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Abstract
The ability to form and use abstractions in a
few-shot manner is a key aspect of human cog-
nition; it is this capacity that enables us to un-
derstand and act appropriately in novel situations.
In this paper we report on comparisons between
humans and GPT-4V on visual tasks designed
to systematically assess few-shot abstraction ca-
pabilities using core-knowledge concepts related
to objectness, object motion, spatial configura-
tions and relationships, and basic numerosity. We
test the impact of presenting tasks to GPT-4V
using visual, mixed text-visual, and text-only rep-
resentations. Our findings highlight that GPT-4V,
one of today’s most advanced multimodal LLMs,
still lacks the flexible intelligence possessed by
humans to efficiently relate different situations
through novel abstractions.

1. Introduction
Humans have a remarkable ability to form abstrac-
tions—that is, to find patterns that relate seemingly diverse
situations to one another. Abstractions enable us to transfer
insights across different contexts and flexibly handle novel
situations. This capability is key to forming analogies, de-
veloping new concepts, and, more generally, understanding
and acting in the world (Hofstadter, 2001).

Various researchers have claimed that sufficiently large pre-
trained language models can develop emergent abilities
for general abstract pattern recognition (Mirchandani et al.,
2023) and analogy-making (Webb et al., 2023). However,
the internal mechanisms giving rise to these abilities are
not well understood, and other researchers have cast doubt
on the claims that these systems actually form humanlike
abstractions (Gendron et al., 2023), showing in many cases
that while large language models (LLMs) can solve prob-
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lems involving content similar to that in their training data,
they are weak in generalizing outside such problems (Mc-
Coy et al., 2023; Razeghi et al., 2022; Wu et al., 2023; Lewis
& Mitchell, 2024). Some have interpreted this as evidence
that LLMs rely not on generalizable abstract reasoning but
on learning complex patterns of associations in their train-
ing data and performing “approximate retrieval” of these
patterns in new situations (Kambhampati, 2023).

In this paper we use the ConceptARC benchmark
(Moskvichev et al., 2023) to compare humans’ and GPT-
4V’s capabilities for discovering and using abstractions.
ConceptARC is a set of visual analogy tasks inspired by
Chollet’s (2019) Abstraction and Reasoning Corpus (ARC).
Each task requires discovering a shared abstract concept in a
small set of examples to understand and apply that concept
to new instances. We compare humans’ performance on
these tasks with that of GPT-4V. While humans are given
these tasks using images only, we test GPT-4V on three
types of representations: (1) images only; (2) images plus
text; and (3) text only. We find that humans’ performance
on these tasks far surpasses that of GPT-4V using any of
these representations. Our results reinforce the conclusion
that today’s most powerful LLMs still lack the flexible intel-
ligence possessed by humans to efficiently relate different
situations with novel abstractions.

2. The Abstraction and Reasoning Corpus
Chollet (2019) proposes that intelligence lies in the effi-
ciency with which prior information and experience can be
transformed into new skills. High skill in specific tasks (e.g.,
playing chess or recognizing objects in images) is distinct
from high intelligence (the process of acquiring such skills).
In humans, skill and intelligence are intertwined: general
intelligence is always used to create new skills. However, a
system with high skill may not have any capacity for gener-
alization, as one can always achieve arbitrarily high levels of
skill in specific tasks by leveraging more prior information
or experience. Measuring flexible intelligence necessitates
a meta-task that evaluates skill-acquisition efficiency across
various tasks while controlling for priors and experience.
Chollet’s Abstraction and Reasoning Corpus (ARC; 2019)
was designed to evaluate this kind of flexible intelligence
across AI systems and humans. ARC consists of 1000 man-
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ually created ‘tasks’. Each task contains a small number
(typically 2-4) of grid input-output pairs transformed via the
same abstract rule, and a test input grid. The task for the
solver is to induce the underlying rule and apply it to the
test input to generate a transformed output grid. Figure 1
provides an example task from the ARC domain.

Figure 1. Example task from the ARC domain, showing three
input-output pairs illustrating an abstract grid transformation, and
a single test input. The solver must generate a new grid by apply-
ing the hidden abstract rule to the test input. In this task, the rule
is to copy the contiguous colored block that contains the highest
number of vertical red lines. (Best viewed in color.)

ARC controls the amount of experience that can be lever-
aged to solve tasks by providing only a few demonstrations.
Additionally, ARC seeks to control the prior knowledge
required by explicitly listing the necessary priors. Chol-
let designed the tasks to only require concepts related to
a subset of Spelke’s core knowledge systems (Spelke &
Kinzler, 2007), such as objectness and object motion, spa-
tial configurations and relationships, and numerosity. For
instance, solving the task in Figure 1 involves parsing the
grid into contiguous blocks (objectness), identifying smaller
horizontal and vertical lines within those blocks (spatial
geometry), and generating the block with the most vertical
lines (numerosity).

Importantly, the tasks don’t rely on language or other
learned symbols (e.g. arrows) or concepts (e.g. “cup”).
This provides a fair testing ground for comparing human
intelligence and artificial intelligence by ensuring humans
do not bring extra prior knowledge to the table. Additionally,
in the case of evaluating LLMs, avoiding learned symbols
helps avoid tasks being solved by pattern matching based
on prior training data, which might underlie LLMs’ appar-
ent success on language-based abstraction tasks (Lewis &
Mitchell, 2024).

Currently, the highest reported accuracy on ARC’s hidden
test set is 34% (Cole, 2024), achieved by a transformer-
based model fine tuned on synthetic and augmented ARC
data, though the details have not yet been released. Program

synthesis approaches have achieved an accuracy of 31%.

Several groups have tested LLMs on subsets of ARC tasks
(Gendron et al., 2023; Mirchandani et al., 2023; Xu et al.,
2023; Wang et al., 2023), using different prompting formats,
and generally found the best accuracy using straightforward
text versions of tasks to be around 10–12%. Limited studies
of human performance on subsets of ARC tasks have shown
much higher accuracies (e.g., 84% in Johnson et al. 2021).

3. ConceptARC
Moskvichev et al. (2023) noted two problems with the origi-
nal ARC corpus. First, they claimed, many of the tasks are
quite difficult, even for humans, and this difficulty might
be a barrier to progress in developing AI systems that can
flexibly induce the relevant abstractions. Second, and most
important, ARC does not offer systematic evaluation of
understanding particular core concepts; even if a system
can solve an individual ARC task, that does not necessarily
mean that the system has a robust understanding of the un-
derlying concepts. For example, if an ARC solver generates
the correct output grid for Figure 1, one cannot conclude
that the solver can generalize the concepts of “counting” and
“greater than”; it might have used a different strategy, like
selecting the colored region overlapping the center.

To address these issues, Moskvichev et al. created a new
benchmark in the ARC domain, ConceptARC, whose tasks
are intentionally designed to be easy for humans. Moreover,
its 480 tasks are organized as systematic variations of par-
ticular core spatial and semantic concepts, such as Top and
Bottom, Inside and Outside, and Same and Different. Each
concept group contains 30 tasks, each of which instantiates
the concept in a different way and with differing degrees
of abstraction. Figure 2 provides two example tasks related
to the concept of ‘Sameness’. Moskvichev et al.’s claim
was that high performance over these various instantiations
of a given concept indicates a robust understanding of, and
ability to reason abstractly about, the underlying concept.

In Moskvichev et al. (2023), 415 human participants were
given ConceptARC tasks. Using a grid editor, participants
generated the output (answer) grid for each task, enabling
automatic correctness checks. The column labeled “Hu-
mans” in Table 1 shows the accuracies achieved by humans
within each concept group, with an overall accuracy of 91%.

Moskvichev et al. also tested the program-synthesis ap-
proach that was the top performer in the original ARC chal-
lenge on Kaggle (Kaggle, 2020); this program had an overall
accuracy of 52%.1 Finally, they tested a non-multimodal
version of GPT-4, for which the grids in each task were

1Notably, this is much higher than performance on the original
ARC test set of 21%, indicating that ConceptARC is easier for
current algorithms.
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Figure 2. Two example tasks from the ConceptARC concept group
Same and Different, each instantiating ‘sameness’ differently: (a)
sameness between shapes; (b) sameness between line orientations.

encoded as arrays of numbers, corresponding to colored
cells. For example, the array [0 0 1] [0 1 0] represents a
2× 3 grid, where 0s represent black cells and 1s represent
blue cells. Using this “text representation” to encode tasks,
GPT-4 achieved an overall accuracy of 25%. Follow-up
work from Mitchell et al. (2023) retested GPT-4 with a more
expressive prompt that included an example solved task
(one-shot learning), increasing the overall accuracy to 33%.

A potential criticism of the GPT-4 evaluations is the dispar-
ity between humans, who are presented with visual tasks,
and LLMs, which receive text-only versions. Mitchell et al.
(2023) addressed this by testing GPT-4V, a new multimodal
version of GPT-4, using images of the tasks. However, their
preliminary investigation involved only extremely simple
tasks outside the main ConceptARC dataset.

We extend this investigation by evaluating GPT-4V on
the entire ConceptARC dataset (with both image-only and
mixed image-text representations), thereby assessing the
current capability of multimodal LLMs to create novel ab-
stractions from limited visual instances. Additionally, we
use an updated prompt that explicitly lists the core concepts
associated with ConceptARC’s concept groups, giving GPT-
4V explicit information on the possible abstract concepts
that are needed for solving these tasks.

4. Experiments Evaluating GPT-4V
4.1. Image-Only Representations

We evaluated GPT-4V on ConceptARC using a prompt
where, for each task, each grid was presented as a sepa-
rate image. We build on work by Mitchell et al. (2023),
who conducted preliminary investigations to test GPT-4V’s

performance using different prompt formats to present a
task: an image containing all input-output pairs, a single
image for each input-output pair, and individual images for
each input and output grid. Only the last format yielded
any correct solutions. Furthermore, when presented with an
image, GPT-4V struggled to consistently translate the visual
grid into a text representation, like the one described in Sec-
tion 3. Therefore, to mitigate errors involved in mapping the
intended output grid to a text representation, we requested
only a natural-language description of the output grid.

For each task, we included a list of all 16 core concepts that
the tasks are built around in the prompt, explicitly represent-
ing the prior knowledge assumed to be necessary for solv-
ing the tasks. Additionally, our prompt requests a natural-
language description of the underlying rule (abstraction) as
well as the output grid. The exact prompt is provided in
Appendix A, Figure 3.

We used this prompting method to test GPT-4V (via the
Azure OpenAI Service API2) on all 480 ConceptARC tasks
(30 per each of the 16 concept groups)3 with the temperature
set to zero. Following Chollet’s criteria, both humans and
GPT-4V were given three attempts to produce the output
grid for each task, and if one of the three guesses was correct,
the task was considered solved. The accuracies (the fraction
of correctly solved tasks within each concept group as well
as the overall fraction of solved tasks) are presented in the
“GPT-4V (image-only)” column of Table 1.

In some instances, GPT-4V correctly described the output
grid by following an incorrect rule (one that did not work
for one or more of the task demonstrations). These cases,
where the system was “right for the wrong reason”, were still
counted as correct for measuring accuracy. However, they
indicate that in some cases, even when producing correct
answers, the system struggles with abstraction.

These accuracies include only responses with correctly de-
scribed output grids, regardless of the accuracy of the trans-
formation rule description. For each task, we manually clas-
sified GPT-4V’s (best) description of both the abstract rule
and test output grid as correct, partially correct, or incorrect.
A partially correct answer contained nearly all details but
missed or incorrectly specified a small yet crucial element.
If we consider cases where GPT-4V correctly described
the transformation rule but only partially or incorrectly de-
scribed the output grid, its overall accuracy increases from
15% to 22%. A complete breakdown of output and rule clas-
sification for GPT-4V’s performance is provided in Table 2.
Sample tasks and their corresponding natural-language de-
scriptions from GPT-4V, along with our classifications, are

2We used the version of GPT-4V (gpt4-vision-turbo) available
in May 2024.

3The tasks can be downloaded from https://github.
com/victorvikram/ConceptARC
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Concept Humans GPT-4V (image-only) GPT-4V (image & text) GPT-4V (text-only)
Above and Below 0.90 0.13 0.23 0.23

Center 0.94 0.17 0.30 0.33
Clean Up 0.97 0.17 0.33 0.33

Complete Shape 0.85 0.03 0.27 0.33
Copy 0.94 0.00 0.20 0.40
Count 0.88 0.60 0.30 0.33

Extend To Boundary 0.93 0.10 0.17 0.13
Extract Objects 0.86 0.03 0.07 0.17

Filled and Not Filled 0.96 0.10 0.30 0.30
Horizontal and Vertical 0.91 0.23 0.30 0.27

Inside and Outside 0.91 0.17 0.17 0.20
Move To Boundary 0.91 0.23 0.23 0.17

Order 0.83 0.07 0.30 0.20
Same and Different 0.88 0.20 0.07 0.23
Top and Bottom 2D 0.95 0.13 0.40 0.63
Top and Bottom 3D 0.93 0.03 0.10 0.20

All concepts 0.91 0.15 0.23 0.28

Table 1. Accuracies of humans and GPT-4V (provided with image only, image and text, and text only representations of the tasks) on each
concept group (30 tasks) and over all concepts (480 tasks) in ConceptARC. The results on humans are from Moskvichev et al. (2023).

provided in Appendix B.

Rule
Correct Partial Incorrect

O
ut

pu
t Correct 0.05 0.04 0.06

Partial 0.06 0.05 0.00
Incorrect 0.01 0.07 0.66

Table 2. Breakdown of GPT-4V’s (image-only) performance on
ConceptARC. We chose the best of GPT-4V’s three responses on
each task. Each cell displays the fraction of those responses that
contained a certain output grid classification and a certain abstract
rule classification. For example, 5% of GPT-4V’s responses cor-
rectly described both the abstract rule and the output grid.

4.2. Mixed Image-Text and Text-Only Representations

We conducted a second set of experiments to evaluate
whether supplementing grid images with text representa-
tions would improve performance. Using the same prompt-
ing method as in the image-only experiments, we addition-
ally provided text encodings of each grid (using arrays of
numbers representing colors, as described in Section 3)
alongside the image. The instructions in the prompt detailed
how the colored cells in the images mapped to numbers
in the text encoding. Additionally, since the model now
receives a text encoding of the test input grid, we requested
a text encoding of the output (answer) grid rather than a
natural-language description. The exact prompt is provided
in Appendix A, Figure 4, and the accuracies are presented
in the column labeled “GPT-4V (image & text)” in Table 1.

Overall accuracy increases by 8% when GPT-4V has access
to both text representations and images, indicating that addi-
tional text representations are beneficial. However, a third

set of experiments, which look to isolate the influence of
visual representations by using the same prompting method
without images (exact prompt in Appendix A, Figure 5),
suggests that the images are actually just degrading perfor-
mance: when moving from image & text representations to
text-only, overall accuracy increases to 28% (see column
“GPT-4V (text-only)” in Table 1). This holds true for all
concept groups except Count, where, surprisingly, image-
only representations enable GPT-4V to perform significantly
better, nearly doubling the accuracy of the text-only coun-
terparts. This is particularly interesting given that LLMs
are generally known to struggle with counting (Hendrycks
et al., 2021).

5. Conclusion
Evaluating flexible intelligence requires focusing on skill-
acquisition efficiency rather than skill, while controlling for
priors and experience. ConceptARC serves as a benchmark
adhering to these principles. The generally high accuracies
achieved by humans across ConceptARC’s concept groups
demonstrates the ability to induce the underlying abstrac-
tions necessary to relate different variations of the given con-
cepts. In this paper, we assessed the performance of GPT-4V
on ConceptARC using image, text, and mixed image-text
representations of tasks, while providing all the necessary
prior concepts relevant for solving tasks. The relatively poor
accuracies achieved in all these experiments demonstrates
that, unlike humans, multimodal LLMs currently lack the
ability to flexibly discover the necessary abstractions to re-
late and understand different instances of a visual concept.
Surprisingly, despite the inherently visual nature of these
tasks, providing LLMs with image inputs instead of purely
textual inputs generally degrades their performance.
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A. Prompts Used for Evaluating GPT-4V

Figure 3. Prompt used for evaluating GPT-4V with image-only representations of ConceptARC tasks. Adapted from Mitchell et al. (2023),
the prompt now includes a list providing each of the prior concepts associated with each of ConceptARC’s concept groups. Additionally,
the underlying abstract rule is explicitly requested along with the test output grid description.
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Figure 4. Prompt used for evaluating GPT-4V with mixed image & text representations of ConceptARC tasks. The prompt is a modified
version of the image-only prompt in Figure 3, updated to include the array representation of each grid alongside the image and instructions
detailing how the colored cells in the image representations map to numbers in the text representations.
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Figure 5. Prompt used for evaluating GPT-4V with text-only representations of ConceptARC tasks. The prompt is the same as the mixed
image & text prompt given in Figure 4 with all images, and references to images, removed.
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B. GPT-4V Sample Responses with Classifications
When evaluating GPT-4V on image-only task representations, we manually classified its descriptions of both the abstract
rule and the test output grid as correct, partially correct, or incorrect. Figures 6, 7 and 8 showcase sample tasks exemplifying
each classification for both the rule and the output grid descriptions. To maintain brevity, surrounding text from GPT-4V’s
responses has been omitted. While the displayed examples have matching classifications for both the rule and the output
grid, a single response could receive different classifications for each. A complete breakdown of GPT-4V’s performance in
terms of output and rule classification is provided in Table 2 in Section 4.1.

Figure 6. Sample task and GPT-4V (image-only) response with both the abstract rule and output grid descriptions classified as correct.
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Figure 7. Sample task and GPT-4V (image-only) response with both the abstract rule and output grid descriptions classified as partially
correct.

Figure 8. Sample task and GPT-4V (image-only) response with both the abstract rule and output grid descriptions classified as incorrect.
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