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ABSTRACT

Characterizing samples that are difficult to learn from is crucial to developing
highly performant ML models. This has led to numerous Hardness Characterization
Methods (HCMs) that aim to identify “hard” samples. However, there is a lack of
consensus regarding the definition and evaluation of “hardness”. Unfortunately,
current HCMs have only been evaluated on specific types of hardness and often
only qualitatively or with respect to downstream performance, overlooking the
fundamental quantitative identification task. We address this gap by presenting a
fine-grained taxonomy of hardness types. Additionally, we propose the Hardness
Characterization Analysis Toolkit (H-CAT), which supports comprehensive and
quantitative benchmarking of HCMs across the hardness taxonomy and can easily
be extended to new HCMs, hardness types, and datasets. We use H-CAT to
evaluate 13 different HCMs across 8 hardness types. This comprehensive evaluation
encompassing over 14K setups uncovers strengths and weaknesses of different
HCMs, leading to practical tips to guide HCM selection and future development.
Our findings highlight the need for more comprehensive HCM evaluation, while
we hope our hardness taxonomy and toolkit will advance the principled evaluation
and uptake of data-centric AI methods.

1 INTRODUCTION

Data quality, an important ML problem. Data quality is crucial to the performance and robustness
of machine learning (ML) models (Jain et al., 2020; Gupta et al., 2021; Renggli et al., 2021;
Sambasivan et al., 2021; Li et al., 2021). Unfortunately, challenges arise in real-world data that make
samples “hard” for ML models to learn from effectively, including but not limited to mislabeling,
outliers, and insufficient coverage (Chen et al., 2021; Li et al., 2021). These “hard” samples or data
points can significantly hamper the performance of ML models, creating a barrier to ML adoption in
practical applications (Bedi et al., 2019; West, 2020). For instance, a model trained on mislabeled
samples can lead to inaccurate predictions (Krishnan et al., 2016; Gupta et al., 2021). Outliers
can bias the model to learn suboptimal decision boundaries (Liu et al., 2022; Eduardo et al., 2022;
Krishnan et al., 2016), harming model performance. Long tails of samples can result in poor model
performance for these cases (Feldman, 2020; Hooker et al., 2019; Hooker, 2021; Agarwal et al.,
2022). Consequently, “hard” samples can pose serious challenges for training and the performance
of ML models, making it crucial to identify these samples. This is especially important in where
manually identifying “hard” samples is expensive, impractical, or time-consuming given the scale.

Characterizing hardness, a growing area. Recent interest in data-centric AI, which aims to ensure
and improve data quality, has led to the development of systematic methods to characterize the data
used to train ML models (Liang et al., 2022; Seedat et al., 2023b; 2022b). Data characterization
typically assigns scores to each sample based on its learnability and utility for an ML task, thereby
facilitating the identification of “hard” samples. We collectively refer to methods that perform the
characterization as Hardness Characterization Methods (HCMs).

After samples are characterized, how and for what purpose they are used can differ. For exam-
ple: (1) curating datasets via sample selection to improve model performance (Maini et al., 2022;
Swayamdipta et al., 2020; Seedat et al., 2022a; Northcutt et al., 2021a; Pleiss et al., 2020; Agarwal
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et al., 2022; Seedat et al., 2023a), (2) sculpting the dataset to reduce computational requirements while
maintaining performance (Toneva et al., 2019; Paul et al., 2021; Sorscher et al., 2022; Mindermann
et al., 2022), (3) guiding acquisition of additional samples (Zhang et al., 2022), or (4) understanding
learning behavior from a theoretical perspective (Baldock et al., 2021; Shwartz et al., 2022; Jiang
et al., 2021).

Challenges in definition and evaluation. A fundamental and overlooked aspect is that while different
HCMs tackle the issue of “hardness”, it remains a vague and ill-defined term in the literature. The
lack of a clear definition of hardness types has led HCMs, seemingly tackling the same problem, to
unintentionally target and assess different aspects of hardness (Table 1). The lack of clarity is further
exacerbated by: (1) qualitative evaluation: a significant focus on post hoc qualitative assessment and
downstream improvement, instead of the fundamental hardness identification task, and (2) narrow
and unrepresentative scope: even when quantitative evaluation has been performed, it has typically
focused on a single hardness type, neglecting different manifestations of hardness. The lack of
comprehensive and quantitative evaluation means we do not know how different HCMs perform on
different hardness types and whether they indeed identify the correct samples of interest.

Can we define sample hardness manifestations and then comprehensively and systematically
evaluate the capabilities of different HCMs to correctly detect the hard samples?

Unified taxonomy and benchmarking framework. To answer this question, we begin by defining
a taxonomy of hardness types across three broad categories: (a) Mislabeling, (b) OoD/Outlier, (c)
Atypical. We then introduce the Hardness-Characterization Analysis Toolkit (H-CAT), which, to the
best of our knowledge, is the first unified data characterization benchmarking framework focused on
hardness. Using H-CAT, we comprehensively and quantitatively benchmark 13 state-of-the-art HCMs
across various hardness types. In doing so, we address recent calls for more rigorous benchmarking
(Guyon, 2022) and understanding of existing ML methods (Lipton & Steinhardt, 2019; Snoek et al.,
2018). We make the following contributions:

Contributions: 1⃝ Hardness taxonomy: we formalize a systematic taxonomy of sample-level
hardness types, addressing the current literature’s ad hoc and narrow scope. By defining the different
dimensions of hardness, our taxonomy paves the way for a more rigorous evaluation of HCMs.
2⃝ Benchmarking framework: we propose H-CAT, which is both (i) a benchmarking standard to

evaluate the strengths of different HCMs across the hardness taxonomy and (ii) a unified software
tool integrating 13 different HCMs. With extensibility in mind, H-CAT can easily incorporate new
HCMs, hardness types, and datasets, thus enhancing its utility for both researchers and practitioners.
3⃝ Systematic & Quantitative HCM evaluation: we use H-CAT to comprehensively benchmark and

evaluate 13 different HCMs across 8 different hardness types, comprising over 14K experimental
setups. 4⃝ Insights: our benchmark provides novel insights into the capabilities of different
HCMs when dealing with different hardness types and offers practical usage tips for researchers and
practitioners. The variability in HCM performance across hardness types underscores the importance
of multi-dimensional evaluation, exposing gaps and opportunities in current HCMs. We hope H-CAT
will promote rigorous HCM evaluations and inspire new advances in data-centric AI.

2 HARDNESS CHARACTERIZATION AND TAXONOMY

We now outline the hardness characterization problem and formalize a hardness taxonomy for HCMs.

Learning problem. Consider the typical supervised learning setting, with X and Y input and
output spaces, respectively. We assume a k-class classification problem, i.e. Y = [k], where
[k] = {1, . . . , k}, with a training dataset D = {(xi, yi) | i ∈ [N ]} with N ∈ N+ samples, where
xi ∈ X and yi ∈ Y . The goal is to learn a model fθ : X → Y , parameterized by θ ∈ Θ.

Hardness problem. To understand the intricacies of data hardness, we start by providing a broad
definition of the hardness problem common to all HCMs. As a starting point, let us frame the hardness
problem in general terms: specifically, some samples or data points are easier for a model to learn
from, whilst others may either be harder to learn from or harm the model’s performance.

Formally, this assumes that the training dataset can be decomposed as D = De ∪ Dh, where De are
easy samples and Dh are hard samples. We denote the corresponding joint distributions as PXY ,
Pe
XY and Ph

XY . Going beyond this general definition to different manifestations of hardness requires
a more rigorous characterization. However, what constitutes a “hard” sample has not been rigorously
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Figure 1: Examples of the hardness types included within our taxonomy and supported by H-CAT. HCMs need
to be comprehensively assessed across different dimensions to quantify their ability to handle different hardness
types we might expect in practice. See Sec. 2.1 for precise definitions of hardness types.

defined in the literature. To address this gap, we first formalize a taxonomy of hardness in Sec. 2.1,
providing a systematic and formal definition of different types of sample-level hardness.

Data characterization. The goal of data characterization is to assign a scalar “hardness” score to each
sample inD, thereby allowing us to order samples inD according to their scores. Typically, a selector
function applies a threshold τ and then assigns a hardness label g ∈G, where G = {Easy,Hard},
to each sample (xi, yi), i.e. assign samples in D to either De or Dh. We refer to these methods as
Hardness Characterization Methods (HCM), having the following input-output paradigm, where
methods differ based on their scoring mechanism:

■ Inputs: (i) Dataset D = {(xi, yi)} drawn from both PXY . (ii) Learning algorithm fθ.
■ Outputs: Assign a score si to sample (xi, yi). Apply threshold τ to assign a hardness label g ∈G,
where G = {Easy,Hard}, which is then used to partition D = De ∪ Dh.

We group the HCMs into broad classes (see Table 1) determined based on the core metric or approach
each method uses to characterize example hardness, namely (1) Learning dynamics-based: relying on
metrics computed during the training process itself to characterize example hardness; (2) Distance-
based: using the distance or similarity of examples in an embedding space; (3) Statistical-based:
using statistical metrics computed over the data to characterize example hardness.

2.1 TAXONOMY OF HARDNESS

Hardness taxonomy formalism. The term “hardness” is broad and can manifest in various ways, as
demonstrated by the different types of hardness previously examined (see Table 1). Therefore, we
must first formalize a taxonomy representative of the different types of hardness we might expect in
practice. Each type of hardness is characterized by a latent or unseen hardness perturbation function
h that creates hard samples Dh from samples in D. We denote hardness perturbations on X as
X → X∗ and Y as Y → Y ∗. The effect of each hardness perturbation is explained in terms of the
relationship between the joint probability distributions P e

XY (x, y) and Ph
XY (x, y).

The taxonomy deals with three broad types (and corresponding subtypes) of hardness: (1) Mislabeling,
(2) OoD/Outlier, and (3) Atypical, as illustrated in Figure 1. We anchor the different hardness
manifestations with respect to relevant literature for each subtype. We define the various types next.

Mislabeling: Samples where the true label is replaced with an incorrect label, such that sample
(x, y)→ (x, y∗). The main distinction between easy and hard samples lies in the label space, leading
to different conditional probability distributions: P e

Y |X(y|x) ̸= Ph
Y |X(y|x). Note, the marginal

probability distributions are the same P e
X(x) = Ph

X(x).

We consider three subtypes of mislabeling: (i) Uniform, (ii) Asymmetric, and (iii) Instance. The HCM
literature primarily focuses on evaluation with a uniform noise model (Paul et al., 2021; Swayamdipta
et al., 2020; Pleiss et al., 2020; Toneva et al., 2019; Maini et al., 2022; Jiang et al., 2021; Mindermann
et al., 2022; Baldock et al., 2021), with equal probability of mislabeling across classes. However,
in reality, mislabeling is often asymmetric, where mislabeling is label-dependent (Northcutt et al.,
2021a; Sukhbaatar et al., 2015) or instance-specific, where certain mislabeling is more likely given
the sample (Jia et al., 2022; Han et al., 2020; Hendrycks et al., 2018; Song et al., 2022). For example,
mislabeling an image of a car as a truck is more likely than mislabeling a car as a dog.

Formally, the subtypes differ in their noise models to perturb the true labels, defined by the probabili-
ties P (Y ∗ = j|Y = i), where i and j are the true and perturbed labels, respectively.

• Uniform: P (Y ∗ = j|Y = i) = 1/k−1 ∀i, j ∈ [k], i ̸= j

• Asymmetric: P (Y ∗ = j|Y = i) = pij ∀i, j ∈ [k], i ̸= j

}
Instance Independent

• Instance: P (Y ∗ = j|Y = i,X = x) = pij(x) ∀i, j ∈ [k], i ̸= j } Instance Dependent
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Table 1: HCMs, even in similar classes, are often (1) not quantitatively evaluated and (2) assess different
hardness types. The tick and cross denote if quantitative and in brackets qualitative evaluation was performed,
e.g. ✗(✔) - not quantitative (qualitative). For HCM descriptions, see Appendix A.

Mislabeling OoD/Outlier Atypical
HCM Class HCM Name Uniform Asymmetric Instance Near OoD Far OoD Long-tail
Learning-based
(Margin) AUM (Pleiss et al., 2020) ✔(✔) ✔(✔) ✗(✗) ✗(✔) ✗(✗) ✗(✗)

Learning-based
(Uncertainty)

Data Maps (Swayamdipta et al., 2020) ✗(✔) ✗(✗) ✗(✗) ✗(✗) ✗(✗) ✗(✗)
Data-IQ (Seedat et al., 2022a) ✗(✔) ✗(✗) ✗(✗) ✗(✗) ✗(✗) ✗(✔)

Learning-based
(Loss)

Small-Loss (Xia et al., 2021) ✗(✔) ✗(✔) ✗(✔) ✗(✗) ✗(✗) ✗(✔)
Action scores (Arriaga et al., 2023) ✔(✔) ✗(✗) ✗(✗) ✗(✗) ✗(✗) ✗(✔)
RHO-Loss (Mindermann et al., 2022) ✗(✔) ✗(✗) ✗(✗) ✗(✗) ✗(✗) ✗(✔)

Learning-based
(Gradient)

GraNd (Paul et al., 2021) ✗(✔) ✗(✗) ✗(✗) ✗(✔) ✗(✗) ✗(✔)
VoG (Agarwal et al., 2022) ✗(✗) ✗(✗) ✗(✗) ✔(✔) ✗(✗) ✗(✔)

Learning-based
(Forgetting)

Forgetting Scores (Toneva et al., 2019) ✗(✔) ✗(✗) ✗(✗) ✗(✔) ✗(✗) ✗(✔)
SSFT (Maini et al., 2022) ✔(✔) ✗(✗) ✗(✗) ✗(✗) ✗(✗) ✗(✔)

Learning-based
(Statistics)

Detector (Jia et al., 2022) ✔(✔) ✗(✗) ✗(✗) ✗(✗) ✗(✗) ✗(✗)
EL2N (Paul et al., 2021) ✗(✔) ✗(✗) ✗(✗) ✗(✔) ✗(✗) ✗(✔)

Distance-based Prototypicality (Sorscher et al., 2022) ✗(✗) ✗(✗) ✗(✗) ✗(✔) ✗(✗) ✗(✗)
Information theory PVI (Ethayarajh et al., 2022) ✗(✔) ✗(✗) ✗(✗) ✗(✗) ✗(✗) ✗(✗)

Statistical-based

Cleanlab (Northcutt et al., 2021a) ✗(✗) ✔(✔) ✔(✔) ✗(✗) ✗(✗) ✗(✗)
ALLSH (Zhang et al., 2022) ✗(✗) ✗(✗) ✗(✗) ✗(✗) ✗(✗) ✗(✗)
Agreement (Carlini et al., 2019) ✗(✗) ✗(✗) ✗(✗) ✗(✔) ✗(✗) ✗(✔)
Data Shapley (Ghorbani & Zou, 2019) ✔(✔) ✗(✗) ✗(✗) ✔(✔) ✗(✗) ✗(✗)

OoD/Outlier: Samples where the covariates undergo a transformation/shift, such that sample
(x, y)→ (x∗, y). The distinction between easy and hard samples lies in the feature space, leading
to different marginal probability distributions P e

X(x) ̸= Ph
X(x). Further, for any subset S within

the support of PX , Ph
X(S) = 0. Note, conditional probability distributions remain consistent where

P e
Y |X(y|x) = Ph

Y |X(y|x). We consider two subtypes differing in degree of shift, for clarity denoted
by an arbitrary distance measure between distributions dist(·, ·).
• Near OoD (Anirudh & Thiagarajan, 2023; Mu & Gilmer, 2019; Hendrycks & Dietterich, 2018;

Sun et al., 2023b; Yang et al., 2023; Tian et al., 2021): samples which have their features
transformed or shifted such that they remain proximal to the original samples inD, e.g, introducing
noise, pixelating an image, or adding subtle texture changes. In this case, dist(Ph

X , PX) is positive
but relatively small, indicating the nearness of the perturbed distribution to the original. We can
represent this bounded distance such that 0 < dist(Ph

X , PX) ≤ ϵ, with ϵ > 0.

• Far OoD (Mukhoti et al., 2022; Winkens et al., 2020; Graham et al., 2022; Yang et al., 2023):
samples which are distinct and likely unrelated to samples in D, often not belonging to the same
data-generating process. This could be by sampling from a different dataset or a perturbation s.t.
dist(Ph

X , PX) is significantly large, i.e. dist(Ph
X , PX)≫ ϵ. For example, for a dataset of digits,

images of dogs or cats are distinctly different and unrelated. They are not just rare occurrences
but images of dogs or cats represent a different data generation process compared to the digits.

Atypical: Samples that, although rare, are still valid instances deviating from common patterns
(Yuksekgonul et al., 2023). Atypical samples are inherently part of the primary data distribution,
but located in its long tail or less frequent regions (Feldman, 2020; Hooker et al., 2019; Hooker,
2021; Agarwal et al., 2022). The distinction between easy and hard samples leads to different
marginal probability distributions P e

X(x) ̸= Ph
X(x), where Ph

X(x) is very small, highlighting their
rarity or infrequency. Here, for any subset S within the support of PX , P

h
X(S) > 0. This signifies

that the long-tail samples, though rarer in occurrence, are still within the bounds of the primary
data-generating process. For example, these could be images with atypical variations or vantage
points compared to the standard pattern (Agarwal et al., 2022).

Contrasting OoD/Outlier and Atypical. Both have different marginal probability distributions
P e
X(x) ̸= Ph

X(x). The difference is that OoD/Outliers come from a shifted or completely different
distribution than the original data, falling outside the support of PX . In contrast, atypical samples are
rare samples from the tails and could naturally arise, falling within the support of PX .

From a practitioner’s standpoint, these distinctions can dictate different courses of action. OoD/out-
liers represent likely anomalies or errors that we should detect for potential sculpting or filtering from
the dataset. In contrast, atypical samples are rare cases deviating from the “norm”, with no or limited
similar examples. They are still valid points and should not necessarily be discarded; in fact, there
might be a need to gather more of such samples. The goal of surfacing atypical samples is both for
dataset auditing and understanding edge cases. We provide additional example images to provide
further intuition of the difference between OoD and Atypical in Appendix A, Fig. 3.
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dc = MultiFormatDataLoader(data=train_dataset,
                                        'uniform', p,
                                        **params)
data_loader = dc.get_dataloader()

trainer = PyTorchTrainer(model=model,
                                         **params)

trainer.fit(data_loader)

hcm_scores = trainer.get_hardness_methods()
eval = Evaluator(hardness_dict=hcm_scores,
                            flag_ids=labels, p=p)
eval.compute_results()

Figure 2: H-CAT facilitates comprehensive benchmarking of HCMs for multiple hardness types. Examples of
the single-chain API workflow is shown below — with example usage in Appendix C. The modules described in
Sec. 3 are easily extended to new HCMs, datasets, or evaluation metrics

2.2 GAPS AND LIMITATIONS OF CURRENT HCMS WITHIN OUR TAXONOMY

To provide a more comprehensive perspective, we critically analyze various HCMs within our
proposed taxonomy. Alarmingly, we find inconsistent and diverse definitions of “hardness”, even
within the same class of methods (refer to Table 1). Such discrepancies, as evidenced by their
experimental evaluations, point to a challenge: HCMs, despite appearing to measure similar constructs,
in fact, evaluate different “hardness” dimensions. Table 1 highlights two critical deficiencies discussed
below, underscoring the urgent need for a systematic evaluation framework that accurately captures
the scope and applicability of each HCM across different hardness types.

Issue 1: Qualitative or indirect measures. Many HCMs limit their evaluation to (i) qualitative
analyses: merely showcasing flagged samples, or (ii) indirect measures: for example, showing
downstream performance improved when removing flagged samples without directly quantifying
what the HCM captures. This overlooks the necessity for an objective, quantitative evaluation.

Issue 2: Narrow and unrepresentative scope. HCMs that conduct quantitative evaluation focus on
a single hardness type and often target the simplest manifestation. An example of this shortfall is
seen in the handling of mislabeling. Many HCMs only focus on uniform mislabeling, thereby failing
to account for the more realistic and complex scenarios of asymmetric or instance-wise mislabeling.
Beyond this, many HCMs only test on mislabeling, overlooking other types of hardness.

These limitations emphasize the value of our fine-grained taxonomy in categorizing and evaluating
various hardness types. By laying a solid foundation for the systematic evaluation and comparison of
HCMs, our taxonomy enables the design and selection of HCMs that are tailored to specific hardness
challenges, thereby promoting the development of more robust ML systems.

3 H-CAT: A BENCHMARKING FRAMEWORK FOR HCMS

To address the aforementioned limitations and facilitate benchmarking of HCMs, we propose the
Hardness Characterization Analysis Toolkit (H-CAT). H-CAT serves two purposes: (1) empirical
benchmarking standard: supporting comprehensive and quantitative benchmarking of HCMs on
different hardness types within the taxonomy across multiple data modalities and (2) software toolkit:
H-CAT unifies multiple HCMs under a single unified interface for easy usage by practitioners.

H-CAT Design. H-CAT has four core modules as described below, which are called sequentially (Fig-
ure 2). The framework follows widely adopted objected-oriented paradigms with fit-predict interfaces
(here, update-score). The workflow is simple with single-chain API calls. The stepwise composability
aims to facilitate easy benchmarking and allows H-CAT to be used outside of benchmarking as a data
characterization tool by practitioners.
• Dataloader module: loads a variety of data types for ease of use, including Torch datasets, NumPy

arrays, and Pandas DataFrames, allowing users to easily use H-CAT with their chosen datasets.
• Hardness module: generates controllable hardness for different hardness types in the taxonomy.
• HCM module: provides a unified HCM interface with 13 HCMs implemented. It wraps the trainer

module which is a conventional PyTorch training loop.
• Evaluator module: computes the HCM evaluation metrics to correctly identify the ground-truth

hard samples using the scores provided by each HCM. User-specified metrics can easily be included
by operating on the raw HCM scores.

Extensibility. H-CAT is easily extendable to include new HCMs, hardness types, or datasets by
defining a simple wrapper class. For details and step-by-step code examples, refer to Appendix C.

5



Published as a conference paper at ICLR 2024

4 BENCHMARKING FRAMEWORK SETUP

We now describe three key aspects of the benchmarking setup — the implementation of the Hardness
Module, HCM Module and Evaluator Module.

4.1 HARDNESS MODULE

We describe the implementation of our hardness perturbations h. We focus on image data here, as
most HCMs (10/13) have been developed for this modality. However, we discuss the corresponding
hardness perturbations for tabular data in the Appendix.

Mislabeling: (i) Uniform: random mislabeling, drawn uniformly from all possible class labels. (ii)
Asymmetric: random mislabeling, drawn asymmetrically via a Dirichlet distribution (Zhang et al.,
2021; Bae et al., 2022; Zhu et al., 2022). We denote a special case of asymmetric applicable to ordinal
labels, namely adjacent. Here, the mislabeling is to the nearest numerical class, e.g. an MNIST digit
3 mislabeled as 2 or 4. (iii) Instance: mislabeling probability is conditioned on an instance (reflecting
human mislabeling). This can often be determined by domain/user knowledge, e.g. for MNIST, 1 is
likely mislabeled as 7; for CIFAR-10, an automobile could be mislabeled as a truck.

Near-OOD Far-OOD AtypicalEasy

Figure 3: Examples providing intuition on the differ-
ence between OoD and Atypical.

OoD/Outlier: (i) Near OoD: pertubed data is
different but related. Covariate Shift via Gaus-
sian noise as performed in MNIST-C (Mu &
Gilmer, 2019) or Domain Shift: image texture
from the original photographic image is changed
via edge detection and smoothing (Median fil-
ter). (ii) Far OoD: perturbed data is distinctly
different and unrelated. We replace a subset of
data with unrelated data, e.g. for MNIST replace
with CIFAR-10 images and vice versa.

Atypical: (i) Shift: translate and shift the image, causing portions to be cut off in an atypical manner.
(ii) Zoom: create an atypical perspective by magnifying (X2) features usually seen at a smaller scale.
4.2 HCM MODULE

We include 13 widely used HCMs applicable to supervised classification under a unified interface.
The HCMs span the range of HCM classes, at least one per class from Table 1: ■ Learning-based1

(Uncertainty): Data Maps (Swayamdipta et al., 2020) and Data-IQ (Seedat et al., 2022a); ■ Learning-
based (Loss): Sample-Loss (Xia et al., 2021; Arriaga et al., 2023) ; ■ Learning-based (Margin):
Area-under-the-margin (AUM) (Pleiss et al., 2020); ■ Learning-based (Gradient): GraNd (Paul
et al., 2021) and VoG (Agarwal et al., 2022); ■ Learning-based (Statistics): EL2N (Paul et al., 2021)
and Noise detector (Jia et al., 2022), ■ Learning-based (Forgetting): Forgetting scores (Toneva
et al., 2019); ■ Statistical measures: Cleanlab (Northcutt et al., 2021a), ALLSH (Zhang et al., 2022),
Agreement (Carlini et al., 2019); ■ Distance-based: Prototypicality (Sorscher et al., 2022).

Specifically, we focus on HCMs that plug into the training loop and do not: (i) alter training, (ii)
require repeated training, (iii) need additional datasets beyond the training set, or (iv) require training
additional models. Consequently, we exclude the following: RHO-Loss (Mindermann et al., 2022)
requires an additional irreducible loss model, SSFT (Maini et al., 2022) requires fine-tuning on a
validation dataset, PVI (Ethayarajh et al., 2022) requires training a Null model. We also do not
consider Data Shapley (Ghorbani & Zou, 2019) and variants (e.g. Beta Shapley (Kwon & Zou,
2022)), which have been shown to be computationally infeasible with numerical instabilities for
higher dimensional data such as MNIST and CIFAR-10 with > 1000 samples (Wang & Jia, 2023).
4.3 EVALUATOR MODULE

We directly assess the HCM’s capability to detect the hard samples. Recall that HCMs assign a
score s to each sample (x, y) and then apply a threshold τ to assign samples a group g ∈G, where
G = {Easy,Hard}. Many HCMs do not explicitly state how to define τ ; hence to account for this
we compute two widely used metrics: AUPRC (Area Under Precision-Recall Curve) and AUROC
(Area Under Receiver Operating Curve) — for hard sample detection performance, which we denote
D-AUPRC and D-AUROC 2. User-specified metrics are easily computed on raw HCM scores.

1Learning-based generally refers to learning/training dynamics based HCMs
2to distinguish them from the typical downstream performance metrics.
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5 COMPREHENSIVE EVALUATION OF HCMS USING H-CAT

We evaluate 13 different HCMs (spanning a range of techniques) across 8 distinct hardness types. To
the best of our knowledge, this represents the first comprehensive HCM evaluation, encompassing
over 14K experimental setups (specific combination of HCM, hardness type, perturbation proportion,
dataset, model, and seed).

We primarily focus on image datasets, as this is the modality for which the majority of the HCMs
(10/13) have been developed. We use the MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky
et al.) datasets, as their use is well-established in the HCM literature (Paul et al., 2021; Swayamdipta
et al., 2020; Pleiss et al., 2020; Toneva et al., 2019; Maini et al., 2022; Jiang et al., 2021; Mindermann
et al., 2022; Baldock et al., 2021). Importantly, they are realistic images yet contain almost no/little
mislabeling (<0.5%) (Northcutt et al., 2021b). This contrasts other common image datasets like
ImageNet that contain significant mislabeling (over 5%), hence we cannot perform controlled
experiments. Furthermore, to show generalizability across modalities, we also evaluate on tabular
datasets “Covertype” and “Diabetes130US” benchmark datasets (Grinsztajn et al., 2022) from
OpenML (Vanschoren et al., 2014) (see Appendix D.6).

To assess HCM sensitivity to the backbone model, we use two different models for our image
experiments with different degrees of parameterization, LeNet and ResNet-18. All experiments are
repeated with 3 random seeds and for varying proportions p of hard samples.

We present aggregated results in Figs. 4-7, with more granular results in Appendix D — along with
additional experiments. The main paper shows results for 6 out of 8 hardness types. We include
results for other sub-types not covered in the main paper in Appendix D including: Domain shift (a
type of Near OoD), Zoom shift (a type of Atypical), and Adjacent (a special case of Asymmetric
mislabeling), offering similar conclusions. We investigate three aspects of HCMs (A-C), distilling
the results into benchmarking takeaways and practical tips.

A. Hardness detection performance. Directly evaluate HCM capabilities to detect the hard
samples for different hardness types, for varying perturbation proportions p – see Fig. 4.
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Figure 4: D-AUPRC for different HCMs for different hardness types aggregated across setups. We
vary the proportion perturbed, i.e. the proportion of hard examples. Blue is better, red worse. We see
variability of HCM capabilities across hardness types and proportions.

Takeaway A1: Comprehensive testing is vital. Many HCMs are assessed on a single hardness type.
The reality is hardness manifests in many ways. We show HCM performance varies across hardness
types and across proportions of hardness, with some more challenging than others, e.g. instance is
harder than uniform. This result shows the critical need for comprehensive HCM evaluation.

Takeaway A2: Hardness types vary in difficulty. We find that different types of hardness are
easier or harder to characterize. For instance, uniform mislabeling or Far-OoD are much easier than
data-specific hardness like instance and Atypical. Given the performance differences of HCMs on
different hardness types, it becomes important to understand the hardness type expected in practice.
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Takeaway A3: Learning dynamics-based methods with respect to output confidence are
effective general-purpose HCMs. In selecting a general-purpose HCM, we find that HCMs that
characterize samples using learning dynamics on the confidence — uncertainty-based methods, which
use probabilities (DataMaps, Data-IQ) or logits (AUM), are the best performing in terms of AUPRC
across the board.

Takeaway A4: HCMs typically used for computational efficiency are surprisingly uncompeti-
tive. We find that HCMs that leverage gradient changes (e.g. GraNd), typically used for selection to
improve computational efficiency, fare well at low p. However, at higher p, they become notably less
competitive compared to simpler and computationally cheaper methods.

Practical Tip A1: HCMs should only be used when hardness proportions are low. In general,
different HCMs have significantly reduced performance at higher proportions of hardness. This is
expected as we get closer to 0.5 since it’s harder to identify a clear difference between samples.

B. Rankings and Statistical Significance. Compare the ranking of methods, as well as assess
statistical significance of performance differences using critical difference diagrams (CD diagram)
(Demšar, 2006) based on the Siegel-Friedman method (p ≤ 0.05) — see Figs. 5 and 6.
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Figure 5: Performance rankings of HCMs vary depending on the hardness type.
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Figure 6: Critical difference diagrams highlight that similar categories/classes of HCMs do not have a
statistically significant difference in their performance, indicated by the horizontal black lines linking
HCMs which are not statistically different. The numbers in brackets denote mean rank.

Takeaway B1: Individual HCMs within a broad “class” of methods are NOT statistically
different. We find from the critical difference diagrams that methods falling into the same class of
characterization are not statistically significant from one another (based on the black connected lines),
despite the minor performance differences between them. Hence, practitioners should select an HCM
within the broad HCM class most suitable for the application.

Practical Tip B1: Selecting an HCM based on the hardness is useful. We find that confidence is
a good general-purpose tool if one does not know the type of hardness. However, if one knows the
hardness, one can better select the HCM. For example, Prototypicality, as expected, is very strong on
instance hardness as we are able to match samples via similarity of classes in embedding space.
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Practical Tip B2: Divergence and distance-based methods are suitable primarily for distribu-
tional changes. Divergence and distance-based methods such as ALLSH and Prototypicality should
primarily be used if the hardness is with respect to a shift of the data itself rather than mislabeling.

C. Stability/Consistency. The rank ordering of samples is important in data characterization
(Maini et al., 2022; Wang & Jia, 2023; Seedat et al., 2022a). Hence, we desire HCM scores to be
stable to ensure consistent insights. As is standard (Maini et al., 2022; Seedat et al., 2022a), we
compute the Spearman rank correlation across multiple runs — see Fig. 7. We also assess HCM
stability/consistency across backbone models and parameterizations in Appendix D.
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Figure 7: Certain classes of HCMs are more stable and consistent than others (retaining rank order),
with higher Spearman rank correlations for multiple runs of the HCM on the same data

Takeaway C1: Learning dynamics-based HCMs using output metrics or distance-based
HCMs are most stable and consistent. We find across all hardness types that the Spearman
rank correlation is highest for HCMs that use learning dynamics on the outputs or use distance
measures — specifically Uncertainty (Probabilities), Margins (Logits), Loss, or Prototypicality. The
low correlation for other HCMs highlights sensitivity to the run itself when characterizing data, which
would lead to inconsistent ordering.

Takeaway C2: Insights consistent across backbone models & parameterizations. As shown in
Appendix D, we find similar results (as above) for the Spearman rank correlation of HCM scores
across different backbone models and parameterizations. As the scores are consistent, this indicates
that the findings and insights computed on those scores will also be consistent, i.e. those HCMs
which were the most stable and consistent remain the most stable and consistent.

Practical Tip C1: Select a stable HCM. Certain HCMs are more sensitive to randomness. Hence, it
is advised to select stable and consistent HCMs (higher Spearman correlation) to avoid such effects.

6 DISCUSSION

We introduce H-CAT, a comprehensive benchmarking framework for hardness characterization in
data-centric AI. We analyzed 13 HCMs spanning a range of techniques for a variety of setups - over
14K. We hope our framework and insights addressing calls for rigorous benchmarking (Guyon, 2022)
and understanding of existing ML methods (Lipton & Steinhardt, 2019; Snoek et al., 2018) will spur
advancements in data-centric AI and that H-CAT helps practitioners better evaluate and use HCMs.

Limitations & Future Work. No benchmark can exhaustively test all the possible hardness manifes-
tations and this work is no different. However, we cover multiple instances from the three fundamental
types of hardness, which is significantly broader than any prior work. Building on this work, future
research could investigate cases where multiple types of “hardness” manifest simultaneously (e.g.
Near-OoD and mislabeling together) or where hardness is continuous rather than binary. To spur this,
we provide an example of simultaneous hardness in Appendix D. From a usage perspective, future
work could also look into the best way hardness scores could be used to guide better model training
(e.g. data curriculum). Finally, we highlight that HCMs, and by extension H-CAT, cannot tell you
which hardness type exists in a dataset; rather, H-CAT serves to benchmark the capabilities of HCMs
or as a unified HCM interface.
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