8: if pret,j = ri,j then
9: ŷj ← 1,M←M\ {j}
10: Xli+b·s+j ← pret,j

11: else
12: ŷj ← 0

13: end if
14: L ← BCELoss(ŷ, fθ(conft))
15: θ ← θ − η · ∇θL
16: end while
17: end for
18: until converged

Algorithm 2 Inference
Require: Diffusion large language model M , filter model fθ ,

prompt set xprompt, generation length Lgen, block size s, filter
threshold τ

1: for each xi ∈ xprompt do
2: li = length(xi), X ← concat(xi, [MASK]Lgen )

3: for b = 0, ...,
Lgen
s − 1 do

4: M← {1, 2, ..., s}
5: whileM ̸= ∅ do
6: conft, pret = M(X), logitt = fθ(conft)
7: if logitt,j > τ then
8: M←M\ {j}, Xi+b·s+j ← pret,j
9: end if
10: end while
11: end for
12: responsei = Xli:li+Lgen−1

13: end for
14: return response

3.3 END-OF-TEXT PREDICTION

Figure 5: Schematic of the End-of-Text Predic-
tion Policy. During the inference process, upon
detection of an [EoT] token in a decoded block,
all subsequent tokens are assigned with [EoT],
and the inference is halted immediately.

Besides the methods mentioned earlier, we ob-
served that when the generation length of a
diffusion large language model is increased to
1024, the generation time rises significantly for
the same question compared to a length of 256,
even though the final answer length remains un-
changed. According to the analysis of the gen-
erated output, we find that the extra length is
filled with the [EoT] token, and the additional
decoding time is spent repeatedly decoding the
[EoT] token. Based on this, we propose
the End-of-Text Prediction (EoTP) approach:
whenever the last decoded token is [EoT], the
model would terminate the decoding process
immediately and return the response. There-
fore, we update the inference process to han-
dle the long generation length challenge in Ap-
pendix B. Our analysis shows that 89.59% of

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Benchmark results on the LLaDA-8B-Instruct suite. Each method was evaluated using
two generation lengths (128 and 1024) across four datasets. Performance is measured using three
metrics: TPS (tokens/sec), speedup, and accuracy score. The highest throughput and speedup values
for each configuration are highlighted in bold.

Task Methods Gen Length Inference Efficiency Performance
TPS↑ Speed (TPS)↑ Score

GSM8K
(5-shot)

LLaDA-8B-Instruct 256 3.41 1.00× 78.70
1024 0.54 1.00× 77.60

+ Learn2PD 256 14.07+10.66 4.13× 78.62
1024 6.63+6.09 12.21× 77.26

Learn2PD + EoTP 256 14.35+10.94 4.21× 78.62
1024 12.26+11.72 22.58× 79.83

Math
(4-shot)

LLaDA-8B-Instruct 256 4.70 1.00× 32.90
1024 1.70 1.00× 35.21

+ Learn2PD 256 15.16+10.46 3.21× 32.22
1024 10.98+9.28 6.45× 34.01

Learn2PD + EoTP 256 15.21+10.51 3.23× 31.40
1024 12.27+10.57 7.22× 34.60

HumanEval
(0-shot)

LLaDA-8B-Instruct 256 3.33 1.00× 39.63
1024 0.53 1.00× 37.21

+ Learn2PD 256 11.66+8.33 3.5× 38.41
1024 4.63+4.10 8.78× 37.84

Learn2PD + EoTP 256 11.88+8.55 3.57× 38.41
1024 6.63+6.10 12.55× 35.98

MBPP
(3-shot)

LLaDA-8B-Instruct 256 3.14 1.00× 31.22
1024 0.58 1.00× 10.61

+ Learn2PD 256 14.96+11.82 4.77× 30.84
1024 6.96+6.38 12.08× 10.04

Learn2PD + EoTP 256 15.88+12.74 5.06× 31.03
1024 9.89+9.31 17.16× 11.02

computational cost comes from decoding padding tokens after [EoT]. EoTP eliminates this over-
head by detecting sequence completion when all non-[MASK] positions have unmasked. The ex-
periments and relevant analysis are in Appendix C.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Models and Datasets. We implement our methods on the representative dLLM: LLaDA-8B-
Instruct [Nie et al., 2025] to measure the acceleration of the inference process across various
benchmarks. To ensure the broad applicability of the methods, we conducted experiments on four
datasets covering three different types of problems, which are GSM8K[Cobbe et al., 2021], Math
[Lewkowycz et al., 2022], HumanEval[Chen et al., 2021], and MBPP [Austin et al., 2021b]. All
experiments are conducted on 4 NVIDIA A6000 GPUs.

Filter Model fθ Training. To train a filter model that can be applied to a wide range of tasks, we
selected 40 samples from each of the 66 types of questions in the FLAN dataset, resulting in a total
of 2,640 samples for training. In this experiment, we used the simplest two-layer MLP as our filter
model. Since the dLLMs remains frozen and only fθ is trained, the number of trainable parameters is
extremely limited. For example, for an LLaDA with a block size of 32, the total number of trainable
parameters is only 2,112. We trained fθ for 5,000 epochs until the model converged. The learning
rate is set to 0.001, and the AdamW optimizer is used to optimize fθ.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Our training process consists of two stages. In the first stage, samples are collected by following an
Extremely Greedy Parallel policy, recording the confidence scores and token selections at each step
during parallel decoding. This data is then used in the second stage to train a filter model fθ. The data
collection in the first stage was conducted on 4 NVIDIA RTX A6000 GPUs and took approximately
three hours. The subsequent training of the filter model in the second stage was deployed on a T4
GPU and required only 6 minutes. The details of training are in Appendix D.

Evaluation. We evaluate the inference acceleration and generation quality of Learn2PD and
EoTP methods by using quantitive metrics. The inference speed is quantified with Tokens Per
Second (TPS), indicating the average number of tokens generated per second. And the generation
quality is measured in task-specific metrics, such as accuracy for GSM8K, showing the model’s
performance with acceleration methods. In addition to this, we set the Generation Length to 256 &
1024 and the Block Size to 32.

4.2 MAIN RESULTS

We present the inference performance and efficiency profits for Learn2PD and EoTP on the LLaDA-
8B-Instruct across four benchmarks, as shown in Table 1.

In summary, Learn2PD significantly enhances inference efficiency across all tasks. Compared to the
baseline model, our optimal method typically achieves a 3 to 4 times speedup at a generation length
of 256 and a 6 to 12 times speedup at a generation length of 1024. When EoTP is incorporated, the
improvements become even more pronounced, particularly with a generation length of 1024. For
instance, combining Learn2PD and EoTP results in a throughput increase of 22.58× (on GSM8K,
5-shot) and 17.16× (on MBPP, 3-shot) relative to the baseline. These results demonstrate that our
methods are not only effective individually but also highly orthogonal, resulting in compounded
acceleration. More importantly, these efficiency gains have negligible impact on accuracy. The
performance scores of our accelerated methods remain within 1–2 points of the baseline, and in
some cases, the score is even slightly improved.

4.3 COMPATIBILITY WITH KEY-VALUE CACHE

We further evaluate the compatibility of our approach with established Key-Value (KV) Cache tech-
niques by integrating both Dual Cache and Prefix Cache strategies [Wu et al., 2025]. Experiments
are conducted on GSM8K with a generation length of 1024 tokens. As summarized in Table 2, the
baseline model (Learn2PD & EoTP) achieves a throughput of 12.26 TPS, a speed-up of 22.58×, and
an accuracy score of 79.83. When augmented with the Dual Cache, the system attains substantially
higher efficiency, reaching 31.23 TPS and a 57.51× speedup, albeit with a slight decrease in accu-
racy (74.00). Similarly, incorporating the Prefix Cache also brings noticeable improvements, yield-
ing 14.79 TPS and a 27.23× acceleration while maintaining a competitive score of 77.71. These
results confirm that our method is orthogonal to and fully compatible with standard KV caching
mechanisms, demonstrating its ability to leverage such strategies to enhance inference efficiency.

Table 2: A comparison of our method with and
without KV Cache. The results show a signifi-
cant performance improvement when augmented
with both Dual and Prefix Caches, underscoring
that our method is orthogonal to and fully com-
patible with existing KV caching strategies.

Methods TPS Speed Score

Learn2PD & EoTP 12.26 22.58× 79.83

+ Dual Cache 31.23 57.51× 74.00

+ Prefix Cache 14.79 27.23× 77.71

Table 3: A comparison of the acceleration perfor-
mance using filter models of varying complex-
ity (represented by the number of MLP layers).
The results indicate that a two-layer MLP model
achieves the optimal balance by providing signif-
icant speedup.

# Layers TPS Speed Score

Single-layer 8.77 2.57× 78.62

Two-layer 14.07 4.13× 78.62

Four-layer 11.41 3.35× 78.85

4.4 ANALYSIS: ABLATION STUDY

Effect of Filter Model fθ Complexity. To investigate the impact of the filter model’s architec-
tural complexity on acceleration performance, we conduct an ablation study using MLP-based fil-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ter models with varying depths. As illustrated in Table 3, a two-layer MLP achieves the highest
throughput (14.07 TPS) and speed-up (4.13×), while maintaining 78.62% accuracy. In comparison,
the single-layer model yields lower efficiency with a similar accuracy, suggesting limited represen-
tational capacity. Although the four-layer model attains a marginally better accuracy score, it results
in reduced inference speed, indicating increased computational overhead. These results demon-
strate that a two-layer configuration offers the optimal trade-off between efficiency and predictive
performance, effectively balancing model complexity and acceleration gain.

Table 4: Performance comparison of our
methods across different generation lengths.
While maintaining a comparable accuracy,
both Learn2PD and EoTP deliver substantially
greater speedup at a length of 1024 compared to
shorter sequences.

Gen Length Methods Speed Score

128 Learn2PD 3.29× 73.92

Learn2PD & EoTP 3.36× 74.07

256 Learn2PD 4.13× 78.62

Learn2PD & EoTP 4.21× 78.62

512 Learn2PD 6.66× 77.71

Learn2PD & EoTP 7.60× 79.68

1024 Learn2PD 12.21× 77.26

Learn2PD & EoTP 22.58× 79.83

Effect of Generation Length. To examine the
impact of generation length on the performance
of our methods, we compare the speedup and
accuracy of Learn2PD and its enhanced vari-
ant (Learn2PD & EoTP) across varying output
lengths. As shown in Table 4, both methods
achieve greater acceleration as the generation
length increases, while consistently maintaining
competitive scores. At a shorter length of 128,
Learn2PD & EoTP reaches a speed-up of 3.36×.
And the speed-up improves steadily with longer
sequences, culminating in a substantial 22.58×
acceleration at a length of 1024. These results in-
dicate that our approach is particularly effective
for long-sequence generation, efficiently reduc-
ing the unnecessary decodings to maximize infer-
ence speed without compromising output quality.

Figure 6: Impact of the filtering threshold on ac-
curacy and throughout. We find that a threshold
of 0.96 represents a favorable balance, maintaining
high accuracy and comparable inference speed.

Effect of Filter Model fθ threshold τ . We
perform an ablation study to examine the im-
pact of the filtering threshold on inference ac-
curacy and throughput. As shown in Figure
6, reducing the threshold improves through-
put but leads to a corresponding decline in ac-
curacy. For example, at τ = 0.99, the model
achieves a throughput of 4.68 TPS (vs. base-
line 3.41 TPS) with 78.92% accuracy. In con-
trast, lowering the threshold to τ = 0.9 causes
a more pronounced reduction in accuracy. The
results indicate that a threshold of τ = 0.96 of-
fers an optimal balance, delivering both high
throughput (4.13× speedup) and near-baseline
accuracy. These findings underscore the criti-
cal role of the filtering threshold in achieving
an effective trade-off between inference effi-
ciency and output quality.

5 CONCLUSION

In this work, we investigate the issue of extensive repetitive decoding during inference in Diffusion-
based Large Language Models. To enable timely unmasking of correctly predicted tokens, we pro-
pose Learn2PD, a parallel decoding architecture that employs a filter model to make case-specific
selections. This filter model is lightweight and pre-trained, thus requiring no additional training dur-
ing inference. Furthermore, to address the time overhead caused by repeated encoding of the [EoT]
token as the generation length increases, we introduce the EoTP mechanism, which halts decoding
immediately after [EoT] is generated, thereby reducing unnecessary computational cost. Exten-
sive experiments across multiple benchmarks and model baselines (LLaDA) demonstrate that our
approach achieves up to 22.58× speedup without sacrificing accuracy—and up to 57.51× when com-
bined with KV Cache. Our proposed method offers a compelling solution for deploying diffusion-
based LLMs as alternatives to autoregressive models in future applications.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Potential for Misuse: We acknowledge that our acceleration techniques, by lowering the computa-
tional cost of inference, could inadvertently lower the barrier for malicious use. This could enable
bad actors to scale up harmful applications such as disinformation campaigns, spam, phishing, or
automated malicious code generation more efficiently.

REPRODUCIBILITY STATEMENT

To support reproducibility, a complete anonymized code repository is provided as supplementary
material. The repository encompasses all necessary components to replicate our work: the imple-
mentation source code for the proposed model and algorithms, the scripts required to run the exper-
iments, comprehensive hyperparameter configuration files, and detailed execution instructions.

REFERENCES

Marianne Arriola, Subham Sekhar Sahoo, Aaron Gokaslan, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
Justin T Chiu, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregressive
and diffusion language models. In The Thirteenth International Conference on Learning Repre-
sentations, 2025. URL https://openreview.net/forum?id=tyEyYT267x.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021a.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked gener-
ative image transformer. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

10

https://openreview.net/forum?id=tyEyYT267x


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
models via adaptation from autoregressive models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
j1tSLYKwg8.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in neural information
processing systems, 34:12454–12465, 2021.

Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S Abdelfattah, Jae-sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion. arXiv preprint arXiv:2505.21467, 2025.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-
soning problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=IFXTZERXdM7.

Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi,
and Shiwei Liu. Diffusion language models know the answer before decoding. arXiv preprint
arXiv:2508.19982, 2025.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
lm improves controllable text generation. Advances in neural information processing systems, 35:
4328–4343, 2022.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive
caching. arXiv preprint arXiv:2506.06295, 2025.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. 2023.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Asgari Chenaghlu, Richard Socher,
Xavier Amatriain, and Jianfeng Gao. Large language models: A survey. ArXiv, abs/2402.06196,
2024. URL https://api.semanticscholar.org/CorpusID:267617032.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

11

https://openreview.net/forum?id=j1tSLYKwg8
https://openreview.net/forum?id=j1tSLYKwg8
https://openreview.net/forum?id=IFXTZERXdM7
https://api.semanticscholar.org/CorpusID:267617032


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=sMyXP8Tanm.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
ized masked diffusion for discrete data. Advances in neural information processing systems, 37:
103131–103167, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Peter Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,
and Alexey Dosovitskiy. MLP-mixer: An all-MLP architecture for vision. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=EI2KOXKdnP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Qingyan Wei, Yaojie Zhang, Zhiyuan Liu, Dongrui Liu, and Linfeng Zhang. Accelerating diffusion
large language models with slowfast sampling: The three golden principles. CoRR, 2025.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-
Rong Wen. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023. URL
http://arxiv.org/abs/2303.18223.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. arXiv preprint arXiv:2409.02908, 2024.

Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji rong Wen. Diffusion-nat: Self-prompting discrete
diffusion for non-autoregressive text generation. In Conference of the European Chapter of the
Association for Computational Linguistics, 2023. URL https://api.semanticscholar.
org/CorpusID:258557887.

12

https://openreview.net/forum?id=sMyXP8Tanm
https://openreview.net/forum?id=sMyXP8Tanm
https://openreview.net/forum?id=EI2KOXKdnP
http://arxiv.org/abs/2303.18223
https://api.semanticscholar.org/CorpusID:258557887
https://api.semanticscholar.org/CorpusID:258557887


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhuang Ziyu, Chen Qiguang, Ma Longxuan, Li Mingda, Han Yi, Qian Yushan, Bai Haopeng, Zhang
Weinan, and Ting Liu. Through the lens of core competency: Survey on evaluation of large
language models. In Jiajun Zhang (ed.), Proceedings of the 22nd Chinese National Conference
on Computational Linguistics (Volume 2: Frontier Forum), pp. 88–109, Harbin, China, August
2023. Chinese Information Processing Society of China. URL https://aclanthology.
org/2023.ccl-2.8/.

13

https://aclanthology.org/2023.ccl-2.8/
https://aclanthology.org/2023.ccl-2.8/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used in this work exclusively for the purpose of text polishing
and refinement. Their role was strictly limited to assisting with grammatical correction, improving
sentence fluency, and enhancing word choice to increase the overall clarity and readability of the
manuscript.

B UPDATE INFERENCE ALGORITHM

Algorithm 3 Update Inference
Require: Diffusion large language model M , filter model fθ, prompt set xprompt, generation length

Lgen, block size s, filter threshold τ
1: for each xi ∈ xprompt do
2: li ← length(xi), X ← concat(xi, [MASK]Lgen)

3: for b = 0, ...,
Lgen

s − 1 do
4: M← {1, 2, ..., s}
5: whileM ≠ ∅ do
6: conft, pret = M(X), logitt = fθ(conft)
7: if logitt,j > τ then
8: M←M\ {j}, Xi+b·s+j ← pret,j
9: end if

10: end while
11: if [endoftext] in X then
12: break
13: end if
14: end for
15: responsei = Xli:li+Lgen−1
16: end for
17: return response

C EXPERIMENTS AND ANALYSIS ON EOTP MECHANISM

Table 5: A comparison of LLaDA and EoTP mechanisms in different generation lengths.
Methods Generation Length TPS Speed Score

LLaDA
256 3.41 1.00× 78.70

512 1.67 1.00× 77.71

1024 0.54 1.00× 77.62

+ EoTP
256 3.76 1.10× 79.23

512 3.38 2.02× 78.77

1024 3.25 5.98× 79.38

This table 5 clearly demonstrates the significant advantage of integrating the EoTP mechanism with
the base LLaDA model, particularly for long-sequence generation. While the standalone LLaDA
model exhibits substantial performance degradation as generation length increases—evidenced by
the sharp decline in TPS from 3.41 to 0.54—the incorporation of EoTP not only mitigates this
degradation but also delivers considerable speedup. Most notably, at a sequence length of 1024,
EoTP achieves a dramatic 5.98× acceleration while simultaneously improving output quality, with
the Score increasing from 77.62 to 79.38. These gains can be largely attributed to the elimination
of redundant computation: quantitative analysis shows that 89.59% of the baseline computational
cost arises from decoding padding tokens after the [EoT] token. EoTP effectively removes this
overhead by dynamically detecting sequence completion once all original non-[MASK] positions
are unmasked, thereby optimizing inference efficiency without compromising performance.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D TRAINING CURVE OF FILTER MODEL

As shown in Figure 7, this learning curve illustrates that both training (blue) and validation (red)
loss fall sharply in the earliest epochs (from 0.68 to 0.28), then decrease much more gradually
over the full 5,000-epoch run, approaching a plateau near 0.21–0.23. The validation curve remains
slightly above the training curve throughout, indicating only a modest generalization gap rather
than pronounced overfitting; the parallel, steady decline shows the model continues to improve on
unseen data but with diminishing returns. The long, flat tail of both curves indicates the model has
effectively converged.

Figure 7: Learning curve of filter model fθ. The learning curves illustrate the progression of
training and validation loss across 5,000 epochs, with the former in blue and the latter in red.

15


	Introduction
	Related Work
	Diffusion-based large language models
	Accelerate Diffusion-based large language models

	Methodology
	Preliminary
	Diffusion Large Language Models
	Unnecessary repetitive decoding
	Expected Inference Process: Extremely Greedy Parallel (EGP)

	Learning to Parallel Decoding
	End-of-Text Prediction

	Experiment
	Experimental Settings
	Main Results
	Compatibility with Key-Value Cache
	Analysis: Ablation Study

	Conclusion
	The Use of Large Language Models
	Update Inference Algorithm
	Experiments and Analysis on EoTP mechanism
	Training Curve of Filter model

