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ABSTRACT

Recent studies have unveiled the vulnerabilities of deep ranking models, where
an imperceptible perturbation could trigger dramatic changes in the ranking re-
sult. However, previous attempts focus on manipulating absolute ranks of certain
candidates, while the possibility of adjusting their relative order remains under-
explored. The objective of this paper is to formalize and practically implement a
new adversarial attack against deep ranking systems, i.e., the Order Attack, which
covertly alters the relative order of a selected set of candidates according to a
permutation vector predefined by the attacker, with only limited interference to
other unrelated candidates. Although this Order Attack can be formulated as a
triplet-style loss constraint imposing an inequality chain that reflects the attacker’s
desired permutation, direct optimization of such loss is inapplicable in a real-
world black-box attack scenario due to the inaccessibility of gradients, limited
query budget, truncated ranking results, and lack of similarity scores. To address
these challenges, we propose a new Short-range Ranking Correlation metric as a
surrogate objective function to approximate Kendall’s ranking correlation while
maintaining robustness to these practical limitations. The proposed white-box
and black-box attacks are evaluated on the Fashion-MNIST and Stanford-Online-
Products datasets. Moreover, the black-box attack is successfully implemented on
a major e-commerce platform. Extensive quantitative and qualitative experimen-
tal evaluations demonstrate the effectiveness of our proposed methods, revealing
deep ranking systems’ vulnerability to the Order Attack.

1 INTRODUCTION

Thanks to the widespread applications of deep neural networks (Krizhevsky et al., 2012; He et al.,
2016) in the learning-to-rank tasks (Wang et al., 2014; Schroff et al., 2015), deep ranking algorithms
have witnessed significant progress, but unfortunately they have also inherited the long-standing ad-
versarial vulnerabilities of neural networks. Consider the “search by image” application for example,
an imperceptible adversarial perturbation to the query image is often sufficient to intentionally alter
the ranking results of candidate images. Typically, such adversarial examples can be designed to
cause the ranking model to “misrank” (Liu et al., 2019; Li et al., 2019a) (i.e.rank items incorrectly),
or purposefully raise or lower the ranks of selected candidates (Zhou et al., 2020).

Since “misranking” can be interpreted as deliberately lowering the ranks of well-matching candi-
dates, previous attacks on ranking models unanimously focus on changing the absolute ranks of a
set of candidates, while neglecting the manipulation of relative order among them. However, the
relative order can be critical in some applications, such as content-based image retrieval (Smeulders
et al., 2000) on e-commerce platforms, where potential customers attempt to find the exactly match-
ing merchandise via the search-by-image functionality. As shown in Fig. 1, an attacker may want
to manipulate the sales of products A, B, C, D, and E by changing the relative order of A to E into
A ≺ E ≺ D ≺ C ≺ B in the search-by-image query result, which can be achieved by adding an
imperceptible adversarial perturbation to the query image. This attack does not aim to incur “mis-
ranking” or significantly change the absolute ranks of the chosen candidates, instead it intentionally
attempts to subtly change the relative order of them without introducing conspicuous abnormality.
Challenges posed by such attacks may stimulate the creation of more robust ranking models.

Specifically, we propose the Order Attack (OA), a new adversarial attack problem in deep ranking.
Given a query image q ∈ [0, 1]D, a set of selected candidates C = {c1, c2, . . . , ck}, and a predefined
permutation vector p = [p1, p2, . . . , pk], Order Attack aims to find an imperceptible perturbation r
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Figure 1: Showcase of a practical Order Attack (OA) against “JD SnapShop”, a major online retail-
ing e-commerce platform. Numbers atop candidate images are Stock Keep Unit (SKU) IDs.

(‖r‖∞ 6 ε and q̃ = q + r ∈ [0, 1]D), so that q̃ as the adversarial query can convert the relative
order of the selected candidates into cp1 ≺ cp2 ≺ · · · ≺ cpk . For example, a successful OA with
p = [1, 5, 4, 3, 2] will result in c1 ≺ c5 ≺ c4 ≺ c3 ≺ c2, as shown in Fig. 1.

To implement OA, we first (unrealistically) assume the white-box threat model (i.e., the ranking
model details, incl. the gradient, are accessible to the attacker) and present a triplet-style loss func-
tion. Conventionally, a typical deep ranking model (Wang et al., 2014; Zhou et al., 2019; Schroff
et al., 2015; Kim et al., 2019) maps the query and candidates onto a common embedding space, and
determines the ranking list according to the pairwise similarity between the query and these can-
didates. Based on these, OA can be formulated as the optimization of a triplet-style loss function,
which simultaneously adjusts the similarity scores between the query and the selected candidates
according to the inequalities representing the desired relative order. Additionally, a semantics-
preserving penalty term (Zhou et al., 2020) is also included to limit conspicuous changes in ranking
results. Subsequently, the overall loss function can be optimized with gradient methods such as
PGD (Madry et al., 2017) to find the desired adversarial example.

However, in a real-world black-box attack scenario, practical limitations invalidate the previous
white-box method, due to (1) Gradient inaccessibility. The gradient of the loss w.r.t the input is
inaccessible, as the network architecture and parameters are unknown; (2) Limited query budget.
Repeated, intensive queries within a short time frame may be identified as threats, e.g., Denial of
Service (DoS) attack. Therefore, it is preferable to construct adversarial examples within a reason-
able amount of queries; (3) Truncated ranking results. In practice, a ranking system only presents
the top-N ranking results to the clients; (4) Lack of similarity (or distance) scores. Exact similarity
scores rarely appear in the truncated ranking results. To overcome these limitations, we propose the
“Short-range Ranking Correlation” (SRC) metric to measure the alignment between a desired per-
mutation and the practical ranking result shown to clients, as a practical approximation of Kendall’s
ranking correlation (Kendall, 1945). Though non-differentiable, SRC can be used as a surrogate
objective for black-box OA and optimized by an appropriate black-box optimizer.

To validate the white-box and black-box OA, we conduct comprehensive experiments on Fashion-
MNIST and Stanford-Online-Product datasets. To illustrate the viability of the black-box OA in
practice, we also qualitatively showcase successful attacks against the “JD SnapShop” (JingDong,
2020), a major retailing e-commerce platform based on content-based image retrieval. Extensive
quantitative and qualitative evaluations illustrate the effectiveness of our proposed OA.

To the best of our knowledge, this is the first work that tampers the relative order in deep ranking.
We believe our contributions include, (1) the formulation of Order Attack (OA), a new adversarial
attack that covertly alters the relative order among selected candidates; (2) a triplet-style loss for
ideal white-box OA, which can be optimized by PGD; (3) a Short-range Ranking Correlation (SRC)
metric as a surrogate objective for practical black-box OA; (4) extensive evaluations of both OAs
including a successful demonstration on a major online retailing e-commerce platform.

2 ADVERSARIAL ORDER ATTACK

Typically, a deep ranking model is built upon deep metric learning (Wang et al., 2014; Schroff
et al., 2015; Zhou et al., 2019; Kim et al., 2019). Given a query q and a set of candidates C =
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{c1, c2, . . . , cm} selected from database D (C ⊂ D), a deep ranking model f evaluates the distance
between every pair of query and candidate, i.e.f : I × I 7→ R where I = [0, 1]D. Thus, by
comparing all the pairwise distances {f(q, ci)|i = 1, 2, . . . , k}, the whole candidate set can be
ranked with respect to the given query. For instance, the model outputs the ranking list c1 ≺ c2 ≺
· · · ≺ ck if it determines f(q, c1) < f(q, c2) < · · · < f(q, ck).

Based on these, Order Attack (OA) aims to find an imperceptible perturbation r (‖r‖∞ 6 ε and q̃ =
q+r ∈ I), so that q̃ as the adversarial query can convert the relative order of the selected candidates
into cp1 ≺ cp2 ≺ · · · ≺ cpk , where p = [p1, p2, . . . , pk] is a permutation vector predefined by
the attacker. In particular, we assume that the attacker is inclined to select the candidate set C
from the top-N ranked candidates X (N > k, where N , the length of the truncated ranking list, is
called a “visible range”). The white-box and black-box OA will be discussed in Sec.2.1 and Sec.2.2
respectively. For sake of brevity, we let Ωq = {r| q + r ∈ I, ‖r‖∞ 6 ε}.

2.1 TRIPLET-STYLE LOSS FUNCTION FOR WHITE-BOX ORDER ATTACK

During the training process, a typical deep ranking model f involves a triplet (anchor q, positive
cp, negative cn) in each iteration, and in order to rank cp ahead of cn, the model is penalized when
f(q, cp) + β < f(q, cn) does not hold. This inequality can be reformulated exploiting the form of a
hinge loss, resulting in the triplet ranking loss function Ltriplet(q, cp, cn) = [γ+f(q, cp)−f(q, cn)]+

where [·]+ = max(0, ·), and γ denotes the margin, a positive constant hyper-parameter.

Likewise, to implement the OA, we decompose the inequality chain prescribed by the permutation
vector p, namely f(q̃, cp1) < f(q̃, cp2) < · · · < f(q̃, cpk) into (k2) = k(k − 1)/2 inequalities, i.e.,
f(q̃, cpi) < f(q̃, cpj ), i, j = 1, 2, . . . , k, i < j. Subsequently, reformulation of these inequalities
into the hinge loss form leads to the relative order loss function:

LReO(q̃;C,p) =

k∑
i=1

k∑
j=i

[
f(q̃, cpi)− f(q̃, cpj )

]
+
. (1)

Given this loss function, the OA can be cast as a constrained optimization problem,
r∗ = arg min

r∈Ωq

LReO(q + r;C,p), (2)

which can be solved with Projected Gradient Descent (PGD) (Madry et al., 2017), an iterative
method based on the first-order gradient,

rt+1 = ClipΩq

{
rt − ηsign

[
∇rLReO(q̃;C,p)

]}
, (3)

where η is the PGD step size, and r0 is initialized as a zero vector. PGD stops at a predefined
maximum iteration T , and the final rT is the desired adversarial perturbation.

It is worth noting that query image semantics can be drastically changed even with a very slight
perturbation (Zhou et al., 2020). As a result, candidates C may eventually leave the topmost part
of the ranking list, which is undesired especially with the “truncated ranking result” constraint as
described in Sec.1. To mitigate such side effects, we follow Zhou et al. (2020) and introduce a
semantics-preserving term LQA+(q̃,C) to keep C within the topmost part of the ranking list by
raising their absolute ranks, i.e., to keep c ∈ C ranked ahead of other candidates. Finally, the
relative order loss term LReO(·) and the absolute rank loss term LQA+(·) are combined to form the
complete OA loss function,

LOA(q̃;C,p) = LReO(q̃;C,p) + ξLQA+(q̃,C), (4)
where ξ is a balancing factor between the relative order and absolute rank goals.

Despite the formulation of Eq. (4), an ideal q̃ that fully satisfy the desired relative order of C does
not necessarily exist. Consider an Euclidean embedding space as an example, where candidates
c1, c2, c3 lie consecutively on a straight line. It is impossible to find a query embedding vector
that leads to c1 ≺ c3 ≺ c2. That indicates the compatibility between the specified relative order
and the factual geometric relations of the candidate embeddings also affects the performance upper-
bound of OA. In cases like this, our algorithm can still find an inexact solution that satisfies as
many inequalities as possible to approximate the specified relative order. In light of this, Kendall’s
ranking correlation τ between the specified relative order and the real ranking list appears to be
a more reasonable performance metric than the success rate for OA. Furthermore, the τS metric
discussed in the following subsection is equivalent to τ in the white-box scenario.
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Algorithm 1: SRC: Short-range Ranking Correlation τS for Order Attack.
Input: Selected candidates C = {c1, c2, . . . , ck}, permutation vector p = [p1, p2, . . . , pk],

top-N retrieved candidates X = {x1,x2, . . . ,xN} w.r.t q̃; (C ⊂ D, X ⊂ D, N > k)
Output: SRC coefficient τS
Initialize score matrix S = 0 of size k × k; Permuted candidates Cp = {cp1 , cp2 , . . . , cpk};
for i← 1, 2, . . . , k do

for j ← 1, 2, . . . , i− 1 do
if ci /∈ X

(
i.e. @m ∈ {1, 2, . . . , N} so that ci = xm

)
or cj /∈ X then

Si,j = −1 // out-of-range
else if

[
RCp (ci) > RCp (cj) and RX(ci) > RX(cj)

]
or

[
RCp (ci) < RCp (cj) and RX(ci) < RX(cj)

]
then

Si,j = +1 // concordant
else if

[
RCp (ci) > RCp (cj) and RX(ci) < RX(cj)

]
or

[
RCp (ci) < RCp (cj) and RX(ci) > RX(cj)

]
then

Si,j = −1 // discordant
return τS =

∑
i,j Si,j/(

k
2) = [

∑
i,j Si,j ]/[k(k − 1)/2]

2.2 SHORT-RANGE RANKING CORRELATION FOR BLACK-BOX ORDER ATTACK

As discussed in Sec.1, black-box OA needs to address multiple challenges including the gradient in-
accessibility, query budget limitation, truncated ranking results, and lack of similarity scores. These
restrictions collectively invalidate the triplet-style method. To tackle this, we present the “Short-
range Ranking Correlation” (SRC, denoted as τS) metric, a practical approximation of Kendall’s
ranking correlation τ (Kendall, 1945) as a surrogate loss function for LOA. It can be optimized
with an appropriate black-box optimizer such as NES (Wierstra et al., 2008) and SPSA (Spall et al.,
1992), to find an adversarial example as effective as one found by the triplet-style method.

Specifically, to calculate τS given C, p and the top-N retrieved candidates X w.r.t query q̃, we first
initialize a (k× k)-shaped zero matrix S, and permute C into Cp = {cp1 , cp2 , . . . , cpk}. Assuming
∀ci, cj ∈ Cp (i > j, i 6= j) exist in X, we define (ci, cj) as a concordant pair as long as RCp(ci) and
RX(ci) are simultaneously greater or smaller than RCp(cj) and RX(cj), respectively, where RX(ci)
denotes the integer rank value of ci in X, i.e., RX(ci) := argm{ci = xm}. Otherwise, (ci, cj) is
defined as a discordant pair. A concordant pair and a discordant pair will be assigned a score of
Si,j = +1 and Si,j = −1, respectively. Apart from that, when ci or cj does not exist in X, Si,j
will be directly assigned as −1 as a semantics-preserving penalty. In the end, the average score of
the lower triangular of S excluding the diagonal is the τS , as summarized in Algo. 1. Overall, τS
reflects the alignment between the ranking order specified by p and the order in the real retrieval
result, where the semantics-preserving penalty is also incorporated.

The value of τS ranges from −1 to +1. When the specified ranking order is fully satisfied, i.e.,
any pair of ci and cj is concordant, and none of the elements in C disappear from X, τS will be
1. In contrast, when every candidate pair is discordant or absent from the top-N result X, τS will
be −1. Specifically, when ∀c ∈ C exists in X, τS degenerates into Kendall’s τ between p and the
permutation of C in X. Namely, τS degenerates gracefully to τ in the white-box scenario.

Although non-differentiable, τS can be optimized by a black-box optimizer to increase the num-
ber of concordant pairs, while keeping the candidates within the top-N range as promoted by the
semantics-preserving penalty term. Thus, the τS metric can be used as a surrogate objective for
black-box OA, i.e., r∗ = arg maxr∈Ωq

τS(q̃;C,p), which has a similar effect to the white-box OA.

3 EXPERIMENTS

To evaluate the white-box and black-box OA, we conduct experiments on the Fashion-MNIST (Xiao
et al., 2017) and the Stanford-Online-Products (SOP) (Oh Song et al., 2016) datasets which comprise
images of retail commodity. Firstly, we train a CNN with 2-convolution-1-fully-connected network
on Fashion-MNIST, and a ResNet-18 (He et al., 2016) without the last fully-connected layer on
SOP following Zhou et al. (2020) that focuses on the absolute rank attack. Then we perform OA
with the corresponding test sets as the candidate database D. Additionally, we also qualitatively
evaluate black-box OA on “JD SnapShop” (JingDong, 2020) to further illustrate its efficacy. In our
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Table 1: White-box OA on Fashion-MNIST and SOP datasets.

k = 5 k = 10 k = 25
ε 0 2

255
4

255
8

255
16
255 0 2

255
4

255
8

255
16
255 0 2

255
4

255
8

255
16
255

Fashion-MNIST N =∞
τS 0.000 0.286 0.412 0.548 0.599 0.000 0.184 0.282 0.362 0.399 0.000 0.063 0.108 0.136 0.149
mR 2.0 4.5 9.1 12.7 13.4 4.5 7.4 10.9 15.2 17.4 12.0 16.1 17.6 18.9 19.4

Stanford Online Products N =∞
τS 0.000 0.396 0.448 0.476 0.481 0.000 0.263 0.348 0.387 0.398 0.000 0.125 0.169 0.193 0.200
mR 2.0 5.6 4.9 4.2 4.1 4.5 12.4 11.2 9.9 9.6 12.0 31.2 28.2 25.5 25.4

Table 2: Searching for balancing factor ξ on both datasets.

ξ 0 10−1 100 101 102 103 104 105 106 107

Fashion-MNIST k = 5, N =∞, ε = 4/255
τS 0.561 0.467 0.451 0.412 0.274 0.052 0.043 0.012 0.007 0.002
mR 27.2 22.7 18.3 9.1 4.9 3.2 2.8 2.7 2.7 2.7

Stanford Online Products k = 5, N =∞, ε = 4/255
τS 0.932 0.658 0.640 0.634 0.596 0.448 0.165 0.092 0.013 0.001
mR 973.9 89.8 48.1 22.4 7.5 4.9 2.9 2.8 2.8 2.7

experiments, the value of rank function RX(·) starts from 0, i.e., the k-th ranked candidate has the
rank value of k − 1.

Selection of C and p. As discussed, we assume that the attacker is inclined to select the candidate set
C from the top-N ranked candidates given the visible range limit. For simplicity, we only investigate
the (k,N)-OA, i.e., OA with the top-k-within-top-N (k ≤ N ) candidates selected as as C. It
is representative because an OA problem with some candidates randomly selected from the top-k
results as C is a sub-problem of (k,N)-OA. Namely, our attack will be effective for any selection of
C as long as the (k,N)-OA is effective. For white-box OA, we conduct experiments with N =∞,
and k ∈ {5, 10, 25}. For black-box attack, we conduct experiments with N = {∞, 50, k}, and
k = {5, 10, 25}. Besides, a random permutation vector p is used for each individual query.

Evaluation Metric. Since τS is equivalent to τ when N =∞, we use τS as the performance metric
for both white-box and black-box OA. Specifically, in each experiment, we conduct T = 104 times
of OA attack. In each attack, we randomly draw a sample from D as the query q. In the end, we
report the average τS over the T trials. Also, whenN =∞, we additionally calculate the mean rank
of the candidate set C (demoted as “mR”, which equals [

∑k
i RX(ci)]/k), and report the average

mean rank over the T attacks. Larger τS value and smaller mR value are preferable.

Parameter Settings. We set the perturbation budget as ε ∈ { 2
255 ,

4
255 ,

8
255 ,

16
255} for both white-box

and black-box attacks. The query budget Q is set to 1.0 × 103. For white-box OA, the PGD step
size η is set to 1

255 , the PGD step number to 24. The balancing parameter ξ is set as 101 and 103 for
Fashion-MNIST and SOP respectively. See appendix for the details of the black-box optimizers.

Search Space Dimension Reduction. As a widely adopted trick reported effective in (Dong et al.,
2020; Chen et al., 2017; Shukla et al., 2020; Li et al., 2020), we empirically reduce the dimension
of adversarial perturbation search space from (3 × 224 × 224) to (3 × 32 × 32) for black-box OA
on Stanford-Online-Products dataset and “JD SnapShop”.

3.1 WHITE-BOX ORDER ATTACK EXPERIMENTS

The first batch of the experiments is carried out on the Fashion-MNIST dataset, as shown in the
upper part of Tab. 1. With the original query image (ε = 0), the expected τS performance of
(5,∞)-OA is 0.000, and the C retains their original ranks as the mR equals 2.0. With a ε = 2/255
adversarial perturbation budget, our OA achieves τS = 0.286, which means on average 64.3% 1

of the inequalities reflecting the specified permutations are satisfied by the adversarial example.
Meanwhile, the mR changes from 2.0 to 4.5, partly due to adversarial perturbation can move the

1Solution of system (nconcordant − ndiscordant)/(
k
2) = 0.286; (nconcordant + ndiscordant)/(

k
2) = 1.0.
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Figure 2: Total loss (left y-axis) and the LQA+ term (right y-axis) during the optimization procedures
under different ε and ξ settings on Fashion-MNIST.

query embedding off its original position while seeking for a higher τS . Nevertheless, the mR value
of 4.5 indicates that the C are still kept visible in the topmost part of the ranking result by the loss
termLQA+(·). With larger perturbation budget ε, the τS metric increases accordingly, e.g., τS reaches
0.599 when ε = 16/255, which means nearly 80% of the inequalities are satisfied. Likewise, the
experimental results on SOP are available in the lower part of Tab. 1, which also demonstrate the
effectiveness of our method under different settings.

Besides, we note that different balancing parameter ξ for LQA+(·) leads to distinct results, as shown
in Tab. 2. We conduct (5,∞)-OA with ε = 4/255 with different ξ values ranging from 0 to 107 on
both datasets. Evidently, a larger ξ leads to a better (smaller) mR value, but meanwhile a worse τS
as the weighted LQA+(·) term dominates the total loss. There is a trade-off between the τS and mR,
which is effectively controlled by the tunable constant parameter ξ. Hence, we empirically set ξ as
101 and 103 for Fashion-MNIST and SOP respectively, in order to keep the mR of most experiments
in Tab. 1 below a sensible value, i.e., 50/2.

Additionally, Tab. 1 reveals that the mR trends w.r.t. ε on the Fashion-MNIST dataset differs from
that on the SOP dataset. To investigate this counter-intuitive phenomenon, we plot the loss curves
in Fig. 2. In the ε = 4/255, ξ = 10 case, the total loss decreases but the LQA+ surges at the
beginning and then plateaus. After changing ξ to 100, the LQA+ curve rises more smoothly. The
curve eventually decreases at ξ = 104, along with a small mR and a notable penalty on τS as
a result. These figures indicate that the LQA+ term is harder to optimize than the LReO term on
Fashion-MNIST. Besides, the “sawtooth-shaped” LQA+ curves also indicate that the LReO term is
optimized while sacrificing the mR as a side-effect at the even steps, while the optimizer turns to
optimize LQA+ at the odd steps due to the semantics-preserving penalty, causing a slight increase in
LReO. This also reveals the optimization difficulty of LQA+. Moreover, comparing the first and the
fourth sub-figures, we find a larger perturbation budget (ε = 16/255) not helpful in reducing the
optimization difficulty as the LQA+ curve still soars and plateaus. Based on these cues, we speculate
that the different curve patterns of mR stem from the optimization difficulty due to limited search
space (768-dimensional v.s. 3072-dimensional), and different dataset properties. The intra-class
variance of Fashion-MNIST is smaller than that in SOP, which means samples from the same class
will be projected into the embedding space close to each other. In this case, it is very difficult to
adjust the position of query embedding for a higher τS without sacrificing the mR value. Hence, we
conclude that the exact mR value also depends on the dataset property and the relative optimization
difficulty of the term LReO and LQA+ apart from ε. In contrast, the LQA+ term is much easier to
optimize in the SOP experiments, possibly due to a larger search space and a larger intra-class
variance, hence much more flexibility to simultaneously optimize LReO and LQA+.

3.2 BLACK-BOX ORDER ATTACK EXPERIMENTS

To simulate the practical black-box attack scenario, we convert the trained ranking models into
black-box ones, which only return the top-N candidates without any similarity score. To optimize
the surrogate loss τS , we adopt and benchmark several black-box optimizers: (1) Random Search
(Rand), a baseline method that independently samples every dimension of the perturbation from the
uniform distribution U(−ε,+ε); (2) Beta-Attack (Beta), a new black-box method that models the
adversarial perturbation with a Beta distribution per dimension, and iteratively adjusts the Beta dis-
tribution parameters according to the τS result, which is similar to N -Attack (Li et al., 2019b); (3)
Particle Swarm Optimization (PSO) (Shi & Eberhart, 1998), a classic meta-heuristic optimizer; (4)
Natural Evolution Strategy (NES) (Ilyas et al., 2018; Wierstra et al., 2008), a method that performs
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Table 3: Black-box OA on Fashion-MNIST dataset. In the N = ∞ experiments, (τS , mR) are
reported in each cell, while only τS is reported in the cells when N equals 50 or k.

Algorithm k = 5 k = 10 k = 25
ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255 ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255 ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255

None 0.0, 2.0 0.0, 2.0 0.0, 2.0 0.0, 2.0 0.0, 4.5 0.0, 4.5 0.0, 4.5 0.0, 4.5 0.0, 12.0 0.0, 12.0 0.0, 12.0 0.0, 12.0

Fasion-MNIST N =∞
Rand 0.211, 2.1 0.309, 2.3 0.425, 3.0 0.508, 7.7 0.172, 4.6 0.242, 5.0 0.322, 6.4 0.392, 12.7 0.084, 12.3 0.123, 13.1 0.173, 15.8 0.218, 25.8
Beta 0.241, 2.1 0.360, 2.6 0.478, 4.6 0.580, 19.3 0.210, 4.8 0.323, 5.7 0.430, 9.6 0.510, 30.3 0.102, 12.4 0.163, 13.8 0.237, 19.7 0.291, 42.7
PSO 0.265, 2.1 0.381, 2.3 0.477, 4.4 0.580, 21.1 0.239, 4.8 0.337, 5.7 0.424, 9.7 0.484, 34.0 0.131, 12.7 0.190, 14.6 0.248, 21.7 0.286, 54.2
NES 0.297, 2.3 0.416, 3.1 0.520, 8.7 0.630, 46.3 0.261, 5.0 0.377, 6.6 0.473, 14.3 0.518, 55.6 0.142, 13.0 0.217, 15.9 0.286, 28.3 0.312, 74.3

SPSA 0.300, 2.3 0.407, 3.2 0.465, 7.1 0.492, 16.3 0.249, 5.0 0.400, 6.6 0.507, 12.8 0.558, 27.5 0.135, 12.9 0.236, 16.3 0.319, 27.1 0.363, 46.4
Fashion-MNIST N = 50

Rand 0.207 0.316 0.424 0.501 0.167 0.242 0.321 0.378 0.083 0.123 0.165 0.172
Beta 0.240 0.359 0.470 0.564 0.204 0.323 0.429 0.487 0.103 0.160 0.216 0.211
PSO 0.266 0.377 0.484 0.557 0.239 0.332 0.420 0.458 0.134 0.183 0.220 0.203
NES 0.297 0.426 0.515 0.584 0.262 0.378 0.463 0.458 0.141 0.199 0.223 0.185

SPSA 0.292 0.407 0.468 0.490 0.253 0.397 0.499 0.537 0.131 0.214 0.260 0.275
Fashion-MNIST N = k

Rand 0.204 0.289 0.346 0.302 0.146 0.181 0.186 0.124 0.053 0.062 0.049 0.021
Beta 0.237 0.342 0.372 0.275 0.183 0.236 0.218 0.106 0.072 0.079 0.058 0.020
PSO 0.252 0.342 0.388 0.284 0.198 0.240 0.219 0.081 0.080 0.082 0.046 0.013
NES 0.274 0.360 0.381 0.282 0.198 0.234 0.213 0.113 0.071 0.076 0.055 0.016

SPSA 0.274 0.360 0.412 0.427 0.188 0.251 0.287 0.298 0.067 0.086 0.091 0.095

Projected Gradient Descent using estimated gradient; (5) Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) (Uesato et al., 2018; Spall et al., 1992), another iterative method based on
estimated gradient, similar to NES. See the appendix for further details about these optimizers.

We first investigate the black-box (5,∞)-OA, as shown in the upper part of Tab. 3 and Tab. 4. In
these cases, τS does not pose any mR penalty since N =∞. With the Rand optimizer, the τS can be
optimized to 0.309 in the ε = 4/255 case. As the ε increases, we obtain better τS results and larger
mR values. Since all the queries of the Rand search are independent, one intuitive way to improve
its performance is to leverage the historical query results to adjust the searching pattern.

To this end, we devise the new Beta-Attack that samples perturbations from Beta distributions,
and initialize the distribution parameters as 1 where Beta distribution degenerates into Uniform
distribution (Rand Search). Thus, Beta-Attack is able to gradually modify its probability density
function during the attacking process, so that the next adversarial perturbation drawn from it are
possibly more effective. Results in Tab. 3 suggest an evident advantage of Beta compared to Rand,
but it turns that such simple parametric distributions are still not enough for modeling the adversarial
perturbations. According to the (k,∞)-OA results, NES and SPSA outperform Rand, Beta and
PSO. The τS metrics of all algorithms unanimously increase with larger ε, but the side effect of
worse (larger) mR is notable, e.g., when N = 50 or k, the algorithm may confront with a great
penalty due to the absence of the selected candidates from the visible range.

Further results of (k, 50)-OA and (k, k)-OA confirms our speculation. When N = 50, algorithms
that result in a small mR (especially for those with mR < 50/2) performs comparably to that
in (k,∞)-OA with the same ε. Algorithms that lead to a large mR with a large ε in (k,∞)-OA
are greatly penalized in (k, 50)-OA. This manifests a special characteristic of OA that differs from
adversarial attacks in other fields (e.g., classification), τS peaks at a small ε, and does not positively
correlate with ε like in other attacks. The results of (k, k)-OA conveys similar information, and we
note that the black-box (25, 25)-OA is extremely difficult.

The optimizers based on estimated gradients perform the best in black-box OA. In difficult cases
such as (25,∞)-OA, the black-box optimizer even outperforms the white-box PGD algorithm, pos-
sibly due to the built-in randomness of the black-box optimizers enabling better search in the global
scope. In contrast, the white-box PGD is more prone to stuck in a local minima.

3.3 PRACTICAL BLACK-BOX ORDER ATTACK EXPERIMENTS

The “JD SnapShop” (JingDong, 2020) is an e-commerce platform based on content-based image
retrieval (Smeulders et al., 2000). Clients can upload query merchandise images via an HTTP-
protocol-based API, and the system returns the top-50 similar products. This black-box ranking
model exactly matches the setting of (k, 50)-OA. Since the system poses an upper limit of 500
queries per day per user, we merely provide a qualitative evaluation of black-box OA.
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Table 4: Black-box OA on Stanford Online Product dataset. In the N = ∞ experiments, (τS , mR)
are reported in each cell, while only τS is reported in the cells when N equals 50 or k.

Algorithm k = 5 k = 10 k = 25
ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255 ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255 ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255

None 0.0, 2.0 0.0, 2.0 0.0, 2.0 0.0, 2.0 0.0, 4.5 0.0, 4.5 0.0, 4.5 0.0, 4.5 0.0, 12.0 0.0, 12.0 0.0, 12.0 0.0, 12.0

Stanford Online Product N =∞
Rand 0.187, 2.6 0.229, 8.5 0.253, 85.8 0.291, 649.7 0.167, 5.6 0.197, 13.2 0.208, 92.6 0.222, 716.4 0.093, 14.1 0.110, 27.6 0.125, 146.7 0.134, 903.7
Beta 0.192, 3.3 0.239, 15.3 0.265, 176.7 0.300, 1257.7 0.158, 6.2 0.186, 19.9 0.207, 139.0 0.219, 992.5 0.099, 15.5 0.119, 37.1 0.119, 206.5 0.132, 1208.5
PSO 0.122, 2.1 0.170, 3.0 0.208, 13.3 0.259, 121.4 0.135, 4.8 0.177, 6.5 0.206, 22.8 0.222, 166.5 0.104, 12.7 0.122, 16.7 0.137, 49.5 0.140, 264.2
NES 0.254, 3.4 0.283, 15.6 0.325, 163.0 0.368, 1278.7 0.312, 7.2 0.351, 26.3 0.339, 227.1 0.332, 1486.7 0.242, 18.0 0.259, 51.5 0.250, 324.1 0.225, 1790.8

SPSA 0.237, 3.5 0.284, 11.9 0.293, 75.2 0.318, 245.1 0.241, 7.8 0.325, 22.2 0.362, 112.7 0.383, 389.0 0.155, 18.1 0.229, 41.9 0.286, 185.6 0.306, 557.8
Stanford Online Product N = 50

Rand 0.180 0.216 0.190 0.126 0.163 0.166 0.119 0.055 0.092 0.055 0.016 0.003
Beta 0.181 0.233 0.204 0.119 0.153 0.168 0.116 0.054 0.084 0.057 0.021 0.003
PSO 0.122 0.173 0.183 0.153 0.135 0.164 0.137 0.081 0.093 0.083 0.042 0.011
NES 0.247 0.283 0.246 0.152 0.314 0.295 0.195 0.077 0.211 0.136 0.054 0.013

SPSA 0.241 0.287 0.297 0.303 0.233 0.298 0.298 0.292 0.125 0.130 0.114 0.103
Stanford Online Product N = k

Rand 0.148 0.100 0.087 0.026 0.094 0.044 0.018 0.001 0.023 0.009 0.002 0.001
Beta 0.136 0.106 0.053 0.025 0.076 0.040 0.010 0.004 0.021 0.004 0.001 0.001
PSO 0.102 0.098 0.059 0.031 0.088 0.049 0.022 0.007 0.040 0.015 0.006 0.001
NES 0.185 0.139 0.076 0.030 0.173 0.097 0.036 0.008 0.071 0.027 0.007 0.005

SPSA 0.172 0.154 0.141 0.144 0.107 0.104 0.085 0.069 0.026 0.025 0.017 0.016

As shown in Fig. 1, we select the top-5 candidates as C, and specify p = [1, 5, 4, 3, 2]. By maxi-
mizing the τS value with SPSA, we successfully convert the relative order to the specified one with
ε = 1/255 perturbation. See appendix for more technical details including the product webpages.

4 RELATED WORKS

Adversarial Attacks. Szegedy et al. (2013) finds the DNN classifiers susceptible to imperceptible
adversarial perturbations. Subsequent works on adversarial attack (Dong et al., 2020) can be cat-
egorized into several groups: (1) white-box attack, which assumes the model details including the
gradient are accessible (Goodfellow et al., 2014; Kurakin et al., 2016; Madry et al., 2017; Moosavi-
Dezfooli et al., 2016; Carlini & Wagner, 2017; Athalye et al., 2018; 2017; Croce & Hein, 2020); (2)
transfer-based attack, which are based on the transferability of adversarial examples (Dong et al.,
2018; Xie et al., 2019; Dong et al., 2019a); (3) score-based attack, which only depends on the soft
classification labels, i.e., the logit values (Ilyas et al., 2018; Uesato et al., 2018; Li et al., 2019b;
Chen et al., 2017; Andriushchenko et al., 2019). Ilyas et al. (2018) propose a black-box threat
model for classification that is similar to black-box ranking threat model; and (4) decision-based
attack, a type of attack that requires the least amount of information from the model, i.e., the hard
label (one-hot classification result) (Brendel et al., 2018; Chen & Jordan, 2019; Dong et al., 2019b;
Shukla et al., 2020; Li et al., 2020). These extensive adversarial attack studies unanimously focus
on classification, which means they are not directly suitable for ranking.

Adversarial Ranking. The existence of the vulnerability in DNN classifiers inspired attacks against
deep ranking models, but this topic has not yet been sufficiently explored. Judging on the purpose
of manipulating the ranking list, we propose a new taxonomy for attacks against deep ranking –
absolute rank attacks and relative order attacks. Most absolute rank attacks attempt to induce
random “misranking” (Tolias et al., 2019; Li et al., 2019a; Liu et al., 2019; Yang et al., 2018; Zhao
et al., 2019; Wang et al., 2020; Zheng et al., 2018; Bouniot et al., 2020; Feng et al., 2020). There are
also works that aim to incur purposeful changes in absolute rank, i.e., to raise or lower the ranks of
specific candidates (Bai et al., 2019; Zhou et al., 2020). For example, the LQA+ (Zhou et al., 2020)
adopted in this paper is a typical absolute rank attack. On the contrary, the relative order attacks
remains under-explored. This is the first work that tampers the relative order in deep ranking.

5 CONCLUSION

Deep ranking systems have inherited the adversarial vulnerabilities of deep neural networks. In this
paper, we propose a new adversarial attack named Order Attack, which manipulates the relative
order among selected candidates. Extensive experimental evaluations of the white-box and black-
box Order Attack illustrate their effectiveness, as well as the deep ranking systems’ vulnerability to
the Order Attack. In future works, we plan to explore more efficient Order Attack algorithms with
better gradient estimation, and more robust ranking models resistant to Order Attack.
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A VISUALIZATION OF BLACK-BOX ORDER ATTACK

A.1 MORE TECHNICAL DETAILS OF OA AGAINST “JD SNAPSHOP”

In this subsection we present some additional technical details about the e-commerce platform (API)
“JD SnapShop” (JingDong, 2020) and the Fig. 1:

1. In Fig. 1 the “Han Chinese Clothing” query image is of the standard (3× 224× 224) size.
2. Since the perturbation tensor contains negative values, we normalize it before displaying:

Normalize(r) = 0.5 + 0.5 ∗ r/max
(
abs(r)

)
. (5)

3. The perturbation budget in the case of Fig. 1 is ε = 1/255, but after saving the adversarial
image into the JPEG/PNG file, the infinite norm of the absolute difference between q̃ and q may
slightly exceed the ε budget due to the lossy compression algorithm of JPEG/PNG. See the next
subsection for more details on the ε selection.

4. The perturbation has a much lower resolution than the query because we have reduced the search
space dimension from (3 × 224 × 224) to (3 × 32 × 32), which is a trick widely used in the
literature. See Sec. C.2 for the ablation study.

5. The selected candidates C are [A, B, C, D, E]. Since the permutation vector is p = [1, 5, 4, 3, 2],
the expected relative order among C is Cp1 ≺ Cp2 ≺ Cp3 ≺ Cp4 ≺ Cp5 , i.e.A ≺ E ≺ D ≺ C ≺
B.

6. Each product corresponds to multiple images. The displayed candidate images are their default
product image.

7. The API in fact provides the similarity scores for every candidate. Indeed these discrimina-
tive information can be leveraged for, e.g.better gradient estimation by using scores other than
{+1,−1} in S when calculating τS (See Algo. 1), but the other practical ranking applications
may not necessarily provide them. Hence, we simply ignore the similarity information during
the attacking process, deliberately increasing the difficulty.

8. In Fig. 1, the original similarity scores of candidates from A to E are [ 0.7132, 0.6336, 0.6079,
0.5726, 0.5700]. With our adversarial query, the scores of A to E are changed into [ 0.6960,
0.5724, 0.5763, 0.5827, 0.5898].

9. The API supports a “topK” argument, which enables us to change the visible rangeN . We leave
it as the recommended default value 50.

10. From Fig. 1, we notice some visually duplicated images among the candidates. For instance,
there are many other candidates similar to candidate E, due to reasons such as different sellers
reusing the same image. These images are not adjacent to each other in the ranking list, since the
platform assigns them with different similarity scores. For instance, the 5-th and 8-th candidates
in the first row of Fig. 1 are assigned with similarity scores [0.5700, 0.5521], while the 2-nd, 7-th,
and 10-th items in the second row with similarity scores [0.5898, 0.5728, 0.5536]. Whether the
calculation of similarity scores involves multiple cues (e.g.by aggregating the similarity scores
of multiple product images) or even engineering tricks are unknown and beyond the scope of our
discussion.

11. Users (without any business contract) are only allowed to perform 500 times of queries per day.
12. The API documentation can be found at

https://aidoc.jd.com/image/snapshop.html.
13. The SKU ID atop of every candidate image can be used to browse the real product webpage on

the “JingDong” shopping platform. The URL format is
https://item.jd.com/<SKU-ID>.html

For example, the webpage for the product with SKU ID 72210617020 is located at
https://item.jd.com/72210617020.html

Note, due to irresistible reasons such as some sellers withdrawing their product and the service
provider updating their ranking algorithm and database, some of the links may become invalid
during the review process, and the ranking result for the same query may change. Source code
of our implementation is provided as supplementary material. The source code is intended for
ACADEMIC PURPOSE ONLY 2.
2The anonymous authors are not responsible for any consequence of abusing the provided code.
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A.1.1 EMPIRICAL & QUALITATIVE PARAMETER SEARCH FOR ε

Since the perturbation budget ε affects the performance of OA and the adversarial perturbation
imperceptibility, we also search for a proper ε for the OA against “JD SnapShop”.

Due to the limitation that only 500 times of queries per day are allowed for each user, we merely
present an empirical and qualitative parameter search for ε. As shown in Tab. 5, we test the “JD
SnapShop” model with adversarial query images modified by the Rand algorithm using different ε
values, and conduct 50 times of attack per value. Our qualitative observation has been summarized
in the table.

Table 5: Empirical & Qualitative Parameter Search for ε on “JD SnapShop”.

ε Observation

16/255 Almost any ∀c ∈ C disappear from the top-N result.
8/255 In most cases only 0 ∼ 1 selected candidate remains within the top-N .
4/255 In most cases only 1 ∼ 3 selected candidates remain within the top-N .
2/255 Nearly all c ∈ C remain in top-N with significant order change. (suitable for p with p1 6= 1)
1/255 Rank of top-1 candidate seldom changes. The rest part of the list has been slightly changed. (suitable for p with p1 = 1)

From the table, we find that ε = 1/255 and ε = 2/255 are the most suitable choices for the (5, 50)-
OA against “JD SnapShop”. This is meanwhile very preferable since such slight perturbations are
imperceptible to human. As shown in Fig. 3, the ε = 1/255, 2/255, 4/255 adversarial perturbation
can hardly be perceived.

ε = 0 ε = 1/255 ε = 2/255 ε = 4/255 ε = 8/255 ε = 16/255

Figure 3: Imperceptibility: Images perturbed under different perturbation budgets.

A.1.2 MORE SHOWCASES ON “JD SNAPSHOP”

• In showcase #2 (Fig.4), the original similarity scores of the top-5 candidates are [ 0.7551,
0.6586, 0.6586, 0.6533, 6507]. They are changed into [ 0.6748, 0.6723, 0.6723, 0.6921,
0.6609] with the perturbation.

• In showcase #3 (Fig.5), the original top-5 candidate similarity scores [ 0.8522, 0.8333,
0.8341, 0.7659, 0.7159] have been changed into [ 0.8792, 0.7928, 0.8470, 0.7958, 0.7130]
with the perturbation.

• Fig. 6 shows two examples where one selected candidate disappear from the top-N re-
sults with the adversarial query. In the “white shoes” case, the top-5 candidate similarity
scores have been changed from [ 0.8659, 0.8653, 0.8648, 0.8619, 0.8603] to [ N/A, 0.8689,
0.8603, 0.8640, 0.8641]. In the “vase” case, the top-5 candidate similarity scores have been
changed from [ 0.9416, 0.9370, 0.9360, 0.9350, 0.9349] to [ N/A, 0.9338, 0.9427, 0.9392,
0.9361].

• Fig. 7 shows some long-tail queries on which our OA will not take effect, because a large
portion of the top-ranked candidates have completely the same similarity score. In the first
row, i.e.results for a “Machine Learning” textbook query, the similarity score of the 5-th
to 7-th candidates are 0.9242. The score of the 9-th to 11-th candidates are 0.9240. That
of the 22-th to 50-th are the same 0.9202525. In the “Deep Learning” textbook case (the
second row), the similarity score of the 27-th to 50-th candidates are 0.9288423. In the
“RTX 3090 GPU” case (the third row), the similarity score of the 7-th to 9-th candidate are
unexceptionally 0.5581. Our OA cannot change the relative order among those candidates
with completely the same similarity score.
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...

...

Figure 4: Showcase #2: “Red wind coat” query image with ε = 2/255 perturbation.

...

...

Figure 5: Showcase #3: “iPhone” query image with ε = 1/255 perturbation.

...

...

...

...

Figure 6: Two cases where the top-1 ranked candidate disappeared from the top part.

...

...

...

Figure 7: Three long-tail cases where OA will not be effective.
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A.2 ON FASHION-MNIST & STANFORD-ONLINE-PRODUCTS

In this subsection we present some visualizations of the black-box OA on the Fashion-MNIST
dataset and the SOP dataset, as shown in (Fig. 8, Fig. 9, Fig. 10) and (Fig. 11, Fig. 12, Fig. 13),
respectively. The adversarial perturbations in all these figures are found under the ε = 4/255 bud-
get. The N is 50 for these results.

All these figures are picture matrices of size (4, 2 + 2k). Picture (1, 3), (1, 5) and (1, 7) are the
original query, the perturbation and the perturbed query image, respectively. The second row in
each figure is the original query and the corresponding ranking list. The third row in each figure
is the permuted top-k candidates. The forth row in each figure is the adversarial query and the
corresponding ranking list. Every picture has been annotated with its ID in the dataset and the label
for classification.

Figure 8: Fashion #1. k = 5, τS = 1.0 Figure 9: Fashion #2. k = 5, τS = 1.0

Figure 10: Fashion #3. k = 10, τS = 1.0

Figure 11: SOP #1. k = 5, τS = 1.0 Figure 12: SOP #2. k = 5, τS = 1.0

Figure 13: SOP #3. k = 10, τS = 0.96
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B ADDITIONAL EXPERIMENTS & DISCUSSIONS ON WHITE-BOX OA

B.1 ABLATION STUDY: SEMANTICS-PRESERVING TERM LQA+

Table 6: Ablation Study: White-Box OA with ξ = 0 (i.e.without the LQA+ term).

k = 5 k = 10 k = 25
ε 0 2

255
4

255
8

255
16
255 0 2

255
4

255
8

255
16
255 0 2

255
4

255
8

255
16
255

Fashion-MNIST ξ = 0
τS 0.000 0.336 0.561 0.777 0.892 0.000 0.203 0.325 0.438 0.507 0.000 0.077 0.131 0.170 0.189
mR 2.0 5.5 27.2 52.7 75.6 4.5 8.0 17.3 40.4 63.4 12.0 16.4 19.2 22.8 25.3

Stanford Online Products ξ = 0
τS 0.000 0.932 0.970 0.975 0.975 0.000 0.632 0.760 0.823 0.832 0.000 0.455 0.581 0.646 0.659
mR 2.0 973.9 1780.1 2325.5 2421.9 4.5 1222.7 3510.2 5518.6 6021.4 12.0 960.4 2199.2 3321.4 3446.3

As shown in Tab. 6, after removing the LQA+ term from the loss function (i.e.setting ξ = 0), the
white-box OA can achieve a better τS , meanwhile a worse mR. When comparing it with Tab. 1,
we find that (1) the semantics-preserving term LQA+ is effective for keeping the selected C within
top-N results; (2) LQA+ will increase the optimization difficulty, so there will be a trade off between
LReO and LQA+. These results support our discussion in Sec. 3.1.

B.2 LOSS CURVES ON THE SOP DATASET

Figure 14: Curves of the total loss and the LQA+ term during the optimization process under different
ε and ξ settings on SOP. Left y-axis denotes the value of total loss, while the right y-axis denotes the
value of LQA+ term.

To further support our discussion in Sec. 3.2, we also plot the loss curves on the SOP dataset like
those on the Fashion-MNIST dataset (see Fig. 2). As shown in Fig. 14, the LQA+ is relatively easy
to optimize on the SOP dataset even if the ξ is not set to a very large value (i.e.ξ = 10). Comparing
the first and the last plot, we find that with a larger perturbation budget ε = 16/255, the value of
LQA+ becomes smaller. These cues can help interpret the difference in the growth pattern of mR in
Tab. 1.

B.3 DISCUSSION: “RANDOM START” TRICK FOR PGD

It is noted that Madry et al. (2017) used a “random start” trick, which means to initialize the ad-
versarial perturbation r as a random vector within Ωp instead of a zero vector before the Projected
Gradient Descent (PGD). This trick is harmful for Order Attack.

A random start may drastically change the query semantics and push the query embedding off its
original position (Zhou et al., 2020). In this case the expectation of the mR value is much larger
(worse) than that with a zero start. As a result, the optimizer would waste more iterations to minimize
the unnecessary mR penalty, which may even fail eventually.

The “random start” trick can be even more harmful in the black-box scenario, as NES (Ilyas et al.,
2018) and SPSA (Uesato et al., 2018) are two methods that performs Projected Gradient Descent
with estimated gradients. With a random perturbation as the start, all the selected candidates may
disappear from the top-N result before the first iteration, resulting in τS = −1. Once all samples
drew from the neighbor area of the random start leads to τS = −1, the optimization will fail due to
the estimated gradient being completely invalid (zero gradient).
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C ADDITIONAL EXPERIMENTS & DISCUSSIONS ON BLACK-BOX OA

C.1 DISCUSSION: QUERY BUDGET Q AND τS

Table 7: τS with different query budget Q.

Algorithm Fashion-MNIST N =∞, k = 5, ε = 4
255

Q = 102 5× 102 *103 5× 103 104

Rand 0.233, 2.2 0.291, 2.2 0.309, 2.3 0.318, 2.2 0.320, 2.2
Beta 0.249, 2.2 0.313, 2.4 0.360, 2.6 0.368, 2.6 0.382, 2.4
PSO 0.280, 2.6 0.341, 2.4 0.381, 2.3 0.382, 2.4 0.385, 2.4
NES 0.309, 2.6 0.380, 2.9 0.416, 3.1 0.431, 2.9 0.438, 2.9

SPSA 0.292, 2.6 0.365, 2.8 0.407, 3.2 0.421, 2.9 0.433, 2.8

Figure 15: τS with different Q.

In this subsection, we study the influence of the query budget Q on the τS performance. As shown
in Tab. 7 and Fig. 15, the performance curves of all black-box optimizers are positively correlated
with the query budget Q, but will eventually plateau. Note, in our context the Q is not a tunable
hyper-parameter of the optimizers, but a constant for simulating the black-box scenario.

C.2 ABLATION STUDY: SEARCH SPACE DIMENSION REDUCTION TRICK

Table 8: Ablation study of the Dimension Reduction (DR) trick for black-box OA with SOP dataset.

Algorithm N =∞ k = 5 N = 50 k = 5 N = 5 k = 5
ε = 2

255
4

255
8

255
16
255

2
255

4
255

8
255

16
255

2
255

4
255

8
255

16
255

None 0.0, 2.0 0.0, 2.0 0.0, 2.0 0.0, 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rand (w/o DR) 0.106, 2.1 0.151, 3.1 0.190, 13.1 0.224, 117.5 0.101 0.139 0.167 0.148 0.076 0.086 0.058 0.026
Rand (w/ DR) 0.187, 2.6 0.229, 8.5 0.253, 85.8 0.291, 649.7 0.180 0.216 0.190 0.126 0.148 0.100 0.087 0.026
Beta (w/o DR) 0.120, 2.2 0.158, 3.8 0.199, 21.8 0.231, 205.7 0.115 0.164 0.173 0.141 0.097 0.096 0.060 0.035
Beta (w/ DR) 0.192, 3.3 0.239, 15.3 0.265, 176.7 0.300, 1257.7 0.181 0.233 0.204 0.119 0.136 0.106 0.053 0.025

PSO (w/o DR) 0.128, 2.1 0.174, 3.1 0.219, 13.0 0.259, 122.0 0.133 0.175 0.199 0.155 0.097 0.095 0.060 0.036
PSO (w/ DR) 0.122, 2.1 0.170, 3.0 0.208, 13.3 0.259, 121.4 0.122 0.173 0.183 0.153 0.102 0.098 0.059 0.031

NES (w/o DR) 0.139, 2.3 0.192, 4.8 0.244, 31.9 0.266, 300.0 0.128 0.192 0.208 0.166 0.108 0.102 0.079 0.039
NES (w/ DR) 0.254, 3.4 0.283, 15.6 0.325, 163.0 0.368, 1278.7 0.247 0.283 0.246 0.152 0.185 0.139 0.076 0.030

SPSA (w/o DR) 0.135, 2.4 0.171, 3.9 0.209, 15.9 0.226, 45.2 0.140 0.176 0.205 0.223 0.108 0.110 0.146 0.143
SPSA (w/ DR) 0.237, 3.5 0.284, 11.9 0.293, 75.2 0.318, 245.1 0.241 0.287 0.297 0.303 0.172 0.154 0.141 0.144

In this subsection, we study the effectiveness of the dimension reduction trick, which has been
widely adopted in the literature (Dong et al., 2020; Chen et al., 2017; Shukla et al., 2020; Li et al.,
2020). As shown in Tab. 8, all black-box optimizers benefit from this trick except for PSO, as
illustrated by the performance gains. We leave the analysis on the special characteristics of PSO for
future work.
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D DETAILS OF BLACK-BOX OPTIMIZATION ALGORITHMS

In this section we present the algorithm details for (1) Random Search (Rand); (2) Beta-Attack
(Beta); (3) Particle Swarm Optimization (PSO) Shi & Eberhart (1998); (4) Natural Evolution Strat-
egy (NES) Ilyas et al. (2018); Wierstra et al. (2008); and (5) Simultaneous Perturbation Stochastic
Approximation (SPSA) Uesato et al. (2018); Spall et al. (1992).

D.1 RANDOM SEARCH (RAND)

As a baseline algorithm for black-box optimization, Random Search assumes each element in the
adversarial perturbation to be i.i.d, and samples each element from the uniform distribution within
Ωp, namely r = [r1, r2, . . . , rD] where ri ∼ U(−ε,+ε) (i = 1, 2, . . . , D) in each iteration. The
best historical result is the output of the algorithm, as summarized in Algo.2. This algorithm is free
of hyper-parameters.

This algorithm never stuck at the local-maxima, which means it has a great ability to search for
solutions from the global scope. But its drawback is also clear, as each trial of this algorithm is in-
dependent to each other. In our implementation, we conduct OA on a batch of random perturbations
to accelerate the experiments, with the batch size set as H = 50.

Algorithm 2: RandSearch: The naı̈ve random search algorithm.
Input: Query Image q, Query Budget Q, Selected Candidates C, Permutation vector p
Output: Adversarial Query q̃
Initialize q̃ ← q, and the best score s∗ ← τS(q̃);
for i← 1, 2, . . . , Q do

Sample r ∼ UD(−ε,+ε);

if τS

(
ClipΩp

(p + r)
)
> s∗ then

q̃ ← ClipΩp
(p + r) // update the best q

s∗ ← τS

(
ClipΩp

(p + r)
)

// update the best s

return q̃

D.2 BETA-ATTACK (BETA)

Beta-Attack is similar to N -Attack (Li et al., 2019b), but a notable difference is that the Gaussian
distributions inN -Attack are replaced with Beta distributions. We choose Beta distribution because
the shape of its probability density function is much more flexible than that of the Gaussian dis-
tribution, which may be beneficial for modeling the adversarial perturbations. Besides, according
to our observation, N -Attack is too prone to stuck at local maxima for OA, leading to a low τS
performance.

The key idea of Beta-Attack is to find the parameters for a parametric distribution π(z|θ) (θ denotes
the parameters) from which the adversarial perturbations drawn from it is likely effective. And
π(z|θ) is a combination of D independent Beta distributions3, with parameter θ = [a; b] where
a = [a1, a2, . . . , aD], b = [b1, b2, . . . , bD], and zi ∼ Beta(ai, bi) ∈ [0, 1], (i = 1, 2, . . . , D). Let
T (z) = τS

(
ClipΩq

(q + ε(2z − 1))
)
, where ε(2z − 1) = r is the adversarial perturbation, we hope

to maximize the mathematical expectation of T (z) over distribution π(z|θ):

max
θ

Eπ(z|θ)

[
T (z)

]
:=

∫
T (z) · π(z|θ)dz (6)

3The multivariate Beta distribution, a.k.a Dirichlet distribution z ∼ Dir(a) is not used here because its∑
zi = 1 restriction further shrinks the search space hence may lower the upper-bound of τS .
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The gradient of the expectation with respect to θ is

∇θEπ(z|θ)

[
T (z)

]
= ∇θ

∫
T (z) · π(z|θ)dz (7)

=

∫
T (z) · π(z|θ)

π(z|θ)
∇θπ(z|θ)dz (8)

=

∫
π(z|θ) · T (z) · ∇θ log

[
π(z|θ)

]
dz (9)

= Eπ(z|θ)

[
T (z) · ∇θ log

[
π(z|θ)

]]
(10)

where

∇θ log
[
π(z|θ)

]
=
[
∇a log

[
π(z|θ)

]
; ∇b log

[
π(z|θ)

]]
, (11)

∇a log
[
π(z|θ)

]
= ψ(0)(a + b)− ψ(0)(a) + log(z), (12)

∇b log
[
π(z|θ)

]
= ψ(0)(a + b)− ψ(0)(b) + log(1− z), (13)

and ψ(n)(z) is the n-th derivative of the digamma function. The Eq. 7 to Eq. 13 means that the gra-
dient of the expectation of T (z) with respect to θ can be estimated by approximating the expectation
in Eq. 10 with its mean value using a batch of random vectors, i.e.,

Eπ(z|θ)

[
T (z) · ∇θ log

[
π(z|θ)

]]
≈ 1

H

H∑
i=1

[
T (zi) · ∇θ log

[
π(zi|θ)

]]
(14)

where H denotes the batchsize, and zi is drawn from π(z|θ). Thus, the parameters θ of the Beta
distributions can be updated with Stochastic Gradient Ascent, i.e.

θt+1 ← θt + η∇θEπ(z|θ)

[
T (z)

]
, (15)

where η is a constant learning rate for the parameters θ. With a set of trained parameters θ, we
expect a higher τS performance from a random perturbation z drawn from π(z|θ).

In our experiments, we initialize a = 1, and b = 1. This is due to a very important property of
Beta distribution that it degenerates into Uniform distribution when a = 1 and b = 1. Namely,
our Beta-Attack is initialized as the “Rand Search”, but it is able to update its parameters according
to the historical τS performance, changing the shape of its probability density function in order to
improve the expectation of the τS of the next adversarial perturbation drawn from it. Besides, the
batch size H is set to 50 for all the experiments.

As discussed in Sec. 3.2, and shown in Tab. 3 and Tab. 4, the Beta-Attack obviously outperforms
the “Rand Search”, and is comparable to PSO, but is still surpassed by the NES and SPSA methods.
We speculate that such simple parametric distributions are not enough for modeling the adversarial
perturbations for the challenging OA problem. Due to its performance not outperforming PSO,
NES and SPSA, the new Beta-Attack is not regarded as a major contribution of our paper, but its
comparison with the other methods are very instructive.

D.2.1 PARAMETER SEARCH FOR BETA-ATTACK

Table 9: Parameter search of learning rate η. Fashion-MNIST, N =∞, k = 5, ε = 4
255

Learning Rate η 0.0 1.5 *3.0 4.5 6.0

SRC τS 0.290, 2.2 0.332, 2.4 0.360, 2.6 0.341, 2.5 0.330, 2.5

We conduct parameter search of η on the Fashion-MNIST, as shown in Tab. 9. From the table, we
find that the τS performance peaks at η = 3.0, so we set this value as the default learning rate for the
experiments on Fashion-MNIST. Apart from that, we empirically set η = 0.5 for the experiments
on SOP following a similar parameter search.
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D.3 PARTICLE SWARM OPTIMIZATION (PSO)

Particle Swarm Optimization (Kennedy & Eberhart, 1995; Shi & Eberhart, 1998) is a classical meta-
heuristic optimization method. Let constant H denote the population (swarm) size, we randomly
initialize the H particles (vectors) as Y = {y1,y2, . . . ,yH}. The positions of these particles are
iteratively updated according to the following velocity formula:

vi ← ωvi + φp · rand() · (pi − yi) + φg · rand() · (g − yi) (16)
yi ← yi + vi (17)

where yi ∈ Y, rand() generates a random number within the interval [0, 1], ω denotes the inertia
(momentum), pi is the historical best position of particle i, g is the global historical best position
among all particles, φp and φg are two constant parameters. As a meta-heuristic method, PSO does
not guarantee that a satisfactory solution will eventually be discovered.

In the implementation, we directly represent the adversarial query q̃ withe the particles. And we
also additionally clip the particles as

yi ← min
{
q + ε,max

{
q − ε,yi

}}
(18)

at the end of each PSO iteration, which is the only difference of our implementation compared to
the standard PSO (Shi & Eberhart, 1998). In all the experiments, the swarm size is set as H = 40.

D.3.1 PARAMETER SEARCH FOR PSO

Table 10: Parameter search for PSO. Fashion-MNIST, N =∞, k = 5, ε = 4
255

Inertia ω 0.8 1.0 *1.1 1.2 1.4
SRC τS 0.321, 2.3 0.363, 2.3 0.381, 2.3 0.369, 2.4 0.349, 2.4

φp 0.37 0.47 *0.57 0.67 0.77
SRC τS 0.353, 2.3 0.375, 2.3 0.381, 2.3 0.376, 2.3 0.364, 2.3

φg 0.24 0.34 *0.44 0.54 0.64
SRC τS 0.353, 2.3 0.372, 2.3 0.381, 2.3 0.380, 2.3 0.359, 2.3

We conduct parameter search of ω, φp and φg for PSO on the Fashion-MNIST dataset, as shown in
Tab. 10.

• Inertia ω: This parameter affects the convergence of the algorithm. A large ω endows
PSO with better global searching ability, while a small ω allows PSO to search better in
local areas. From the table, we find the PSO performance peaks at ω = 1.1, which means
the global searching ability is relatively important for solving the black-box Order Attack
problem.

• Constants φp and φg: These parameter control the weights of a particle’s historical best
position (“the particle’s own knowledge”) and the swarm’s historical global best position
(“the knowledge shared among the swarm”) in the velocity formula. With a relatively
small φp, and a relatively large φg , the swarm will converge faster towards the global best
position, taking a higher risk of being stuck at a local maxima. From the table, we note that
both constants should be kept relatively small, which means it is not preferred to converge
too fast towards either the particles’ individual best positions or the global best position,
for sake of better global searching ability of the algorithm.

We conclude from the parameter search that the global searching ability is important for solving the
black-box OA, as reflected by the parameters. Hence, we empirically set ω = 1.1, φp = 0.57, and
φg = 0.44 for PSO in all experiments.

D.4 NATURAL EVOLUTIONARY STRATEGY (NES)

NES (Ilyas et al., 2018) is based on Wierstra et al. (2008), which aims to find the adversarial per-
turbation through projected gradient method (Madry et al., 2017) with estimated gradients. Specif-
ically, let the adversarial query q̃ be the mean of a multivariate Gaussian distribution N (z|q̃,Σ)
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where the covariance matrix Σ is a hyper-parameter matrix, and T (z) = τS
(
ClipΩq

(q̃ + z)
)
, NES

first estimates the gradient of the expectation:

∇q̃EN (z|q̃,Σ)[T (z)] = EN (z|q̃,Σ)

{
T (z)∇q̃[logN (z|q̃,Σ)]

}
(19)

≈ 1

H

H∑
i=1

{
T (zi)∇q̃[logN (zi|q̃,Σ)]

}
. (20)

(21)

The batch of zi are sampled from N (q̃,Σ). Then NES updates the adversarial example q̃ (i.e.the
mean of the multivariate Gaussian) with projected gradient ascent (Madry et al., 2017):

q̃t+1 ← ClipΩq

{
q̃t + η · sign

(
∇q̃EN (z|q̃,Σ)[T (z)]

)}
, (22)

where η is a constant learning rate. Following Ilyas et al. (2018), we set the covariance matrix as a
scaled identity matrix, i.e.Σ = σI . The batch size is set to H = 50 for all experiments.

D.4.1 PARAMETER SEARCH FOR NES

Table 11: Parameter Search for NES. Fashion-MNIST, N =∞, k = 5, ε = 4
255

Learning Rate η 1
255 * 2

255
3

255
4

255
5

255
SRC τS 0.404, 3.0 0.416, 3.1 0.394, 2.8 0.398, 2.8 0.387, 2.8

σ ε/0.125 ε/0.25 *ε/0.5 ε/1.0 ε/2.0
SRC τS 0.403, 2.9 0.407, 2.9 0.416, 3.1 0.400, 2.9 0.382, 2.8

As shown in Tab. 11, the τS performance of NES peaks at η = 2/255 and σ = ε/0.5. So we use
this setting for all the rest experiments with NES.

D.5 SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION (SPSA)

SPSA (Uesato et al., 2018) is based on Spall et al. (1992). In particular, the implementation of
(Uesato et al., 2018) is very similar to the NES implementation discussed above. The only difference
is that, in (Uesato et al., 2018), the random vectors used for estimating the gradients are sampled
from Rademacher distributions (i.e.Bernoulli ±1) instead of the Gaussian distributions: z = δu =
δ[u1, u2, . . . , uD], and ∀i ∈ 1, . . . , D, ui ∼ Rademacher(), where δ is a tunable parameter. Apart
from that, we also set the batch size as H = 50 for all SPSA experiments.

Compared to the NES algorithm in the experiments, we speculate that such random vector sampling
strategy provides SPSA better ability to jump out from local maxima due to a larger norm of the
random perturbations. As a result, SPSA performs better than NES in some cases.

D.5.1 PARAMETER SEARCH FOR SPSA

Table 12: Parameter Search for SPSA. Fashion-MNIST, N =∞, k = 5, ε = 4
255

Learning Rate η 1
255 * 2

255
3

255
4

255
5

255
SRC τS 0.383, 3.0 0.407, 3.2 0.374, 2.8 0.360, 2.8 0.365, 2.8

Perturbation size δ 1
255 * 2

255
3

255
4

255
5

255
SRC τS 0.322, 2.7 0.407, 3.2 0.401, 2.9 0.400, 2.9 0.397, 2.8

According to the parameter search in Tab. 12, we set η = 2/255 and δ = 2/255 as the default
parameter in all other experiments with SPSA.
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