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ABSTRACT

Fine-tuning large language models (LLMs) is essential for enhancing their perfor-
mance on specific tasks but is often resource-intensive due to redundant or unin-
formative data. To address this inefficiency, we introduce DELIFT (Data Efficient
Language model Instruction Fine-Tuning), a novel algorithm that systematically
optimizes data selection across the three key stages of fine-tuning: (1) instruc-
tion tuning, (2) task-specific fine-tuning (e.g., reasoning, question-answering), and
(3) continual fine-tuning (e.g., incorporating new data versions). Unlike existing
methods that focus on single-stage optimization or rely on computationally inten-
sive gradient calculations, DELIFT operates efficiently across all stages. Central
to our approach is a pairwise utility metric that quantifies how beneficial a data
sample is for improving the model’s responses to other samples, effectively mea-
suring the informational value relative to the model’s current capabilities. By
leveraging different submodular functions applied to this metric, DELIFT selects
diverse and optimal subsets that are useful across all stages of fine-tuning. Experi-
ments across various tasks and model scales demonstrate that DELIFT can reduce
the fine-tuning data size by up to 70% without compromising performance, offer-
ing significant computational savings and outperforming existing methods in both
efficiency and efficacy.

1 INTRODUCTION

Fine-tuning large language models (LLMs) is pivotal for adapting these powerful architectures (De-
vlin et al., 2019; Brown et al., 2020a; Touvron et al., 2023) to specialized tasks such as intricate
reasoning, precise question-answering, and the seamless integration of new information (Ouyang
et al., 2022). This transformation—from a general-purpose model to a task-specific agent—heavily
relies on the quality and nature of the data employed during fine-tuning, which critically determines
the model’s subsequent performance (Wei et al., 2022; Zhou et al., 2023; Hoffmann et al., 2024).

The effectiveness of fine-tuning hinges on the quality, diversity, and relevance of the selected
data (Gururangan et al., 2020; Wei et al., 2022; Zhou et al., 2023). High-quality data ensures accurate
learning, diverse data enhances generalization, and relevant data aligns the model’s capabilities with
specific application needs. However, optimizing data selection across different fine-tuning phases
remains a significant challenge, leading to our central research question:

How can we create a unified framework for efficient data selection across all fine-tuning stages of
LLMs, while optimizing performance and maximizing data efficiency?

To address this challenge, we present DELIFT (Data Efficient Language model Instruction Fine-
Tuning), a novel, unified, and computationally efficient algorithm engineered to optimize data se-
lection across all stages of the fine-tuning process. The key innovation of DELIFT lies in its pairwise
utility metric, which assesses the informational value of data samples relative to both the model’s
current capabilities and other samples within the dataset. This metric, combined with submodu-
lar optimization techniques, allows DELIFT to efficiently select optimal data subsets that precisely
address the model’s learning requirements without incurring unnecessary computational costs.

The typical fine-tuning process comprises three key stages: 1. Instruction Tuning: Enhances the
model’s ability to follow general instructions (Mishra et al., 2022; Wei et al., 2022; Longpre et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2023); 2. Task-Specific Fine-Tuning: Refines the model’s expertise in specific domains (Gururan-
gan et al., 2020; Cobbe et al., 2021); 3. Continual Fine-tuning: Enables the model to integrate
new information while mitigating catastrophic forgetting (Madotto et al., 2021; Wu et al., 2024).
DELIFT is able to optimize data selection processes across all three stages. Additionally, DELIFT
offers significant benefits for In-Context Learning (ICL) (Brown et al., 2020b; Xue et al., 2024).
By utilizing the selected subsets as the ICL example pool, DELIFT achieves similar or better per-
formance compared to using the entire dataset, thereby enhancing data efficiency in ICL scenarios.
This dual functionality is empirically validated in our experimental results.

Existing data selection methodologies often fail to address the nuanced requirements of the afore-
mentioned distinct fine-tuning stages. Many approaches are tailored to a single stage, lacking the
adaptability needed for comprehensive fine-tuning (Xia et al., 2024; Liu et al., 2024; Bukharin &
Zhao, 2024; Chen et al., 2024). Others depend on computationally intensive procedures, such as ex-
haustive gradient computations, rendering them impractical for large-scale models and datasets (Kil-
lamsetty et al., 2021b;a; Xia et al., 2024; Zhang et al., 2024). Additionally, some methods utilize
features obtained from an independent model that are not specifically aligned with the model under-
going fine-tuning, reducing their effectiveness (Killamsetty et al., 2023; Liu et al., 2024; Bukharin
& Zhao, 2024; Chen et al., 2024; Du et al., 2023).

DELIFT addresses these limitations by adapting to the unique requirements of each fine-tuning
stage. 1. Instruction Tuning: Selects diverse data to enhance general instruction-following capa-
bilities; 2. Task-Specific Fine-Tuning: Prioritizes data that is aligned with the target task, to refine
specialized expertise; 3. Continual Fine-tuning: Identifies novel, complementary information to
expand the model’s knowledge base while safeguarding against catastrophic forgetting.

Figure 1 illustrates how DELIFT optimizes data selection across these stages, demonstrating the
selection and pruning processes in each fine-tuning phase. By leveraging submodular optimization
techniques (Fujishige, 2005; Bilmes, 2022) and submodular information measures (Iyer et al., 2021),
DELIFT efficiently selects optimal data subsets that precisely address the model’s learning require-
ments without incurring unnecessary computational costs. This approach effectively balances data
utility and computational efficiency.

Our key contributions are as follows:

1) Versatile Pairwise Utility Metric: A novel, easy-to-compute metric for assessing data informa-
tiveness, incorporating model feedback applicable across all fine-tuning stages.
2) Unified Data Selection Algorithm: DELIFT systematically optimizes data selection for instruc-
tion tuning, task-specific fine-tuning, and continual fine-tuning within a single framework.
3) Computational Efficiency: Circumvents resource-intensive operations, ensuring scalability to
large datasets and models. DELIFT achieves at least 70% reduction in computational time com-
pared to gradient-based methods on benchmark tasks.
4) Enhanced Performance with Reduced Data: Demonstrates the ability to reduce fine-tuning
data size by up to 70% without compromising performance, and achieves comparable efficacy as to
utilizing the full dataset.
5) Improvement over Existing Methods: Outperforms current data selection techniques by up to
26% in effectiveness across diverse tasks and model scales (see Section 4).

The remainder of this paper is organized as follows: Section 2 provides background on fine-tuning
LLMs and reviews related work. Section 3 details the methodology behind DELIFT, including
the development of our pairwise utility metric and the submodular optimization process. Section 4
presents experimental results that showcase the effectiveness and efficiency of our method. Section 5
discusses the implications of our findings and potential future directions. Finally, we release our
code base for further research.

2 RELATED WORK

Efficient data subset selection is vital for enhancing training efficiency in deep neural networks
while maintaining or improving model performance. This section categorizes existing subset se-
lection methods into model-independent and model-dependent approaches and identifies the gaps
our work addresses. Model-independent subset selection methods focus on selecting representative
subsets without model-specific feedback. Common approaches include using pre-trained sentence
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(a)

Use Case 1: fine-tune a model to follow instructions. Subset should contain points that are diverse.

Selected in the subset

Pruned out of the subset

Instruction Input Output

Given the context, answer the 
question.

Question: Who is New Zealand’s 
Prime Minister?

Context: Christopher Mark Luxon has 
served as the 42nd prime minister of 
New Zealand since November 2023.

Christopher Mark Luxon

Given the context, answer the 
question.

Question: When did Luxon start his 
term?

Context: Christopher Mark Luxon has 
served as the 42nd prime minister of 
New Zealand since November 2023.

November 2023

Write a sentence with the given words. Sun, park, dog. Once the sun was up, I went to the 
park with my dog.

Classify the given objects into a 
category.

Crab, tuna, lobster. Seafood.

Dataset

(b)

Input Output

Abby worked for 8 hours per day for 30 days. 
How much did she work?

240 hours

Ben paid for his dinner ($20), Charles’ dinner ($18) and 
Dennis’ dinner ($15). How much did he pay?

$53

Eunice has 20 oranges, and 4 friends. How many oranges 
does each friend get?

5 oranges

Greg has 20 baseball cards and trades 5 of them. How 
many are left?

15 cards

Use case 2: improve model’s performance on a mathematical reasoning benchmark. Subset should contain points that 
are diverse and representative of the benchmark.

(Example) Benchmark Data

Dataset

Input Output

Hannah had 40 nickels and won 10 more. How many 
nickels does she have?

50 nickels

Fred had 25 roses and gave 10 to Mom. How many are left? 15 roses

Lydia gave away ½ her pie to Mike and ¼ of her pie to Ned. 
How much of the pie is left?

¼ of the pie

Is the following word positive or negative? “Happiness” Positive

(c)

Input Output

This restaurant has good paella except that it is sometimes 
too salty.

Negative

The waiters are impatient and rude, they rushed me to 
order my food.

Negative

The atmosphere of this restaurant is cozy and comfortable, 
with dim lights.

Positive

The food came very quickly. Positive

Previously Trained, Phase I Data

New, Phase II Data

Input Output

The fried rice is amazing! Positive

The camera resolution quality is low, and the lens do not 
focus properly.

Negative

This phone is lightweight, thin, and fits in my pockets 
easily.

Positive

The restaurant closes too early. Negative

Use case 3: continual learning on review sentiment analysis datasets. Subset should contain points that are diverse 
and complementary to Phase I data.

Figure 1: DELIFT data selection across fine-tuning stages. (a) Instruction Tuning: Diverse instruc-
tions selected; redundant samples pruned. (b) Task-Specific Fine-Tuning: Mutually informative
(with benchmark data) and diverse samples are prioritized for selection. (c) Continual Fine-tuning:
New samples that are novel are integrated; new samples with overlapping information are pruned.

embeddings with distance or clustering metrics (Bukharin & Zhao, 2024; Sorscher et al., 2023; Kil-
lamsetty et al., 2023; Du et al., 2023; Bhatt et al., 2024), as well as employing large models like
GPT-4 or pre-trained reward models for high-quality data filtering (Du et al., 2023; Chen et al.,
2024). However, these methods often struggle to translate the assessed diversity or quality into
downstream utility. Model-dependent subset selection aims to identify data samples beneficial to
the downstream model by analyzing features like per-sample gradients or loss values. Methods
such as GradMatch (Killamsetty et al., 2021a), CRAIG (Mirzasoleiman et al., 2020), and TAG-
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COS (Zhang et al., 2024) focus on selecting samples that approximate the gradient updates over the
full dataset. GLISTER (Killamsetty et al., 2021b) employs bilevel optimization to align gradients
from selected subsets with those of a validation set. LESS (Xia et al., 2024) proposes computing
gradients through LoRA fine-tuning to reduce the computational cost of gradient computation and
utilizes random projection to address gradient dimensionality issues. Li et al. (2024) proposed the
IFD score, a computationally efficient model-dependent metric that assesses instruction difficulty to
filter challenging samples, though it does not guarantee data diversity. While effective in capturing
useful samples, these methods often face computational challenges, especially with LLMs. Persis-
tent limitations across these methods include: (i) Limited Adaptability across different fine-tuning
stages, (ii) Computational Intensity due to model feedback reliance, (iii) Lack of Unified Solu-
tions applicable across all fine-tuning phases, and (iv) ineffective Redundancy Handling. DELIFT
addresses these limitations through a novel pairwise utility metric, which effectively aligns with the
model’s evolving capabilities throughout fine-tuning. By integrating submodular optimization with
pairwise model-dependent metrics that evaluate relative sample utility, DELIFT minimizes redun-
dancy while maximizing adaptability and computational efficiency. This approach proves effective
across diverse use cases including instruction tuning, task-specific fine-tuning, continual fine-tuning,
and In-Context Learning (ICL), offering a versatile and scalable solution for data subset selection.

3 METHODOLOGY

This section presents foundational concepts and the specific approach of DELIFT, focusing on data
subset selection through a utility-based kernel integrated with submodular optimization techniques.

3.1 NOTATION

Let D denote the fine-tuning dataset, comprising elements di = (xi, yi), where xi is the input se-
quence and yi is the corresponding output sequence. Our objective is to select a subset A ⊆ D
that maximizes the model’s performance while minimizing computational costs. The selection strat-
egy adapts based on the fine-tuning objective, which may include instruction tuning, task-specific
adaptation, or continual learning.

3.2 UTILITY-BASED KERNEL

At the core of DELIFT lies the utility-based kernel, a mechanism designed to quantify the infor-
mativeness of one data point when used as an in-context example for another. As formalized in
Theorem 1, this kernel has deep connections to information theory through conditional pointwise
mutual information (PMI). Consider two data points, (xi, yi) and (xj , yj). The utility of data point
j relative to data point i, denoted as UFij , is defined as:

UFij = d(GTi, p(yi | xi))− d(GTi, p(yi | xi, xj , yj)), (1)

where d(·, ·) is a distance metric between two probability distributions; GTi is the ground truth
distribution for the sequence yi, assigning probability 1 to yi and 0 to all other sequences; p(yi | xi)
is the model’s predicted probability for yi given only the input xi; and p(yi | xi, xj , yj) is the
predicted probability for yi when the model is provided with (xj , yj) as an in-context example
along with xi.

As shown in Theorem 1, when using KL-divergence as the distance metric, the utility metric UFij

is equal to the conditional PMI between yi and (xj , yj) given xi:

UFij = PMI(yi; xj , yj | xi) = log
p(yi | xi, xj , yj)

p(yi | xi)
.

For practical implementation, we employ the length-normalized L2 norm (Euclidean distance) as
our distance metric d(p, q), given by:

d(p, q) =

√∑N
k=1(pk − qk)2

N
, (2)
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where pk and qk are the k-th elements of the flattened probability distributions p and q, respectively.
The normalization factor N , corresponding to the number of tokens in yi, ensures scale invariance
across different sequence lengths. We use Euclidean distance instead of KL-divergence due to prac-
tical considerations: Euclidean distance is always positive and finite, computationally efficient, and
numerically stable, even when dealing with zero probabilities. This makes it suitable for subset
selection algorithms like the facility location function that require positive, finite distance measures.

To compute the probability distributions accurately, we employ the teacher forcing tech-
nique (Williams & Zipser, 1989). This method ensures that the model uses the ground truth previous
tokens when predicting each subsequent token in the sequence, enabling reliable measurement of
prediction accuracy. The utility value UFij measures the improvement in prediction accuracy for
(xi, yi) when utilizing (xj , yj) as an in-context example. As shown in Theorem 1, this improvement
can be interpreted as approximating the sum of conditional PMI between each token in yi and the
example (xj , yj), given the input xi. A positive UFij indicates that including data point j enhances
the model’s prediction accuracy for i by providing relevant information, whereas a negative value
suggests that the example introduces misleading or irrelevant information that degrades prediction
quality.

3.3 SUBMODULAR FUNCTIONS FOR DATASET SELECTION

To optimize the selection of informative data subsets, DELIFT leverages submodular func-
tions (Fujishige, 2005). Submodular functions are characterized by the property of diminishing
marginal returns, making them ideal for selecting diverse, informative, and non-redundant subsets.
Submodular function maximization can be efficiently approximated using a greedy algorithm, with
a provable approximation guarantee of 1− 1

e of the optimal solution (Nemhauser et al., 1978).

We employ three tailored submodular functions (Iyer et al., 2021), each suited to a specific fine-
tuning stage:

3.3.1 FACILITY LOCATION (FL)

From an information perspective, the Facility Location function maximizes the coverage of the
information space. It ensures that the selected subset A contains examples that are collectively
representative of the entire dataset’s D information content. This is particularly useful in instruction
tuning, where we aim to capture a diverse range of instruction types and their informational content.
It is defined as the following where sij is the similarity measure between data points i and j:

fFL(A) =
∑
i∈D

max
j∈A

sij , (3)

3.3.2 FACILITY LOCATION MUTUAL INFORMATION (FLMI)

The FLMI function is designed to maximize the mutual information between the selected subset A
and the target domain dataset DT . In our context, it ensures that the selected data points are not
only informative in general but also particularly relevant to the specific task at hand. This makes it
ideal for task-specific fine-tuning, where we want to bridge the gap between general knowledge and
task-specific information. It is defined below where η is a scaling factor (set to 1 in our experiments):

fFLMI(A;DT ) =
∑
i∈D

max
j∈A

sij + η
∑
j∈A

max
i∈DT

sij , (4)

3.3.3 FACILITY LOCATION CONDITIONAL GAIN (FLCG)

From an information-theoretic standpoint, the FLCG function aims to maximize the conditional
information gain of the selected subsetA given the existing dataset DE . It quantifies how much new
information each data point brings, conditional on what the model already knows. This is crucial
for continual fine-tuning, where we want to avoid redundancy and focus on novel, complementary
information that expands the model’s knowledge base without unnecessary repetition. It is defined
as the following where ν is a scaling factor (set to 1 in our experiments).
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fFLCG(A | DE) =
∑
i∈D

max

(
max
j∈A

sij − ν max
k∈DE

sik, 0

)
, (5)

Each submodular function, when combined with our utility-based kernel, guides the selection of
data subsets tailored to the specific fine-tuning stage. This ensures that DELIFT selects the most
informative and diverse examples, maximizing the efficiency and effectiveness of fine-tuning.

3.4 UTILITY KERNEL AS FEATURE SPACE

Our approach utilizes the utility-based kernel as a feature space for data selection, representing a
significant departure from traditional semantic similarity-based methods. Traditional methods often
rely on sentence embeddings (SE) to capture static semantic similarities between data points. In
contrast, our utility-based kernel measures the actual impact of examples on model performance,
providing a dynamic and task-specific assessment.

This distinction is crucial for two main reasons: 1. Semantic Diversity vs. Performance En-
hancement: While SE-based methods select diverse examples solely based on semantic content,
our utility-based approach selects examples that demonstrably improve model performance across
various inputs; 2. Model-Aware Selection: The utility-based kernel is attuned to the model’s cur-
rent capabilities and weaknesses, enabling the selection of data points that are most beneficial for
enhancing performance on the target task. By integrating the utility-based kernel with the aforemen-
tioned submodular functions DELIFT tailors the data selection process to each fine-tuning stage:
instruction tuning, task-specific fine-tuning, and continual learning.

3.5 DATA SUBSET SELECTION ALGORITHM

To operationalize our data selection approach, we employ a **greedy algorithm** that iteratively
builds the subset A by selecting the data point that offers the maximum marginal gain in the chosen
submodular function.

Algorithm 1 Greedy Maximization for Submodular Function
Require: Dataset D, submodular function f , budget k

1: Initialize subset A ← ∅
2: for t = 1 to k do
3: Select d∗ = argmaxd∈D\A (f(A ∪ {d})− f(A))
4: Update A ← A∪ {d∗}
5: end for
6: return A

This greedy algorithm ensures that each addition to the subset A maximizes the marginal gain in
the submodular function f . By iteratively selecting the most beneficial data points according to the
utility-based kernel and the specific submodular function tailored to the fine-tuning stage, DELIFT
efficiently utilizes the data budget to select the most informative examples.

The complete subset selection process involves the following steps: 1. Compute the Utility-Based
Kernel: Calculate UFij for all relevant pairs of data points in the dataset to assess their informa-
tiveness; 2. Select the Appropriate Submodular Function: Depending on the fine-tuning stage
(instruction tuning, task-specific fine-tuning, or continual fine-tuning), choose the corresponding
submodular function (FL, FLMI, or FLCG); 3. Apply the Greedy Maximization Algorithm: Use
Algorithm 1 to iteratively build the subset A by selecting data points that offer the highest marginal
gain according to the selected submodular function.

By synergizing our novel utility-based kernel with submodular optimization, DELIFT achieves data-
efficient fine-tuning that effectively addresses both redundancy and informativeness in the data se-
lection process, optimizing the model’s performance across various tasks and domains.

6
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Model Qwen2 Phi-3

Method ICL QLoRA ICL QLoRA

ROUGE BGE LAJ ROUGE BGE LAJ ROUGE BGE LAJ ROUGE BGE LAJ

Initial 37.87 78.92 2.98 36.36 82.55 3.02 25.76 43.34 1.42 35.50 80.46 2.58
Random 39.00 80.66 3.12 44.45 85.46 3.12 33.05 72.73 2.92 44.70 83.75 2.95
SelectIT 43.08 84.50 3.18 45.14 85.88 3.21 36.11 76.31 3.18 49.68 85.84 3.20
LESS 42.08 83.24 3.26 45.16 84.95 3.28 47.10 85.94 3.23 48.68 85.86 3.24
DELIFT (SE) 47.43 84.40 3.28 48.22 86.50 3.28 46.62 85.28 3.24 45.64 83.70 3.27
DELIFT 48.46 85.77 3.35 52.79 88.04 3.37 49.83 85.27 3.32 50.31 84.40 3.33

Full Data 58.65 88.72 3.45 65.51 92.24 3.51 55.92 88.26 3.45 74.98 93.33 3.84

Table 1: Results on Use Case 1: MixInstruct. Bold indicates the best performance. There is a
10.44% performance percentage drop from Full Data to DELIFT after pruning 70% of the data, and
a 2.27% performance percentage drop from DELIFT to the next best baseline.

Model Qwen2 Phi-3

Method ICL QLoRA ICL QLoRA

ROUGE BGE LAJ ROUGE BGE LAJ ROUGE BGE LAJ ROUGE BGE LAJ

Initial 18.03 59.13 1.54 20.15 58.38 1.78 20.10 48.66 1.36 20.64 49.17 1.39
Random 20.05 59.39 1.79 20.29 59.39 1.83 20.83 49.92 2.24 24.51 53.41 2.36
SelectIT 31.38 71.08 2.86 32.96 74.76 2.90 35.37 66.67 2.52 38.98 69.84 2.54
LESS 34.59 83.23 3.07 35.03 83.37 3.50 39.69 72.12 3.17 40.32 70.89 3.24
DELIFT (SE) 34.69 83.31 3.43 35.46 83.43 3.53 37.07 71.49 3.52 38.13 79.68 3.74
DELIFT 35.48 83.69 3.58 35.60 83.64 3.54 40.66 84.00 3.68 41.91 84.53 3.76

Full Data 36.43 84.25 3.53 35.88 76.87 3.63 42.07 85.26 3.78 44.73 87.03 3.82

Table 2: Results on Use Case 1: P3. Bold indicates the best performance. There is only a 0.76%
performance percentage drop from Full Data to DELIFT after pruning 70% of the data, and a 3.23%
performance percentage drop from DELIFT to the next best baseline.

4 EXPERIMENTAL RESULTS

We conducted extensive experiments to evaluate the effectiveness of DELIFT across various fine-
tuning scenarios, model scales, and datasets. This section details our experimental setup, baselines,
evaluation metrics, and results analysis.

4.1 DATASETS AND USE CASES

We evaluated DELIFT across the three previously described fine-tuning scenarios:

Use Case 1: Instruction Tuning We evaluated the effectiveness of DELIFT for use case 1 on two
datasets: MixInstruct (Jiang et al., 2023) and P3 (Public Pool of Prompts) (Sanh et al., 2021). We
randomly selected 21,000 train, 6,000 valid, and 3,000 test samples. Using the Facility Location
(FL) submodular function, we aimed to select a subset of training data that was both representative
and informative.

Use Case 2: Task-Specific Fine-Tuning We evaluated DELIFT for task-specific fine-tuning using
two dataset pairs: (1) HotpotQA (Yang et al., 2018) with MMLU (Hendrycks et al., 2021), and (2)
MixInstruct with MT-Bench (Zheng et al., 2023). We used the Facility Location Mutual Informa-
tion (FLMI) submodular function to select the most informative samples from the training datasets
(HotpotQA and MixInstruct) that shared relevant information with the target datasets (MMLU and
MT-Bench, respectively).

Use Case 3: Continual Fine-Tuning We evaluated DELIFT in a continual fine-tuning setting using
two dataset pairs: (1) SQuAD (Rajpurkar et al., 2016) paired with HotpotQA for general question-
answering, and (2) proprietary query rewriting datasets covering IBM and government domains.1
Our goal was to integrate new knowledge efficiently while minimizing redundancy. We employed

1In this task, non-standalone questions –questions that require previous context to answer– must be rewritten
to be standalone. For example, ”How much is it?” should be rewritten to ”How much is the subscription for
IBM Cloud?” Such queries are common in user-agent conversations where a user asks a follow-up to an agent.
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Model Qwen2 Phi-3

Method QLoRA QLoRA

Initial 82.10 69.10
Random 79.31 65.16
SelectIT 79.13 65.24
LESS 80.35 66.72
DELIFT (SE) 80.10 66.36
DELIFT 81.70 68.70

Full Data 78.36 64.50

Table 3: Results on Use Case 2: HotpotQA and MMLU (5-shot) for Qwen2 and Phi-3 models
(classification accuracy). Bold indicates the best performance. For Qwen2, DELIFT outperforms
Full Data by 3.34%, while for Phi-3, it improves by 4.20%.

Model Qwen2 Phi-3

Method ICL QLoRA ICL QLoRA

ROUGE BGE LAJ ROUGE BGE LAJ ROUGE BGE LAJ ROUGE BGE LAJ

Initial 44.32 74.86 2.48 47.65 77.92 2.72 39.57 69.43 2.31 42.89 72.76 2.53
Random 49.78 79.54 2.83 52.91 82.67 3.05 44.63 74.28 2.62 47.85 77.39 2.84
SelectIT 54.92 83.71 3.12 57.86 86.59 3.31 49.75 78.64 2.91 52.68 81.52 3.13
LESS 59.63 85.89 3.29 62.74 88.72 3.48 54.82 81.95 3.08 57.73 84.67 3.29
DELIFT (SE) 62.85 86.94 3.38 65.83 89.76 3.57 57.69 82.87 3.17 60.54 85.59 3.38
DELIFT 64.73 87.82 3.47 67.91 90.64 3.66 59.58 83.76 3.26 62.47 86.48 3.47

Full Data 65.89 88.65 3.55 69.72 91.53 3.74 60.76 84.59 3.34 64.31 87.42 3.55

Table 4: Results on Use Case 2: MixInstruct and MT-Bench. Bold indicates the best performance.
There is a 2.91% performance percentage drop from Full Data to DELIFT after pruning 70% of the
data, and a 1.14% performance percentage drop from DELIFT to the next best baseline.

the Facility Location Conditional Gain (FLCG) submodular function, selecting complementary sam-
ples from the new dataset (HotpotQA and Government query rewrite) that provided additional, non-
overlapping information to the existing dataset (SQuAD and IBM query rewrite).

4.2 EXPERIMENTAL SETUP

Models: We evaluated DELIFT on two state-of-the-art open-source models: Phi-3-mini-128k-
instruct (Abdin et al., 2024): 3.8B parameters, Qwen2-72B-Instruct (Yang et al., 2024): 72B
parameters. These models were chosen to demonstrate effectiveness across different model scales.

Metrics: We use a variety of metrics to characterize performance. For n-gram word overlap we use
ROUGE (Lin, 2004). For semantic similarity we calculate the dot product between the embeddings
from the bge-large-en-v1.5 model (Xiao et al., 2023); the embeddings are normalized to
unit vectors, hence the closer the dot product is to 1, the more semantically similar the vectors (the
metric is referred to as ‘BGE’). Additionally, we use Prometheus (Kim et al., 2023), specifically the
prometheus-7b-v2.0 model, as an LLM-as-a-Judge (referred to as ‘LAJ’). With our custom
rubric outlined in Appendix C, Prometheus assigns scores in a range of 1 to 5 (higher scores indicate
better performance.) Finally, we use classification accuracy to evaluate MMLU.

Baselines: We evaluated DELIFT by comparing it against several baselines to understand its effec-
tiveness in data selection. These baselines included: (1) SelectIT (Liu et al., 2024), which selects
data using model feedback at the token, sentence, and model levels to identify useful samples; (2)
LESS (Xia et al., 2024), which leverages LoRA approximated gradient-based influence estimation
to prioritize impactful data points; (3) Random, which selects a fixed percentage (x%) of the dataset
randomly, providing a benchmark for non-strategic selection; (4) DELIFT with Sentence Embed-
ding Features (SE), which uses DELIFT but substitutes sentence embeddings as the feature space,
employing a model-independent, pairwise similarity kernel instead of the utility kernel for submod-
ular optimization; and (5) Full Data, where the entire dataset is used for fine-tuning, serving as an
upper benchmark for performance. For In-Context Learning (ICL), the selected subsets from each
baseline were used as the pool of examples, allowing us to evaluate how effectively each method
supports ICL by providing relevant and informative data.
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Model Qwen2 Phi-3

Method ICL QLoRA ICL QLoRA

ROUGE BGE LAJ ROUGE BGE LAJ ROUGE BGE LAJ ROUGE BGE LAJ

Initial 44.11 70.49 2.43 48.49 80.85 2.62 40.66 58.68 1.52 43.96 69.56 2.29
Random 55.57 85.26 2.91 55.52 85.53 2.94 45.76 76.19 2.45 58.94 82.41 2.89
SelectIT 63.07 86.38 3.18 65.42 87.50 3.20 63.49 85.27 2.96 64.09 85.07 3.16
LESS 64.28 85.41 3.29 69.85 89.33 3.45 66.01 87.20 3.19 67.53 88.17 3.22
DELIFT (SE) 61.07 85.16 3.45 74.05 92.47 3.58 68.84 88.46 3.32 69.30 88.62 3.35
DELIFT 69.49 87.94 3.60 74.19 92.23 3.65 74.11 89.41 3.57 74.38 91.55 3.57

Full Data 66.08 87.84 3.65 76.83 92.63 3.74 71.23 91.10 3.52 77.12 91.10 3.64

Table 5: Results on Use Case 3: IBM and Government. Bold indicates the best performance. There
is only a 0.31% performance percentage drop from Full Data to DELIFT after pruning 70% of the
data, and a 3.89% performance percentage drop from DELIFT to the next best baseline.

Model Qwen2 Phi-3

Method ICL QLoRA ICL QLoRA

ROUGE BGE LAJ ROUGE BGE LAJ ROUGE BGE LAJ ROUGE BGE LAJ

Initial 51.51 66.97 1.77 54.18 78.27 2.50 40.42 58.23 1.26 40.94 58.12 1.29
Random 54.38 79.12 2.57 59.23 82.02 2.66 44.29 59.45 1.33 50.29 61.52 1.60
SelectIT 58.03 83.75 2.82 63.26 84.01 2.87 47.35 74.15 2.54 56.88 80.47 2.70
LESS 67.16 85.76 2.94 69.72 86.63 3.26 60.97 81.41 2.84 61.56 81.53 2.88
DELIFT (SE) 73.75 88.01 3.26 74.84 88.79 3.30 64.44 83.95 3.03 66.35 84.77 3.14
DELIFT 76.94 90.41 3.33 77.56 89.99 3.34 66.55 84.65 3.25 67.09 85.17 3.32

Full Data 77.78 90.31 3.35 78.72 90.77 3.48 68.47 85.93 3.33 70.48 86.06 3.44

Table 6: Results on Use Case 3: SQuAD and HotpotQA. Bold indicates the best performance. There
is only a 1.94% performance percentage drop from Full Data to DELIFT after pruning 70% of the
data, and a 2.78% performance percentage drop from DELIFT to the next best baseline.

4.3 RESULTS AND ANALYSIS

To ensure a fair and comprehensive evaluation of DELIFT, we conducted experiments across three
distinct fine-tuning scenarios: instruction tuning, task-specific fine-tuning, and continual fine-tuning.
For all subset selection methods—including DELIFT, Random, SelectIT, LESS, and DELIFT with
Sentence Embdedding Features (SE)—we consistently selected 30% of the dataset as a subset, en-
abling direct comparisons between methods and with the full dataset baseline (see Section 4.4 for
an ablation study examining the impact of subset size).

Use Case 1: Instruction Tuning Our first set of experiments focused on instruction tuning, a cru-
cial task to enhancing a model’s ability to follow diverse instructions. As shown in Tables 1 and
2, DELIFT achieved a minimal performance drop of only 5.60% compared to using the full dataset
while reducing the dataset by 70%. This demonstrates DELIFT’s capability to retain the most infor-
mative samples essential for instruction tuning. Furthermore, DELIFT outperformed other subset
selection methods, achieving a 2.74% improvement and a substantial 26.21% advantage over the
next best and worst-performing baselines, respectively. These results underscore DELIFT’s supe-
rior ability to maintain high performance with significantly reduced data, highlighting its efficacy in
instruction tuning.

Use Case 2: Task-Specific Fine-Tuning In the task-specific fine-tuning scenario, we evaluated
DELIFT using two dataset pairs: (1) HotpotQA (Yang et al., 2018) with MMLU (Hendrycks et al.,
2021), and (2) MixInstruct paired with MT-Bench (Zheng et al., 2023). Results, presented in Tables
4 and 3, demonstrate DELIFT’s consistent and competitive performance across different task pairs.
A particularly noteworthy outcome emerged from the HotpotQA-MMLU pair, where DELIFT not
only matched but exceeded the performance of the full dataset, achieving a 5.51% improvement.
This indicates that DELIFT’s selective approach can effectively filter out noise and focus on the most
relevant and informative samples, yielding enhanced task-specific adaptation even with reduced data.

Use Case 3: Continual Fine-Tuning The third use case examined DELIFT’s efficacy in continual
fine-tuning, where models need to incorporate new information while retaining previously learned
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knowledge. As detailed in Tables 5 and 6, DELIFT demonstrated remarkable consistency, showing
only a marginal 1.13% performance drop compared to using the full dataset. Moreover, DELIFT
outperformed the second-best baseline by 3.33% and the worst baseline by 23.88%, highlighting its
superiority in data selection. In specialized tasks such as query rewriting, DELIFT even surpassed
the performance of the full dataset, suggesting that its selective approach effectively prunes noisy or
irrelevant data points, thereby enhancing model performance.

4.4 ABLATION STUDY: IMPACT OF SUBSET SIZE

To assess how subset size influences DELIFT’s performance, we conducted an ablation study by
varying the subset size from 5% to 100% of the full dataset across three use cases. The results,
detailed in Appendix B and illustrated in Figure 2, show that LAJ scores generally increase with
subset size. Utilizing the full dataset consistently yields the highest performance, highlighting the
benefits of larger training sets. However, for methods such as DELIFT, SelectIT, and LESS, perfor-
mance gains plateau or slow beyond a 50% subset size, indicating that additional data offers minimal
benefits and may introduce redundancy. Importantly, DELIFT outperforms all baselines across sub-
set sizes from 5% to 100%, demonstrating its robustness and effectiveness in selecting informative
samples regardless of subset size. These findings suggest that carefully selected smaller datasets
can achieve comparable performance to larger, unfiltered datasets, which is particularly valuable for
resource-intensive large language models.

4.5 DISCUSSION

The comprehensive results across all three use cases highlight DELIFT’s effectiveness and versa-
tility. By consistently reducing data requirements by up to 70% while maintaining—and in some
cases improving—performance, DELIFT addresses a critical challenge in large language model
fine-tuning. The superior performance of DELIFT can be attributed to its novel pairwise utility met-
ric and the use of tailored submodular functions for each fine-tuning stage. This approach enables
DELIFT to select not only representative and diverse samples but also to reduce noise present in
the full dataset. The ability to outperform full datasets in certain scenarios, particularly in niche
tasks like query rewriting, underscores DELIFT’s capacity to distill the most relevant and informa-
tive data points. These findings have significant implications for the accessibility and efficiency of
LLM fine-tuning. By dramatically reducing the amount of data required for effective fine-tuning,
DELIFT paves the way for more widespread adoption and application of large language models
across various domains, especially in resource-constrained environments. Furthermore, DELIFT’s
consistent outperformance of existing data selection techniques across various fine-tuning scenarios
and model scales demonstrates its robustness and broad applicability, making it a valuable tool for
researchers and practitioners alike. In conclusion, our experimental results firmly establish DELIFT
as a powerful and efficient method for data selection in LLM fine-tuning. By addressing the criti-
cal challenge of optimal data selection, DELIFT not only enhances the efficiency of model training
but also opens new possibilities for fine-tuning large language models in domains where data or
computational resources may be limited.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we introduced DELIFT, a novel approach to data-efficient fine-tuning of large lan-
guage models by employing a versatile pairwise utility metric combined with submodular optimiza-
tion techniques for optimal data selection. Empirical evaluations showed that DELIFT can reduce
data and computational requirements by up to 70% while achieving performance comparable to
the full dataset, and outperforming existing data selection methods by up to 26% in effectiveness.
These results suggest that DELIFT offers a promising method for improving the accessibility of
LLM adaptation, especially for resource-constrained scenarios. However, our approach has limita-
tions, including potential sensitivity to the quality and diversity of initial data and the risk of bias
amplification inherent in the selected data. Future work will explore integrating DELIFT with data
augmentation techniques to improve robustness, incorporating fairness constraints to mitigate bi-
ases, and extending the approach to emerging model architectures and multimodal learning. Our
ongoing efforts are directed toward ensuring that DELIFT contributes to responsible and equitable
AI development while maximizing efficiency.
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Appendix
A THEORETICAL FOUNDATIONS AND CONNECTIONS BETWEEN THE

UTILITY METRIC AND INFORMATION THEORY

Theorem 1 Let yi = (yi1, yi2, . . . , yiT ) be a sequence of tokens with ground truth distribution GTi,
where GTi assigns probability 1 to the sequence yi and 0 to all other sequences. Let p(yi | xi) be
the predicted probability of yi given input xi, and p(yi | xi, xj , yj) be the predicted probability of yi
given xi and an in-context example (xj , yj). Define the utility metric UFij using a general distance
metric d(·, ·) between probability distributions:

UFij = d(GTi, p(yi | xi))− d(GTi, p(yi | xi, xj , yj)).

Claim: When the distance metric d(·, ·) is the Kullback-Leibler divergence DKL, the utility metric
UFij is equal to the pointwise mutual information (PMI) between the sequence yi and the in-context
example (xj , yj) conditioned on xi:

UFij = PMI(yi; xj , yj | xi) = log
p(yi | xi, xj , yj)

p(yi | xi)
.

Furthermore, UFij can be expressed as the sum of conditional PMI over the tokens in yi:

UFij =

T∑
t=1

PMI
(
yit; xj , yj | xi, yi,<t

)
,

where yi,<t = (yi1, yi2, . . . , yi(t−1)) denotes the sequence of previous tokens up to position t− 1.

Proof:

1. Computing KL-Divergence Between Ground Truth and Predicted Distributions:

Since GTi assigns probability 1 to the specific sequence yi, the KL-divergence simplifies as follows:

d(GTi, p(yi | ·)) = DKL(GTi ∥ p(yi | ·)) = − log p(yi | ·),

because the KL-divergence between a one-hot distribution and any other distribution reduces to the
negative log-probability of the assigned event.

2. Computing the Utility Metric UFij:

The utility metric becomes:

UFij = − log p(yi | xi) + log p(yi | xi, xj , yj)

= log
p(yi | xi, xj , yj)

p(yi | xi)
.

3. Expressing UFij as Pointwise Mutual Information:

The conditional pointwise mutual information between yi and (xj , yj) given xi is defined as:

PMI(yi; xj , yj | xi) = log
p(yi, xj , yj | xi)

p(yi | xi) p(xj , yj | xi)
.

Using the chain rule:

p(yi, xj , yj | xi) = p(yi | xi, xj , yj) p(xj , yj | xi).
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Substituting back:

PMI(yi; xj , yj | xi) = log
p(yi | xi, xj , yj) p(xj , yj | xi)

p(yi | xi) p(xj , yj | xi)

= log
p(yi | xi, xj , yj)

p(yi | xi)
.

Therefore:

UFij = PMI(yi; xj , yj | xi).

4. Expanding UFij as Sum of Conditional PMI Terms:

We expand p(yi | ·) using the chain rule:

p(yi | ·) =
T∏

t=1

p(yit | ·, yi,<t),

where yi,<t is the sequence of previous tokens up to time t− 1.

Substituting back into UFij:

UFij = log

∏T
t=1 p(yit | xi, xj , yj , yi,<t)∏T

t=1 p(yit | xi, yi,<t)

=

T∑
t=1

[log p(yit | xi, xj , yj , yi,<t)− log p(yit | xi, yi,<t)]

=

T∑
t=1

PMI
(
yit; xj , yj | xi, yi,<t

)
.

This shows that UFij is the sum of the conditional PMI of each token yit with (xj , yj) given xi and
the previous tokens.

Conclusion:

When d(·, ·) = DKL, the utility metric UFij precisely equals the conditional PMI between yi and
(xj , yj) given xi.

A.1 WHY EUCLIDEAN DISTANCE IS PREFERRED OVER KL-DIVERGENCE FOR SUBSET
SELECTION

The effectiveness of subset selection algorithms, including facility location functions, depends crit-
ically on the properties of the chosen distance metric d(·,·). Euclidean distance offers several key
advantages over KL-divergence for this purpose:

1. Mathematical Properties
• Euclidean distance is non-negative, finite, and symmetric (d(a,b) = d(b,a))
• KL-divergence can be infinite or undefined with zero probabilities and lacks symmetry
DKL(P ∥ Q) ̸= DKL(Q ∥ P )

2. Computational Advantages
• Euclidean distance uses simple arithmetic operations (subtraction, squares, square

roots)
• KL-divergence requires more complex logarithmic calculations and division opera-

tions
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3. Robustness in Practice
• Euclidean distance handles zero probabilities gracefully
• KL-divergence becomes undefined with zero probabilities, which occur frequently in

real data

Impact on Subset Selection: The facility location function requires positive, finite similarity mea-
sures to model coverage effects accurately. Euclidean distance satisfies these requirements, while
KL-divergence’s potential negative or infinite values can disrupt optimization.

Conclusion: While KL-divergence offers theoretical connections to mutual information, Euclidean
distance provides:

• Guaranteed positive and finite utility metrics
• Superior computational efficiency
• Better numerical stability

These practical advantages make Euclidean distance the preferred choice for computing the utility
metric UFij in subset selection algorithms.

B SUBSET SIZE COMPARISON

To assess how subset size influences the performance of DELIFT, we performed an ablation study
by varying the subset size from 5% to 100% (specifically 5%, 15%, 30%, 50%, 100%) of the entire
dataset across three distinct use cases. Figure 2 illustrates the performance metric LAJ as a function
of subset size for each fine-tuning scenario.

B.1 GENERAL OBSERVATIONS

• Performance Increases with Subset Size: Across all methods, LAJ scores generally im-
prove as the subset size increases. Utilizing the full dataset consistently yields the highest
performance, underscoring the benefits of a larger training set.

• Diminishing Returns Beyond 50%: For methods such as DELIFT, SelectIT, and LESS,
performance gains plateau or slow down beyond a 50% subset size. This suggests that
additional data beyond this point offers minimal benefits and may introduce redundancy.

B.2 DETAILED ANALYSIS OF METHODS

B.2.1 INITIAL VS. RANDOM SELECTION

• Initial Baseline: Consistently records the lowest scores across all subset sizes, indicating
that models without data-informed selection struggle to generate quality responses.

• Random Selection: Slightly outperforms the Initial baseline but maintains a relatively flat
performance curve. This lack of significant improvement highlights that uninformed data
selection does not substantially enhance model quality.

B.2.2 SELECTIT AND LESS METHODS

• LESS: Demonstrates a strong upward trend, particularly when subset sizes increase from
15% to 50%. This indicates that LESS effectively selects informative subsets, especially in
the mid-range subset sizes, but is sub-optimal with smaller subset sizes.

• SelectIT: Initially lags behind DELIFT and LESS but shows steady improvement with
larger subset sizes. For subset sizes above 50%, SelectIT approaches the performance of
DELIFT, suggesting its heuristic-driven selection becomes more effective with more data.

B.2.3 DELIFT VARIANTS

• DELIFT vs. DELIFT (SE): DELIFT consistently outperforms DELIFT (SE), which uses
sentence embeddings, highlighting the superiority of DELIFT’s utility-based kernel in cap-
turing data informativeness.
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• DELIFT vs. Other Methods: DELIFT outperforms all other subset selection methods
across all subset sizes, particularly below 50%. This effectiveness is attributed to DELIFT’s
strategy of identifying the most informative samples early on, making it ideal for scenarios
with limited computational resources.

• DELIFT vs. Full Data: At smaller subset sizes (e.g., 15%, 30%), DELIFT achieves LAJ
scores close to the Full Data baseline. In ICL fine-tuning scenarios, a 30% subset size
with DELIFT nearly matches Full Data performance, demonstrating its efficiency in data
reduction without significant loss in performance.

B.3 IMPACT ON DIFFERENT FINE-TUNING SCENARIOS

• ICL vs. QLoRA: QLoRA fine-tuning generally yields higher scores than ICL across all
methods, suggesting that QLoRA benefits more from effective data selection strategies.
DELIFT, in particular, shows more pronounced improvements in QLoRA settings, indicat-
ing its subsets are well-suited for efficient parameter tuning.

• Use Case Comparisons: In Use Case 3 (IBM and Government datasets), DELIFT achieves
the highest gains relative to the Initial baseline across both ICL and QLoRA scenarios. This
effectiveness is likely due to the nature of query rewriting tasks, where DELIFT’s informed
data selection effectively eliminates redundant or irrelevant examples, resulting in a higher-
quality training set.

C PROMETHEUS RUBRIC

The Prometheus model served as an LLM-as-a-Judge to evaluate response quality from different
data selection methods. Table 7 contains the general rubric used for the Prometheus model scoring
on all use cases and settings (except for the experiments on the query-rewriting task using the IBM-
proprietary data).

C.1 USAGE NOTES

• Each response is evaluated independently based on the criteria above.
• The cumulative score reflects the overall quality and effectiveness of the response.
• Final LAJ scores are obtained by averaging the scores across all criteria.

D LLM-AS-JUDGES SCORES

In Tables 8 and 9, we show the distribution of Prometheus scores on one particular setting: Use
Case 1, MixInstruct training and MixInstruct validation sets on the Qwen2-72B-Instruct model.
These figures make clear that the average LGA scores computed in Tables 1-6 are true averages of a
distribution of scores, not averages of a combination of just 1’s and 5’s.

D.1 INTERPRETATION OF SCORE DISTRIBUTIONS

D.1.1 OVERALL TRENDS

• Score Variability: There is significant variability in score distributions across different
methods. The Initial and Random baselines show a concentration of scores between 2.5
and 3.5, indicating average to subpar performance.

• Enhanced Performance with Advanced Methods: Methods like SelectIT, LESS,
DELIFT (SE), and DELIFT exhibit score distributions skewed towards higher values (3.5
to 4.0), with DELIFT showing the highest concentration above 3.5. This highlights their
effectiveness in selecting informative and useful data for fine-tuning.

D.1.2 METHOD-SPECIFIC OBSERVATIONS

• Initial and Random Methods: Both methods have lower mean scores (around 3.0 to 3.2)
with wide spreads, suggesting inconsistent and generally lower-quality responses.
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Figure 2: Graphs of LLM-A-J scores (y-axis) of Qwen2-72B-Instruct with varying subset sizes (x-
axis) of Use Case 1 on MixInstruct for (a) ICL and (b) QLoRA, Use Case 2 on MixInstruct and
MT-Bench for (c) ICL and (d) QLoRA, and Use Case 3 on IBM and Government for (e) ICL and
(f) QLoRA.
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Evaluate the model’s ability to follow instructions and deliver a high-quality response across the
following dimensions:
1. Instruction Following: How accurately and fully does the model adhere to the given instruc-
tion?
2. Accuracy: Is the information correct, reliable, and factually sound?
3. Relevance: Does the response directly address the question or task without unnecessary
information?
4. Completeness: Does the response cover all essential aspects of the instruction or question
5. Depth: How thoroughly does the response explore the topic? Does it demonstrate insightful
analysis where appropriate?
6. Clarity: Is the response well-organized, easy to follow, and free from ambiguity or confusion?
7. Creativity: Does the response offer original or innovative approaches where applicable?
8. Helpfulness: Does the response effectively meet the user’s needs and provide value in solving
the problem or addressing the query?

Score of 1: The response fails to meet expectations across most or all criteria. It does not follow
the instruction, contains significant errors or misinformation, lacks relevance, is incomplete or
shallow, unclear, unoriginal, and unhelpful.
Score of 2: ”The response shows major deficiencies across several criteria. It partially follows the
instruction but includes significant inaccuracies, is often irrelevant, incomplete, or lacks depth,
clarity, creativity, and helpfulness.
Score of 3: ”The response is average, meeting some but not all criteria. It follows the instruction
but may fall short in terms of accuracy, depth, relevance, or helpfulness. Improvements in clarity
and insightfulness may be needed.
Score of 4: The response is strong, performing well across most criteria. It follows the instruc-

tion closely, is mostly accurate and relevant, provides good depth, and is well-structured. Minor
improvements could enhance clarity, creativity, or helpfulness.
Score of 5: ”The response excels in all or nearly all criteria. It fully follows the instruction, is
highly accurate, directly relevant, complete, and demonstrates depth and insight. The response is
well-organized, creative where appropriate, and very helpful in addressing the user’s needs.

Table 7: General Prometheus Rubric

• SelectIT and LESS Methods:

– SelectIT: Shows improved mean scores, especially in QLoRA settings, indicating its
effectiveness in resource-constrained training scenarios.

– LESS: Demonstrates significant performance improvements, with mean scores
around 3.26 to 3.28, reflecting effective gradient-based data selection.

• DELIFT Variants:

– DELIFT (SE): Skews towards higher scores but not as prominently as DELIFT.

– DELIFT: Achieves the highest average scores (3.35 for ICL and 3.37 for QLoRA),
outperforming all other methods and indicating its superior utility-based kernel and
submodular optimization.

D.1.3 COMPARISON WITH FULL DATA

• DELIFT vs. Full Data: DELIFT nearly matches Full Data performance with only a slight
reduction in mean scores (3.35 to 3.37 vs. 3.45 to 3.51). This demonstrates DELIFT’s
capability to retain most of the model’s performance while using significantly less data.

• Efficiency of Data Pruning: Full Data shows a modest increase in mean scores compared
to DELIFT, but at the cost of substantially higher computational resources. DELIFT offers
a more efficient alternative without major sacrifices in performance.
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Table 8: LLM-as-Judges score distributions for Use Case 1 with MixInstruct training and valida-
tion set on the Qwen2-72B-Instruct model on the Initial, Random, and SelectIT baselines. The
corresponding table is Table 1.
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Table 9: LLM-as-Judges score distributions for Use Case 1 with MixInstruct training and validation
set on the Qwen2-72B-Instruct model on the LESS, DELIFT with Sentence Embedding, DELIFT,
and Full Data methods. The corresponding table is Table 1.
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E LIMITATIONS

• Dependence on Initial Data Quality: DELIFT’s effectiveness relies on the diversity and
quality of the initial dataset. Biases or lack of diversity in the dataset can propagate to the
selected subsets.

• Scalability Constraints: While DELIFT is computationally efficient, extremely large
datasets may still present challenges in terms of computation and memory.

• Domain-Specific Performance: DELIFT’s performance may vary across different do-
mains, particularly those requiring specialized knowledge or handling multimodal data.

• Bias Amplification Risks: The subset selection process may unintentionally amplify ex-
isting biases within the data, necessitating careful mitigation strategies.

F FUTURE WORK

• Integration with Data Augmentation: Combining DELIFT with data augmentation tech-
niques could further enhance the robustness and diversity of selected subsets.

• Fairness and Bias Mitigation: Incorporating fairness constraints and bias mitigation
strategies into the subset selection process to ensure equitable model performance across
different groups.

• Extension to Multimodal Learning: Adapting DELIFT for multimodal data (e.g., text,
images, audio) to expand its applicability beyond natural language processing.

• Theoretical Analysis: Developing a deeper theoretical understanding of the utility metric
and its properties to further validate and refine the approach.

• Enhancing Scalability: Exploring methods to scale DELIFT effectively for larger datasets
and more complex models without compromising efficiency.

Our ongoing efforts aim to ensure that DELIFT contributes to responsible and equitable AI devel-
opment while maximizing efficiency.

G CODE AND DATA AVAILABILITY

To facilitate reproducibility and further research, we will make the DELIFT imple-
mentation and the datasets used in our experiments publicly available upon publica-
tion. Interested researchers can access these resources through the following repository:
https://anonymous.4open.science/r/optimizing-data-selection-0CD0.

H HYPERPARAMETER SETTINGS

Consistent hyperparameter settings were maintained across all experiments to ensure reproducibil-
ity:

• Submodular Function: Utilized Facility Location (FL), Facility Location Mutual Infor-
mation (FLMI), or Facility Location Conditional Gain (FLCG) based on the use case.

• Utility Metric Scaling Factor: Set η = 1 for FLMI and ν = 1 for FLCG.
• Budget (% of Data): Fixed at 30% for all subset selection experiments.
• Optimization Algorithm: Employed greedy maximization with a stopping criterion based

on the budget.
• Distance Metric: Used length-normalized L2 norm.
• Teacher Forcing Technique: Applied during utility metric computation to ensure reliable

prediction accuracy measurement.
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