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Abstract
The role of Artificial Intelligence (AI) is grow-
ing in every stage of drug development. Nev-
ertheless, a major challenge in drug discovery
AI remains: Drug pharmacokinetic (PK) datasets
collected in different studies often exhibit lim-
ited overlap, creating data overlap sparsity. Thus,
data curation becomes difficult, negatively im-
pacting downstream research investigations in
high-throughput screening, polypharmacy, and
drug combination. We propose Imagand, a novel
SMILES-to-Pharmacokinetic (S2PK) diffusion
model capable of generating an array of PK target
properties conditioned on SMILES inputs that ex-
hibit data overlap sparsity. We show that Imagand-
generated synthetic PK data closely resembles
real data univariate and bivariate distributions, and
can adequately fill in gaps among PK datasets. As
such, Imagand is a promising solution for data
overlap sparsity and may improve performance
for downstream drug discovery research tasks.
Code available at: https://github.com/
GenerativeDrugDiscovery/imagand

1. Introduction
Generative AI is set to transform drug discovery, where it
may cost $2-3 billion dollars and 10-15 years to bring a
single drug candidate to market (Kim et al., 2021). Gen-
erative AI for high-throughput screening (HTS) of ligand
candidates reduces drug development costs and is chang-
ing how ligands are designed and tested (Pushpakom et al.,
2019). Initial success of drug discovery AI has been in drug
repurposing (Thafar et al., 2022; Morselli Gysi et al., 2021),
drug-target interaction (Lian et al., 2021), drug response
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prediction (Pouryahya et al., 2022), poly-pharmacy (Žitnik
et al., 2015), and the generation of synthetic ligands and
drug properties (Vignac et al., 2023; Hu et al., 2024). Thus
far, what has advanced drug discovery AI is a continued
effort towards open data for training and testing (Huang
et al., 2021; Brown et al., 2019; Gaulton et al., 2017).

Data collection for drug discovery through assay panels is
expensive and time-consuming. Although there are clear
advances toward standardization and dissemination of pre-
clinical, clinical, and chemical datasets (Kim et al., 2023;
Huang et al., 2021; Nusinow et al., 2020), challenges arise
when merging and linking these datasets together (Scoarta
et al., 2023). Collected independently, drug discovery
datasets often have limited overlap, which poses a chal-
lenge for researchers looking to answer research questions
requiring data from multiple datasets. One notable exam-
ple is the study of drug combinations and polypharmacy
(Scoarta et al., 2023).

Recent advances in drug discovery AI have utilized De-
noising Diffusion Probabilistic Models (DDPMs) (Ho et al.,
2020), which yield a new class of diffusion models capable
of generating ligand structures (Guo et al., 2023; Vignac
et al., 2023; Wu et al., 2022; Igashov et al., 2022). Hu et al.
(2024) have shown that diffusion models can generate phar-
macokinetic (PK) properties alongside the ligand diffusion
pipeline with promising results. Inspired by these advances,
we propose Imagand, which can generate 12 PK target prop-
erties from 10 PK datasets conditioned on learned SMILES
embeddings. Specifically, our contributions are as follows:

• We propose Imagand, a novel multi-modal SMILES-
to-Pharmacokinetic (S2PK) diffusion model capable
of generating an array of target properties conditioned
on learned SMILES embeddings.

• We develop a noise model that creates a prior distri-
bution closer to the true data distribution, improving
performance.

• We show that synthetic data generated from our Ima-
gand model has univariate and bivariate distributions
closely matching the real data and improves machine
learning efficiency.

1

https://github.com/GenerativeDrugDiscovery/imagand
https://github.com/GenerativeDrugDiscovery/imagand


SMILES-to-Pharmacokinetics Diffusion with Deep Molecular Understanding

Notably, Imagand generates dense synthetic data that over-
comes the challenges of sparse PK datasets with limited
overlap. Using Imagand, researchers can generate large
synthetic PK assays over thousands of ligands to answer
poly-pharmacy and drug combination research questions at
a fraction of the cost of conducting in vitro or in vivo PK
assay panels.

2. Background
Diffusion methods use families of probability distributions
to model complex datasets for computationally tractable
learning, sampling, inference and evaluation (Guo et al.,
2023). Denoising Diffusion Probabilistic Models (DDPM)
(Ho et al., 2020) first systematically destroy the structure
in the data through a forward process, and then in a reverse
process, learn how to restore the structure in the data from
noise. Recent literature has covered many advances in small-
molecule generation using diffusion models (Huang et al.,
2023; Hoogeboom et al., 2022; Satorras et al., 2021; Vignac
et al., 2023).

PK broadly describes what the body does to a drug regarding
absorption (how the body absorbs the drug), bioavailabil-
ity (the extent the active drug enters circulation), distribu-
tion (how the drug distributes in tissue), metabolism (how
the body breaks down the drug), and excretion (how the
drug is removed from the body). As issues related to PK
properties are the primary drivers for compound attrition
for small-molecule drug development (Kola, 2008), accu-
rate PK computational tools are critical and have advanced
in recent times (Waring et al., 2015; Davies et al., 2020;
Ahmed et al., 2021). Physiologically-based pharmacoki-
netics (PBPK) offers the modelling of PK properties using
mathematical equations representing the human body (Sager
et al., 2015). PBPK rely on expensive in-vitro and in-vivo
human and animal experiments and cannot be utilized in
high-throughput screening across large numbers of ligands
(10K to 100K drugs per day) (Obrezanova, 2023).

Extending many PK properties across large arrays of lig-
ands can be costly given the expense associated with data
collection for drugs. Consequently, oftentimes only small
sets of ligands can be feasibly tested for target property
data collection studies, leading to minimal overlap between
collected datasets (Scoarta et al., 2023). Comparing the 11
PK datasets we use in this study, Table 1 shows the minimal
overlap sparsity between all of the datasets. This challenge
poses barriers for scientists interested in answering research
questions requiring data across multiple datasets, such as in
poly-pharmacy and drug combination research.

3. Methodology
The choice of noise models for noising in diffusion models
may have a substantial impact on performance; using a prior
distribution close to the true data distribution can make
training easier (Vignac et al., 2023). As PK properties do
not always follow a Gaussian or uniform noise model, we
propose a noise model called Discrete Local Gaussian Noise
(DLGN).

3.1. Discrete Local Gaussian Sampling

Discrete local gaussian (DLG) sampling is based on prin-
ciples of inverse transform sampling. Inverse transform
sampling is a method for sampling from any probability
distribution given its cumulative distribution function. For
any variable X ∈ R, the random variable F−1

X (U) has the
same distribution as X , where F−1

X is the generalized in-
verse of the cumulative distribution function FX of X and
U ∼ Unif [0, 1].

As the true distribution is not always available, Discrete
Local Gaussian Sampling DLGS looks to discretely approx-
imate the cumulative distribution function by combining
binning and Gaussian noise given by Theorem 3.1 (with
proof Theorem A). Given N bins, a discrete cumulative
distribution function F̂−1

XN
can be constructed. With σ as a

scaling factor, we can then define DLG sampling ϕ(X = x)
as:

ϕ(X = x) := N (x; F̂−1
XN

(U),
σ

N2
I) (1)

Theorem 3.1. Let DKL(P ||Q) be the Kullback-Leibler
(KL) divergence for a model probability distribution Q and
the true probability distribution P . For any distribution X ,
we then have:

limN→∞ DKL(X || ϕ(X = x)) = 0

3.2. Imagand Model

Imagand is an S2PK diffusion model conditioned on learned
SMILES embeddings from SMILES encoder models to
generate target PK properties. Imagand improves accuracy
by training a diffusion process (Ho et al., 2020) utilizing
custom noise models.

3.2.1. DIFFUSION MODEL

Given samples from a data distribution q(x0), we are in-
terested in learning a model distribution pθ(x0) that ap-
proximates q(x0) and is easy to sample from. Ho et al.
(2020) considers the following Markov chain with Gaus-
sian transitions parameterized by a decreasing sequence
α1:T ∈ (0, 1]T :

q(x1:T |x0) := N (x1:T |
√
α1:Tx0, (1− α1:T )I) (2)
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Figure 1. Model overview. Patches are generated from SMILES
Embeddings combined with PK embeddings. The patches are then
fed along with step embeddings into the base transformer model.
A regression MLP head is used to produce the necessary output
for denoising.

This is called the forward process, whereas the latent vari-
able model pθ(x0:T ) is the generative process, approximat-
ing the reverse process q(xt−1|xt). The forward process of
xt can be expressed as a linear combination of x0 and noise
variable ϵ:

xt =
√
αtx0 +

√
1− αtϵ (3)

We experiment with noise models ϵ, testing with Average,
Uniform, Gaussian, and DLG sampling approaches. Empiri-
cally, from our ablation studies, we find that DLG sampling
improves performance over other noise models, as it better
approximates the original data. We train with the simplified
objective:

L(ϵθ) :=

T∑
t=1

Ex0∼q(x0),ϵt [||ϵ
(t)
θ (xt)− ϵt||22] (4)

Where ϵθ := {ϵ(t)θ }Tt=1 is a set of T functions, indexed by t,
each with trainable parameters θ(t). Convergence analysis
of utilizing DLG sampling as a noise model is provided in
Appendix C.

3.2.2. ARCHITECTURE

Imagand resembles a typical vision transformer architecture
(Dosovitskiy et al., 2021); see Figure 1. 1D patches are
computed from the classifier-free guidance of SMILES em-
beddings and concatenated with PK class tokens. Diffusion
step embeddings are generated using sinusoidal position
encodings (Vaswani et al., 2023). Patches are then fed
alongside sinusoidal step embeddings (Ho et al., 2021) to a
transformer base. We mask out missing values when com-
puting the loss for the model only to flow gradients and learn
from non-missing PK values during training. Exponential
Moving Average (EMA) (Tarvainen & Valpola, 2018) is
applied to the base model during training to generate the
final model used for sampling.

3.3. Pre-trained SMILES Encoder

S2PK diffusion models need powerful semantic SMILE en-
coders to capture the complexity of arbitrary chemical struc-
ture inputs. Given the sparsity and small size of PK datasets,
encoders trained on specific SMILES-Pharmacokinetic pairs
are infeasible (Huang et al., 2021). Many transformer-based
foundational models such as ChemBERTa (Chithrananda
et al., 2020; Ahmad et al., 2022), SMILES-BERT (Wang
et al., 2019), and MOLGPT (Bagal et al., 2021) have been
pre-trained to deeply understand molecular and chemical
structures and properties. After pre-training, these founda-
tional models can then be fine-tuned for various downstream
molecular tasks. Language models trained on SMILES-only
corpus, significantly larger than SMILES-Pharmacokinetic
data, learn a richer and wider distribution of molecular and
chemical structures.

We test SMILES embeddings from ChemBERTa (Ahmad
et al., 2022), T5 (Raffel et al., 2023), and DeBERTa (He
et al., 2021) trained on SMILES-only corpora. We fur-
ther test and compare embedding performance for SMILES
embedding from ChemBERTa trained either on ZINC
(100K molecules) (Irwin & Shoichet, 2005) or PubChem
(10M molecules) (Kim et al., 2023) SMILES corpora. All
SMILES embedding models were collected through the
Huggingface (Wolf et al., 2020) Model Hub. As Chem-
BERTa, T5, and DeBERTa are all trained on a wide array
of SMILES, embeddings from these models are an effective
way to inject deep molecular understanding into our diffu-
sion model. Similar to Saharia et al. (2022), we freeze the
weights of our embedding models. Because embeddings are
computed offline, freezing the weights minimizes compu-
tation and memory footprint for embeddings during model
training.

3.3.1. CLASSIFIER-FREE GUIDANCE

Classifier guidance uses gradients from a pre-trained model
to improve quality while reducing diversity in conditional
diffusion models during sampling (Dhariwal & Nichol,
2021). Classifier-free guidance (Ho & Salimans, 2022) is an
alternative technique that avoids this pre-trained model by
jointly training a diffusion model on conditional and uncon-
ditional objectives via dropping the condition (i.e. with 10%
probability). We condition all diffusion models on learned
SMILES embedding and sinusoidal time embeddings using
classifier-free guidance through dropout (Ho & Salimans,
2022; Srivastava et al., 2014).

4. Experiments
In the following, we describe the model training details
and compare our synthetic data to real data, in terms of ma-
chine learning efficiency (MLE) and univariate and bivariate
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Data Overlap Cardinality 1 2 3 4 5 6 7 8 9 10 11
Number of Data Points 322235 3598 404 1110 34 105 27 4 14 2 0

Table 1. Number of data points for each data overlap cardinality over 11 PK datasets. Data overlap cardinality represents the number of
datasets a data point is in. The number of data points in data overlap cardinality 1 represents the number of data points only in one of
the 11 PK datasets. As data overlap cardinality increases, the number of data points greatly drops, describing the data overlap sparsity
phenomenon. This lack of data negatively impacts downstream research investigations in high-throughput screening, poly-pharmacy, and
drug combination.

statistical distributions. We then discuss ablation studies
and key findings. The metrics for MLE, univariate, and
bivariate evaluations are further defined in their respective
subsections.

We compare Imagand with baselines of Conditional GAN
(cGAN) (Mirza & Osindero, 2014) and Syngand (Hu et al.,
2024). Similar to in Imagand, SMILES-embeddings from a
pre-trained T5 model are used conditionally by the cGAN
model to generate PK properties as output for a specific
drug. Additional training details and baseline results are
provided in Appendix B and Appendix D.

4.1. Pharmacokinetic Datasets

All 11 PK datasets are collected from TDCommons (Huang
et al., 2021). We select PK datasets suitable for regression
from the absorption, distribution, metabolism, and excretion
(ADME) and Toxicity categories. Looking over 11 PK
datasets for target property screening, Table 1 shows data
overlap sparsity as the data overlap cardinality increases,
the number of data points greatly drops.

Caco-2 (Wang et al., 2016) is an absorption dataset con-
taining rates of 906 drugs passing through the Caco-2 cells,
approximating the rate at which the drugs permeate through
the human intestinal tissue. Lipophilicity (Wu et al., 2018)
is an absorption dataset that measures the ability of 4,200
drugs to dissolve in a lipid (e.g. fats, oils) environment.
AqSolDB (Sorkun et al., 2019) is an absorption dataset
that measures the ability of 9,982 drugs to dissolve in water.
FreeSolv (Mobley & Guthrie, 2014) is an absorption dataset
that measures the experimental and calculated hydration-
free energy of 642 drugs in water.

Plasma Protein Binding Rate (PPBR) (Wenlock &
Tomkinson, 2016) is a distribution dataset of percentages
for 1,614 drugs on how they bind to plasma proteins in
the blood. Volume of Distribution at steady state (VDss)
(Lombardo & Jing, 2016) is a distribution dataset that mea-
sures the degree for 1,130 drugs on their concentration in
body tissue compared to their concentration in blood.

Half Life (Obach et al., 2008) is an excretion dataset for
667 drugs on the duration for the concentration of the drug
in the body to be reduced by half. Clearance (Di et al.,
2012) is an excretion dataset for around 1,050 drugs on

two clearance experiment types, microsome and hepatocyte.
Drug clearance is defined as the volume of plasma cleared
of a drug over a specified time (Huang et al., 2021).

Acute Toxicity (LD50) (Zhu et al., 2009) is a toxicity
dataset that measures the most conservative dose for 7,385
drugs that can lead to lethal adverse effects. hERG Cen-
tral (Du et al., 2011) is a toxicity dataset that measure the
blocking of Human ether-à-go-go related gene (hERG) for
306,893 drugs. hERG is crucial for the coordination of the
heart’s beating. hERG contains percentages inhibitions at
1µM and 10µM .

4.2. Data Processing

We first merge all 11 PK datasets to create a unified dataset
containing 30K drugs over 12 unique PK columns for train-
ing and testing (90%/10% split) our models. Excluding the
hERG dataset from which we sample 7.9K drugs, we merge
the remaining 9 PK datasets for 22.1K unique drugs. We
arrive at a total of 30K drugs in our unified dataset after
merging the 7.9K drugs sampled from hERG into our 22.1K
unique drugs from the other 9 PK datasets. We only sample
7.9K drugs from hERG to maintain balance in the unified
dataset given the size imbalance of hERG compared to the
other 9 PK datasets. After removing outliers (Q1− 1.5IQR
lower and Q3 + 1.5IQR upper bound), we are left with
28,397 drugs from the original 30K drugs. The 28,397 drug
values for each of the 12 PK columns are then min-max
scaled between the range of [−1, 1]. Outliers are removed
to ensure that Min-Max normalization does not cause unwar-
ranted skewness in our trainset distribution, causing issues
for model training. Before infilling null values using one
of the average, uniform, or Gaussian distributions, or the
proposed DLGN method, we store the null masks for each
drug for the masked loss function.

Using the trained S2PK model, we generate synthetic PK tar-
get properties for 3K ligands selected from our test dataset.
The generated synthetic data, containing 3K ligands with
all 12 target properties, can be used to augment real data
for research requiring data spanning these target proper-
ties. Given the smaller size of real target property datasets,
3K synthetic target property ligands provide meaningful
augmentations to the real data.
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Model
Data Metric cGAN Sygd* Imgd Real

Caco2
MSE 0.165 0.276 0.131 0.634
R2 -0.08 -3.35 0.137 -3.215
PCC 0.338 0.302 0.426 0.352

Lipo.
MSE 0.141 0.313 0.150 0.167
R2 0.194 0.126 0.138 0.04
PCC 0.469 0.181 0.409 0.499

AqSol
MSE 0.074 0.107 0.08 0.075
R2 0.565 0.348 0.533 0.564
PCC 0.755 0.681 0.731 0.756

FSolv
MSE 0.198 0.182 0.165 0.624
R2 -0.09 -0.023 0.078 -2.501
PCC 0.422 0.515 0.391 0.383

PPBR
MSE 0.26 0.361 0.263 3.527
R2 -0.082 -1.36 -0.06 -13.31
PCC 0.225 0.125 0.223 0.095

VDss
MSE 0.209 0.307 0.196 0.535
R2 -0.064 -0.843 -0.015 -1.771
PCC 0.306 0.189 0.298 0.234

Model
Data Metric cGAN Sygd* Imgd Real

Half
MSE 0.284 0.437 0.261 0.525
R2 -0.536 -0.831 -0.275 -1.589
PCC 0.134 0.065 0.034 0.156

Cl.(H)
MSE 0.431 0.563 0.433 1.863
R2 -0.153 -1.14 -0.200 -4.24
PCC 0.144 0.032 0.096 0.109

Cl.(M)
MSE 0.203 0.278 0.209 0.717
R2 -0.037 -1.71 -0.043 -2.599
PCC 0.25 0.189 0.253 0.132

LD50
MSE 0.103 0.111 0.100 0.105
R2 0.252 0.298 0.277 0.240
PCC 0.526 0.558 0.537 0.542

hRG.1
MSE 0.132 0.121 0.127 0.136
R2 -0.135 -0.55 -0.108 -0.189
PCC 0.035 0.060 0.062 0.062

hRG.10
MSE 0.134 0.106 0.115 0.121
R2 -0.182 -0.075 -0.023 -0.081
PCC 0.207 0.200 0.196 0.212

Table 2. Comparing drug discovery Machine Learning Efficiency (MLE) regression performances between different models and with real
train data. Mean Squared Error (MSE), R-Squared (R2), and Pearson Correlation Coefficient (PCC) values are averaged over 30 trials,
with the best scores on the real test set bolded. *Syngand R2 and PCC results are scale-adjusted relative to Real-Real with cGAN and
Imagand results.

4.3. Machine Learning Efficiency

Machine Learning Efficiency (MLE) is a measure that as-
sesses the ability of the synthetic data to replicate a spe-
cific use case (Dankar & Ibrahim, 2021; Basri et al., 2023;
Borisov et al., 2022). MLE represents the ability of the syn-
thetic data to replace or augment real data in downstream use
cases. To measure MLE, two models are trained separately
using synthetic versus real data, and then their performance,
measured by Mean-Squared Error (MSE), R-Squared (R2),
and Pearson Correlation Coefficient (PCC), is evaluated on
real data test sets and compared.

For this experiment, we train Linear Regression (LR) mod-
els using ChemBERTa embeddings to predict each PK target
property value. To prevent data leakage, we first divide real
and synthetic data before combining them to form train and
test sets, as follows. To ensure an adequately sized test set
(>300 ligands, i.e. >10% size of our synthetic data) to
evaluate our downstream models, we divide real data into
segments denoted Ar and Br using a 50%/50% split. To
ensure a synthetic test set similar in size to real data test
sets (∼ 300 ligands), we divide synthetic data into segments
denoted As and Bs using a 90%/10% split. The real train
set is defined as Ar and the real test set is defined as Br.
The augmented train set is defined as Ar ∪As and the aug-
mented test set is defined as Br ∪Bs. Outliers are removed
from both real and augmented train and test sets based on
Q1− 1.5IQR lower and Q3 + 1.5IQR upper bounds on the

synthetic data.

Table 2 shows the results of the PK regression tasks using
real and synthetic augmented datasets. Results of these ex-
periments suggest that a synthetic augmented dataset can
outperform real data with statistical significance over many
PK datasets. Additional tasks will be explored in future
work. We see that synthetic data from both cGAN and
Imagand can improve MLE over using only the real data.
Imagand has similar or superior MLE performance com-
pared to cGAN.

Figure 2. Synthetic PK Data Hellinger Distances (HDs).

4.4. Univariate Distributions

The generated synthetic data closely matches that of the real
data; see Figure 7. Hellinger distance (HD) quantifies the
similarity between two probability distributions and can be
used as a summary statistic of differences for each PK target
property between real and synthetic datasets. Given two
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Figure 3. Distributions of ligand PK properties. Blue, synthetic
distributions; orange, real distributions.

Mean Std
Data Real Syn Real Syn
Caco2 0.118 0.137 0.388 0.375
Lipophilicity 0.184 0.179 0.417 0.386
AqSolDB 0.106 0.107 0.412 0.362
FreeSolv 0.103 0.123 0.421 0.400
PPBR 0.570 0.562 0.496 0.467
VDss -0.603 -0.615 0.442 0.389
Half life -0.557 -0.559 0.450 0.419
Clearance (H) -0.549 -0.559 0.605 0.551
Clearance (M) -0.670 -0.676 0.445 0.382
LD50 -0.038 -0.054 0.372 0.331
hERG 1uM 0.036 0.031 0.338 0.319
hERG 10uM 0.027 0.030 0.335 0.316

Table 3. Comparing mean and standard deviation values between
real and synthetic target property values.

discrete probability distributions P = {p1, p2, ..., pn} and
Q = {q1, q2, ..., qn}, the HD between P and Q is expressed
in Equation 5.

HD2(p, q) =
1

2

n∑
i=1

(
√
pi −

√
qi) (5)

With scores ranging between 0 to 1, HD values closer to 0
indicate smaller differences between real and synthetic data
and are thus desirable. Figure 2 shows the HD values for
our synthetic data compared to real data with the average
HD being 0.15. Table 3 compares the mean and standard
deviation of the real and synthetic target property values.
The mean and standard deviation of the generated synthetic
data closely resemble that of the real data for each PK target
property. We found that normalization combined with static
thresholding substantially limits the generation of invalid
and out-of-range PK values. Given the underpinnings of dif-
fusion using Gaussian reparameterization (Ho et al., 2020),
diffusion methods have challenges learning and generating
non-Gaussian data. This failure mode is evident in Figure 4

for non-Gaussian distributions PPBR, VDss, Half Life, and
Clearance (Hep and Mic) where we see that the synthetic
data fails to replicate the Log-logistic real-data distribution
common in drug discovery datasets.

4.5. Bivariate Distributions

In addition to univariate comparisons, synthetic PK target
properties can be compared to real data in terms of bivariate
pairwise distributions and correlations. Bivariate pairwise
scatterplots and Differential Pairwise Correlations (DPC)
are shown in Figure 4. Many pairwise combinations of PK
target properties have very few overlapping real data values,
and pairwise combinations with fewer than 100 examples
have their cardinality numbered in the heatmaps in Figure
4. We omit DPC values for pairwise combinations with
cardinality less than 10.

In combination with univariate HD, DPC provides a mul-
tivariate metric for evaluating the quality of synthetic data
when compared to real data. We define the DPC as the abso-
lute difference between the bivariate correlation coefficient
of real and synthetic data as shown in Equation 6.

∆CVcontXY
= |ρXY r

− ρXY s
| (6)

where X and Y denote the two continuous variables,
whereas ρXY is the correlation coefficient for X and Y .
If the real and synthetic PK target property datasets are
highly similar (i.e., the synthetic dataset closely resembles
the real dataset), then the absolute difference would be close
to 0 or very small. Heatmap (b) in Figure 4 shows DPC
on the Pearson correlation coefficient (PCC). The average
DPC for PCC is 0.123. Heatmap (c) in Figure 4 shows DPC
on the Spearman correlation coefficient (SCC). cGAN and
Syngand produce synthetic data with worse DPCs compared
to Imagand. The average DPC for PCC for cGAN is 0.170,
and 0.154 for Syngand, compared to 0.123 for Imagand.
The average DPC for SCC for cGAN is 0.187, and 0.161
for Syngand, compared to 0.138 for Imagand. These results
indicate that the generated synthetic PK target properties
resemble real data in pairwise correlations.

Many pairwise combinations of the real data have a small
cardinality of < 100. As such, our synthetic PK target
properties can benefit those pairwise combinations the most:
researchers can augment pairwise real datasets with small
cardinality to better answer pairwise target property research
questions. Compared to pairwise target properties, overlap
sparsity between combining multiple datasets results in even
smaller cardinality. Scaling the S2PK model is straight-
forward, and can facilitate the generation of high-quality
synthetic data that can be used to investigate multi-dataset
research questions.
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Figure 4. Overview of Bivariate Comparison Between Synthetic and Real Data. Graph (a) shows pairwise scatter plots for pairs of PK
target properties. Real data is marked in orange and synthetic data is marked in blue. The heatmap plots (b) and (c) are the Differential
Pairwise Correlations (DPC) for pairs of PK target properties between real and synthetic data. The heatmap (b) graphs the DPC for the
Pearson correlation coefficient. The heatmap (c) graphs the DPC for the Spearman correlation coefficient. PK target property values are
numbered in order of (0) Caco2, (1) Lipophilicity, (2) AQSolDB, (3) FreeSolv, (4) PPBR, (5) VDss, (6) Half Life, (7) Clearance (Hep),
(8) Clearance (Mic), (9) LD50, (10) hERG (1uM), and (11) hERG (10uM).

4.6. Ablation Studies

We conduct ablation studies to investigate the performance
of our S2PK model given different SMILES encoders, en-
coder training sets, and sampling approaches for the infilling
and noise model. Ablation study results (Table 4) are av-
erages over 30 generated synthetic target property datasets,
covering 90K target property values for ligands, for each
ablation training run. From our ablation studies we find that
Imagand generates more realistic synthetic data compared to
cGAN and Syngand baselines in terms of univariate distribu-
tions. Figure 5 graphs MSE between real and synthetic data
generated during training for ablation experiments. From
our ablation studies, we motivate our selected model config-
uration.

4.6.1. PRE-TRAINED SMILES ENCODER

We select different pre-trained SMILES encoders and pre-
training datasets for ablation. Among encoder models, De-
BERTa performs the best in terms of average HD and syn-

thetic and real data MSE. Among encoder training datasets,
PubChem and Zinc have similar HD, with PubChem produc-
ing better synthetic and real data MSE. This motivates the
choice of DeBERTa and PubChem for our selected model
configuration.

4.6.2. DISCRETE LOCAL GAUSSIAN NOISE MODEL

We select different infilling strategies and noise models for
ablation. Comparing noise model ablations, we measure
the average MSE that each method injects into the data
with Gaussian (1.19), uniform (0.53), and DLGN (0.29)
ordered from most to least. This confirms that DLGN injects
noise closely resembling the prior distribution. Similarly,
we confirm DLGN has the best HD compared to Gaussian
and uniform noise models. Comparing infilling ablations,
DLGN has the best overall performance in HD and synthetic
and real data MSE. This motivates the choice of DLGN
for both infilling and noise models for our selected model
configuration.
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Figure 5. Mean Squared Error between real and synthetic target property data generated during training for different ablation experiments.

Ablation Exp C2 Li. Aq FS PP VD HL C.(H) C.(M) LD50 h.1 h.10 Avg

Pre.
CBert 0.26 0.17 0.16 0.25 0.25 0.31 0.37 0.29 0.33 0.17 0.14 0.13 0.23
DBert 0.21 0.16 0.18 0.20 0.22 0.27 0.36 0.24 0.28 0.17 0.15 0.15 0.21
T5 0.25 0.16 0.15 0.25 0.26 0.30 0.36 0.28 0.30 0.15 0.13 0.13 0.22

Emb. Zinc 0.26 0.17 0.16 0.25 0.25 0.31 0.37 0.29 0.33 0.17 0.14 0.13 0.23
PubC 0.27 0.17 0.16 0.25 0.27 0.30 0.38 0.30 0.30 0.17 0.15 0.15 0.24

Infill
Gaus 0.24 0.15 0.14 0.24 0.21 0.26 0.33 0.25 0.25 0.15 0.12 0.13 0.20
Unif 0.28 0.19 0.18 0.26 0.27 0.31 0.38 0.30 0.30 0.19 0.14 0.14 0.25
DLG 0.26 0.16 0.15 0.25 0.23 0.29 0.36 0.27 0.24 0.16 0.13 0.13 0.22

Noise

Avg 0.26 0.15 0.22 0.28 0.25 0.39 0.39 0.28 0.33 0.18 0.15 0.16 0.25
Gaus 0.26 0.17 0.16 0.25 0.25 0.31 0.37 0.29 0.33 0.17 0.14 0.13 0.23
Unif 0.26 0.16 0.16 0.26 0.24 0.32 0.39 0.28 0.31 0.16 0.14 0.14 0.23
DLG 0.27 0.18 0.15 0.26 0.23 0.29 0.34 0.27 0.27 0.16 0.14 0.14 0.22

cGAN 0.19 0.16 0.17 0.18 0.25 0.24 0.28 0.32 0.29 0.15 0.13 0.13 0.21
Syngand 0.62 0.53 0.34 0.50 0.66 0.81 0.85 0.59 0.58 0.45 0.14 0.11 0.52

Imagand (Ours) 0.19 0.12 0.13 0.18 0.20 0.27 0.36 0.20 0.19 0.11 0.09 0.09 0.18

Table 4. Average Hellinger Distance Across 30 Generated Synthetic Target Property Datasets for Ablation Experiment Configurations.
The best HD values for each ablation test are bolded. The best HD values across all ablation tests are underlined. HD values for our
selected model configuration for MLE, univariate, and bivariate analysis are included in the table.

5. Discussions
Our work is a major step towards building a new class of
foundational models for drug discovery trained over a di-
verse range of datasets. Given the problem of data sparsity,
Imagand can be utilized primarily as a in silico pre-clinical
tool, aimed to reduce the costs of in vitro experiments and
high-throughput screening. As a research tool, scientists can
utilize our models to investigate and generate properties for
novel molecules to be used for downstream PBPK simula-
tions without costly assays. Even as an initial step, Imagand
has many real-world pre-clinical applications where data
sparsity and data scarcity are challenges.

Although we cover a wide variety of ADMET datasets, most
of these datasets are in vitro. One of the critical challenges
in drug discovery is quantitative in vitro-to-in vivo extrapo-
lation (QIVIVE). QIVIVE is an approach that extrapolates
from in vitro concentration-response data to in vivo safe
exposures or to identify exposure levels causing adverse
effects. For future work, we will look to extend our model
to include in vivo datasets and to investigate new applica-

tions of Imagand for QIVIVE. Future work will look to
further explore DLGN as an alternative to Gaussian noise,
including implementing the derived formulation, conduct-
ing scaling law analysis, and to compare against a broad
range of models and benchmarks.

6. Conclusions
The SMILES-to-Pharmacokinetic model Imagand generates
synthetic PK target property data that closely resembles real
data in univariate and bivariate distributions and for down-
stream tasks. Imagand provides a solution for the challenge
of sparse overlapping PK target property data, allowing re-
searchers to generate data to tackle complex research ques-
tions and for high-throughput screening. Future work will
expand Imagand to categorical PK properties, and scale to
more datasets and larger model sizes. In future work we
will look to explore additional reparameterization tricks for
diffusion, such as discrete diffusion (Austin et al., 2021), to
extend our methodology to be capable of learning and gen-
erating synthetic data following categorical and Log-logistic
distributions common in drug discovery datasets.
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A. Discrete Local Gaussian Sampling
Theorem A.1. Let DKL(P ||Q) be the Kullback-Leibler (KL) divergence for a model probability distribution Q and the
true probability distribution P . We then have:

limN→∞DKL(X||ϕ(X = x)) = limN→∞
∑
χ

Xlog(
X

ϕ(X = x)
) = 0

Proof. Since F−1
X = limN→∞F̂−1

XN
, and as the standard deviation σ

N → 0 as N → ∞, then ϕ(X) ∼ F−1
X , as N → ∞.

Since F−1
X = X , then DKL(X||ϕ(X = x)) = 0 as N → ∞.

From Theorem A.1 we see that DLG sampling becomes increasingly similar to the real data distribution as the number of
bins increases. Empirically, using DLG sampling results in smoother training dynamics compared to Gaussian noise as
well as higher-quality generated data. Theoretically, this may be because each de-noising step is smaller, which we see
empirically, in turn making them easier to learn, when the noise is increasingly similar to the original distribution, especially
given skewed or multi-modal real distributions. DLG noise also enables new training modalities, which we plan on exploring
in future work; bypassing latent model training, and when prior real data distributions are known and well-defined.

B. Training Details

Imagand Model Diffusion Training
Layers 12 Learning Rate 1e-3
Heads 16 Weight Decay 5e-2
MLP Dim. 768 Epoch 3000
Emb. Dropout 10% Batch Size 256
Num Patches 48 Warmup 200
Cond. Emb. Size 768 Timesteps (Train) 2000
Time Emb. Size 64 Timesteps (Infer.) 150
PK Emb. Size 256 EMA Gamma (γ) 0.994

Table 5. List of Imagand Model Hyperparameters used across experiments. Model hyperparameters include the number of layers, heads,
multilayered perceptron (MLP) size, embedding dropout, and sizes for the conditional, time, and pharmacokinetic (Y) embeddings.
Training hyperparameters include the learning rate, weight decay, number of epochs, batch size, warmup, diffusion timesteps used for
training and inference, and the Exponential Moving Average (EMA) Gamma (γ).

We train a 19M parameter model for S2PK synthesis. Model hyperparameters were not optimized and are described in
Table 5. We do not find overfitting to be an issue. For classifier-free guidance, we joint-train unconditionally via dropout
zeroing out sections of the SMILES embeddings with 10% probability for all of our models. For the machine learning
efficiency, and univariate and bivariate distribution analysis, we utilize DeBERTa embeddings trained on PubChem and
DLGN for infilling and as the noise model. We compare our model configuration to other possible configurations in the
ablation experiments. All experiments were conducted using a single NVIDIA GeForce RTX 3090 GPU.

B.1. Static Thresholding

We apply elementwise clipping the PK predictions to [−1, 1] as static thresholding, similar to Saharia et al. (2022); Ho et al.
(2020). Since PK data is min-max scaled to the same [−1, 1] range as a preprocessing step, static thresholding is essential to
prevent the generation of invalid and out-of-range PK values.

C. Convergence Analysis
Recent work by (Nakano, 2025) has proved the convergence of the original version of DDPM models as defined in (Ho
et al., 2020). As our work is based on the original version of DDPM with only a modification to the noise used, we leave the
majority of the proof of convergence to the work by (Nakano, 2025). Instead, to properly apply (Nakano, 2025) proof of
convergence of DDPM to our formulation, we show how our modifications of DLG noise respect key conditions and lemmas
required by (Nakano, 2025). Relating to our noise modification is condition (H3) in (Nakano, 2025) proof of convergence
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Condition C.1 (H3 in (Nakano, 2025)). Let zi be the denoising term in a diffusion process. The function zi for the noise
estimation satisfies

max
i=1,...,n

||zi||∞ = O((log n)κ1), n → ∞

for some constant κ1 > 0

Proof. Utilizing conditions (H1), (H2), and Lemma 2 from (Nakano, 2025), we have

||▽logpi||∞ ≤ C0/
√
ᾱi ≤ C0(log n)κ1

Given the simplified version of the diffusion objective (as derived by (Ho et al., 2020)), it is known that the objective is
equivalent to the score-matching objective (Chen et al., 2023). More precisely

si(x) := − 1√
1− ᾱi

zi(x)

and the score function ▽logpi(·) of xi, i = 1, ..., n,

E|si(xi)− ▽logpi(xi)|2

Hence, it is natural to assume that the norm of the estimated score function si is bounded by C ′
0(log n)κ with some C ′

0.
Given the following definition for DLG zi

zi = N (x; F̂−1
XN

(U),
ϕ

N2
I)

where zi ∼ F−1
X = pdata leads to the condition (H3).

D. Comparison to Baseline
We compare Imagand with a baseline in Conditional GAN (cGAN) (Mirza & Osindero, 2014) with 1.8M parameters and
Syngand (Hu et al., 2024) with 9M parameters. Similar to in Imagand, SMILES-embeddings from a pre-trained T5 model
are used conditionally by the cGAN model to generate PK properties as output for a specific drug. Compared to earlier
results, Table 6, Figure 7, and Figure 6 shows that Imagand is able to generate more realistic synthetic data compared to
cGAN and Syngand.

Mean Std
Data Real Imgd cGAN Sygd Real Imgd cGAN Sygd
Caco2 0.118 0.137 0.144 0.582 0.388 0.375 0.271 0.120
Lipophilicity 0.184 0.179 0.200 0.615 0.417 0.386 0.298 0.185
AqSolDB 0.106 0.107 0.132 0.102 0.412 0.362 0.291 0.182
FreeSolv 0.103 0.123 0.099 0.267 0.421 0.400 0.294 0.134
PPBR 0.570 0.562 0.628 0.974 0.496 0.467 0.367 0.091
VDss -0.603 -0.615 -0.661 -0.985 0.442 0.389 0.310 0.065
Half life -0.557 -0.559 -0.614 -0.982 0.450 0.419 0.315 0.058
Clearance (H) -0.549 -0.559 -0.593 -0.974 0.605 0.551 0.465 0.086
Clearance (M) -0.670 -0.676 -0.738 -0.985 0.445 0.382 0.312 0.064
LD50 -0.038 -0.054 -0.044 0.043 0.372 0.331 0.272 0.153
hERG 1uM 0.036 0.031 0.048 0.115 0.338 0.319 0.252 0.325
hERG 10uM 0.027 0.030 0.018 0.073 0.335 0.316 0.246 0.304

Table 6. Comparing mean and standard deviation values between real and synthetic target property values.
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Figure 6. Distributions of ligand PK properties and synthetic PK Data Hellinger Distances (HDs) for cGAN. Blue, synthetic distributions;
orange, real distributions.

Figure 7. Distributions of ligand PK properties (log-scale) and synthetic PK Data Hellinger Distances (HDs) for Syngand. Blue, synthetic
distributions; orange, real distributions.
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