
Gradient Clipping Helps in Non-Smooth Stochastic
Optimization with Heavy-Tailed Noise

Anonymous Author(s)
Affiliation
Address
email

Abstract

Thanks to their practical efficiency and random nature of the data, stochastic1

first-order methods are standard for training large-scale machine learning models.2

Random behavior may cause a particular run of an algorithm to result in a highly3

suboptimal objective value, whereas theoretical guarantees are usually proved4

for the expectation of the objective value. Thus, it is essential to theoretically5

guarantee that algorithms provide small objective residual with high probability.6

Existing methods for non-smooth stochastic convex optimization have complexity7

bounds with the dependence on the confidence level that is either negative-power or8

logarithmic but under an additional assumption of sub-Gaussian (light-tailed) noise9

distribution that may not hold in practice, e.g., in several NLP tasks. In our paper,10

we resolve this issue and derive the first high-probability convergence results with11

logarithmic dependence on the confidence level for non-smooth convex stochastic12

optimization problems with non-sub-Gaussian (heavy-tailed) noise. To derive our13

results, we propose novel stepsize rules for two stochastic methods with gradient14

clipping. Moreover, our analysis works for generalized smooth objectives with15

Hölder-continuous gradients, and for both methods, we provide an extension for16

strongly convex problems. Finally, our results imply that the first (accelerated)17

method we consider also has optimal iteration and oracle complexity in all the18

regimes, and the second one is optimal in the non-smooth setting.19

1 Introduction20

Stochastic first-order optimization methods like SGD [32], Adam [20], and their various modifi-21

cations are extremely popular in solving a number of different optimization problems, especially22

those appearing in statistics [36], machine learning, and deep learning [13]. The success of these23

methods in real-world applications motivates the researchers to investigate theoretical properties24

for the methods and to develop new ones with better convergence guarantees. Typically, stochastic25

methods are analyzed in terms of the convergence in expectation (see [12, 24, 15] and references26

therein), whereas high-probability complexity results are established much rarely. However, as27

illustrated in [14], guarantees in terms of the convergence in expectation have much worse correlation28

with the real behavior of the methods than high-probability convergence guarantees when the noise29

in the stochastic gradients has heavy-tailed distribution.30

Recent studies [35, 34, 41] show that in several popular problems such as training BERT [37] on31

Wikipedia dataset the noise in the stochastic gradients is heavy-tailed. Moreover, in [41], the authors32

justify empirically that in such cases SGD works significantly worse than clipped-SGD [30] and33

Adam. Therefore, it is important to theoretically study the methods’ convergence when the noise is34

heavy-tailed.35
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For convex and strongly convex problems with Lipschitz continuous gradient, i.e., smooth convex and36

strongly convex problems, this question was properly addressed in [25, 3, 14] where the first high-37

probability complexity bounds with logarithmic dependence on the confidence level were derived38

for the stochastic problems with heavy-tailed noise. However, a number of practically important39

problems are non-smooth on the whole space [40, 22]. For example, in deep neural network training,40

the loss function often grows polynomially fast when the norm of the network’s weights goes to41

infinity. Moreover, non-smoothness of the activation functions such as ReLU or loss functions such42

as hinge loss implies the non-smoothness of the whole problem. While being well-motivated by43

practical applications, the existing high-probability convergence guarantees for stochastic first-order44

methods applied to solve non-smooth convex optimization problems with heavy-tailed noise depend45

on the negative power of the confidence level that dramatically increases the number of iterations46

required to obtain high accuracy of the solution with probability close to one. Such a discrepancy in47

the theory between algorithms for stochastic smooth and non-smooth problems leads us to the natural48

question: is it possible to obtain high-probability complexity bounds with logarithmic dependence49

on the confidence level for non-smooth convex stochastic problems with heavy-tailed noise? In this50

paper, we give a positive answer to this question. To achieve this we focus on gradient clipping51

methods [30, 10, 23, 22, 40, 41].52

1.1 Preliminaries53

Before we describe our contributions in detail, we formally state the considered setup.54

Stochastic optimization. We focus on the following problem55

min
x∈Rn

f(x), f(x) = Eξ [f(x, ξ)] , (1)

where f(x) is a convex but possibly non-smooth function. Next, we assume that at each point x ∈ Rn56

we have an access to the unbiased estimator∇f(x, ξ) of ∇f(x) with uniformly bounded variance57

Eξ[∇f(x, ξ)] = ∇f(x), Eξ
[
‖∇f(x, ξ)−∇f(x)‖22

]
≤ σ2, σ > 0. (2)

This assumption on the stochastic oracle is widely used in stochastic optimization literature [11,58

12, 19, 21, 26]. We emphasize that we do not assume that the stochastic gradients have so-called59

“light tails” [21], i.e., sub-Gaussian noise distribution meaning that P{‖∇f(x, ξ)−∇f(x)‖2 > b} ≤60

2 exp(−b2/(2σ2)) for all b > 0.61

Level of smoothness. Finally, we assume that function f has (ν,Mν)-Hölder continuous gradients62

on a compact set Q ⊆ Rn for some ν ∈ [0, 1], Mν > 0 meaning that63

‖∇f(x)−∇f(y)‖2 ≤Mν‖x− y‖ν2 ∀x, y ∈ Q. (3)

When ν = 1 inequality (3) implies M1-smoothness of f , and when ν = 0 we have that ∇f(x)64

has bounded variation which is equivalent to being uniformly bounded. Moreover, when ν = 065

differentiability of f is not needed, and one can assume uniform boundedness of the subgradients of66

f . Linear regression in the case when the noise has generalized Gaussian distribution (Example 4.467

from [2]) serves as a natural example of the situation with ν ∈ (0, 1). Moreover, when (3) holds for68

ν = 0 and ν = 1 simultaneously then it holds for all ν ∈ [0, 1] with Mν ≤M1−ν
0 Mν

1 [28]. As we69

show in our results, the set Q should contain the ball centered at the solution x∗ of (1) with radius70

2R0 = 2‖x0 − x∗‖2, where x0 is a starting point of the method, i.e., our analysis does not require (3)71

to hold on Rn.72

High-probability convergence. For a given accuracy ε > 0 and confidence level β ∈ (0, 1) we73

are interested in finding ε-solutions of problem (1) with probability at least 1− β, i.e., such x̂ that74

P{f(x̂) − f(x∗) ≤ ε} ≥ 1 − β. For brevity, we will call such (in general, random) points x̂ as75

(ε, β)-solution of (1). Moreover, by high-probability complexity of a stochastic methodM we mean76

the sufficient number of oracle calls, i.e., number of∇f(x, ξ) computations, needed to guarantee that77

the output ofM is an (ε, β)-solution of (1).78
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Table 1: Summary of known and new high-probability complexity bounds for solving (1) with
f being convex and having (ν,Mν)-Hölder continuous gradients. Columns: “Ref.” = reference,
“Complexity” = high-probability complexity (ε – accuracy, β – confidence level, numerical constants
and logarithmic factors are omitted), “HT” = heavy-tailed noise, “UD” = unbounded domain, “HCC”
= Hölder continuity of the gradient is required only on the compact set. The results labeled by ♣ are
obtained from the convergence guarantees in expectation via Markov’s inequality. Negative-power
dependencies on the confidence level β are colored in red.

Method Ref. Complexity ν HT? UD? HCC?

SGD [26] max
{
M2

0R
2
0

ε2
,
σ2R2

0
ε2

}
0 7 3 7

AC-SA [11, 21] max

{√
M1R

2
0

ε
,
σ2R2

0
ε2

}
1 7 3 7

SIGMA [6] max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν
,
σ2R2

0
ε2

 [0, 1] 7 3 7

SGD [26]♣ max
{
M2

0R
2
0

β2ε2
,
σ2R2

0
β2ε2

}
0 3 7 7

AC-SA [11, 21]♣ max

{√
M1R

2
0

βε
,
σ2R2

0
β2ε2

}
1 3 3 7

SIGMA [6]♣ max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

β
2

1+3ν ε
2

1+3ν
,
σ2R2

0
β2ε2

 [0, 1] 3 3 7

clipped-SSTM [14] max

{√
M1R

2
0

ε
,
σ2R2

0
ε2

}
1 3 3 7

clipped-SGD [14] max
{
M1R

2
0

ε
,
σ2R2

0
ε2

}
1 3 3 7

clipped-SSTM Thm. 2.2 max

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν
,
σ2R2

0
ε2

 [0, 1] 3 3 3

clipped-SGD Thm. 3.1 max

{
M

2
1+ν
ν R2

0

ε
2

1+ν
,
σ2R2

0
ε2

}
[0, 1] 3 3 3

1.2 Contributions79

• We propose novel stepsize rules for clipped-SSTM [14] to handle the problems with Hölder80

continuous gradients and derive high-probability complexity guarantees for convex stochastic81

optimization problems without using “light tails” assumption, i.e., we prove that our version of82

clipped-SSTM83

O
(

max

{
D ln

2(1+ν)
1+3ν

D

β
,
σ2R2

0

ε2
ln
D

β

})
, D =

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν

high-probability complexity. Unlike all previous high-probability complexity results in this setup84

with ν < 1 (see Tbl. 1), our result depends only logarithmically on the confidence level β that85

is highly important when β is small. Moreover, up to the difference in logarithmic factors the86

derived complexity guarantees meet the known lower bounds [21, 17] obtained for the problems87

with light-tailed noise. In particular, when ν = 1 we recover accelerated convergence rate [29, 21].88

That is, neglecting the logarithmic factors our results are unimprovable and, surprisingly coincide89

with the best-known results in the “light-tailed case”.90

• We derive the first high-probability complexity bounds for clipped-SGD when the objective91

functions is convex with (ν,Mν)-Hölder continuous gradient and the noise is heavy tailed., i.e., we92

derive93

O
(

max

{
D2,max

{
D1+ν ,

σ2R2
0

ε2

}
ln
D2 +D1+ν

β

})
, D =

M
1

1+ν
ν R0

ε
1

1+ν

high-probability complexity bound. Interestingly, when ν = 0 the derived bound for clipped-SGD94

has better dependence on the logarithms than the corresponding one for clipped-SSTM. Moreover,95

neglecting the dependence on ε under the logarithm, our bound for clipped-SGD has the same96
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Table 2: Summary of known and new high-probability complexity bounds for solving (1) with f being
µ-strongly convex and having (ν,Mν)-Hölder continuous gradients. Columns: “Ref.” = reference,
“Complexity” = high-probability complexity (ε – accuracy, β – confidence level, numerical constants
and logarithmic factors are omitted), “HT” = heavy-tailed noise, “UD” = unbounded domain, “HCC”
= Hölder continuity of the gradient is required only on the compact set. The results labeled by ♣ are
obtained from the convergence guarantees in expectation via Markov’s inequality. Negative-power
dependencies on the confidence level β are colored in red.

Method Ref. Complexity ν HT? UD? HCC?

SGD [26] max
{
M2

0
µε
, σ

2

µε

}
0 7 3 7

AC-SA [11, 21] max
{√

M1
µ
, σ

2

µε

}
1 7 3 7

SIGMA [6]
max

{
N̂, σ

2

µε

}
,

N̂=

(
Mν
µR1−ν

0

) 2
1+3ν

+
(

M2
ν

µ1+νε1−ν

) 1
1+3ν

[0, 1] 7 3 7

SGD [26]♣ max
{
M2

0
µβε

, σ
2

µβε

}
0 3 7 7

AC-SA [11, 21]♣ max
{√

M1
µ
, σ

2

µβε

}
1 3 3 7

SIGMA [6]♣
max

{
N̂, σ

2

µε̂

}
, ε̂ = βε,

N̂=

(
Mν
µR1−ν

0

) 2
1+3ν

+
(

M2
ν

µ1+ν ε̂1−ν

) 1
1+3ν

[0, 1] 3 3 7

R-clipped-SSTM [14] max
{√

M1
µ
, σ

2

µε2

}
1 3 3 7

R-clipped-SGD [14] max
{
M1
µ
, σ

2

µε2

}
1 3 3 7

R-clipped-SSTM Thm. 2.1
max

{
N̂, σ

2

µε

}
,

N̂ =

(
Mν
µR1−ν

0

) 2
1+3ν

+
(

M2
ν

µ1+νε1−ν

) 1
1+3ν

[0, 1] 3 3 3

R-clipped-SGD Thm. 3.2 max

 M
2

1+ν
ν

µ
2

1+ν R

2(1−ν)
1+ν

0

, M
2

1+ν
ν

µε
1−ν
1+ν

, σ
2

µε

 [0, 1] 3 3 3

dependence on the confidence level as the tightest known result in this case under the “light tails”97

assumption [16].98

• Using restarts technique we extend the obtained results for clipped-SSTM and clipped-SGD to99

the strongly convex case (see Tbl. 2). As in the convex case, the obtained results are superior to all100

previous known results in the general setup we consider.101

• As one of the key contributions of this work, we emphasize that in our theoretical results it is102

sufficient to assume Hölder continuity of the gradients of f only on the ball with radius 2R0 =103

2‖x0 − x∗‖2 and centered at a solution of the problem. This makes our results applicable to much104

larger class of problems than functions with Hölder continuous gradients on Rn, e.g., our analysis105

works even for polynomially growing objectives.106

• To test the performance of the considered methods we conduct several numerical experiments107

on image classification and NLP tasks, and observe that 1) clipped-SSTM and clipped-SGD108

show a comparable performance with SGD on the image classification task, when the noise109

distribution is almost sub-Gaussian, 2) converge much faster than SGD on the NLP task, when the110

noise distribution is heavy-tailed, and 3) clipped-SSTM achieves a comparable performance with111

Adam on the NLP task enjoying both the best known theoretical guarantees and good practical112

performance.113

1.3 Related work114

Light-tailed noise. The theory of high-probability complexity bounds for convex stochastic op-115

timization with light-tailed noise is well-developed. Lower bounds and optimal methods for the116

problems with (ν,Mν)-Hölder continuous gradients are obtained in [26] for ν = 0, and in [11] for117

ν = 1. Up to the logarithmic dependencies these high-probability convergence bounds coincide with118
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the corresponding results for the convergence in expectation (see first two rows of Tbl. 1) While not119

being directly derived in the literature, the lower bound for the case when ν ∈ (0, 1) can be obtained120

as a combination of lower bounds in the deterministic [27, 17] and smooth stochastic settings [11].121

The corresponding optimal methods are analyzed in [4, 6] through the lens of inexact oracle.122

Heavy-tailed noise. Unlike in the “light-tailed” case, the first theoretical guarantees with reasonable123

dependence on both the accuracy ε and the confidence level β appeared just recently. In [25], the124

first such results without acceleration [29] were derived for Mirror Descent with special truncation125

technique for smooth (ν = 1) convex problems on a bounded domain, and then were accelerated and126

extended in [14]. For the strongly convex problems the first accelerated high-probability convergence127

guarantees were obtained in [3] for the special method called proxBoost requiring solving auxiliary128

nontrivial problems at each iteration. These bounds were tightened in [14].129

In contrast, for the case when ν < 1 and, in particular, when ν = 0 the best-known high-probability130

complexity bounds suffer from the negative-power dependence on the confidence level β, i.e., have131

a factor 1/βα for some α > 0, that affects the convergence rate dramatically for small enough132

β. Without additional assumptions on the tails these results are obtained via Markov’s inequality133

P{f(x)− f(x∗) > ε} < E[f(x)−f(x∗)]/ε from the guarantees for the convergence in expectation to134

the accuracy εβ, see the results labeled by ♣ in Tbl. 1. Under an additional assumption on noise135

tails that P{‖∇f(x, ξ)−∇f(x)‖22 > sσ2} = O(s−α) for α > 2 these results can be tightened [9]136

when ν = 0 as O
(
M2

0R
2
0 max

{
ln(β−1)/ε2, (1/βεα)

2/(3α−2)
})

without removing the negative-power137

dependence on the confidence level β. Different stepsize policies allow to change the last term in138

max to β−
1

2α−1 ε−
2α

2α−1 without removing the negative-power dependence on β.139

Gradient clipping. The methods based on gradient clipping [30] and normalization [18] are popular140

in different machine learning and deep learning tasks due to their robustness in practice to the noise141

in the stochastic gradients and rapid changes of the objective function [13]. In [40, 22], clipped-GD142

and clipped-SGD are theoretically studied in applications to non-smooth problems that can grow143

polynomially fast when ‖x − x∗‖2 → ∞ showing the superiority of gradient clipping methods144

to the methods without clipping. The results from [40] are obtained for non-convex problems145

with almost surely bounded noise, and in [22], the authors derive the stability and expectation146

convergence guarantees for strongly convex under assumption that the central p-th moment of the147

stochastic gradient is bounded for p ≥ 2. Since the authors of [22] do not provide convergence148

guarantees with explicit dependencies on all important parameters of the problem it complicates direct149

comparison with our results. Nevertheless, convergence guarantees from [22] are sub-linear and are150

given for the convergence in expectation, and, as a consequence, the corresponding high-probability151

convergence results obtained via Markov’s inequality also suffer from negative-power dependence on152

the confidence level. Next, in [41], the authors establish several expectation convergence guarantees153

for clipped-SGD and prove their optimality in the non-convex case under assumption that the central154

α-moment of the stochastic gradient is uniformly bounded, where α ∈ (1, 2]. It turns out that155

clipped-SGD is able to converge even when α < 2, whereas vanilla SGD can diverge in this setting.156

2 Clipped Stochastic Similar Triangles Method157

In this section, we propose a novel variation of Clipped Stochastic Similar Triangles Method [14]158

adjusted to the class of objectives with Hölder continuous gradients (clipped-SSTM, see Alg. 1).159

The method is based on the clipping of the stochastic gradients:160

clip(∇f(x, ξ), λ) = min

{
1,

λ

‖∇f(x, ξ)‖2

}
∇f(x, ξ) (4)

where ∇f(x, ξ) = 1
m

∑m
i=1∇f(x, ξi) is a mini-batched stochastic gradient. Gradient clipping161

ensures that the resulting vector has a norm bounded by the clipping level λ. Since the clipped162

stochastic gradient cannot have arbitrary large norm, the clipping helps to avoid unstable behavior of163

the method when the noise is heavy-tailed and the clipping level λ is properly adjusted.164

However, unlike the stochastic gradient, clipped stochastic gradient is a biased estimate of ∇f(x):165

the smaller the clipping level the larger the bias. The biasedness of the clipped stochastic gradient166
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Algorithm 1 Clipped Stochastic Similar Triangles Method (clipped-SSTM): case ν ∈ [0, 1]

Input: starting point x0, number of iterationsN , batchsizes {mk}Nk=1, stepsize parameter α, clipping
parameter B, Hölder exponent ν ∈ [0, 1].

1: Set A0 = α0 = 0, y0 = z0 = x0

2: for k = 0, . . . , N − 1 do
3: Set αk+1 = α(k + 1)

2ν
1+ν , Ak+1 = Ak + αk+1, λk+1 = B

αk+1

4: xk+1 = (Aky
k+αk+1z

k)/Ak+1

5: Draw mini-batch mk of fresh i.i.d. samples ξk1 , . . . , ξ
k
mk

and compute ∇f(xk+1, ξk) =
1
mk

∑mk
i=1∇f(xk+1, ξki )

6: Compute ∇̃f(xk+1, ξk) = clip(∇f(xk+1, ξk), λk+1) using (4)
7: zk+1 = zk − αk+1∇̃f(xk+1, ξk)
8: yk+1 = (Aky

k+αk+1z
k+1)/Ak+1

9: end for
Output: yN

complicates the analysis of the method. On the other hand, to circumvent the negative effect of167

the heavy-tailed noise on the high-probability convergence one should choose λ to be not too large.168

Therefore, the question on the appropriate choice of the clipping level is highly non-trivial.169

Fortunately, there exists a simple but insightful observation that helps us to obtain the right formula170

for the clipping level λk in clipped-SSTM: if λk is chosen in such a way that ‖∇f(xk)‖2 ≤ λk/2171

with high probability, then for the realizations ∇f(xk+1, ξk) of the mini-batched stochastic gradient172

such that ‖∇f(xk+1, ξk) − ∇f(xk+1)‖2 ≤ λk/2 the clipping is an identity operator. Next, if the173

probability mass of such realizations is big enough then the bias of the clipped stochastic gradient is174

properly bounded that helps to derive needed convergence guarantees. It turns out that the choice175

λk ∼ 1/αk ensures the method convergence with needed rate and high enough probability.176

Guided by this observation we derive the precise expressions for all the parameters of clipped-SSTM177

and derive high-probability complexity bounds for the method. Below we provide a simplified version178

of the main result for clipped-SSTM in the convex case. The complete formulation and the full proof179

of the theorem are deferred to Appendix B.1 (see Thm. B.1).180

Theorem 2.1. Assume that function f is convex and its gradient satisfy (3) with ν ∈ [0, 1], Mν > 0181

on Q = B2R0 = {x ∈ Rn | ‖x − x∗‖2 ≤ 2R0}, where R0 ≥ ‖x0 − x∗‖2. Then there exist such182

a choice of parameters that clipped-SSTM achieves f(yN )− f(x∗) ≤ ε with probability at least183

1− β after O
(
D ln

2(1+ν)
1+3ν D

β

)
iterations with D =

M
2

1+3ν
ν R

2(1+ν)
1+3ν

0

ε
2

1+3ν
and requires184

O
(

max

{
D ln

2(1+ν)
1+3ν

D

β
,
σ2R2

0

ε2
ln
D

β

})
oracle calls. (5)

The obtained result has only logarithmic dependence on the confidence level β and optimal depen-185

dence on the accuracy ε up to logarithmic factors [21, 17] for all ν ∈ [0, 1]. Moreover, we emphasize186

that our result does not require f to have (ν,Mν)-Hölder continuous gradient on the whole space.187

This is because we prove that for the proposed choice of parameters the iterates of clipped-SSTM188

stay inside the ball B2R0
= {x ∈ Rn | ‖x − x∗‖2 ≤ 2R0} with probability at least 1 − β, and,189

as a consequence, Hölder continuity of the gradient is required only inside this ball. In particular,190

this means that the better starting point leads not only to the reduction of R0, but also it can reduce191

Mν . Moreover, our result is applicable to much wider class of functions than the standard class of192

functions with Hölder continuous gradients in Rn, e.g., to the problems with polynomial growth.193

For the strongly convex problems, we consider restarted version of Alg. 1 (R-clipped-SSTM, see194

Alg. 2) and derive high-probability complexity result for this version. Below we provide a simplified195

version of the result. The complete formulation and the full proof of the theorem are deferred to196

Appendix B.2 (see Thm. B.2).197

Theorem 2.2. Assume that function f is µ-strongly convex and its gradient satisfy (3) with ν ∈ [0, 1],198

Mν > 0 on Q = B2R0
= {x ∈ Rn | ‖x− x∗‖2 ≤ 2R0}, where R0 ≥ ‖x0 − x∗‖2. Then there exist199
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Algorithm 2 Restarted clipped-SSTM (R-clipped-SSTM): case ν ∈ [0, 1]

Input: starting point x0, number of restarts τ , number of steps of clipped-SSTM in restarts {Nt}τt=1,
batchsizes {m1

k}
N1−1
k=1 , {m2

k}
N2−1
k=1 , . . . , {mτ

k}
Nτ−1
k=1 , stepsize parameters {αt}τt=1, clipping pa-

rameters {Bt}τt=1, Hölder exponent ν ∈ [0, 1].
1: x̂0 = x0

2: for t = 1, . . . , τ do
3: Run clipped-SSTM (Alg. 1) for Nt iterations with batchsizes {mt

k}
Nt−1
k=1 , stepsize parameter

αt, clipping parameter Bt, and starting point x̂t−1. Define the output of clipped-SSTM by x̂t.
4: end for

Output: x̂τ

such a choice of parameters that R-clipped-SSTM achieves f(x̂τ )− f(x∗) ≤ ε with probability at200

least 1− β after201

N̂ = O

(
D ln

2(1+ν)
1+3ν

D

β

)
, D = max

{(
Mν

µR1−ν
0

) 2
1+3ν

ln
µR2

0

ε
,

(
M2
ν

µ1+νε1−ν

) 1
1+3ν

}
(6)

iterations of Alg. 1 in total and requires202

O

(
max

{
D ln

2(1+ν)
1+3ν

D

β
,
σ2

µε
ln
D

β

})
oracle calls. (7)

Again, the obtained result has only logarithmic dependence on the confidence level β and, as our203

result in the convex case, it has optimal dependence on the accuracy ε up to logarithmic factors204

depending on β [21, 17] for all ν ∈ [0, 1].205

3 SGD with clipping206

In this section, we present a new variant of clipped-SGD [30] properly adjusted to the class of207

objectives with (ν,Mν)-Hölder continuous gradients (see Alg. 3).208

Algorithm 3 Clipped Stochastic Gradient Descent (clipped-SGD): case ν ∈ [0, 1]

Input: starting point x0, number of iterations N , batchsize m, stepsize γ, clipping parameter B > 0.
1: for k = 0, . . . , N − 1 do
2: Draw mini-batch of m fresh i.i.d. samples ξk1 , . . . , ξ

k
m and compute ∇f(xk+1, ξk) =

1
m

∑m
i=1∇f(xk+1, ξki )

3: Compute ∇̃f(xk, ξk) = clip(∇f(xk, ξk), λ) using (4) with λ = B/γ

4: xk+1 = xk − γ∇̃f(xk, ξk)
5: end for

Output: x̄N = 1
N

∑N−1
k=0 x

k

We emphasize that as for clipped-SSTM we use clipping level λ inversely proportional to the stepsize209

γ. Below we provide a simplified version of the main result for clipped-SGD in the convex case. The210

complete formulation and the full proof of the theorem are deferred to Appendix C.1 (see Thm. C.1).211

Theorem 3.1. Assume that function f is convex and its gradient satisfy (3) with ν ∈ [0, 1], Mν > 0212

on Q = B2R0
= {x ∈ Rn | ‖x− x∗‖2 ≤ 2R0}, where R0 ≥ ‖x0 − x∗‖2. Then there exist such a213

choice of parameters that clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at least 1− β214

after215

O
(

max

{
D2, D1+ν ln

D2 +D1+ν

β

})
, D =

M
1

1+ν
ν R0

ε
1

1+ν

(8)

iterations and requires216

O
(

max

{
D2,max

{
D1+ν ,

σ2R2
0

ε2

}
ln
D2 +D1+ν

β

})
oracle calls. (9)
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As all our results in the paper, this result for clipped-SGD has two important features: 1) the217

dependence on the confidence level β is logarithmic and 2) Hölder continuity is required only on218

the ball B2R0 centered at the solution. Moreover, up to the difference in the expressions under219

the logarithm the dependence on ε in the result for clipped-SGD is the same as in the tightest220

known results for non-accelerated SGD-type methods [4, 16]. Finally, we emphasize that for ν < 1221

the logarithmic factors appearing in the complexity bound for clipped-SSTM are worse than the222

corresponding factor in the complexity bound for clipped-SGD. Therefore, clipped-SGD has the223

best known high-probability complexity results in the case when ν = 0 and f is convex.224

For the strongly convex problems, we consider restarted version of Alg. 3 (R-clipped-SGD, see225

Alg. 4) and derive high-probability complexity result for this version. Below we provide a simplified

Algorithm 4 Restarted clipped-SGD (R-clipped-SGD): case ν ∈ [0, 1]

Input: starting point x0, number of restarts τ , number of steps of clipped-SGD in restarts {Nt}τt=1,
batchsizes {mt}τk=1, stepsizes {γt}τt=1, clipping parameters {Bt}τt=1

1: x̂0 = x0

2: for t = 1, . . . , τ do
3: Run clipped-SGD (Alg. 3) for Nt iterations with batchsize mt, stepsize γt, clipping parame-

ter Bt, and starting point x̂t−1. Define the output of clipped-SGD by x̂t.
4: end for

Output: x̂τ

226
version of the result. The complete formulation and the full proof of the theorem are deferred to227

Appendix C.2 (see Thm. C.2).228

Theorem 3.2. Assume that function f is µ-strongly convex and its gradient satisfy (3) with ν ∈ [0, 1],229

Mν > 0 on Q = B2R0
= {x ∈ Rn | ‖x− x∗‖2 ≤ 2R0}, where R0 ≥ ‖x0 − x∗‖2. Then there exist230

such a choice of parameters that R-clipped-SGD achieves f(x̄N )− f(x∗) ≤ ε with probability at231

least 1− β after232

O
(

max

{
D

2
1+ν

1 ln
µR2

0

ε
,D

2
1+ν

2 ,max

{
D1 ln

µR2
0

ε
,D2

}
ln
D

β

})
iterations of Alg. 3 in total and requires233

O
(

max

{
D

2
1+ν

1 ln
µR2

0

ε
,D

2
1+ν

2 ,max

{
D1 ln

µR2
0

ε
,D2,

σ2

µε

}
ln
D

β

})
oracle calls, where

234

D1 =
Mν

µR1−ν
0

, D2 =
Mν

µ
1+ν
2 ε

1−ν
2

, D = (D
2

1+ν

1 +D1) ln
µR2

0

ε
+D2 +D

2
1+ν

2 .

As in the convex case, for ν < 1 the log factors appearing in the complexity bound for R-clipped-235

SSTM are worse than the corresponding factor in the bound for R-clipped-SGD. Thus, R-clipped-236

SGD has the best known high-probability complexity results for strongly convex f and ν = 0.237

4 Numerical experiments238

We tested the performance of the methods on the following problems:239

• BERT fine-tuning on CoLA dataset [38]. We use pretrained BERT from Transformers library [39]240

(bert-base-uncased) and freeze all layers except the last two linear ones.241

• ResNet-18 training on ImageNet-100 (first 100 classes of ImageNet [33]).242

First, we study the noise distribution for both problem as follows: at the starting point we sample243

large enough number of batched stochastic gradients ∇f(x0, ξ1), . . . ,∇f(x0, ξK) with batchsize244

32 and plot the histograms for ‖∇f(x0, ξ1)−∇f(x0)‖2, . . . , ‖∇f(x0, ξK)−∇f(x0)‖2, see Fig. 1.245

As one can see, the noise distribution for BERT + CoLA is substantially non-sub-Gaussian, whereas246

the distribution for ResNet-18 + Imagenet-100 is almost Gaussian.247

Next, we compared 4 different optimizers on these problems: Adam, SGD (with Momentum),248

clipped-SGD (with Momentum and coordinate-wise clipping) and clipped-SSTM (with norm-249

clipping and ν = 1). The results are presented in Fig. 2. We observed that the noise distributions do250
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Figure 1: Noise distribution of the stochastic gradients for ResNet-18 on ImageNet-100 and BERT
fine-tuning on the CoLA dataset before the training. Red lines: probability density functions with
means and variances empirically estimated by the samples. Batch count is the total number of samples
used to build a histogram.

not change significantly along the trajectories of the considered methods, see Appendix D. During251

the hyper-parameters search we compared different batchsizes, emulated via gradient accumulation252

(thus we compare methods with different batchsizes by the number of base batches used). The base253

batchsize was 32 for both problems, stepsizes and clipping levels were tuned. One can find additional254

details regarding our experiments in Appendix D.255

0.2 0.4 0.6 0.8 1.0 1.2
batch count 1e5

0.8

1.0

1.2

1.4

1.6

1.8

2.0

lo
ss

Train loss, ResNet-18
Adam
SGD
clipped-SSTM
clipped-SGD

0.4 0.6 0.8 1.0 1.2
batch count 1e5

1.2

1.4

1.6

1.8

lo
ss

Validation loss, ResNet-18

0.4 0.6 0.8 1.0 1.2
batch count 1e5

55

60

65

70

ac
cu

ra
cy

Validation accuracy, ResNet-18

0.0 0.5 1.0 1.5 2.0 2.5
batch count 1e3

0.55

0.60

0.65

0.70

lo
ss

Train loss, BERT
Adam
clipped-SSTM
clipped-SGD
SGD

0.0 0.5 1.0 1.5 2.0 2.5
batch count 1e3

0.52

0.54

0.56

0.58

0.60

lo
ss

Validation loss, BERT

0.0 0.5 1.0 1.5 2.0 2.5
batch count 1e3

71

72

73

74

75

ac
cu

ra
cy

Validation accuracy, BERT

Figure 2: Train and validation loss + accuracy for different optimizers on both problems. Here, “batch
count” denotes the total number of used stochastic gradients.

Image classification. On ResNet-18 + ImageNet-100 task, SGD performs relatively well, and256

even ties with Adam (with batchsize of 4× 32) in validation loss. clipped-SSTM (with batchsize of257

2× 32) also ties with Adam and clipped-SGD is not far from them. The results were averaged from258

5 different launches (with different starting points/weight initializations). Since the noise distribution259

is almost Gaussian even vanilla SGD performs well, i.e., gradient clipping is not required. At the260

same time, the clipping does not slow down the convergence significantly.261

Text classification. On BERT + CoLA task, when the noise distribution is heavy-tailed, the methods262

with clipping outperform SGD by a large margin. This result is in good correspondence with the263

derived high-probability complexity bounds for clipped-SGD, clipped-SSTM and the best-known264

ones for SGD. Moreover, clipped-SSTM (with batchsize of 8 × 32) achieves the same loss on265

validation as Adam, and has better accuracy. These results were averaged from 5 different train-val266

splits and 20 launches (with different starting points/weight initializations) for each of the splits, 100267

launches in total.268
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