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Abstract

Recent work demonstrates that images from various chest X-ray datasets contain visual
features that are strongly correlated with protected demographic attributes like race and
gender. This finding raises issues of fairness, since some of these factors may be used
by downstream algorithms for clinical predictions. In this work, we propose a framework,
using generative adversarial networks (GANs), to visualize what features are most different
between X-rays belonging to two demographic subgroups.
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1. Introduction

Recent studies have demonstrated that patient bio-information like age, race, and gender
are predictable from chest X-ray (CXR) images alone using deep learning models(Gichoya
et al., 2022; Karargyris et al., 2019; Duffy et al., 2022). For example, in the “Reading
Race” study, deep classifiers trained to predict race achieve 0.99 AUROC on several CXR
datasets (Gichoya et al., 2022). This finding raises the question: “What visual cues dis-
criminate different races?” Answering such a question can help mitigate potentially biased
behavior of downstream algorithms that make decisions using this data. In this work, we
propose a framework to visually explain the principal differences between different demo-
graphic subgroups in a medical imaging dataset. We first train an unconditional generative
adversarial network (GAN) (Goodfellow et al., 2020; Liang et al., 2020; Lin et al., 2022)
on the given image dataset. Next, we project the images onto the (trained) GAN’s latent
space and compute a direction in the latent space that differentiates a pair of classes (e.g.,
“Black” vs. “White” race groups). We traverse the latent space along that direction to
produce image sequences that depict the main morphological and appearance changes in
moving from one class to another.

There are related works that focus on visualizing subgroup differences associated with
clinical attributes. One such study uses autoencoders (Cohen et al., 2021), which often
produce blurry samples that do not clearly capture structural information. Others train
conditional versions of GANs (Singla et al., 2023; Dravid et al., 2022), an expensive process
since the GAN must be trained from scratch for each attribute of interest. In contrast to
all these works, we demonstrate that deep generative models may be a useful tool to the
medical imaging community to understand the biases within a medical imaging dataset.

2. Method

Our method consists of several components, visualized in Fig. 2 and described below.
Generator training: We train an unconditional StyleGAN2 generator (Karras et al.,

2020a) G(·) : Rd → RH×W×1, following the default training procedure introduced in that
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Figure 1: Framework of our proposed method. (a) We train a GAN on an image
dataset, and a binary classifier on the images and labels for a demographic pre-
diction task (e.g., White vs. Black race). (b) We project a subset of images
onto the trained GAN’s latent space. To ensure the projected images are rea-
sonably reconstructed, we only keep projected images whose labels (predicted by
the attribute classifier trained in (a)) agree with their original labels. We also
fit an SVM hyperplane to separate the two classes in the latent space. Finally,
we visualize the differences between the classes by starting at a latent code cor-
responding to a random image, and traversing along the normal direction of the
SVM hyperplane, to generate a sequence of images showing a transformation.

paper. d is the dimension of the “latent space” of the generator, andH andW are the height
and width of the generated CXR. In our experiments, we trained G(·) on Chexpert (Irvin
et al., 2019), a large public dataset containing 224, 316 CXRs. We only used frontal views,
yielding 164, 548 CXRs. The training procedure takes roughly 24 hours on two Nvidia A100
GPUs.

Attribute classifier training: We train a separate deep attribute classifier C(·) :
RH×W×1 → R1 for each per-image binary attribute provided in the dataset. For multi-class
labels such as race, we train a separate binary classifier for each pair of races.

Image projection/SVM training: Next, we follow the process introduced in (Karras
et al., 2020b) to project a subset of CXR images {Xi}Ni=1 onto G’s latent space, yielding
latent codes {zi}Ni=1. We only retain those projected images whose labels (predicted by C)
are the same as the original labels {Li}Ni=1, i.e., C(G(zi)) = Li. We then train a linear SVM
to predict Li from zi.

Image sequence generation: The normal vector v of the trained SVM’s hyperplane
identifies the direction that best differentiates the two classes. We will use this fact to
generate image sequences depicting the principal perceptual changes needed to convert a
CXR belonging to one demographic class to another. In particular, we select the latent
vector corresponding to a random dataset CXR, and move towards the opposite class in
latent space in the direction of v. We concatenate images generated by intermediate latent
codes along this traversal to produce a sequence.
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Visual explanation

Figure 2: Sample visualization results. The left column corresponds to the projected
initial image and the last three columns show images generated at different traver-
sal distances in the latent space. The red text indicates the output probabilities
predicted by the attribute classifier for each class. For example, the top left [0.98,
0.01] indicate the CXR has a 98% possibility of being white and 1% possibility
of being black. We also use red boxes to highlight the areas that visually vary
the most. For White/Black, the shoulder bone and right lung structures change
shape, and the lungs become more opaque. For Asian/White, the entire chest
shape changes and grows larger. These visualizations also explain why the Read-
ing Race study (Gichoya et al., 2022) did not find race prediction to significantly
change when blocking local regions. The proposed applied to Cardiomegaly en-
larges the heart, in agreement with the known effect of that disease.

3. Results and discussion

We demonstrate our framework on ChexPert with race as the target attribute. We also
validate our approach on the clinical attribute Cardiomegaly, which induces a known phys-
iological change (enlarged heart). Sample results are shown and explained in Fig. 2.

Conclusion Our results show that an unconditional generative adversarial network can
be a useful tool for visualizing differences between demographic groups of a CXR dataset.
Our framework is fast and flexible, and can be applied to any binary attribute labels in
the dataset. Future work includes analyzing generated sequences to thoroughly investigate
demographic differences, and comparing results across different generative models.
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