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Abstract

Efficient LLM pre-training requires well-tuned hyperparameters (HPs), including
learning rate η and weight decay λ. We study scaling laws for HPs: formulas
for how to scale HPs as we scale model size N , dataset size D, and batch size B.
Recent work [1] suggests the AdamW timescale, τ = B/(ηλD), should remain
constant across training settings, and we verify the implication that optimal λ scales
linearly with B, for a fixed N and D. However, as N and D scale, we show optimal
τ obeys a precise power law in the tokens-per-parameter ratio, D/N . This law
thus provides a method to accurately predict λopt in advance of large-scale training.
We also study scaling laws for optimal batch size Bopt (the B enabling lowest loss
at a given N,D) and critical batch size Bcrit (the B beyond which further data
parallelism becomes ineffective). In contrast to prior work, we find both Bopt and
Bcrit scale as power laws in D, independent of model size, N . Finally, we analyze
how these findings inform the real-world selection of Pareto-optimal N and D
under dual training time and compute objectives.
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Figure 1: Hyperparameters and their power lines: Optimal τ obeys a power law in tokens-per-
parameter (left), while optimal batch size (middle) and critical batch size (right) obey power laws in
D. Faded markers indicate points not used in fitting; all fits generalize well to larger-scale runs.

1 Introduction

LLMs predictably improve as model size N and training data size D increase [2–4]. Today, state-of-
the-art LLMs are trained at computational scales that leave no scope for hyperparameter (HP) tuning,
although it is widely accepted that good HPs are critical for effective training [5–7].

Both theoretical and empirical efforts have sought to address this. Theoretically, maximal update
parameterization (µP) allows the optimal learning rate ηopt and initial weight variance σ2

opt to remain
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stable when scaling model width [8, 5], enabling a “tune small and train large” strategy. Empirically,
DeepSeek LLM [7] adopted “scaling laws for HPs,” where optimal batch size Bopt and optimal
learning rate ηopt are estimated at small scale, and then extrapolated via a power law fit in total
compute FLOPs, C. A similar approach was used in Kaplan et al. [4], forecasting Bopt and ηopt from
loss L and model size N .

Relying on a unique predicted Bopt is inflexible—it precludes adjusting B for compute/time trade-offs
or hardware constraints. It is also unclear whether C, L, N , or D (or a combination) best explains
scaling. [7] notes, “for models with the same [C] but different model/data allocations, the optimal
parameter space varies slightly.” Also, no comparable study has been done for weight decay λ.

This paper introduces a flexible, unified approach to HPs, using both µP and scaling laws. We fit
power laws to losses derived from hundreds of µP-trained models, focusing on combinations of λ, B,
N , and D. We study both compute-optimal and overtrained models. The fewest FLOPs to achieve a
loss typically occurs when training at ≈20 tokens-per-parameter (TPP = D/N ) [3, 9], but overtrained
models (>20 TPP) offer more-efficient inference [10]. We study TPPs from 20 to 1280.

To capture λ’s interaction with other scaling HPs (η, B), we model scaling of the AdamW timescale,
τ = B/(ηλD). [1] found optimal τ stable with varying D, but we show it obeys a power law in TPP
(Fig. 1, left). This law thus enables accurate estimation of λopt for any N , D, B.

Leveraging these better HPs as B scales, we also study optimal batch size: the Bopt that minimizes
loss at a given N and D. While Bopt scales as a power law in C when TPP is fixed (Fig. 5, left), our
results show this arises from a more fundamental power-law dependence on D (Fig. 1, middle).

Importantly, increasing B > Bopt can still reduce training time (fewer steps) and improve hardware
utilization. This raises the question: how much extra data is needed when using large B? Prior work
defines the critical batch size Bcrit as the point where training to a target loss requires 2×Dmin, with
rapidly-diminishing returns in training speed thereafter [11]. We show Bcrit also scales with D (Fig. 1,
right), not L as suggested in [4] (Fig. 5, middle), consistent with recent results from [12].

Finally, amid intense competition to advance LLM performance, a key question is: which N , D, and
B yield the best trade-off between training speed and compute cost? Using our fit Bcrit law, we derive
Pareto-optimal solutions to these competing objectives, and show that small, overtrained models can
be best—offering both faster steps and greater parallelism via larger D (and thus higher Bcrit).

Key findings and takeaways are highlighted in the paper. Our main contributions are:

• The first large-scale empirical study varying weight decay λ across N , D, and B in LLMs.
• Showing the AdamW timescale obeys a power law, enabling λopt for any N , D, B (Sec. 2).
• A new method for estimating Bcrit, suitable for any LR schedule or optimizer (Sec. 3.2).
• Confirmation that both Bopt and Bcrit scale as power laws in D (Sec. 3).
• New methods for selecting N , D, and B to trade-off training time vs. compute (Sec. 4).

2 Scaling of the AdamW timescale τ , and optimal weight decay λopt

2.1 Background: µP, AdamW, and τepoch

µP µP is increasingly used in LLM training [13–18]. With µP, base HPs are tuned on a proxy
model and then transferred to wider [5] and deeper [19] models. Given the width of the proxy model,
dp, and target, dt, µP prescribes scaling factors to apply to the LR, initial weight variance, and other
base HPs. In particular, the optimal base LR, η̃opt is scaled down to ηopt = (dp/dt)η̃opt.

While µP enables the same base LR to be used across different N , η̃opt has empirically been found to
vary with B [5, 20, 21, 16]. Moreover, recent work has also observed η̃opt decreasing in D, leading
to proposals for scaling η̃opt as a (decreasing) power law in D [16, 22].

The EMA view of AdamW Rather than adjusting η as D scales, Wang and Aitchison [1] proposed
that, if using the AdamW optimizer [23] with µP, then the weight decay, λ, should instead be adjusted.
To see this, note an AdamW update at each step, t, can be expressed in terms of ηλ as:

θt = (1− ηλ)θt−1 − η
m̂t√
v̂t + ϵ

(1)
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Here, η is the µP-adjusted LR, and m̂t and v̂t are (bias-corrected) exponentially-weighted moving
averages (EMAs) of gradients and squared gradients [24]. Wang and Aitchison [1] observed AdamW’s
parameters, θt, can also be viewed as an EMA—of weight updates. Specifically, the standard EMA
form yt = (1− α)yt−1 + αxt matches AdamW when yt = θt, α = ηλ, and xt = − 1

λ
m̂t√
v̂t+ϵ

. The
quantity 1/α = 1/ηλ provides a measure of the number of iterations (i.e., steps) over which updates
are averaged; [1] denotes it as τiter. They show that if the timescale is measured in epochs as
τepoch = τiter/M , where M is iterations-per-epoch, then the optimal τepoch remains stable when N or
D scale (on image tasks). I.e., if M scales up, λ should be scaled down to maintain constant τepoch.

2.2 Methods: The AdamW timescale for LLMs, τ , and its scaling

Since LLM pre-training only uses one “epoch” of data, we normalize the timescale as τ = τiter/S,
where S is the total number of optimization steps.1 Moreover, since S=D/B,

τ =
B

ηλD
(2)

τ reflects the fraction of past iterations to include in the final weights. While Wang and Aitchison [1]
did not vary B, their work suggests this fraction should remain constant as B scales. We hypothesize
that when moving from compute-efficient to overtrained LLMs, updates can be integrated over a
smaller fraction of the data; specifically, that τopt decreases as a power law in TPP := D/N:

τopt(TPP) = cτ · TPPmτ (3)

where cτ and mτ are parameters to be fit. Appendix Algorithm 1 summarizes the fitting procedure.
Taking the µP-adjusted η as our LR, λopt can be computed from Eqs. (2) and (3):

λopt =
B

η ·D · τopt(TPP)
=

B · TPP−mτ

cτ · η ·D (4)

2.3 Experimental details

We use a GPT2-like LLM [25], with ALiBi embeddings [26] and SwiGLU [27]. We train on
SlimPajama [28] and always evaluate over a held-out set of 1.1B tokens. We use AdamW and µP,
with µP HPs derived from a smaller proxy model, and a linear LR schedule, with a 10% warmup
followed by decay-to-zero [29]. Appendix C has full experimental details.

2.4 Results: τ and scaling λ
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Figure 2: (610M 20TPP): For each B, we sweep λ and find τopt (left). τopt is stable around 0.21 for
B ∈ [63, 2016], meaning λopt scales linearly with B over this range (middle). When sweeping η
(right), the lower boundary over all curves is a bowl with a minimum at 0.21; the smallest B settings
have τopt within 2× of this value, but as B increases, τopt quickly drifts higher.

1Because it depends on η, timescale τ varies during LR decay. Here we compute τ at peak LR. Notably, if
two training runs share the same LR schedule (shape) and τ (at peak LR), their final AdamW timescale (EMA
contributions over the data) will match—even if B differs. Appendix E.4 provides further details.
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Table 1: (610M, 20TPP) Validation losses comparing tuning λ vs. η across B (data from Fig. 2).
η̃ λ B= 63 126 252 504 1008 2016 4032 8064

1.6e-02 0.1 2.595 2.570 2.563 2.573 2.599 2.649 2.755 2.923
Tuned 0.1 2.583 2.570 2.563 2.571 2.597 2.625 2.754 2.923
1.6e-02 Tuned 2.579 2.565 2.563 2.570 2.592 2.637 2.733 2.891

Finding 1: The optimal τ remains stable as B scales; λopt scales linearly with B (Fig. 2).

As B increases and λ is tuned, we find that τopt remains roughly constant—i.e., changes in B lead to
commensurate changes in λopt (Fig. 2, middle)—but only up to a certain point, after which τopt begins
to drift. The drift point corresponds to the critical batch size Bcrit, above which gradient information
no longer scales linearly with B and diminishing returns set in (Sec. 3).2

If η is tuned instead, ηopt fails to scale with B up to Bcrit (Fig. 2, middle); we observe instead a
certain maximum η, above which training becomes unstable; above this, loss spikes occur from which
training does not recover. Consequently, η has less flexibility to scale with B; training stability is
more fundamental than timescale.

In general, LLMs typically train faster and utilize hardware better with larger B, but only up to
Bcrit: beyond this point, much more data (and compute) is needed to obtain the same loss, without
meaningfully reducing the total number of sequential training steps (the poor trade-off for B > Bcrit
is depicted in Fig. 4). Furthermore, Sec. 3 will show that there is also an optimal batch size, Bopt,
below which loss is worse and utilization/parallelism suffer (because batches are small). In practice,
LLMs should therefore be trained in the regime Bopt ≤ B ≤ Bcrit. Notably, this is precisely the
range where we have shown weight decay to scale predictably with batch size; our findings therefore
support the direct optimization of weight decay in the most practically relevant training regimes.

Finding 2: With AdamW, we should adjust λ, not η, as B changes.

Since tuning at scale is infeasible, we need a recipe for selecting HPs in advance. Unlike η, optimal
λ follows a predictable relationship with B (Fig. 2, middle), making λ the more viable target for
real-world adjustment. Moreover, since η has less flexibility to maintain optimal timescale, we
hypothesize adjusting λ could also be more effective. We tested this by comparing either tuning η
(using a default λ=0.1—standard practice in LLM pre-training [3, 32–34])—or tuning λ (using the
µP proxy-tuned η). Tuning λ was strictly superior in 6 of 8 cases (Table 1).

We also compared adjusting λ versus η as D changes. For a 111M 200TPP model, default HPs obtain
a loss of 2.810, tuning η achieves 2.808, and tuning λ obtains 2.805. While differences are small, the
key point is that, when scaling B or D: optimizing λ alone is viable and effective.

Finding 3: τopt decreases as a power law in TPP; the law holds at scale (Fig. 1, left).

At each N and D, we calculated τopt over all (λ,B) pairs; we then fit Eq. (3) to the results. Full
details are in Appendix E.2. A precise power law emerges (R2=0.975), with an optimal τ around
1.0 at 1 TPP, decreasing to 0.01 at 1000 TPP. 10th and 90th percentiles of fitted mτ over all points
are (-0.529, -0.507) (computed as in [3] by bootstrapping: re-fitting on 80% of points, 1000×),
indicating a reliable power-law trend. A decreasing τ stands in contrast to the prescription of Wang
and Aitchison [1] (for multi-epoch training), who advocated keeping τ constant as D changes.

Fig. 1 (left) includes four (labeled) points not used in fitting, but computed later to evaluate predictive
ability. Even though some of these points are interpolated in terms of the fitting range (i.e., TPP
range), they nevertheless represent much greater scales; e.g., training a 3.3B-30TPP model requires
1000× the FLOPs compared to training the 111M-20TPP model (whose data point is plotted nearby).
In other words, the law generalizes across at least 3 orders of magnitude in compute.

2Training with B > Bcrit can be viewed as training with less effective data, thus decreasing the TPP, and
shifting τopt higher (by our power law) and thus λopt lower. A decrease in the optimal learning rate ηopt when
B > Bcrit has been previously observed [30, 31]. These works measure ηopt at very large batch sizes, e.g., 10×
or 100× Bcrit, which was not practical at the scales that we trained. Nevertheless, our observation of a similar
“surge” phenomenon with λopt, occurring in AdamW rather than vanilla Adam, motivates further study.
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Discussion The τ scaling law also predicts previously-observed HP scaling in the literature. E.g.,
for a fixed N , Eqs. (2) and (3) together imply: ηopt = B · cηD

· DmηD , where cηD
and mηD

are
parameters. This matches Equation (1) in [16], and our implied mηD

is close to their fit value (see
Appendix E.3.1). [22] also scales η as a power law in D. They note that fitted power law exponents
are similar when B is doubled, although the optimal η is “higher”. More precisely, we can see from
their Figure 13 that the optimal η appears to, in fact, also double—consistent with the derived ηopt
equation above.

Key takeaway 1: With AdamW, you can find τopt for a small N,D by tuning λ. From there, τopt

scales ∝ (D/N)−0.5. At larger N , D, set λopt via Eq. (4) and enjoy well-tuned models.

3 Scaling of optimal batch size Bopt and critical batch size Bcrit

We now develop methodology to estimate Bopt and Bcrit over the dimensions of total training tokens
D, total compute FLOPs C, and validation loss L. Results show power-law scaling of both Bopt and
Bcrit with D, enabling estimation of Bcrit at scale via a small number of test runs at modest budgets.

3.1 Background: Bopt and Bcrit

Bopt As noted above, recent work has pursued an optimal B: the B achieving lowest loss given
N,D. Hu et al. [17] fit Bopt using a power law in (estimated) loss, and use µP to set η. Joint power
laws for optimal η and B have also been fit [7, 35, 36]. E.g., [7] estimated Bopt = 0.292C0.3271 (in
tokens); we refer to this fit as Bdeepseek below. Li et al. [37] found ηopt to scale in N,D, while Bopt
primarily scales in D. Qwen2.5 [38] also report studying how ηopt and Bopt scale with N and D
(across dense and mixture-of-expert LLMs), but without further details.

Bcrit Let D be the number of training tokens required to reach target loss L̂ when using a batch size
of B. S = D/B is the corresponding number of optimization steps. Doubling a small B doubles
per-step gradient information; L̂ can be reached in half the optimization steps, using the same total
D (so-called “perfect scaling” [39, 40]). But as B increases further, step-wise gradient information
becomes more and more redundant: eventually, much larger D is required to reach L̂, and S decreases
only marginally. McCandlish et al. [11] show that ⟨D,S⟩ pairs can be well fit by the equation:

S/Smin − 1 = (D/Dmin − 1)−1 (5)
where Smin and Dmin are parameters to be fit. Intuitively, Dmin < D is the asymptotically minimum
number of tokens that can reach L̂ (achieved with Bopt) and Smin < S is the asymptotically minimum
number of steps that can reach L̂ (achieved as B → ∞). Eq. (5) defines a hyperbolic curve, like those
in Fig. 4, where B controls the position on the curve and can be set depending on the importance of
time (higher B → higher D, lower S) or compute (lower B → lower D, higher S).
Definition 3.1. The critical batch size at L̂ is defined from the fit of Eq. (5) as Bcrit=Dmin/Smin.

From Eq. (5), we can derive (Appendix F.1), for a given B, the D needed compared to Dmin:
D = Dmin(1 +B/Bcrit) (6)

Eq. (6) implies that when B=Bcrit, we require 2×Dmin tokens (and 2× Smin steps) to reach L̂. Bcrit
is a transition point along the D vs. S curve: for B > Bcrit, much higher D is needed for only small
reductions in S (Fig. 4). Kaplan et al. [4] refer to Bcrit as the optimal compromise between time and
compute. They determine Bcrit at smaller scales and fit a power law for Bcrit as a function of L̂.

Eqs. (5) and (6) also imply Bopt is theoretically equal to 1. In practice, loss degrades below a particular
Bopt [17, 7, 35], a finding that “appears to contradict the conventional wisdom” about Bcrit [35]. With
well-tuned λ, we find small differences in loss across small B, suggesting Eq. (5) may nevertheless
provide a good fit to observed data. Appendix B has further discussion.

In recent work, Zhang et al. [12] define Bcrit as the point where D = 1.2×Dmin. [12] uses a different
training setup, with a constant LR, weight averaging, and no weight decay. Notably, they observe
little change in Bcrit as N varies at fixed D, but, for a 302M model, find power-law scaling in D as
Bcrit = 22.91D0.47 (in tokens), consistent with observed scaling across models at fixed TPP. See
Appendix D.3 for further differences with Zhang et al. [12].

5



109 1010 1011 1012

D (total training tokens)

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

V
al

id
at

io
n

lo
ss

B
192

384

768

1536

3072

6144

Observed dataObserved data

Figure 3: (111M): Fitted B-
specific power laws, LB(D),
for inferring steps to reach tar-
get loss L̂ (arrowed blue line).

104 105

1010

1011

1012

D
(t

ot
al

tr
ai

ni
ng

to
ke

ns
)

Increasing B

610M

Bcrit=1951
Bcrit=2337

Bcrit=2930

Bcrit=3979

Bcrit=6450

104 105

1.7B

Bcrit=3274

Bcrit=4025

Bcrit=5064

Bcrit=6787

B-specific scaling law points

Fitted Equation (6)

2.2

2.3

2.4

2.5

2.6

V
al

id
at

io
n

L
os

s

S (total number of optimization steps)

Figure 4: Eq. (5) fits observed data well: Increasing B (moving
leftward along curves) decreases optimization steps (x-axis), but
requires more tokens (y-axis) to reach target loss (in color). Bcrit
is the transition point along each fitted curve.

3.2 Methods: estimating Bopt and Bcrit, and their scaling

Estimating Bopt We use the same experimental settings as Sec. 2.3. To ensure good HPs, we sweep
λ by factors of 2× at each B, D, N , except at the largest scales (see Appendix Table 3) where we set
λ via the projected value from Eq. (4). In all figures, B is reported in units of sequences.

Estimating Bcrit Unlike Bopt, measuring Bcrit requires training models with different B to the same
L̂. Unfortunately, we do not know a priori how many steps are required to reach L̂, yet we need this
information to configure a LR schedule that reaches its minimum value on the final step (the typical
setup, shown to be consequential in prior work [3, 41]). Unfortunately, it is not feasible to search for
the precise steps needed, i.e., by conducting training runs with different schedules/step budgets.

McCandlish et al. [11] address this issue by performing a single training run at a constant LR,
while Zhang et al. [12] also use a constant LR, but use weight averaging to frequently generate
higher-quality checkpoints for evaluation (Appendix D.3).

In contrast, we desired a method agnostic to the LR schedule. We achieved this by fitting batch-size-
specific power laws that model how loss scales with D. These laws allow us to accurately interpolate
the D required to reach L̂. Fig. 3 depicts, for different B and a given L̂, the interpolated D values
(intersection points of arrowed line and fitted loss curves). The full process to obtain Bcrit at L̂ is:

1. For each B, train over different D, and subsequently fit a B-specific power law
LB(D) = EN +DconstD

−β on the resulting loss values (fitted curves in Fig. 3).

2. Use fitted LB(D) to infer the DB needed to reach L̂ as: DB = L−1
B (L̂) = (Dconst/L̂−EN)

1
β .

3. Fit Eq. (5) on the resulting ⟨DB , S=D/B⟩ pairs, and obtain Bcrit = Dmin/Smin.

This method makes no assumptions about the LR schedule or optimizer, while enabling measurement
of Bcrit at arbitrary losses without re-training. Appendix F.2 provides further details, including fits of
LB(D) at other model scales (Fig. 9) and a summary of the full procedure (Algorithm 2).

Bopt and Bcrit scaling We collect Bopt across different N and D, and fit a power law in both data
D and compute C (via the standard approximation C ≈ 6ND [4, 3]). For Bcrit, we use the procedure
described above to estimate Bcrit across multiple L̂, across different N . From each Bcrit estimate, we
obtain a pair ⟨Dmin, Bcrit⟩. We propose that Bcrit follows a power law in Dmin, according to:

Bcrit(Dmin) = cBcrit ·D
mBcrit
min (7)

Where cBcrit and mBcrit are fit on the ⟨Dmin, Bcrit⟩ pairs.
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3.3 Results: Bopt and Bcrit
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Figure 5: Prior work suggests Bopt scales in C (left) and Bcrit in loss (middle), but this only holds
at a fixed N /TPP (same data as Fig. 1 middle/right); Fig. 1 shows scaling in D is the fundamental
relationship. Plotting Bdeepseek(C) law from [7] (right), but over D (using C ≈ 6ND to obtain C
for the spurious dependence on N ), we see [7] used generally efficient B values (i.e., within the
Bopt < B < Bcrit regime) despite fitting C rather than D (Bopt and Bcrit lines from Fig. 1).

Finding 4: Eq. (5) provides a decent fit to the trade-off between training time and compute.

Across different model scales and loss targets, we consistently find that our ⟨D,S⟩ pairs fit Eq. (5)
well (examples in Fig. 4, appendix Fig. 10). Fits are worse at very small B, as noted above: smaller
batches are not monotonically more efficient; Appendix B discusses some potential reasons for this.

Finding 5: Bopt and Bcrit obey power laws in D and Dmin, not in C or L.

Bopt and Bcrit datapoints fit power laws quite well (Fig. 1, middle, R2=0.984) and (Fig. 1, right,
R2=0.940). 10th and 90th percentiles over all points are (0.367, 0.391) for fitted mBopt and (0.491,
0.526) for mBcrit (computed as in Sec. 2.4). Note mBcrit is higher when fitted over all points (as
opposed to only small-scale runs), partly reflecting the 111M points trending lower as TPP increases.

Our fitted Bcrit power law exponent is very close to that from [12]: 0.47 vs. 0.462. Given the many
differences in approach (including dataset, use of weight decay, LR schedule, etc., Appendix D.3),
this agreement suggests the fundamental relationship of Bcrit with D persists across such differences.

Fig. 5 (left) plots Bopt versus C and Fig. 5 (middle) gives Bcrit versus L using the same data as in
Fig. 1. In each case, a power law does not fit all points (as proposed previously), but points at the same
N , or same TPP, can roughly be linked by (parallel) lines. This is a consequence of power-law scaling
in D (see Appendix F.4). That is, scaling in D is the fundamental scaling relationship: Bopt and Bcrit
both scale in D regardless of TPP, model size, or loss—it is only when using another (misleading)
scaling factor such as C or L̂ that TPP or model size appears important, as in these plots.

Fig. 5 (right) compares the recommended batch sizes from Bdeepseek to those from Bopt and Bcrit.
Since Bdeepseek scales in C, it is larger for larger N . Over a range of modern model sizes, Bdeepseek
values generally fall between our projected Bopt and Bcrit, varying in the extent to which they are
compute-efficient (close to Bopt) or time-efficient (close to Bcrit).

Finding 6: Weight decay affects the accuracy of fitted batch size scaling laws.

Prior work has typically held λ fixed when fitting batch-size scaling laws [7, 35, 12]. Doing so
not only degrades loss (Sec. 2) but also reduces the accuracy and generality of the fitted scaling
relationships. We demonstrate this in appendix Table 5: rather than tuning λ for each B, we train
with several fixed λ values across all runs. As Table 5 shows, increasing λ systematically raises
the estimated Bopt. This arises because the fundamental scaling variable is the AdamW timescale
τ = B/(ηλD): when λ increases, the batch size that minimizes loss must increase proportionally to
preserve the optimal τ . In Appendix F.5, we show that these effects distort the fitted power-law slope
and reduce fit quality (R2), leading to scaling laws that do not generalize to large-scale training—even
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if the same fixed weight decay is used there. When λ is tuned to maintain the optimal timescale (final
row of Table 5), the resulting Bopt follows a clean and accurate power law.

Similar distortions occur for Bcrit when λ is fixed (Appendix F.5).

Key takeaway 2: You can estimate Bopt and Bcrit for a small N by training with different B, D and
λopt, and computing loss. From there, Bopt ∝ D0.4 and Bcrit ∝ D0.5. At larger N and D, Eq. (6)
lets you estimate trade-offs in FLOPs (∝ D) vs. training time (∝ S = D/B) at different B.

4 Training settings for balancing time and compute

4.1 Background: compute-optimal and overtrained models

Given a fixed training FLOPs budget, C, how should we allocate model size N versus number of
training tokens D in order to minimize loss? Hoffmann et al. [3] propose to model loss as:

L(N,D) = E +NconstN
−α +DconstD

−β (8)

Nconst, α, Dconst, and β are parameters fit on observed training runs. From Eq. (8), [3] derives
functions for loss-optimal Nopt(C) and Dopt(C) (constraining L(N,D) by C ≈ 6ND). Results
indicate Nopt and Dopt scale roughly equally as C increases, with the optimal D/N ratio relatively
constant at around 20 TPP. Replication studies have found similar results [9, 35], and 20 TPP has
become a rule-of-thumb for compute-optimal training [13, 12].

Overtrained, inference-efficient models [10, 42, 43] have largely trained with similar batch sizes to
those used in compute-optimal training; such efforts should now consider training with much greater
data parallelism, leveraging our finding that Bopt and Bcrit will be higher given the higher training D.

4.2 Methods: exploring the trade-offs of FLOPs vs. time

To compare models of different sizes on a common temporal axis, we must map
number-of-optimization-steps to a common temporal scale. Our initial approximation is
Training Time ∝ Total FLOPs/B, which is also FLOPs per token times number of steps. E.g., if
FLOPs ≈ 6ND, Training Time ≈ 6ND/B = 6N · S. This aligns well with our measured runtimes:
doubling N doubles step time; doubling B halves wall-clock time (for the same S).

Now, assume a model of size N can train to loss L̂ using Dmin tokens (here min denotes using Bopt).
Let us refer to N and Dmin as a base setting. A variety of N , Dmin pairs can reach L̂ in the Bopt
setting, from small models trained on many tokens, to large models trained on fewer tokens. [3] refers
to these as iso-loss contours of Eq. (8). Suppose a given base setting requires C(N,Dmin) FLOPs.
From this setting, we may increase B to decrease training time (fewer steps), but Eq. (6) indicates
a need for (1 + B/Bcrit) extra data in order to reach the same L̂. If FLOPs is linear in D (as in
C = 6ND), we will require the same proportion of extra FLOPs, i.e.,

C+(N,Dmin, B) = C(N,Dmin)(1 +B/Bcrit(Dmin)) (9)

where C+(N,Dmin, B) denotes the total FLOPs needed at B > Bopt, and Bcrit(Dmin) captures that
the excess FLOPs depends on Bcrit, which itself scales with Dmin. In other words, the base setting
dictates Bcrit, and B/Bcrit dictates the excess FLOPs.

Consider a target FLOP budget of C+(N,Dmin, B) = Ĉ and the goal of reaching L̂ as fast as possible.
Since time ∝ Total FLOPs/B, time is minimized by maximizing B. However, by construction, B is not a
free variable: it is constrained by Eq. (9) and can be expressed as a function of N and Dmin:

B(N,Dmin) =

(
Ĉ

C(N,Dmin)
− 1

)
Bcrit(Dmin) (10)

Time is therefore minimized by finding N , Dmin that maximize this function (over all the N , Dmin that
train to loss L̂). The Ĉ/C ratio is a measure of the excess FLOPs that can be spent toward increasing
B; it is largest when C(N,Dmin) is smallest, i.e., when N and Dmin is most compute-efficient (i.e.,
N/Dmin ≈ 20 TPP). But Eq. (10) as a whole captures an elegant tension between compute efficiency
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and Bcrit: we can maximize B (and minimize training time) by either (1) minimizing the FLOPs of the
base setting (generating more excess FLOPs for increasing B), or (2) maximizing Dmin (overtraining,
which increases Bcrit(Dmin)). For a given Ĉ, either (1) or (2) may take precedence.

We use the following procedure to explore the time vs. compute Pareto frontier for a target loss L̂:

1. Fit Eq. (8) on our Bopt training runs. Express resulting L(N,Dmin) as DminL̂(N).

2. Using DminL̂(N), get contour points ⟨N,Dmin⟩ of the given L̂. Each such pair consumes
C(N,Dmin) ≈ 6NDmin FLOPs and takes C(N,Dmin)/B time (rightmost points on Fig. 6 curves).

3. Use Eq. (9) to compute C+(N,Dmin, B) as we scale B (crucially, using the estimate of Bcrit from
fitted Eq. (7)), and generate further points along each curve.

4. The non-dominated points over all curves provide the time vs. compute Pareto frontier.

4.3 Results: balancing time and compute

We carry out this procedure using model sizes of 150M, 210M, 550M, 1.1B, and 2.1B, and a loss
target of L̂=2.6, yielding iso-loss contour points from 150M 600TPP to 2.1B 2TPP. Our fit of Eq. (8)
yielded α=0.313 ≈ β=0.282, giving an optimal TPP ratio of ≈20.6 at L̂=2.6.

Finding 7: Overtrained, but not undertrained, models are on the FLOPs vs. time Pareto frontier.
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Figure 6: (left): Iso-loss curves illustrating time–compute Pareto frontier (L̂=2.6). As B increases
along curves, more compute (y-axis), but less time (x-axis) is required. Here time ∝ Total FLOPs/B.
(middle): Observed runs where some overtrained models (red line) are on frontier: L in color, B
labeled. (right): Iso-loss curves, but where time = steps; a very different frontier emerges.

Specifically, when using Training Time ∝ Total FLOPs/B, we find overtrained models are FLOP-optimal
at certain time budgets (Fig. 6, left). Compute-efficient 20 TPP are optimal in pure FLOPs (i.e.,
ignoring time), as expected, while compute-efficient and overtrained models dominate undertrained
(< 20 TPP) models in time and FLOPs. Indeed, this is expected from Eq. (10): undertraining reduces
both the excess FLOPs and Bcrit terms, and thus is never optimal with this model of time.

Finding 8: When using B ≫ Bopt, it is Pareto-inefficient to train to 20 TPP.

Notice that Fig. 6 adds “. . .TPP+” to curve labels. Here the + sign is a reminder that as we increase
B, we require (1 + B/Bcrit) extra data to reach the same L̂; i.e., points with higher B are trained
to a higher actual TPP than the base setting. For example, once the 2TPP+ curve in Fig. 6 reaches
10× its minimum FLOPs, it is actually training at 20 TPP. Since starting from an undertrained base
setting is never Pareto optimal (as just discussed above), it is always suboptimal to train a model with
a large B to 20 actual TPP. If large-batch training is needed, the configuration should start from a 20
TPP+ base setting and scale B from there (to >20 TPP).

We can see this finding play out in real training runs. Fig. 6 (middle) demonstrates observed runs
where our 266M 80TPP models dominate our 610M 20TPP models (i.e., in FLOPs and time)—when
both train with large B. (Note in this plot, results are not iso-loss: the frontier is over L, C, and time.)
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Finding 9: The Pareto-optimal settings depend on the formulation of time/parallelism strategy.

While FLOPs/B is a good model of data parallel training, it does not incorporate the potential for
model parallelism [44]. In the extreme we could assume that all 6N FLOPs could be executed
concurrently per input token. Under this formulation, training time is proportional only to the number
of steps, regardless of model scale. Fig. 6 (right) shows the Pareto frontier that would result from this
formulation; if we pay no time cost for larger models, we can train faster by using undertrained large
models, although, exactly as with overtrained models, they suffer in FLOPs.

While LLMs cannot be fully parallelized due to the inherent sequential nature of a Transformer’s layer-
by-layer computation, this formulation could be refined by incorporating depth or other architectural
features. For example, Inbar and Sernau [45] predict training time via linear regression over total
FLOPs and memory-copy operations, fit to real (single-TPU) runs. As formulations improve, different
Pareto-optimal configurations will emerge.

Finding 10: Inaccurate Bcrit scaling leads to inaccurate Pareto-optimal configurations.

Because the Pareto frontier in Sec. 4 depends directly on the Bcrit power-law fit, any error in that
fit produces corresponding errors in the predicted trade-offs between training time and compute.
Accurate Bcrit estimation, in turn, depends on effective λ tuning (Finding 6 and Appendix F.5).
When λ is fixed as in standard practice (and thus the Bcrit(D) slope is misestimated), Bcrit will
be systematically over- or underpredicted at scale, altering the computed frontier and the apparent
Pareto-optimal configurations. To illustrate, artificially varying the Bcrit exponent changes which
models appear on the frontier: as the exponent increases (and Bcrit rises), higher-TPP models move to
the frontier; when Bcrit is underestimated, only low-TPP (e.g., 20 TPP) models appear Pareto-optimal.
Hence, an inaccurate Bcrit scaling law produces misleading frontiers and can lead to unexpectedly-
longer training durations and suboptimal compute allocations.

Recent work suggests that other estimators of Bcrit (such as those based on the gradient noise
scale [11]) can also be systematically biased (Appendix D.2), leading to similar distortions in the
Pareto frontier.

Key takeaway 3: To balance time and compute at a target loss, select (N,Dmin) from Eq. (8),
determine Bcrit(Dmin) via Eq. (7), and use Eq. (9) to estimate compute for any B. Under Time∝
FLOPs/B, the resulting time–compute trade-off favors higher D (overtraining) (Fig. 6).

5 Conclusion

We have presented a comprehensive empirical study of hyperparameter scaling laws in LLM pre-
training, focusing on weight decay and batch size. Our approach leverages the AdamW timescale (τ )
to develop robust scaling relationships that predict optimal hyperparameter settings across a broad
spectrum of model (N ), dataset (D), and batch sizes (B). We demonstrated that optimal τ decreases
as a power law with the tokens-per-parameter ratio, providing a systematic method to set weight
decay optimally across diverse training scenarios.

Furthermore, we introduced a novel, practical methodology for estimating critical batch size (Bcrit).
Our findings diverge from influential prior work that tied Bcrit predominantly to compute or loss,
while agreeing with the recent findings of [12] that underscore dataset size as the principal scaling
factor. Additionally, we showed that contrary to previous studies suggesting optimal batch size (Bopt)
scales primarily with compute, it also exhibits a clear power-law dependence on D.

Also, our analysis of Pareto-optimal configurations reveals an important strategic advantage for
smaller, overtrained models in scenarios where rapid training and high parallelism are prioritized.

Appendix B notes limitations and directions for further study suggested by our results. In particular,
as inference-time scaling comes to the fore, inference time and compute must also be considered as
first-class Pareto objectives. Moreover, finer-grained configuration decisions, such as model depth
and context length, should be considered along with N , D, and B.
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A Broader impacts

This paper presents methods to train LLMs more efficiently: practitioners can use our methods to
reduce the total compute FLOPs used to train models, subject to time constraints. Given the intense
pressure to advance LLM capabilities as quickly as possible, our methods can therefore reduce the
associated environmental and financial costs of LLM training [46, 47].

Moreover, hyperparameter tuning is a key contributor to these costs, and impairs equity in AI research,
as tuning success depends directly on researcher finances [48]. We hope our exploration of optimal
hyperparameter scaling can reduce the burden of hyperparameter tuning at scale and thus improve
equity in AI.

B Limitations

While our findings corroborate prior work and provide strong evidence for the proposed scaling laws
in τ , Bopt, and Bcrit, there are several limitations that merit further study.

EMA perspective As the EMA perspective regards parameters yt as a function of updates xt,
it fails to account for xt actually depending on earlier values of yt (e.g., yt−1). Yet although this
perspective has formal limitations, we nevertheless find it a useful conceptual model of training, as it
predicts behavior that is supported by experiments.

Optimization and training setup Our work focuses on AdamW (the standard optimizer for LLM
training). While the EMA perspective applies directly to other optimizers that use decoupled weight
decay, such as Sophia [49] and MuonClip [50], it may not apply to approximate second order methods,
e.g., Shampoo [51]. However, it can be used when applying AdamW (and related optimizers) in
Shampoo’s eigenbasis, which was shown to be effective in SOAP [52].

We present results with a single (standard) learning rate schedule. Our method for obtaining Bcrit
estimates would be quite efficient with a warmup-stable-decay (WSD) schedule [17, 53], as we could
perform a single training run with each batch size, but decay at various milestones in order to get
points along the scaling law, essentially following the approach in Hägele et al. [41], but with separate
laws for each batch size.

We used the maximal update parameterization in all experiments, which generates a learning rate η
adjustment for each model width. Our results suggest this approach enables good models at arbitrary
N , D, and B when combined with adjustments to λ. This strategy is informed by our experiments
comparing re-adjusting η vs. λ in Sec. 2.4. However, it is not feasible, at this scale, to verify whether
substantially better models could be obtained by sweeping the full cross-product of η and λ values.

Our study specifically focuses on the practically important setting of single-epoch LLM pre-training.
Wang and Aitchison [1] indeed noted differences in optimal τ when using multi-epoch training,
possibly due to data repetition. Reconciling these differences by isolating the effects of repetition
versus scale is an interesting follow-up direction.

Here we only experimented with a single dataset, vocabulary, and context length. We obtained a
similar Bcrit scaling law to Zhang et al. [12], but it would be interesting to see if differences in the
coefficient of our power laws could be attributed to specific differences in approach (e.g., differences
in dataset, context length, learning rate schedule, use of weight decay, etc.). Appendix D.3 has further
discussion of differences with Zhang et al. [12].

We have also not explored how changes in numerical precision could affect scaling laws. Recent
work [54] showed that, in terms of scaling laws, lower precision reduces the model’s effective
parameter count. This suggests precision would have no impact on scaling of Bopt or Bcrit, which do
not scale in N . Lower precision, however, could increase the effective TPP (via smaller effective N ),
thereby altering τopt.

Small batches, large batches, and dynamic batch sizing We consistently find that smaller and
smaller batches do not grow asymptotically closer to Dmin, as predicted by theory, but eventually
degrade in loss. One possibility is that λ tuning is not sufficient with very small B, and further tuning
of other hyperparameters may be needed, such as the Adam β parameters (as suggested in recent
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Table 2: Model architectures used in experiments
Model dmodel nlayers dhead

111M 768 10 64
266M 768 32 64
610M 2048 10 64
1.7B 2048 32 64
3.3B 2048 64 64

Table 3: Models, tokens-per-parameter (TPP) and corresponding dataset sizes (in tokens) used in
main experiments. We also list the total number of batch sizes, B, trained at each scale and TPP, as
well as the number of B for which we tuned λ. For B where λ was not tuned, it was inferred via the
τopt scaling law (Sec. 2). Additional sweeps of η were done at each B at 610M-20TPP scale for the
experiments in Sec. 2.4. Around 400 different LLMs were trained in total across all the experiments.

Model TPP D Number of B Number of B with λ tuned

111M 20 2.19B 8 8
111M 80 8.76B 8 8
111M 200 21.9B 7 7
111M 320 35.0B 8 8
111M 1280 140.1B 6 1
266M 20 5.31B 7 7
266M 80 21.2B 7 7
266M 320 85.0B 6 6
266M 1280 339.8B 1 0
610M 20 12.1B 8 8
610M 80 48.5B 7 7
610M 200 121.3B 6 6
610M 320 194.1B 2 1
1.7B 20 34.3B 7 7
1.7B 80 137.2B 7 1
1.7B 320 548.6B 1 0
3.3B 20 66.5B 1 0
3.3B 23 76.5B 1 0
3.3B 30 99.8B 2 1

work [35, 12, 55]). Some preliminary tests using the β2 scaling rule from Marek et al. [55] showed
loss improvements at small B. Since we are unlikely to train with small batches at scale, and using
them even with smaller LLMs significantly impairs our ability to train both efficiently and quickly, it
is unfortunately difficult to justify further exploration in this direction.

Regarding large batches, our methods do not account for the many practical systems-related issues,
including bandwidth and communication overheads, memory limits of hardware, synchronization
delays, etc. Moreover, as batch sizes increase, techniques such as optimizer sharding may be needed,
which further complicate performance model [33]. Our scaling laws do, however, explicitly define
a practically relevant regime of training batch sizes: Bopt ≤ B ≤ Bcrit. Practitioners can leverage
this identified regime alongside system-specific profiling (e.g., evaluating utilization at various batch
sizes) to select optimal settings balancing algorithmic and systems constraints.

Exploring optimal dynamic batch sizing is a natural future direction for our work. While the potential
gains were found to be small in theory by McCandlish et al. [11], more recent work has found
significant wall clock speedups [56].

C Experimental Details

Table 2 provides details on the model architecture and hyperparameters for models used in the
experiments. Table 3 provides, for each model scale and TPP, the dataset sizes used in training, the
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Table 4: Tuned hyperparameters for µP proxy model
σW,base 8.67e-02

η̃ 1.62e-02
αinput 9.17
αoutput 1.095

number of batch sizes tested, and the number of batch sizes for which λ was tuned. Around 400
models in total were trained for the main experiments.

All the models in our main experiments were trained on the SlimPajama dataset [28], a cleaned and
deduplicated version of the RedPajama dataset. We use the GPT-2 [25] vocabulary of size 50257,
and a context length of 2048 tokens. Following standard practice, we do not apply weight decay or
bias to LayerNorm layers. AdamW settings are β1 = 0.9, β2 = 0.95, and ϵ = 1e−8. Validation loss
is always computed over a held-out 1.1B tokens, regardless of training TPP. We report cross-entropy
loss. By default we parameterize with µP, with hyperparameters set via proxy tuning, as described
below.

For a given TPP, all models have the exact same warmup phase: a linear warmup of the learning rate
from 0 to the maximum value. In all our runs, warmup was 10% of the total steps. Learning rate
warmup is standard practice in LLM pre-training [32, 57, 42, 43, 58].

All models in the main experiments were trained on a Cerebras CS-3 system. 610M-parameter 20TPP
models take roughly 6 hours each to train on a single CS-3.

For a given model configuration, we find results to be very stable across random seeds. To quantify
the variance, we repeated 111M-parameter, 20 TPP training four additional times for six different
hyperparameter settings, resulting in 5 total validation loss results for each of the six training runs.
Standard deviation of the validation loss was below 0.003 in all cases.

Proxy model hyperparameter tuning To find the optimal µP hyperparameters (HPs), we trained
a 39M proxy model using a width dmodel of 256, with 24 layers and head size of 64. We trained
this model on 800M tokens with a batch size of 256 sequences and a context length 2048. We
randomly sampled 350 configurations of base learning rates, base initialization standard deviation,
and embedding and output logits scaling factors, and used the top-performing values as our tuned
HPs (Table 4).

D Additional related work

D.1 Optimizers for large-batch training

Prior work has explored optimizers designed specifically for large-batch training, including
LARS [59] and LAMB [60]. It is instructive to consider these prior findings in light of the scaling
laws from our paper. In particular, both original BERT [61] and the LAMB replication were trained
on 85.2B tokens. Applying our fitted Bcrit power law over D=85.2B, we obtain an estimated Bcrit of
about 12M tokens. Original BERT was trained for 90% of steps with a batch size of 65K tokens (512
sequences of length 128). LAMB increased the batch size to 4M tokens (32K sequences), justifying
their claim, “BERT training can be reduced from 3 days to just 76 minutes” [60]. However, based on
the predicted Bcrit of 12M, batch size 4M is still well within the expected range of efficient batch
sizes. Moreover, the LAMB paper later notes, “we did not observe any speedup by increasing the
batch size from 65536 to 131072 [sequences, or 16.8M tokens].” In other words, they reach the point
of diminishing return exactly where B exceeds our predicted Bcrit.

It is likely that some optimization issues solved by LAMB (to enable stable large-batch training)
are solved other ways in modern LLM training setups, via, e.g., gradient clipping, pre-LayerNorm
placement, better initialization and stability control through µP, etc. Scaling λ rather than η with B,
as we propose, further supports stable, efficient training. However, gradient redundancy imposes an
inherent limit on useful batch sizes, ensuring critical batch size remains relevant.
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D.2 Critical batch size

Observations of critical batch size have previously been related to data complexity [62], loss curva-
ture [39, 63], and model architecture [40].

Merrill et al. [64] define Bcrit as the largest B such that loss does not degrade by more than a fixed
fraction ϵ from the Bopt setting. They measure this Bcrit instantaneously throughout training, by
repeatedly branching from a checkpoint with different B settings and assessing the impact on loss.

Recent work also defines Bcrit in terms of how η scales with B [31, 30]; unlike our work, these recent
studies use a constant learning rate schedule and no weight decay.

We follow McCandlish et al. [11]’s definition of Bcrit (Definition 3.1). Given various theoretical
assumptions, McCandlish et al. [11] derived a direct equivalence between Bcrit and what they call
the gradient noise scale (GNS): the variation of the gradients between different training examples.
However, they noted that the GNS “accurately predicts the largest usable batch size (at the order
of magnitude level),” which is below the level of precision needed for large-scale training. Merrill
et al. [64] recently found “the gradient noise scale underestimates the CBS [i.e., Bcrit].” This lack
of precision may be why, in Kaplan et al’s original scaling laws paper [4], they note that, “although
the critical batch size roughly matches the gradient noise scale, we are using a direct [empirical]
measurement of Bcrit.” Our approach to measuring Bcrit (Sec. 3.2) similarly provides a direct empirical
measurement, but one that can be efficiently computed with any learning rate schedule or optimizer.

D.3 Detailed comparison with Zhang et al. [12]

Here we provide further comparison with the concurrent work by Zhang et al. [12]. The primary
point of distinction of our paper is that we conducted a large-scale empirical study into the scaling of
AdamW’s weight decay hyperparameter (including its scaling with B), ultimately deriving a precise
power law for the optimal AdamW timescale in tokens-per-parameter. Zhang et al. [12] did not use
weight decay. Further, we also explored scaling of Bopt in addition to Bcrit. Beyond use of weight
decay, further methodological differences in our main experiments include that we used a longer
context length (2048 vs. 512), a cleaner dataset (SlimPajama vs. C4), the µP parameterization, a
decaying LR schedule (more on this below), and that we tuned HPs at most N , D, B (Table 3), while
[12] performed a HP sweep for a 151M model, and re-used optimal values at other scales. We now
focus on differences in estimating and measuring the scaling of Bcrit.

Estimating Bcrit for a specific target loss Both our work and Zhang et al. [12] require measuring,
for different batch sizes, how many training steps it takes to reach a particular target loss. Since the
number of steps to reach that loss is not known a priori, it is inherently difficult to study Bcrit when
using a LR decay schedule, where you must specify the number of steps in advance. Using a constant
LR (as was done in early work on Bcrit [11]) simply does not result in competitive models [29].
Unfortunately, it is not feasible to search for the precise step count needed, i.e., by conducting full
training runs with different schedules/step budgets.

Zhang et al. [12] creatively solve this issue by conducting a single training run at a constant LR, while
using weight averaging to generate higher-quality checkpoints for evaluation. With this approach,
they still “need to frequently evaluate the model on a holdout evaluation set” [12].

Given LR decay, as opposed to weight averaging, remains the standard practice for current state-
of-the-art LLMs, we independently developed a different approach. This led to the novel method
described in our paper. In contrast with [12], we do not need to frequently evaluate the model, as we
instead fit a B-specific loss power law through a few validation loss values (Sec. 3.2). Indeed, our
approach may improve the efficiency of [12]’s method, as it would obviate the cost of continuous
validation, which concerned them (see their section “Evaluation data size and frequency”).

Estimating the Bcrit power law Collecting Bcrit data across multiple model scales and loss targets
is expensive. Zhang et al. [12] establish Bcrit scaling in D through three targeted experiments:

• measuring Bcrit while scaling N but leaving D fixed to 3.07B

• measuring Bcrit while scaling D but leaving N fixed to 302M

• measuring Bcrit while scaling both N and D proportionally (at 20 TPP)
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Interestingly, Bcrit was found to only scale weakly in N , but scale similarly whenever D is scaled.
They then fit a power law to their data points for the 302M-parameter model, obtaining the fit
Bcrit = 22.91D0.47 (in tokens).

In comparison, we took a more brute-force approach, computing Bcrit across many different N and
D values, and ultimately fitting our Bcrit power law across multiple different model sizes and TPP
settings (Fig. 1, right). Also, unlike [12], we assessed the quality of fit via computation of both R2

values and parameter quantiles via bootstrapping (Sec. 3.3).

Recall also that [12] used a different definition of critical batch size. Let us denote their quantity
Bzhang. They set Bzhang to be the B such that the data required to reach a loss target is 1.2 ×Dmin
(i.e., 1.2× the data required with Bopt).

We can use Eq. (6) to align their fitted law with our own. By this equation, we have:

D = Dmin(1 +
Bzhang

Bcrit
)

:= Dmin(1.2)

⇒ Bzhang

Bcrit
= 0.2

⇒ Bcrit = 5Bzhang

Thus, to convert their coefficient to our scale, we multiply it by 5, and, dividing by the number of
tokens in our sequences, obtain Bzhang = 0.0559D0.47. The Bzhang coefficient (0.0559) is 19% larger
than our own (0.0471), perhaps reflecting differences in training setup or data quality (and worth
investigating further in future work). However, the exponents are quite similar (0.47 vs. 0.462),
suggesting that both works are independently measuring the same fundamental scaling behavior.

We emphasize that Bcrit directly reflects the fundamental limit to data parallelism in training neural
networks. Given the significant implications of Bcrit scaling in D rather than C or L (including
those discussed in Sec. 4), we note the scientific and practical value in having different approaches
independently observe this same phenomenon.

D.4 Hyperparameter scaling with B

It has long been recognized that the optimal learning rate, ηopt, scales with B, with reports of both
linear [65–68] and square-root scaling [69, 60, 70]. Recent work has found ηopt to decrease when
B > Bcrit [30, 31], which resonates with our own findings (Fig. 2, right). Since it is difficult to
predict exactly how η will scale with B, studies of Bcrit have often done full HP sweeps at each
B [11, 40].

The only work we are aware of that specifically recommends scaling weight decay with B is
Loshchilov and Hutter [23], who suggest λ ∝

√
B, though this rule is not evaluated systematically. It

is also important to note that Loshchilov and Hutter [23] use the independent form of weight decay,
where decay is applied independently of the learning rate η, unlike common implementations such as
AdamW in PyTorch [6]. In these more typical dependent implementations, weight decay is scaled
by η, so any increase in η with B (e.g., η ∝ B or

√
B) already increases the effective weight decay

strength accordingly.

D.5 τ and effective learning rates

The concept of effective learning rates, influenced by weight decay, has been widely discussed [71–
78]. In its simplest form, the effective or intrinsic LR is simply ηλ, but in these prior works, effective
LRs typically measure functional updates relative to weight magnitude, which is particularly relevant
for normalization-based networks. Comparison of the effects of λ vs. η adjustments in the context of
LR decay schedules was explored in [29].

The behavior of effective LRs (relative update sizes) over the course of training has been studied
comprehensively by Kosson et al. [77], including comparing the effects of increasing η vs. increasing
λ. This work shows that higher η values can cause large relative updates early in training, which can
destabilize training or require longer warmups [58]. High η and low λ can also lead to larger weight
norms [77, 78], which also has a destabilizing effect, particularly on low-precision training. These
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Figure 7: Optimal weight decay scaling with B: The optimal weight decay increases linearly over
small batch sizes—until B > Bcrit.

effects may explain why we were able to achieve higher effective LRs ηλ by tuning λ rather than
tuning η with B (Fig. 2, middle).

For a given dataset size D, the τ and the batch-normalized effective LR ηλ
B are equivalent, and thus

effective LRs and the AdamW timescale can be viewed as different perspectives on the AdamW
optimization process.

E Scaling of τ and λ: additional details and results

E.1 λ scaling with B

Fig. 7 shows how optimal λ changes across B, for all of the model scales and TPP levels where we
did hyperparameter sweeps. There is a strong linear relationship between λ and B over the smaller
batch sizes B < Bcrit, with optimal λ eventually plateauing (or decreasing). Note the standard use of
λ=0.1 [3, 32–34] is only optimal at specific B, and this B changes with TPP.

E.2 Additional details on τ fitting

We now describe how we obtained the optimal τ values at specific model scales and TPP ratios.
Rather than taking the empirical minimum loss, we fit a parabola to the ⟨L, τ⟩ points in log space and
took the analytic minimum of the parabola. If we have multiple loss values at the same τ (e.g., our
data for a single scale and TPP comprises multiple different batch sizes), we only kept the lowest loss
points at each τ prior to parabola fitting. We used validation loss on the held-out validation set. For
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Algorithm 1 Generating the optimal τ power law
Input: small batch size B, optimal per-N learning rates η
Initialize tau_scaling_law_fitting_points = [ ]
for N in model_scales do

for D in 10N, 20N, 80N, 320N, ... do
Reset loss_points = [ ]
for λ in lambda_range do

Train LLM (N,D,B, λ, η), get validation loss L′

τ = B/ηλD
loss_points[τ ] = L′

end for
τopt = argminτ (loss_points)
tau_scaling_law_fitting_points.add(⟨TPP=D/N, τopt⟩)

end for
end for
Fit c, m for τopt = cTPPm on tau_scaling_law_fitting_points

our τ calculations, we input B in units of tokens (in contrast to the output of our reported Bopt and
Bcrit scaling laws, which we report in units of sequences, of 2048 tokens). Algorithm 1 sketches the
full procedure for generating the τ power law (Eq. (3)).

E.3 Relationship to prior power laws

E.3.1 Relationship to ηopt scaling laws in dataset size, D

Both Shen et al. [16] and Bjorck et al. [22] propose scaling laws for the optimal learning rate, ηopt, as
a power law in the amount of data, D:

ηopt = B · cηD
·DmηD

We now discuss how this power law also follows from the power law of τopt in TPP. By Eq. (3), we
have:

τopt(TPP) = cτ · TPPmτ

= cτ ·
(
D

N

)mτ

Substituting in the definition of τ (Eq. (2)), and assuming λ, B, and N are fixed,3 this implies ηopt
will scale as:

B

ηoptλD
= cτ · D

mτ

Nmτ

⇒ ηopt = B

(
Nmτ

λ · cτ

)
D−(mτ+1)

= B · cηD
·DmηD (11)

where cηD
=

Nmτ

λ · cτ
and mηD

= −(mτ + 1)

Eq. (11) is exactly the form of the power law used in Shen et al. [16], and explains the results across
batch sizes seen in Bjorck et al. [22], as discussed in Sec. 2.4.

Comparison to fit in Power Scheduler [16] Given cηD
= Nmτ

λ·cτ and mηD
= −(mτ + 1), we can

use these formulas to compare our fit coefficients to those in Shen et al. [16].

In Shen et al. [16], they find mηD
= −0.51. In our case, mτ = −0.520, and therefore mηD

= −0.48,
which is quite similar.

3Bjorck et al. [22] use a fixed λ=0.1, a fixed batch size of 0.5M tokens (for most of their experiments), and fit
scaling laws separately at different model sizes (except in their Section 4). Shen et al. [16] use µP to adjust the
LR for different model scales, so the derivation applies at any particular N ; they do not report which optimizer
is used nor any of its settings.
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Comparing our cηD
to their cηD

(= 4.6) is a bit less straightforward. First of all, Shen et al. [16]
inputs B in sequences (of length 4096). We thus convert to the scale of our coefficient by dividing by
their sequence length, obtaining cηD

= 0.0011. Secondly, the power law of Shen et al. [16] is actually
for the base µP learning rate η̃, while our derivation above assumes the adjusted (final) learning rate
η (Sec. 2.1).

Let us first compare cηD
coefficients at the proxy-model scale, i.e., where η = η̃. If we were to

use a 28M-parameter proxy model, and a default λ=0.1 (and using our fit values of cτ = 1.084 and
mτ = −0.527), then, by cηD

= Nmτ

λcτ
, our cηD

would also equal 0.0011.

Now we consider how our coefficient varies when N scales. To convert our η scaling law into one for
the base η̃, we can instead use cηD

= Nmτ

λ·ρ·cτ , where ρ = P/W , P is the width of the proxy model,
and W is the width of the target model. The width also affects the number of parameters, N , and
hence the term Nmτ . In Transformers, N scales roughly as N ∝ LW 2, where L is the model depth
and W is the model width. If we round the fitted exponent to mτ ≈ −0.5, and substitute the value
ρ ∝ 1/W into the denominator, we therefore have:

cηD
=

Nmτ

λρcτ

∝ N−0.5

1
W

∝ (LW 2)
−0.5

W

∝ L−0.5(W 2)
−0.5

W

∝ L−0.5

which is invariant to changes in W—i.e., the µP adjustment cancels out the model scaling in width.
So, if we only scale W , τ scaling would stay in agreement with the Power Scheduler recipe, but if
we increase depth, τ scaling would decrease η proportional to 1/

√
L in a manner that is not accounted

for in Shen et al. [16].

The key point is that the scaling law used by Shen et al. [16] is valid, indeed, has similar fitted
exponents, to what would be predicted by the τopt scaling law—but in a specific context only (small
models, or models only scaling in width). Moreover, we have shown it may be less effective to adjust
η in order to optimize τ (as these approaches implicitly do); we obtained superior results by instead
adjusting λ. By considering η, λ, and B holistically, our scaling laws are a superset of these laws for
ηopt, as well as other laws that we discuss further presently.

E.3.2 Relationship to ηopt scaling laws in model size, N

Sec. 2.2 gave our recipe for tuning hyperparameters, for an arbitrary N , D, and B setting. Here
we advocated setting peak η to the µP-adjusted learning rate (where the base learning rate comes
from proxy-tuning). Rather than further adjusting this LR based on the dataset size or batch size,
we argued for instead adjusting λ so that τ is tuned to its optimal value. Based on both theory, and
our empirical findings comparing tuning η to tuning λ, we believe that using µP to scale ηopt with
model width is sufficient for well-tuned models. That is, the theoretical scaling law for ηopt (in model
width), given by µP, is sufficient for good performance. We discuss this perspective further in this
section, specifically how the µP scaling law can explain recent work in empirical ηopt power laws.

As noted in Sec. 2.1, when using µP, a base η is tuned on a small proxy model, and then scaled
depending on the width of the target model. Let W be the width of the target model, and let P be
the width of the proxy model. µP prescribes scaling the optimal base learning rate, η̃opt, down to
ηopt = ρη̃opt, where ρ = P/W . That is, ηopt = P η̃opt/W . As models grow in size, P and η̃opt do
not change, so ηopt will scale ∝ 1/W . Dey et al. [79, Figure 2] show that, indeed, a range of LLMs
from the GPT, Llama, and DeepMind series are roughly following a scaling law where their chosen
learning rate, η is following η ∝ 1/W . In other words, if one were to build a scaling law for ηopt
based on published LLM settings, it would roughly obey the µP theoretical scaling law.

Furthermore, we can develop a scaling law for ηopt in model size, N , using µP, and show that it
matches a recent empirical scaling law by Porian et al. [35]. The number of model parameters in
any Transformer-based LLM scales roughly in the depth, L, and width, W , as N ∝ LW 2. If we
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Figure 8: τ is invariant to steps, with a learning rate decay schedule (111M scale, proxy-tuned
peak η with linear decay-to-zero): Here we adjust weight decay, λ, in order to maintain τ at a constant
value, decreasing λ proportional to the increase in S. Regardless of the total number of optimization
steps, we see that the same τ corresponds to the same shape of the distribution of weight update
coefficients (i.e., the same shape over the data, regardless of how the data is discretized in training).
For batch sizing, this means that if we use a constant D but increase B by K× (decreasing S by
K×), we will incorporate information across the data similarly—provided we use the same τ .

assume that we maintain a fixed width-to-depth ratio, i.e., R = W/L, or L = W/R, then we have
N ∝ W 3, or W ∝ N1/3. Now, since µP prescribe scaling ηopt ∝ W−1, then for a fixed aspect ratio,
ηopt ∝ N−1/3.

Taking a very different approach, Porian et al. [35] developed an empirical scaling law for ηopt as
a function of the number of model parameters. At each model scale, they trained with a variety of
batch sizes and learning rates, and found the optimal settings of these hyperparameters. All models
were trained to 20 TPP. They then fit a power law through the optimal LR settings, and found that
ηopt ∝ N−1/3, exactly as would be expected if one simply followed µP.

As it provides a principled approach to scaling hyperparameters, µP can adapt to scaling when aspect
ratio is not fixed. We therefore advocate using µP to set ηopt, rather than fitting special ηopt power
laws. However, with regards to our overall approach, it does not actually matter whether one uses the
µP theoretical scaling law or an empirical one. The key point is that these laws can be used to set η
at a particular model scale, while the τ law should further be used to set λ depending on the B or D
values.

E.4 The EMA perspective and learning rate schedules

To understand how the EMA view applies with a dynamic LR schedule, we follow the discussion of
Bergsma et al. [29], who extended the formulation in Wang and Aitchison [1]. [29] consider EMAs
with time-varying smoothing, αt ∈ [0, 1]. Letting α1 = 1 (i.e., y1 = x1), they express yt in terms of
all inputs xt:

y1 = α1x1,

y2 = (1− α2)α1x1 + α2x2, · · ·

yt =

t∑
i=1

 t∏
j=i+1

(1− αj)

αixi (12)

The EMA coefficient on each input is denoted ct,i, where ct,i =
(∏t

j=i+1(1− αj)
)
αi. In other

words, ct,i reflects the contribution of input xi to output yt at time t, such that yt =
∑t

i=1 ct,ixi.
Unlike a standard EMA with a fixed smoothing parameter, in this extended EMA the coefficients
need not decrease exponentially as i decreases. Indeed, any set of coefficients can be generated by
some particular smoothing schedule.

In terms of learning rate schedules for AdamW training, αt = ηtλ becomes the smoothing parameter
at step t (cf. Sec. 2.1). The EMA itself, yt, is the model parameters. The EMA is over weight updates:
a large coefficient ct,i means the ith weight update contributes a lot to the EMA at step t. The EMA
coefficients thus provide a more granular view of the contribution timescale than τ alone.
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We now study the question, how do the EMA coefficients change as the step count changes? We
generated the ct,i coefficients for the linear decay-to-zero LR schedule, and plot these coefficients at
the final step (i.e., showing the contribution of weight updates to the final parameters). We use the
µP-tuned and adjusted peak η, for 111M models. The learning rate increases linearly to the peak for
the first 10% of steps, then decreases from the peak to 0 for the remainder of steps. We simulated
three cases: where we take 557 steps, where we take 5568 steps, and where we take 55680 steps
(5568 steps would be 20 TPP for a 111M model using B=192). From the perspective of batch sizing,
these different steps could be achieved by decreasing the batch size twice by 10×.

We adjusted λ for each step count in order to obtain the same three specific τ values. In Fig. 8,
we see that the same τ implies the same shape of coefficients across the steps, and hence the same
contribution over (normalized) time. That is, weight updates from the same portion of the training
data contribute equally to the final model parameters.4

The key takeaway is that since τ is independent of the number of steps, it theoretically provides a
B-independent measure of the AdamW timescale over weight updates, regardless of learning rate
schedule. However, this equivalence for different B breaks down when B > Bcrit and weight updates
themselves no longer contain linearly B× the information of a single sample.

F Scaling of Bopt and Bcrit: additional details and results

F.1 Derivation of “extra data” Eq. (6)

Eq. (5) can be written as:

D −Dmin

Dmin
=

Smin

S − Smin

⇒ (D −Dmin)(S − Smin) = DminSmin

⇒ DS −DSmin − SDmin = 0

Given B = D/S, we can substitute in S = D/B to get an equation in a single variable, from which
we can solve for D.

D2

B
−DSmin −

DDmin

B
= 0

⇒ D2 −DBSmin −DDmin = 0

⇒ D(D −BSmin −Dmin) = 0

⇒ D = Dmin +BSmin

Given Bcrit = Dmin/Smin, we can substitute Smin = Dmin/Bcrit and obtain:

⇒ D = Dmin +B
Dmin

Bcrit

⇒ D = Dmin

(
1 +

B

Bcrit

)
F.2 Estimating Bcrit

We first provide some learnings from developing the Bcrit estimation procedure.

First, regarding the functional form LB(D) = EN + DconstD
−β , we found that including the

irreducible loss term EN was important for obtaining good fits. EN conceptually represents the
Bayes risk plus the minimum loss obtainable for a model of size N (i.e., the first two terms of Eq. (8)).
Second, only interpolated points were reliable; we only compute Bcrit for loss values where all points
are between, or very near to, curve fitting points. Third, each power law should have at least 3 points
for fitting, in order to capture the concavity of the scaling in D. Finally, we sample our B values
logarithmically and, as in McCandlish et al. [11], perform our fits to Eq. (5) in log space.

4Note we do not plot the initial coefficients ct,0 here, but they are equal across the scales for a given τ , unlike
the non-initial coefficients, which reduce by 10× as the number of steps increases by 10×. So a constant τ
means both the same contribution across the data, and the same bias (dependence on initial weights).
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Figure 9: Scaling laws in D for computing Bcrit: Full set of B-specific power laws, for 111M to
1.7B scales, fitted after training models with different batch sizes, B, and dataset sizes, D, at each
scale (empirical data from real training runs indicated by points). From these power laws, we can
compute the amount of data needed to reach any target loss, as illustrated in main paper Fig. 3.

Fig. 9 illustrates all the fit scaling laws for the Bcrit experiments. Notice that beyond the fitting points,
the curves may not predict behavior well. In particular, we would expect all curves to eventually
converge as D increases. Because loss targets beyond the fitting points are unreliable, we only
compute Bcrit at loss targets where all the data sizes can be estimated through interpolation.

Fig. 10 shows the specific fits of Eq. (5) at particular loss targets. While Eq. (5) reflects the data trend
well over the given B values, we consistently find that points with very small B do not approach
Dmin. We discussed this observation further in Appendix B.

Finally, for clarity, we provide Algorithm 2, which gives the detailed approach to generating the Bcrit
power law in procedural form.

F.3 Estimating Bcrit for the 3.3B model

To obtain an estimate of Bcrit for the 3.3B model (shown in Fig. 1, right), it was not feasible to apply
our full Bcrit fitting procedure at this scale (i.e., fitting B-specific loss power-laws, etc.). Instead, we
estimated Bcrit based on two B, Dmin pairs. That is, (based on an initial estimate of Bcrit) we trained
a 3.3B model to 23TPP with B=2016 and got a loss of 2.1688, and a separate model to 30TPP with
B=4032, obtaining a loss of 2.1695. Given these losses are very close, these two models should have
the same Bcrit and thus same Dmin.
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Figure 10: Example fits of trade-off Eq. (5) plotting Smin and Dmin: The empirical data has a good
fit with Eq. (5) across model scales and loss targets. These estimates of Bcrit are used in fitting the
Bcrit-scaling power law (Fig. 1 right).

We solve for this Bcrit as follows. Let B2 = 4032 and B1 = 2016. By Eq. (6):

D2 = Dmin(1 +B2/Bcrit), and
D1 = Dmin(1 +B1/Bcrit)

Let r = D2/D1 (i.e., 30/23 in this case). If we divide the above equations, and solve for Bcrit, we
find:

Bcrit =
B2 − rB1

r − 1

Plugging in our values of r, B1, and B2, we obtain an estimated Bcrit of 4610, corresponding to a
Dmin of approximately 16 TPP.

F.4 Bcrit scaling in loss

Fig. 5 (middle) shows that Bcrit is clearly not a power law in loss, as proposed in prior work [11, 4, 30].
However, if we only consider points with the same TPP, there does appear to be somewhat of a
power-law relationship. In fact, this is implied by Bcrit being a power law in D, along with the
(standard) assumption that loss scales similarly in N and D.
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Algorithm 2 Generating the Bcrit power law

Initialize bcrit_scaling_law_fitting_points = [ ]
for N in model_scales do
▷ Fit B-specific (and N -specific) scaling laws, LB(D):
for B in batch_sizes[N ] do

Reset scaling_law_fitting_points = [ ]
for D in 10N, 20N, 80N, 320N, ... do

Train LLM (N,D,B), get validation loss L′

scaling_law_fitting_points.add(⟨D,L′⟩)
end for
Fit EN , Dconst, β for LB(D) = EN +DconstD

−β on scaling_law_fitting_points
end for
▷ Use LB(D) to estimate Bcrit at various loss values:
for L̂ in lossTargets[N ] do

Reset tradeoff _fitting_points = [ ]
for B in batch_sizes[N ] do

Get DB = L−1
B (L̂) =

(
Dconst
L̂−EN

) 1
β

tradeoff _fitting_points.add(⟨DB , S=DB/B⟩)
end for
Fit Dmin, Smin for Eq. (5) on tradeoff _fitting_points
Bcrit = Dmin/Smin

bcrit_scaling_law_fitting_points.add(⟨Dmin, Bcrit⟩)
end for

end for
Fit c, m for Bcrit = c(Dmin)

m on bcrit_scaling_law_fitting_points

Specifically, let r̂ = D/N be the fixed TPP ratio. Therefore, N = D/r̂. Assuming loss follows
Eq. (8), we have:

L(N,D) = E +NconstN
−α +DconstD

−β

= E +Nconst

(
D

r̂

)−α

+DconstD
−β

= E +Nconstr̂
αD−α +DconstD

−β

Now, if α ≈ β, as is commonly accepted [3, 9, 80, 35, 81], we have:

L(D) = E + (Nconstr̂
α +Dconst)D

−α

= E +KconstD
−α

where Kconst = Nconstr̂
α +Dconst is a constant. In other words, at a fixed TPP, loss is a power law

in data. Given Bcrit is also fundamentally a power law in data, then by the transitivity of power law
relationships, Bcrit is also a power law in loss in this context. This relationship can also be derived by
expressing the D in Eq. (7) as a power law in Bcrit, and substituting into E +KD−α.

F.5 Weight decay affects B scaling laws

Weight decay affects scaling of Bopt. Table 5 illustrates how fixing λ at different values alters the
fitted Bopt power law. Larger λ systematically yields larger Bopt and poorer fit quality (lower R2).
When λ is fixed, the batch size that minimizes loss is only a conditional optimum (we denote it as
Bopt|λ) because it compensates for suboptimal timescales τ rather than representing the globally
tuned Bopt obtained when λ is optimized jointly.

The degraded R2 values arise because a fixed λ forces B to balance two partially competing goals:
(1) maintaining a good τ value, and (2) remaining below Bcrit to avoid gradient redundancy. A simple
power law cannot capture this coupled behavior.

From the relation τ = B/(ηλD) and the empirical scaling τopt ∝ (D/N)m (Eq. (3)), one can derive
that, for constant η, λ, and N , the batch size preserving τopt should scale as B ∝ Dm+1 (with
m + 1≈ 0.47 for our data). The exponents in Table 5, however, deviate from 0.47. For small D
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Table 5: Different λ settings systematically affect fitted power laws for Bopt, and result in poorer
fit quality (lower R2). Fitted parameters change with λ and consequently projected Bopt values (in
sequences) for different token budgets D.

Weight decay Scaling law R2 D=1e10 D=1e11 D=1e12

0.4 Bopt = 0.0006D0.607 0.706 587 2377 9615
0.2 Bopt = 0.0012D0.543 0.926 323 1128 3937
0.1 Bopt = 0.0123D0.429 0.972 240 644 1729
0.05 Bopt = 0.384D0.270 0.689 192 358 667
0.025 Bopt = 10.3D0.120 0.161 163 215 284
Tuned Bopt = 0.0306D0.383 0.984 207 500 1207

and large λ, the B that preserves τopt lies near or above Bcrit, yielding worse loss due to gradient
redundancy. This means Bopt|λ is artificially lower for small D values. Since Bopt|λ is affected
differently for different D, the scaling law slope is distorted (in this case, increased). Analogous
issues disrupt Bopt|λ for small λ. These distortions reduce R2 and impair generalization to large-scale
training. When λ is tuned, this confound is removed, and the resulting Bopt law aligns cleanly with
the expected D0.4 scaling.

Weight decay affects scaling of Bcrit. A similar confound arises for Bcrit. Fixing λ causes
deviations from τopt to mingle with true gradient-redundancy effects. At 111M scale and a target loss
of 3.03, e.g., larger batches perform worse solely because τ drifts from its optimal value, reducing the
fitted Bcrit from 867 (tuned λ) to 707 (fixed λ=0.1). At other loss targets, Bcrit is less affected. Since
the estimated Bcrit is affected differently at different scales, the slope of the Bcrit scaling law is again
artificially distorted. Bcrit will appear to increase faster than D0.5, and projections to larger scales
will be inaccurate. In contrast, tuning λ isolates gradient-redundancy effects, yielding a stable D0.5

relation that generalizes across scales.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Claims in the abstract and introduction are supported by extensive empirical results,
culminating in the scaling law fits in Fig. 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are presented in Appendix B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]
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Justification: While mathematical derivations are included in the appendices in order to support
the empirical findings, there are no new theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendix C, we disclose the information needed to reproduce the experimental
results in the paper. Model validation losses are all obtained through changes in configuration files
(i.e., adjusting λ, η, B, N and D). Datasets and tokenizers are publicly-available and we disclose
our standard model architecture settings and optimization hyperparameters in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: Model validation losses are all obtained through changes in configuration files (i.e.,
adjusting λ, η, B, N and D) rather than code. Datasets and tokenizers are publicly-available
and we disclose our standard model architecture settings and optimization hyperparameters in
Appendix C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: In Appendix C, we disclose the information needed to reproduce the experimental
results in the paper. We disclose our standard model architecture and optimization hyperparame-
ters in this section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistical fit for our scaling laws in Sec. 2.4 and Sec. 3.3: R2 values, and
fitted parameter percentiles from a bootstrapping analysis (re-fitting the power law on 80% of
points, 1000×, following Hoffmann et al. [3]). Random seed variance of validation losses are
also reported in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Appendix C reports the hardware used and training time details. Additionally,
given the extensive experimental details and standard LLM settings, other practitioners can easily
derive compute requirements based on their own specific hardware setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: Appendix A discusses the broader impacts of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: No models or datasets are released with our work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We cite and use all training and evaluation datasets in accordance with their licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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