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Abstract

Graph heterophily poses a formidable challenge to the performance of Message-passing
Graph Neural Networks (MP-GNNs). The familiar low-pass filters like Graph Convolutional
Networks (GCNs) face performance degradation, which can be attributed to the blending
of the messages from dissimilar neighboring nodes. The performance of the low-pass filters
on heterophilic graphs still requires an in-depth analysis. In this context, we update the
heterophilic graphs by adding a number of self-loops and parallel edges. We observe that
eigenvalues of the graph Laplacian decrease and increase respectively by increasing the num-
ber of self-loops and parallel edges. We conduct several studies regarding the performance
of GCN on various benchmark heterophilic networks by adding either self-loops or parallel
edges. The studies reveal that the GCN exhibited either increasing or decreasing perfor-
mance trends on adding self-loops and parallel edges. In light of the studies, we established
connections between the graph spectra and the performance trends of the low-pass filters on
the heterophilic graphs. The graph spectra characterize the essential intrinsic properties of
the input graph like the presence of connected components, sparsity, average degree, cluster
structures, etc. Our work is adept at seamlessly evaluating graph spectrum and proper-
ties by observing the performance trends of the low-pass filters without pursuing the costly
eigenvalue decomposition. The theoretical foundations are also discussed to validate the
impact of adding self-loops and parallel edges on the graph spectrum.

1 Introduction

Graph Neural Networks (Scarselli et al., 2008) made remarkable strides by achieving impeccable performance
in graph-structured data. The key reason behind the immense performance superiority is the message passing
(MP) framework, which enables the exchange of messages between the adjacent nodes. Before judging
the narrative of the success story of the MP framework, let us first mention that graphs can be broadly
categorized into two classes such as (1) homophilic graphs where adjacent nodes share identical class labels,
and (2) heterophilic graphs where adjacent node labels are different from each other. The prowess of MP
is mostly observed in homophilic graphs because of the tendency to blend messages from similar types of
neighbors. In contrast, several studies (Zhu et al., 2020), (Zhu et al., 2021), (He et al., 2022), (Suresh et al.,
2021), (Wang et al., 2022) suggest that the MP framework shows exacerbating performances on heterophilic
graphs due to the influence of dissimilar messages received from neighbors.

A well-known study (Nt & Maehara, 2019) reveals that all MP-GNNs such as GCN (Kipf & Welling,
2016), GraphSage (Hamilton et al., 2017), GAT (Veličković et al., 2017), SGC (Wu et al., 2019), etc, which
smooth the features of adjacent nodes, are low-pass filters. The low-pass filters successfully convert the
features of the connected nodes into more similar ones compared to the features of other non-adjacent
nodes. This narrates the key reason behind the successful application of low-pass filters on homophilic
graphs. Applying low-pass filters on the heterophilic graphs often leads to a degradation in performance as
a result of smoothing the features of the dissimilar adjacent nodes. Therefore, analyzing the performance
of low-pass filters on heterophilic graphs requires more in-depth scrutiny. The low-pass filters are designed
to amplify the coefficients of lower frequencies in the graph spectrum, representing the eigenvalues of the
symmetrically normalized graph Laplacian. In homophilic graphs, the smoothing of node features occurs
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due to the amplification of the lower frequencies of the graph spectrum. In the case of heterophilic graphs,
high-pass filters sharpen the node features by amplifying the higher frequencies of the graph spectrum.

The graph spectrum entails significant information regarding structural patterns such as connected compo-
nents, community structures, isolated nodes, sparsity, etc. For instance, if the set of eigenvalues contains
sufficient zeros, then the network will contain more connected components or isolated nodes. The network
will contain weakly (strongly) connected components if the spectrum has a higher number of low frequencies
(high frequencies). Therefore, the dissection of the spectrum yields profound information relating to the
spatial properties of the graphs. In this work, we investigate the dependency of the graph structure on
the performance of the low-pass filters applied to heterophilic networks. We also attempt to uncover the
structural properties of the existing heterophilic graphs from their spectrum. The graph spectrum is typ-
ically obtained with expensive eigenvalue decomposition which imposes unnecessary computational burden
or often can be infeasible to some real-world scenarios. Therefore, we seek to devise an efficient avenue that
significantly addresses the computational overhead of evaluating the graph spectrum.

Table 1: Four possible categories A, B, C, and D are presented. Each category depends on the performance
trends of a low-pass filter when either self-loops or parallel edges are added to the heterophilic graph.

Rewiring

Performance of LPF

Self-loop Parallel edge Category

Increasing (↑) Increasing (↑) A
Increasing (↑) Decreasing (↓) B
Decreasing (↓) Increasing (↑) C
Decreasing (↓) Decreasing (↓) D

We aim to bridge the gap by offering two simple strategies that update the graph topology by incorporating
self-loops and parallel edges. After the alteration of edge connections, Graph Convolution Network (GCN),
a recognized and well-adopted low-pass filter, is applied to the updated graph. We observe some interesting
patterns in the performance trends of GCN when the number of self-loops or parallel edges is gradually
increased. The performance either monotonically improves or degrades by adding either self-loops or parallel
edges. Therefore, we can have four distinct combinations of performance trends. Each combination is tagged
with a category name (Refer to Table 1) and every category delineates a particular set of characteristics
regarding the spectrum of the input graph. The performance trend of GCN can be attributed to the
underlying parity between the lower and higher frequencies present in the graph spectrum. Each performance
trend offers a unique insight into the parity of lower and higher frequencies, which directly links with the
spatial edge connectivity of the network. We also observe that with the addition of self-loops in the network,
the eigenvalues of the normalized graph Laplacian decrease. Conversely, the addition of parallel edges
enhances the eigenvalues of the graph Laplacian. The shrinking or expansion of the graph frequencies leads to
a specific performance trend, reflecting the distribution of eigenvalues (or frequencies) in the graph spectrum.
In this context, we consider 17 benchmark heterophilic graphs to predict their spectrum characteristics by
observing the performance trends of GCN after adding either self-loops or parallel edges. We also offer
theoretical underpinnings of the shrinking or expansion of the eigenvalues. The phenomena are also observed
empirically on the random Erdős-Rény graphs.

Contribution Our contributions are briefly outlined as follows,

• We provide deeper analyses pertaining to the performance of GCN, a low-pass filter, applied to
17 benchmark heterophilic graphs. We modify the graph structure with the addition of self-loops
and parallel edges separately. GCN is applied to the updated graphs and observes the performance
trends. We categorize the performance trends into four categories and each graph lies in one of the
four categories.

• The categorization of performance trends leads to the identification of characteristics of the graph
spectrum. Different performance trends underscore the various patterns of the spectrum which
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reveals the properties of the networks like connected components, community structure, sparsity,
etc.

• We also observe that the frequencies in the graph spectrum decrease with the addition of self-loops
and frequencies increase with the addition of parallel edges. We also establish a connection between
the performance trends of GCN and the shrinking or expansion of the frequencies of the graph
spectrum.

• We offer extensive theoretical underpinnings for the shrinking or expansion of the frequencies of
the graph spectrum with the addition of self-loops and parallel edges in the network. The detailed
proofs and derivations are discussed in the Appendix.

(a) (b)

Figure 1: The changes in the eigenvalues of unnormalized graph Laplacian are presented with the addition
of (a) self-loops and (b) parallel edges respectively. The eigenvalues remain unaltered with the addition of
self-loops. On the contrary, the unconstrained growth of eigenvalues is observed with the addition of parallel
edges.

2 Related Works

The spectral analysis on the graphs gains traction due to its ability to unravel the relationship between
frequencies and the spatial connectivity of the networks. Work like (Ortega, 2022) introduces the key
ingredients of signal processing like Graph Fourier transforms, frequencies, and the design of the filters for
the graph-structured data. Another line of work (Ortega et al., 2018) deals with the intricate details of
graph signal processing by shedding light on the spectrum analysis from the perspective of graph Laplacian,
extensive real-world applications, and the underlying challenges. The exploitation of spectral analysis in the
discrete domain is rigorously harnessed by (Sandryhaila & Moura, 2014). Another mode of work (Tremblay
et al., 2018) offers the prospect of designing versatile filter banks and spectral wavelets on graph-structured
data. The design of efficient and localized convolutional filters becomes an inevitable area of research which
is initiated by (Defferrard et al., 2016).

A large pool of well-adopted GNNs like GCN, GraphSage, GAT, SGC, etc are recognized as potential low-
pass filters. The fact is first asserted by (Nt & Maehara, 2019). Chen et al. (Chen et al., 2023) established
the bridge to fill the gap between the spatial and spectral properties of the prevalent graph neural networks.
AutoGCN (Wu et al., 2022) proposes a variant of GCN equipped with low-pass, high-pass, and band-pass
filters which automatically adjusts magnitude depending on the homophily or heterophily of the input graph.
In this connection, another prominent work AdaGNN (Dong et al., 2021) learns an adaptive filter that spans
across multiple layers, capturing the varying node frequencies to improve node embeddings. Taking the cue
from above, FAGCN (Bo et al., 2021) firstly proposed one low-pass and one high-pass filter. The proposed
filters automatically maintain the balance of collecting information from both homophilic and heterophilic
graphs. Designing novel convolutional filters became an enticing avenue which is evident by (Bianchi et al.,
2021) which employed an auto-regressive moving average filter (ARMA) filter by replacing polynomial filters
to achieve a more robust, flexible frequency response. Another work EGC (Tailor et al., 2021) employed
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(a) (b) (c) (d)

Figure 2: (a) Eigenvalues of L̃ exhibit a decreasing trend with the increase in addition of self-loops, and (b)
eigenvalues show an increasing trend with the addition of parallel edges. The corresponding changes in the
eigenvalues with the addition of self-loops and parallel edges are demonstrated in (c) and (d) respectively.

the effectiveness of isotropic message passing where the message function only depends on the source nodes,
over the anisotropic message passing. EGC allows the involvement of multiple learnable filters to achieve a
spatially evolving frequency response. (Zhu & Koniusz, 2021) leverage the use of Markov Diffusion Kernel
to obtain a filter that maintains a delicate balance between the harnessing information of local and global
context for each node across the network. On the other side, (Singh & Chen, 2023) identified the gap
for spectral analysis on signed graphs. To mitigate the gap, they proposed two signed GNNs that retain
low-pass and high-pass information respectively. Compatible Label Propagation (CLP) (Zhong et al., 2022)
combines class compatibility matrix and label propagation to improve node classification on heterophilic
graphs. Very recently an inductive spectral filter SLOG (Xu et al.) is proposed which considers real-valued
order polynomial filters. SLOG also combines subgraph sampling in the spatial domain and signal processing
in the spectral domain.

3 A Deeper Investigation

3.1 Notations

Consider an attributed graph G = (V, E , X) where V denotes the set of vertices with |V| = n, E ⊆ V × V
is the set of edges, and X ∈ Rn×d is the feature matrix contains d-dimensional feature vectors. We define
graph Laplacian L = D − A and symmetrically normalized Laplacian as L̃ = D− 1

2 LD− 1
2 = I − D− 1

2 AD− 1
2 .

Also, augmenting self-loops the normalized Laplacian will be L̃ = I − D̃− 1
2 ÃD̃− 1

2 where Ã = A + I and
D̃ = D + I.

3.2 Preliminaries on Spectral Graph Theory

The spectral analysis of graphs (Shuman et al., 2013) revolves around understanding the characteristics
of eigenvalues and eigenvectors of the symmetrically normalized graph Laplacian L̃. The analysis entails
that eigenvalues and eigenvectors of L̃ represent the Fourier frequency and Fourier modes. Suppose, the
eigendecomposition on Laplacian yields us L̃ = UΣU⊤ where columns of U represent the eigenvectors and
Σ is a diagonal matrix containing the eigenvalues. Let a signal x ∈ Rn act on the nodes in the graph, then
the Fourier transformation of x is presented as x̂ = U⊤x. The inverse Fourier transform can be formulated
as x = Ux̃. Thus, for any filter g, the graph convolution between g and x is estimated as:

g ∗ x = U((U⊤g) ⊙ (U⊤x)) = UG̃U⊤x, (1)

where ⊙ denotes the element-wise vector multiplication and G̃ = diag{g̃1, · · · , g̃n}. Each g̃i denotes the
spectral filter coefficient. A well-known fact is that L̃ has the eigenvalues lie in [0, 2]. Let us categorize the
set of eigenvalues as λ<1 or lower frequencies which are strictly smaller than 1 and λ≥1 or higher frequencies,
which are greater than or equal to 1. If a filter amplifies the coefficients of λ<1, then it acts as a low-pass
filter, and on the contrary high-pass filter amplifies the coefficients of λ≥1. For instance, the filter function
of GCN is G̃ = I − Σ where the coefficients of λ<1 increases. Therefore, GCN acts as a low-pass filter.
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3.3 Addition of Self-loops

We conduct experiments by adding the self-loops corresponding to each node in the graph. The number of
self-loops is denoted by α. After the addition of self-loops α-times, the adjacency matrix will be Ãα = A+αI
and the corresponding degree matrix will look like D̃α = D + αI. Therefore, the symmetrically normalized
graph Laplacian can be presented as L̃α = I − D̃

− 1
2

α ÃαD̃
− 1

2
α .

3.4 Addition of Parallel edges

We also perform experiments by adding parallel edges corresponding to every edge in the graph. Assume,
γ denotes the number of parallel edges to be added in the network. Therefore, adding γ-times parallel
edges, the updated adjacency matrix will be Aγ = (γ + 1)A. Thus, the corresponding degree matrix will be
Dγ = (γ+1)D. Adding self-loops the further modified adjacency and degree matrices will be Ãγ = (γ+1)A+I
and D̃γ = (γ+1)D+I. Therefore, we can define the corresponding symmetrically normalized graph Laplacian
as L̃γ = I − D̃

− 1
2

γ ÃγD̃
− 1

2
γ .

Table 2: Total number of nodes, isolated nodes, edge density, and average degree for 17 heterophilic graphs
are presented. The lower values of spG and davg respectively indicate higher density and average degree.

Properties/Datasets Cornell Texas Wisconsin Chameleon Squirrel Actor

# nodes 183 183 251 2277 5201 7600
# isolated nodes 87(47.5%) 73(39.8%) 81(32.3%) 0(0%) 0(0%) 636(8.36%)
density (spG) 4.02 3.93 4.10 4.27 4.13 6.86
avg. degree (davg) 3.82 3.82 4.13 6.34 7.17 7.54

Properties/Datasets arxiv-year snap-patents Penn94 pokec twitch-gamers genius

# nodes 169343 2923922 41554 1632803 168114 421961
# isolated nodes (%) 17440(10.29%) 881754(30.15%) 0(0%) 200110(12.25%) 44596(26.52%) 371870(88.12%)
density (spG) 9.41 12.63 5.75 10.68 7.63 11.41
avg. degree (davg) 10.65 13.50 9.24 12.91 10.64 11.56

Properties/Datasets Roman-empire Amazon-ratings Minesweeper Tolokers Questions -

# nodes 22662 24492 10000 11758 48921
# isolated nodes 0(0%) 3495(14.26%) 1(0.01%) 936(7.96%) 17761(36.3%)
density (spG) 8.26 8.07 7.14 4.89 8.96
avg. degree (davg) 8.64 8.71 7.82 7.98 9.41

3.5 Empirical Evidence on Random Graphs

We conducted experiments on randomly generated Erdős-Rényi graphs to study the effects on the eigenvalues
with the addition of self-loops and parallel edges in the graph. A random graph Ger is generated with 10
vertices and having edge probability 0.50. Two individual experiments are performed with (1) the addition of
self-loops, and (2) the addition of parallel edges. We varied the number of self-loops or parallel edges ranging
from 1 to 10. The eigendecomposition is performed for every stage of addition to monitor the changes that
occurred in the corresponding eigenvalues. Refer to Figure 2 for the portrayal of the effect on the eigenvalues
and the other corresponding changes in the spectrum. The plots (a) and (b) demonstrate the effect on the of
10 eigenvalues of Ger while the addition of self-loops or parallel edges in the graph. On the other side, plots
(c) and (d) depict the changes in the eigenvalues. As we have added 10 self-loops or parallel edges, thus 9
differences are recorded in the plots.

Observation The plots reaffirm that the addition of self-loops leads to the shrinking of the eigenvalues in
the spectrum except for the eigenvalue 0 (Refer Figure 2(a)). On the contrary, eigenvalues increase with the
addition of parallel edges (Refer Figure 2(b)). Additionally, we also present the change in the eigenvalues in
Figures 2(c) and 2(d). Notably, the monotone increase (decrease) of the curves underlines the slower rate
with the addition of self-loops (parallel edges).
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Table 3: GCN (a low-pass filter) is applied on the 6 standard heterophilic datasets curated by Pie et al.
(Pei et al., 2020). Performance analyses are demonstrated after adding multiple self-loops and parallel edges
respectively in the graphs. The performance trends are also highlighted and corresponding categories are
marked for each dataset.

Method Input adjacency Chameleon Squirrel Actor Cornell Texas Wisconsin

GCN

A + I 71.68 ± 1.92 62.78 ± 1.99 27.40 ± 1.12 40.27 ± 6.44 54.86 ± 5.27 45.29 ± 6.10
A + 2I 67.69 ± 2.25 58.64 ± 2.27 29.20 ± 1.13 43.78 ± 5.09 56.21 ± 4.95 50.19 ± 6.39
A + 3I 65.15 ± 1.56 55.35 ± 1.76 30.67 ± 1.25 47.83 ± 8.11 54.05 ± 4.18 56.47 ± 3.80
A + 4I 63.22 ± 1.22 53.43 ± 1.40 32.08 ± 1.20 46.48 ± 7.81 58.64 ± 6.16 60.98 ± 4.37
A + 5I 61.90 ± 2.51 51.44 ± 1.51 32.94 ± 0.85 50.27 ± 7.47 57.02 ± 7.49 61.96 ± 5.42

Trend → Decreasing (↓) Decreasing (↓) Increasing (↑) Increasing (↑) Increasing (↑) Increasing (↑)

GCN

A + I 71.68 ± 1.92 62.70 ± 1.99 27.40 ± 1.12 40.27 ± 6.44 54.86 ± 5.27 45.29 ± 6.10
2A + I 75.06 ± 1.24 66.43 ± 2.40 25.54 ± 1.30 40.54 ± 6.39 54.59 ± 6.13 47.45 ± 4.94
3A + I 76.31 ± 0.99 67.79 ± 1.96 25.63 ± 0.69 44.05 ± 7.83 55.67 ± 5.43 47.25 ± 5.22
4A + I 76.60 ± 0.77 67.92 ± 1.66 24.76 ± 1.19 45.67 ± 8.58 51.89 ± 7.43 46.86 ± 4.24
5A + I 77.32 ± 1.07 68.59 ± 1.71 24.82 ± 1.34 41.08 ± 5.64 51.08 ± 10.0 46.86 ± 4.75

Trend → Increasing (↑) Increasing (↑) Decreasing (↓) Increasing (↑) Increasing (↑) Increasing (↑)

Category → C C B A A A

3.6 Theoretical Analysis: A Spectral Perspective

We perform a deeper theoretical analysis of the effect on the graph spectrum when adding self-loops or
parallel edges. The detailed study is provided as follows,
Lemma 1. Consider a graph G with A and D as the adjacency and degree matrix. Now α-times self-
loops are added in G with α1 ∈ Z+. Assume λmax

α is the maximum eigenvalue of symmetrically normalized
graph Laplacian L̃α of the updated graph. If β1 is the smallest eigenvalue of D− 1

2 AD− 1
2 and maxi di is the

maximum degree of G, then λmax
α ≤ maxi di(1−β1)

α+maxi di
.

Lemma 2. Consider a graph G with A and D as the adjacency and degree matrix. Now γ-times self-
loops are added in G with γ ∈ Z+. Assume λmax

γ is the maximum eigenvalue of symmetrically normalized
graph Laplacian L̃γ of the updated graph. If β1 is the smallest eigenvalue of D− 1

2 AD− 1
2 and maxi di is the

maximum degree of G, then λmax
γ ≤ (1+γ) maxi di(1−β1)

1+(1+γ) maxi di
.

Remark 1. The maximum eigenvalue of L̃α decreases with the increasing number of self-loops in the network,
signifying the shrinking of the graph spectrum. The maximum eigenvalue of L̃γ increases with the increasing
number of parallel edges in the network, illustrating the expansion of the graph spectrum.
Lemma 3. Given a k-regular graph G, the eigenvalues of Ãα

N will lie in [−1, 1] ∀α ≥ 1.
Lemma 4. Given a k-regular graph G, the eigenvalues of Ãγ

N will lie in [−1, 1] ∀γ ≥ 1.
Remark 2. The eigenvalues will lie in [−1, 1] whether the self-loops or parallel edges are added in a regular
graph. The range of eigenvalues will remain unaffected with the addition of self-loops or parallel edges.
Theorem 1. Consider a k-regular graph with α1, α2 ∈ R+ where α1 ≤ α2, then the inequality will hold
λi

α1
≥ λi

α2
, ∀ 1 ≤ i ≤ n where λi

α1
and λi

α2
are the ith eigenvalues of L̃α1 and L̃α2 respectively.

Theorem 2. Consider a k-regular graph with γ1, γ2 ∈ R+ with γ1 ≤ γ2, then the inequality will hold
λi

γ1
≤ λi

γ2
, ∀ 1 ≤ i ≤ n where λi

γ1
and λi

γ2
are the ith eigenvalues of L̃γ1 and L̃γ2 respectively.

Remark 3. We have shown that for the regular graphs, the eigenvalues of the symmetrically normalized
graph Laplacian decrease when self-loops are added. The addition of self-loops attenuates the frequencies of
the graph spectrum. The eigenvalues of the symmetrically normalized graph Laplacian increase when parallel
edges are added. The addition of parallel edges amplifies the frequencies of the graph spectrum.
Corollary 1. The increase in the eigenvalues of Lγ is independent of the number of self-loop additions in
G. On the contrary, The eigenvalues of L̃γ will increase if at least one self-loop is added per node in G.

In the following two theorems, we will demonstrate the alteration of the eigenvalues of AN with the addition
of self-loops or parallel edges by the perturbation of the adjacency matrix.
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Theorem 3. Consider a connected graph G with AN = D− 1
2 AD− 1

2 . Assuming the diagonal of A of G is
perturbed by a significantly small α > 0, then the updated normalized adjacency matrix will be Aα

N . The
change in the eigenvalues of Aα

N with respect to eigenvalues of AN will increase when α increases.
Theorem 4. Consider a connected graph G with normalized adjacency matrix AN = D− 1

2 AD− 1
2 . Assuming

each element of A except the diagonal multiplied by 1 + γ where γ > 0 is a significantly small quantity, then
the updated normalized adjacency matrix will be Aγ

N . The change in the eigenvalues of Aγ
N with respect to

eigenvalues of AN will decrease when γ increases.
Remark 4. The Theorem 3 suggests the change in the eigenvalues of the normalized adjacency matrix
increases on increasing number of self-loops. Conversely, Theorem 4 states the change of eigenvalues of
normalized adjacency matrix decreases with the increasing number of parallel edges.

4 Experiments

4.1 Datasets

Our experiments encompass three categories of datasets (1) Pie et al. (Pei et al., 2020) proposed 6 standard
heterophilic networks consisting of Cornell, Texas, Wisconsin, Chameleon, Squirrel, and Actor, (2) Lim et al.
(Lim et al., 2021) curated 6 large-scale heterophilic networks namely arxiv-year, snap-patents, Penn94, pokec,
twitch-gamers, and genius, and (3) Platonov et al. (Platonov et al., 2023) identified prevailing shortcomings
on the existing datasets and developed a set of 5 heterophilic networks viz Roman-empire, Amazon-ratings,
Minesweeper, Tolokers, and Questions. The details of all datasets are vividly available in Table 2.

4.2 Experimental Settings

For all graphs from Pie et al., we have considered 10 standard train/valid/test splits with 60%/20%/20%
samples. Graphs from Lim et al. and Platonov et al. train/valid/test splits are fixed as 50%/25%/25% for 5
and 10 splits respectively. We applied a two-layered GCN architecture across all 17 graphs to carry out entire
experiments. The dropout rate is fixed at 0.50 and LayerNorm is employed to make training convergence
faster. The model parameters are optimized by Adam optimizer. We evaluated the best model on every split
and finally reported mean and standard deviations across all splits for each of the datasets. The performance
metric is test accuracy and for Minesweeper, Tolokers, and Questions the ROC-AUC is reported. Our Pytorch
and Pytorch-geoemtric based implementation is available at https://anonymous.4open.science/r/DIHG-
5212/README.md.

4.3 Analysis of Isolated Nodes, Sparsity, and Average Degree in the Heterophilic Networks

We offer an in-depth analysis of the number of isolated nodes, edge density, and the average degree in
the context of the heterophilic networks. Refer to Table 2 for illustrating the comparative statistics of the
various networks. As per the existing formula, the edge density can be defined as spG = 2|E|

|V|(|V|−1) . If
the input graph is too sparse, the estimated value will be too little to comprehend. Therefore, we devise
an alternative solution with the assistance of a logarithmic scale which is defined as spG = − log(sp + ϵ)
where ϵ is tiny real number is added to avert the numerical instability. The scaling suggests that the lower
the spG , the more dense the graph is. A similar issue is confronted in the estimation of average degree as
davg = 2|E|

|V| . Therefore, we also pursue similar tricks to tackle the issue. The scaled average degree is defined
as davg = − log(davg + ϵ) where ϵ is same as defined as earlier. A lower davg signifies the higher average
degree of the underlying network.

4.4 Category of Distribution of Eigenvalues

Suppose we attempt to apply a low-pass filter (like GCN) on any input graph. The graph will be pre-processed
either by adding a fixed number of self-loops or parallel edges. Considering all possibilities, the low-pass
filter can exhibit four distinct types of performance trends. The various possible trends are vividly portrayed
in Table 1. We marked the categories respectively as A, B, C, and D. The different performance trends may
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Figure 3: The distribution of eigenvalues of normalized Laplacian matrix presented for six standard het-
erophilic datasets.

be the manifestations of the underlying edge connectivity of the network. The structure of the networks has
an inherent connection with the eigenvalues derived from the normalized graph Laplacian. Therefore, the
defined categories may offer to comprehend the parity of lower and higher frequencies (eigenvalues) of the
graph spectrum.

Table 4: GCN (a low-pass filter) is applied on the 6 large-scale heterophilic datasets curated by Lim et al.
(Lim et al., 2021). Performance analyses are demonstrated after adding multiple self-loops and parallel edges
respectively in the graphs. The performance trends are also highlighted and corresponding categories are
marked for each dataset.

Method Input Adjacency arxiv-year snap-patents Penn94 pokec twitch-gamers genius

GCN

A + I 48.75 ± 0.43 34.96 ± 0.15 77.12 ± 0.43 59.53 ± 0.18 60.83 ± 0.29 80.03 ± 0.66
A + 2I 48.59 ± 0.53 34.77 ± 0.14 75.82 ± 0.45 59.17 ± 0.20 61.00 ± 0.34 79.81 ± 1.38
A + 3I 47.34 ± 0.20 34.60 ± 0.04 74, 32 ± 0.49 59.77 ± 0.15 61.07 ± 0.33 78.77 ± 0.99
A + 4I 46.26 ± 0.21 34.57 ± 0.11 72.79 ± 0.55 60.43 ± 0.14 61.18 ± 0.26 77.80 ± 0.51
A + 5I 45.73 ± 0.48 34.43 ± 0.17 71.39 ± 0.40 60.94 ± 0.17 61.23 ± 0.30 77.35 ± 0.37

Trend → Decreasing (↓) Decreasing (↓) Decreasing (↓) Increasing (↑) Increasing (↑) Decreasing (↓)

GCN

A + I 48.69 ± 0.37 35.00 ± 0.15 77.13 ± 0.39 59.54 ± 0.23 60.86 ± 0.30 80.09 ± 0.70
2A + I 48.31 ± 0.54 34.89 ± 0.12 77.64 ± 0.41 61.32 ± 0.14 60.72 ± 0.21 74.41 ± 2.07
3A + I 47.93 ± 0.64 34.64 ± 0.23 77.81 ± 0.38 62.22 ± 0.10 60.70 ± 0.24 69.88 ± 0.48
4A + I 47.74 ± 0.52 34.46 ± 0.18 77.88 ± 0.37 62.77 ± 0.09 60.70 ± 0.21 70.17 ± 0.89
5A + I 47.78 ± 0.38 34.28 ± 0.13 77.81 ± 0.35 63.10 ± 0.10 60.69 ± 0.21 71.13 ± 1.26

Trend → Decreasing (↓) Decreasing (↓) Increasing (↑) Increasing (↑) Decreasing (↓) Decreasing (↓)

Category → D D C A B D

4.5 Initial Distribution of Eigenvalues

We estimate the distribution of eigenvalues from the normalized graph Laplacian for six standard heterophilic
datasets Cornell, Texas, Wisconsin, Chameleon, Squirrel, and Actor, Refer to Figure 3 for the detailed illus-
tration. The histograms of Cornell, Texas, and Wisconsin are identical. On the other side, the corresponding
histograms of Chameleon and Squirrel carry similar patterns, The histogram of the Actor dataset is com-
pletely different compared to the rest of the others. Later we will observe that the datasets have histograms
of similar patterns that will yield identical trends in the performances.

4.6 Performance Categorisation of Low-pass Filter

We performed semi-supervised node classification on a diverse array of heterophilic graphs to analyze the
different performance trends of the low-pass filter. For each graph, separate experiments were conducted
to study the effects of the addition of self-loops and parallel edges respectively. We applied GCN, a well-
adopted low-pass filter, on 17 heterophilic graphs, and the respective performance trends are demonstrated
in Tables 3, 4, and 5 for respectively standard heterophilic graphs, large-scale datasets, and currently pro-
posed heterophilic graphs. The study reveals that each graph exhibits a steady pattern of either increasing
or decreasing while adding either the self-loops or the parallel edges. We further marked the categories
considering the performance trends for the increasing number of self-loops and parallel edges. For instance,
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GCN on Chameleon showed a decreasing trend while increasing the number of parallel edges, and on the
contrary, performance increases on adding the parallel edges. Therefore, Chameleon was assumed to be in
the category of A as per the rules from Table 1. Note that, the steady patterns are persistent across every
dataset considered for the experimentation.

4.7 Observation from Performance Trends

The rationale against the backdrop of the performance trend can be explained through the lens of analyzing
the spectrum of the graph. Since GCN performs the low-pass filtering, the coefficients of the lower frequencies
will be enhanced, and the coefficients of the higher frequencies will be shrunk. Based on this, our discussion
will revolve around analyzing 6 standard heterophilic graphs.

Table 5: GCN (a low-pass filter) is applied on the 5 newly-proposed heterophilic datasets curated by Platonov
et al. (Platonov et al., 2023). Performance analyses are demonstrated after adding multiple self-loops and
parallel edges respectively in the graphs. The performance trends are also highlighted and corresponding
categories are marked for each dataset.

Method Input Adjacency Roman-empire Amazon-ratings Minesweeper Tolokers Questions

GCN

A + I 76.70 ± 0.63 42.01 ± 0.58 89.51 ± 0.54 80.10 ± 1.11 73.96 ± 1.44
A + 2I 76.28 ± 0.58 41.58 ± 0.56 89.46 ± 0.53 80.13 ± 1.06 73.69 ± 0.67
A + 3I 75.99 ± 0.76 41.56 ± 0.53 89.41 ± 0.55 80.03 ± 1.02 72.54 ± 1.64
A + 4I 75.72 ± 0.70 41.49 ± 0.40 89.33 ± 0.54 79.76 ± 1.02 72.56 ± 1.23
A + 5I 75.26 ± 0.55 41.21 ± 0.60 89.22 ± 0.53 79.70 ± 0.98 72.53 ± 1.15

Trend → Decreasing (↓) Decreasing (↓) Decreasing (↓) Decreasing (↓) Decreasing (↓)

GCN

A + I 76.71 ± 0.62 42.00 ± 0.58 89.51 ± 0.54 80.10 ± 1.12 73.30 ± 2.04
2A + I 76.75 ± 0.80 41.93 ± 0.50 89.57 ± 0.51 79.95 ± 1.08 74.51 ± 1.23
3A + I 76.99 ± 0.67 41.93 ± 0.90 89.57 ± 0.52 79.87 ± 0.93 75.05 ± 0.99
4A + I 76.90 ± 0.59 42.02 ± 0.53 89.57 ± 0.51 79.87 ± 0.99 74.93 ± 1.18
5A + I 76.95 ± 0.65 42.18 ± 0.77 89.60 ± 0.49 79.75 ± 0.94 74.73 ± 1.58

Trend → Increasing (↑) Increasing (↑) Increasing (↑) Decreasing (↓) Increasing (↑)

Category → C C C D C

Addition of Self-loops We observed that the addition of self-loops improves the performance of GCN on
Cornell, Texas, Wisconsin, and Actor (Refer Table 3). Aligning to the theoretical analyses, adding self-loops
will create a decreasing trend of the eigenvalues of L̃. Consequently, the number of lower frequencies will
increase in the graph spectrum, which is beneficial for the performance boost of the GCN. Refer to Figure
4((a), (b), (c), (f)) to visualize the change of distribution of eigenvalues of L̃ with the addition of self-loops.
A deep observation reveals that the number of lower frequencies gradually increases while increasing the
number of self-loops in the graph. This transformation offers a conducive environment for the operation of
the low-pass filter (here GCN). Finally, the shape of the eigenvalue distribution resembles when α = 5 for
all four datasets.

A stark contrast was observed in the performance trends of the Chameleon and Squirrel datasets. Both of
the datasets demonstrated degrading performances with the addition of an increasing number of self-loops.
As mentioned earlier the addition of self-loops will shrink the spectrum of the graph, leading to the increase
in the lower frequencies. Refer 4((d), (e)) for the nuanced view of the alteration of eigenvalue distribution of
L̃ for both datasets. Both histograms depict that the lower frequencies increase but eigenvalues are mostly
centering towards 1 which might not be beneficial for the operation of GCN. Therefore, in this scenario,
GCN witnessed deteriorating performances with the increasing number of self-loops.

Addition of Parallel edges The addition of parallel edges improves the performance of Cornell, Texas,
Wisconsin, Chameleon, and Squirrel. The theoretical analysis illustrates that eigenvalues increase with the
increasing number of parallel edges. Consequently, the number of higher frequencies will increase which
seems to impede the performance of GCN. Refer to Figure 5((a), (b), (c), (d), (e)) to visualize the change
in the distribution of eigenvalues of L̃ with the addition of the parallel edges. One common point should be
mentioned that despite the increasing number of higher frequencies, many lower frequencies are still retained
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(a) (b)

(c) (d)

(e)
(f)

Addition of self-loops

Figure 4: The distribution of eigenvalues of normalized graph Laplacian for the datasets (a) Cornell, (b)
Texas, (c) Wisconsin, (d) Chameleon, (e) Squirrel, and (f) Actor is demonstrated after adding self-loops.
The initial distribution is shown on the left side of each diagram. The number of self-loops varies from 1 to
5 and corresponding changes are recorded.

in the spectrum. This phenomenon performs the balance of the parity of lower and higher frequencies in the
graph spectrum, eventually improving the performance of GCN.

On the contrary, GCN exhibited deteriorating performances on the Actor dataset with the increasing number
of parallel edges. Refer to Figure 5(f) for the histogram asserting that the number of lower frequencies almost
diminished. As a consequence, GCN witnessed a degrading performance.

Key Takeaway The crux of the experiments lies in the identification of trends (either increasing or decreas-
ing) in the performance of low-pass filters with the addition of self-loops or parallel edges. Every input graph
can be uniquely mapped to one of the four pre-defined categories depending on the performance trends. We
marked the respective categories of all 17 heterophilic graphs involved in the experimentation. The assigned
category characterizes the specific eigenvalue distribution of the normalized graph Laplacian for the corre-
sponding graph. The distribution of the eigenvalues offers significant insights into the structural patterns of
the graphs like connected components, community structures, expansion properties, clustering, robustness,
etc. The unraveling of such properties is often accomplished by pursuing computationally expensive eigen-
value decomposition or time-consuming prevailing graph algorithms. Amid the growing size of the graph
resorting to such strategies leads to a labyrinth of the methodologies.

The size of the graphs like Cornell, Texas, or Chameleon is moderate and we performed eigenvalue decom-
position to study the eigenvalue distribution of L̃. The initial distributions of the six graphs are presented
in Figure 3. One can easily contemplate the high-level structural properties by observing the initial pat-
terns. For instance, Cornell, Texas, and Wisconsin have a distribution mostly symmetrical around 1 in the
spectrum, asserting the balanced parity of lower and higher frequencies. The observation underscores the
presence of weakly connected components or isolated nodes. This is also validated from Table 2 as Cor-
nell contains 47.5% isolated nodes. A similar argument applies to both Texas and Wisconsin. Conversely,
Chameleon and Squirrel both have higher frequencies which signifies that graphs are dense, have strongly
connected components, and contain no isolated nodes as confirmed from Table 2. In a different vein, Actor
has an almost balanced parity of lower and higher frequencies characterizing the lower number of isolated
nodes with a moderate average degree and density compared to the other five previously mentioned graphs.
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Addition of parallel-edges

(a) (b)

(c) (d)

(e) (f)

Figure 5: The distribution of eigenvalues of normalized graph Laplacian for the datasets (a) Cornell, (b)
Texas, (c) Wisconsin, (d) Chameleon, (e) Squirrel, and (f) Actor are demonstrated after adding parallel
edges. The initial distribution is shown on the left side of each diagram. The number of parallel edges varies
from 1 to 5 and corresponding changes are recorded.

4.8 Inferring Characteristics of Spectrum for Large-scale Graphs

Evaluating the eigenvalue distribution of L̃ for a large-scale graph is critically challenging due to the potential
computational overhead. Exploration of eigenvalue distribution is possible by separately observing the
performance trends of the low-pass filters, with the addition of self-loops and parallel edges. This approach
drastically reduces the computational budget and offers deeper insights into the intricate structural patterns
in the given networks.

arxiv-year, snap-patents, and genius As per empirical evidence, GCN witnessed decreasing performance
trends on arxiv-year, snap-patents, and genius in both cases of self-loops and parallel edges. The results em-
phasized that three networks contain a significantly lower number of non-zero frequencies with a substantial
number of zero eigenvalues, asserting that the networks contain a large number of isolated nodes. The edge
density and average degree of the graphs are also lower for the three graphs which can also be verified by
referring to Table 2. Therefore, we can predict the weak connectivity and the presence of isolated nodes in
those graphs by only observing the performance trends with the addition of self-loops and parallel edges.

Penn94 Penn94 was categorized in "C" resembling the category of Chameleon and Squirrel (Refer Figure
3). The initial frequency distribution of L̃ suggests a greater number of higher frequencies resulting in the
densely connected network compared to the other five graphs (Refer Table 2). Also, Penn94 contains no
isolated nodes sharing properties similar to those of Chameleon and Squirrel.

twitch-gamers The performance trends made twitch-gamers posited in category "B" which is identical to
Actor. Thus, the eigenvalue distribution of twitch-gamers also resembles to Actor, having balanced centering
to eigenvalue 1 and almost equal parity of lower and higher frequencies. Like Actor, twitch-gamers also have
moderately dense and average node degrees with a lesser number of isolated nodes compared to the other
five heterophilic graphs in this group.

pokec The category of pokec marked as A shares identical characteristics with Cornell, Texas, and Wiscon-
sin. The performance trend indicated the presence of the eigenvalues centering around eigenvalue 1 having
balanced parity of lower and higher frequencies. Identically, pokec may contain isolated nodes and also
weakly connected components.
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Table 6: Analysis of the performance of GCN on Chameleon dataset is presented with the variation of
number of self-loops and parallel edges simultaneously across the network.

Dataset # Parallel edges 1 2 3 4 5

Chameleon

#
Se

lf-
lo

op
s 1 65.00 ± 1.32 68.61 ± 1.52 68.94 ± 1.53 69.14 ± 1.35 69.75 ± 0.98

2 59.84 ± 1.97 65.06 ± 2.07 66.71 ± 1.35 68.50 ± 1.70 68.64 ± 1.77
3 58.55 ± 2.15 68.61 ± 2.26 65.00 ± 1.95 66.88 ± 2.01 67.41 ± 1.39
4 58.04 ± 2.78 59.53 ± 1.63 62.82 ± 2.03 64.42 ± 1.81 67.03 ± 1.90
5 57.93 ± 2.31 59.16 ± 1.54 60.24 ± 2.55 63.70 ± 2.00 65.06 ± 1.49

Roman-empire, Amazon-ratings, Minesweeper, and Questions The four graphs have demonstrated
declining performance trends while self-loops are added and performance is improved with the addition of
parallel edges. The graphs thereby belonged to the category of "C" similar to Chameleon and Squirrel.
This predicament has underscored that graphs contain higher frequencies than lower frequencies. The graph
spectra are indicative of the higher sparsity and lower average degree of the graphs, compared to the same
of the Tolokers.

Tolokers Tolokers is categorized as "D" having similarity with arxiv-year, snap-patents, and genius. The
performance trends signal the presence of a higher number of zero eigenvalues in the spectrum, containing a
good number of isolated nodes (Refer to Table 2).

4.9 Visualization of Spectrum for Heterophilic Graphs

We conducted a comparative study on the lower and higher frequencies of the six heterophilic graphs
Chameleon, Squirrel, Texas, Cornell, Wisconsin, and Actor. The eigenvalue decomposition is performed
on L̃ of individual datasets. The corresponding eigenvalues are divided into two sets λ<1 and λ≥1 as men-
tioned earlier. We estimated the percentage of the low frequencies and high frequencies of each dataset.
Refer to Figure 6 for the detailed illustration. The figure delineates that the number of lower and higher
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Figure 6: A comparative study on the number of low frequencies and high frequencies of the graph spectrum
for six standard heterophilic graphs.

frequencies for Cornell, Texas, and Wisconsin are identical. In the experiments, their category is also similar
which is "A". Concurrently, the Chameleon and Squirrel have similar patterns of the parity of eigenvalues
and they also belong to a similar category "C". Furthermore, the pattern for the Actor is completely different
from the rest of the others, and ends up marked as "B". The study established the unique interconnectedness
of the parity of eigenvalues, frequency distribution of spectrum, and performance trends of low-pass filters.
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(a) (b)

Figure 7: The effect on the performance of GCN on Chameleon, Squirrel, Roman-empire, and genius when
(a) self-loops and (b) parallel edges are added a higher number of times are presented.

4.10 Variation of both Self-loops and Parallel edges

A study is conducted to observe the effect on the performance of GCN with the variation of both self-loops
and parallel edges. We consider the Chameleon as our candidate graph to serve the purpose. The number of
self-loops and parallel edges is both varied from 1 to 5 taking into account 25 combinations. GCN is applied
to the modified Chameleon graph for each combination. The mean test accuracy with standard deviation
estimated over 10 splits is reported against each combination. Refer to Table 6 to get a detailed illustration
of the results. The uptick trend is noted for the increasing number of parallel edges in the network. While
increasing the number of self-loops, a degrade in the model performance is observed. For a fixed number
of self-loops, the test accuracy increases with the addition of parallel edges irrespective of the beginning of
the initial performance. Every combination of (αi, γj) produces a filter with the adjusted lower and higher
number of frequencies. Notably, the lowest performance is achieved when the number of self-loops is highest
(α = 5) and the number of parallel edges is lowest (γ = 1). The best performance is obtained with just the
reverse settings like the lowest number of self-loops (α = 1) and the highest number of parallel edges (γ = 5).

4.11 Effect on Performance with Very Large α and γ

We performed a study on the Chameleon, Squirrel, Roman-empire, and genius by increasing α and γ to the
higher values to monitor the performance of GCN. The number of both α, γ are varied from 1 to 20, and
corresponding test accuracy with standard deviations are demonstrated in Figure 7. The study indicates
the maintenance of the performance trends of the different datasets. The trend mostly depends on the input
graph. For example, GCN on Chameleon showed decreasing (increasing) in the increasing number of self-
loops (parallel edges). Conversely, GCN on genius exhibited a downtrend in the performance by adding both
self-loops and parallel edges. It is noteworthy that performance stabilized with the higher value of α or γ.
Empirical observation points out that the change in eigenvalues will become comparably negligible when the
value of α or γ exceeds a certain limit. This phenomenon can be attributed to the saturating performance
trends observed in the experiment.

5 Conclusion & Future Works

We conduct detailed studies regarding the performance of low-pass filters like GCN on the heterophilic
graphs. The studies revealed that GCN showed monotone performance trends when the input graph is
equipped with an increasing number of self-loops or parallel edges. We categorize the input graphs into four
distinct categories based on these performance trends. We further observed that eigenvalues of normalized
graph Laplacian decrease and increase when self-loops or parallel edges are respectively added. Consequently,
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each category entails a significant amount of information pertaining to the characteristics of the graph
spectrum. Therefore, the performance trends depend solely on the distribution of the eigenvalues in the
entire spectrum. The graph spectrum patterns reveal the graph’s intrinsic characteristics such as connected
components, community structure, etc. Our work manifests the cost-effective pathway for estimating and
understanding intrinsic properties and intricate patterns in the graph data, refraining from performing
expensive computations. The designing of effective application of GNNs to replace the prevailing costly
algorithmic computations can be the potential avenue for future research directions.
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A Appendix

A.1 Proofs

This section will offer the detailed proofs and necessary derivations for Lemma 1, Lemma 2, Lemma 3,
Lemma 4, Theorem 1, Theorem 2, Theorem ??, Theorem ??, and Corollary 2. Before delving into the
detailed proofs and derivations, the following Lemma will assist in proving the following theorems. The
following proposition is adopted from (Wu et al., 2019).
Proposition 1. Let us assume β1 ≤ β2 ≤ · · · ≤ βn are the eigenvalues of D− 1

2 AD− 1
2 and δ1 ≤ δ2 ≤ · · · ≤ δn

are the eigenvalues of D̃− 1
2 AD̃− 1

2 where D̃ = D + αI, then we have the following inequalities

δ1 ≥ maxidi

α + maxidi
β1, δn ≤ minidi

α + minidi
. (2)

Proof. Recall that Lsym = I−D− 1
2 AD− 1

2 and a well-known fact is that 0 is an eigenvalue of Lsym. Therefore,
we have βn = 1. As A is free of self-loops then Tr(D− 1

2 AD− 1
2 ) = 0 =

∑
i βi which implies β1 < 0.

Choose x such that ||x|| = 1 and consider y = D
1
2 D̃− 1

2 x. Now, ||y||2 =
∑

i
di

di+α x2
i . Also, we have

minidi

α+minidi
≤ ||y||2 ≤ maxidi

α+maxidi
.

Applying the Rayleigh quotient we have the following bound for the smallest eigenvalue α1,

δ1 = min
||x||=1

(x⊤D̃− 1
2 AD̃− 1

2 x)

= min
||x||=1

(y⊤D− 1
2 AD− 1

2 y) (by variable substitution)

= min
||x||=1

(y⊤D− 1
2 AD− 1

2 y

||y||2
||y||2)

≥ min
||x||=1

(y⊤D− 1
2 AD− 1

2 y

||y||2
) max

||x||=1
(||y||2)

(∵ min(f(z)g(z)) ≥ min(f(z)) max(g(z)) if
min(f(z)) < 0, ∀g(z) > 0

and min
||x||=1

(y⊤D− 1
2 AD− 1

2 y

||y||2
) = β1 < 0)

= β1 max
||x||=1

||y||2

≥ maxidi

α + maxidi
β1

(3)

Similarly, the upper bound for δn can be proved as δn ≤ minidi

α+minidi
.

Lemma 1 Consider a graph G with A and D as the adjacency and degree matrix. Now α-times self-loops
are added in G with α1 ∈ Z+. Assume λmax

α is the maximum eigenvalue of symmetrically normalized
graph Laplacian L̃α of the updated graph. If β1 is the smallest eigenvalue of D− 1

2 AD− 1
2 and maxi di is the

maximum degree of G, then λmax
α ≤ maxi di(1−β1)

α+maxi di
.

Proof. After applying α-times self-loops the symmetrically normalized Laplacian is presented as:

L̃α = I − D̃
− 1

2
α ÃαD̃

− 1
2

α

= I − D̃
− 1

2
α (A + αI)D̃− 1

2
α

= I − D̃
− 1

2
α AD̃

− 1
2

α − αD̃−1
α

(4)
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Let λmax
α is the maximum eigenvalue of L̃α and applying Rayleigh quotient the following can be obtained

λmax
α = max

||x||=1
x⊤L̃αx

= max
||x||=1

x⊤(I − D̃
− 1

2
α AD̃

− 1
2

α − αD̃−1
α )x

≤ (1 − min
||x||=1

x⊤D̃
− 1

2
α AD̃

− 1
2

α x − min
||x||=1

αx⊤D̃−1
α x)

= 1 − δ1 − α

α + maxi di
(from Proposition 1)

≤ 1 − maxi di

α + maxi di
β1 − α

α + maxi di

= maxi di(1 − β1)
α + maxi di

(5)

When α increases the upper bound of λmax
α decreases which indicates the possible shrinking of the maximum

eigenvalue of the graph spectrum.

Lemma 2 Consider a graph G with A and D as the adjacency and degree matrix. Now γ-times self-
loops are added in G with γ ∈ Z+. Assume λmax

γ is the maximum eigenvalue of symmetrically normalized
graph Laplacian L̃γ of the updated graph. If β1 is the smallest eigenvalue of D− 1

2 AD− 1
2 and maxi di is the

maximum degree of G, then λmax
γ ≤ (1+γ) maxi di(1−β1)

1+(1+γ) maxi di
.

Proof. After applying γ-times parallel edges in the graph, the symmetrically normalized graph Laplacian
will be

L̃γ = I − D̃
− 1

2
γ ÃγD̃

− 1
2

γ

= I − D̃
− 1

2
γ ((γ + 1)A + I)D̃− 1

2
γ

= I − (γ + 1)D̃− 1
2

γ AD̃
− 1

2
γ − D̃−1

γ

(6)

Let λmax
γ is the maximum eigenvalue of L̃γ and applying Rayleigh quotient the following can be obtained

λmax
γ = max

||x||=1
x⊤L̃γx

= max
||x||=1

x⊤(I − (γ + 1)D̃− 1
2

γ AD̃
− 1

2
γ − D̃−1

γ )x

≤ (1 − (γ + 1) min
||x||=1

x⊤D̃
− 1

2
γ AD̃

− 1
2

γ x − min
||x||=1

x⊤D̃−1
γ x)

= 1 − (γ + 1)δ1 − 1
1 + γ maxi di

(from Proposition 1)

≤ 1 − (γ + 1) maxi di

1 + (1 + γ) maxi di
β1 − 1

1 + (1 + γ) maxi di

= (1 + γ) maxi di(1 − β1)
1 + (1 + γ) maxi di

(7)

When γ increases the upper bound of λmax
γ increases which shows the possible expansion of the maximum

eigenvalue of the graph spectrum.

Lemma 3 Given a k-regular graph G, the eigenvalues of Ãα
N will lie in [−1, 1] ∀α ≥ 1.
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Proof. Consider a k-regular graph G where each node has a degree k with the normalized adjacency matrix
is ÃN = D̃− 1

2 ÃD̃− 1
2 where Ã = A + I, D̃ = D + I. If α-times (with α ≥ 1) self-loops are added, then the

updated normalized adjacency matrix is Ãα
N = D̃

− 1
2

α ÃαD̃
− 1

2
α where Ãα = A + αI, D̃α = D + αI. As the

graph is regular then ÃN can be presented as:

ÃN = D̃− 1
2 ÃD̃− 1

2

= 1√
k + 1

(A + I) 1√
k + 1

= 1
k + 1(A + I)

(8)

In a similar fashion, we can express Ãα
N = 1

k+α (A + αI). Since, both ÃN and Ãα
N are the linearly scaled

transformations of A, then both will share a similar set of eigenvectors with different scaled eigenvalues.
Assume v is an eigenvector of ÃN associated with any eigenvalue λ1. Therefore,

ÃN v = λ1v

1
k + 1(A + I)v = λ1v

Av = ((k + 1)λ1 − 1)v

(9)

We can say that v is an eigenvector of A with corresponding eigenvalue λA = ((k + 1)λ1 − 1). Consider the
eigenvector v of Ãγ

N with the with the eigenvalue λ2. Then, we have the following,

Ãα
N v = λ2v

1
k + α

(A + αI)v = λ2v

λ2 = λA + α

k + α

(10)

As the range of eigenvalues of ÃN is [−1, 1], thus we have λ1 ≤ 1. The following inequality can be expressed,

λ1 ≤ 1
(k + 1)λ1 ≤ k + 1
(k + 1)λ1 − 1 ≤ k + 1 − 1
λA ≤ k

(11)

Using the inequality we will prove the next stage as

λA ≤ k

α + λA ≤ α + k

α + λA

k + α
≤ α + k

α + k

λ2 ≤ 1

(12)

In this way, we showed that any eigenvalue of Ãα
N is 1. For the lower bound, we can write,

λ1 ≥ −1
(k + 1)λ1 ≥ −k − 1
(k + 1)λ1 − 1 ≥ −k − 1 − 1
λA ≥ −k − 2

(13)
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Using the inequality we will prove the next stage as,

λA ≥ −k − 2
α + λA ≥ α − k − 2
α + λA

k + α
≥ α − k − 2

α + k

λ2 ≥ 1 − 2(k + 1)
k + α

(14)

The degree k > 1, then we have λ2 ≥ −1. Therefore, the addition of self-loops will not alter the range of the
eigenvalues of the symmetrically normalized adjacency matrix.

Lemma 4 Given a k-regular graph G, the eigenvalues of Ãγ
N will lie in [−1, 1] ∀γ ≥ 1.

Proof. Consider a k-regular graph G where each node has a degree k with the normalized adjacency matrix
is ÃN = D̃− 1

2 ÃD̃− 1
2 where Ã = A + I, D̃ = D + I. If γ-times (with γ ≥ 1) parallel edges are added, then the

updated normalized adjacency matrix is Ãγ
N = D̃

− 1
2

γ ÃγD̃
− 1

2
γ where Ãγ = (1 + γ)A + I, D̃γ = (1 + γ)D + I.

As the graph is regular then AN can be presented as:

ÃN = D̃− 1
2 ÃD̃− 1

2

= 1√
k + 1

(A + I) 1√
k + 1

= 1
k + 1(A + I)

(15)

In a similar fashion, we can express Ãγ
N = 1

1+(1+γ)k ((1 + γ)A + I). Since, both ÃN and Ãγ
N are the linearly

scaled transformations of A, then both will share a similar set of eigenvectors with different scaled eigenvalues.
Assume v is an eigenvector of ÃN associated with any eigenvalue λ1. Therefore,

ÃN v = λ1v

1
k + 1(A + I)v = λ1v

Av = ((k + 1)λ1 − 1)v

(16)

We can say that v is an eigenvector of A with corresponding eigenvalue λA = ((k + 1)λ1 − 1). Consider the
eigenvector v of Ãγ

N with the with the eigenvalue λ2. Then, we have the following,

Ãγ
N v = λ2v

1
1 + (1 + γ)k ((1 + γ)A + I)v = λ2v

λ2 = (1 + γ)λA + 1
(1 + γ)k + 1

(17)

As the range of eigenvalues of ÃN is [−1, 1], thus we have λ1 ≤ 1. The following inequality can be expressed,

λ1 ≤ 1
(k + 1)λ1 ≤ k + 1
(k + 1)λ1 − 1 ≤ k + 1 − 1
λA ≤ k

(18)
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Using the inequality we will prove the next stage as

λA ≤ k

(1 + γ)λA ≤ (1 + γ)k
(1 + γ)λA ≤ (1 + γ)k
(1 + γ)λA + 1 ≤ (1 + γ)k + 1
(1 + γ)λA + 1
(1 + γ)k + 1 ≤ 1

λ2 ≤ 1

(19)

In this way, we have shown the maximum eigenvalue of Ãγ
N is 1. The lower bound of the eigenvalues can be

shown as
λ1 ≥ −1
(k + 1)λ1 ≥ −k − 1
(k + 1)λ1 − 1 ≥ −k − 1 − 1
λA ≤ −k − 2

(20)

Using the inequality we will prove the next stage as

λA ≤ −k − 2
(1 + γ)λA ≥ (1 + γ)(−k − 2)
(1 + γ)λA + 1 ≥ (1 + γ)(−k − 2) + 1
(1 + γ)λA + 1
(1 + γ)k + 1 ≥ (1 + γ)(−k − 2) + 1

(1 + γ)k + 1

λ2 ≥ 1 − 2(k + 1)(γ + 1)
(1 + γ)k + 1

(21)

As k, γ > 0, then we have λ2 ≥ −1. Therefore, the addition of parallel edges will not alter the range of the
eigenvalues of the symmetrically normalized adjacency matrix.

Theorem 1 Consider a k-regular graph with α1, α2 ∈ R+ with α1 ≤ α2, then λi
α1

≥ λi
α2

, ∀ 1 ≤ i ≤ n, where
λi

α1
and λi

α2
are the ith eigenvalues of L̃α1 and L̃α2 respectively.

Proof. Consider a k-regular graph G where each node of degree k with the normalized adjacency matrix is
AN = D̃− 1

2 ÃD̃− 1
2 where Ã = A + I, D̃ = D + I. If α-times (with α ≥ 1) self-loops are added, then the

updated normalized adjacency matrix is Ãα
N = D̃

− 1
2

α ÃαD̃
− 1

2
α where Ãα = A + αI, D̃α = D + αI. As the

graph is regular then we can have the following

Aα
N = D̃

− 1
2

α ÃαD̃
− 1

2
α

= 1√
k + α

(A + αI) 1√
k + α

= 1
(k + α) (A + αI)

(22)

Therefore, we can express Aα1
N = 1

k+α1
(A + α1I) and Aα2

N = 1
k+α2

((A + α2I). Since, Aα1
N and Aα2

N are
the linear transformation of A, both will have the same set of eigenvectors but with different eigenvalues.
Assume v is the eigenvector of A and its corresponding eigenvalue is λα1 . Therefore, the following can be
written as

Aα1
N v = λα1v

1
(k + α1) (A + α1I)v = λα1v

Av = ((k + α1)λα1 − α1)v

(23)
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We can say that v is the eigenvector of A with the corresponding eigenvalue λA = ((k + α1)λα1 − α1). For
Aα2

N , for eigenvector v, the corresponding eigenvalue is λα2 . Now, we have the following:
Aα2

N v = λα2v

1
(k + α2) (A + α2I)v = λα2v

Av = ((k + α2)λα2 − α2)v

(24)

Similarly, we can also express λA = ((k + α2)λα2 − α2). Now, equating the two different expressions of λA,
we can express the following

(k + α1)λα1 − α1 = (k + α2)λα2 − α2

kλα1 − α1(1 − λα1) = kλα2 − α2(1 − λα2)
k(λα1 − λα2) = α1(1 − λα1) − α2(1 − λα2)
As per provided condition, we have α1 < α2

α1(1 − λα1) < α2(1 − λα1)
α1(1 − λα1) − α2(1 − λα2) < α2(1 − λα1) − α2(1 − λα2)
k(λα1 − λα2) < α2(1 − λα1) − α2(1 − λα2)
k(λα1 − λα2) < α2(λα2 − λα1)
(k + α2)(λα! − λα2) < 0
As k, α2 > 0 then
λα! − λα2 < 0
λα! < λα2

The above equation holds for all |λα1 |, |λα2 | ≤ 1 which is ensured from Lemma 3. The eigenvalue of Aα2
N

became greater than that of Aα1
N when self-loops are added to the graph. We know that L̃α = I−D̃

− 1
2

α ÃαD̃
− 1

2
α ,

indicates if the eigenvalue of Aα
N increases then the corresponding eigenvalue of L̃α decreases. Therefore, it

can be concluded that the eigenvalue of L̃α decreases with the addition of self-loops.

Theorem 2 Consider a k-regular graph with γ1, γ2 ∈ R+ with γ1 ≤ γ2, then λi
γ1

≤ λi
γ2

, ∀ 1 ≤ i ≤ n, where
λi

γ1
and λi

γ2
are the ith eigenvalues of L̃γ1 and L̃γ2 respectively.

Proof. Consider a k-regular graph G where each node has a degree k with the normalized adjacency matrix
is AN = D̃− 1

2 ÃD̃− 1
2 where Ã = A + I, D̃ = D + I. If γ-times (with γ ≥ 1) parallel edges are added, then the

updated normalized adjacency matrix is Ãγ
N = D̃

− 1
2

γ ÃγD̃
− 1

2
γ where Ãγ = (1 + γ)A + I, D̃γ = (1 + γ)D + I.

As the graph is regular then we can have the following

Aγ
N = D̃

− 1
2

γ ÃγD̃
− 1

2
γ

= 1√
1 + (1 + γ)k

((1 + γ)A + I) 1√
1 + (γ + 1)k

= 1
1 + (1 + γ)k ((1 + γ)A + I)

(25)

Therefore, we can express Aγ1
N = 1

1+(1+γ1)k ((1+γ1)A+I) and Aγ2
N = 1

1+(1+γ2)k ((1+γ2)A+I). Since, Aγ1
N and

Aγ2
N are the scalar transformation of A, both will have the same set of eigenvectors with different eigenvalues.

Assume v is the eigenvector of A and its corresponding eigenvalue is λγ1 . Therefore, the following can be
written as

Aγ1
N v = λγ1v

1
1 + (1 + γ1)k ((1 + γ1)A + I)v = λγ1v

Av = (1 + (1 + γ1)k)λγ1 − 1
1 + γ1

v

(26)
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We can say that v is the eigenvector of A with the corresponding eigenvalue λA = (1+(1+γ1)k)λγ1 −1
1+γ1

. For Aγ
N ,

the eigenvector is v with the eigenvalue λ2. Then, we have the following

Aγ2
N v = λγ2v

1
1 + (1 + γ2)k ((1 + γ2)A + I)v = λγ2v

Av = (1 + (1 + γ2)k)λγ2 − 1
1 + γ2

v

(27)

We can also express λA = (1+(1+γ2)k)λγ2 −1
1+γ2

. Now, equating the two different values of λA, we can have the
following

(1 + (1 + γ1)k)λγ1 − 1
1 + γ1

= (1 + (1 + γ2)k)λγ2 − 1
1 + γ2

(1 + γ2)((1 + (1 + γ1)k)λγ1 − 1) =
(1 + γ1)(1 + (1 + γ2)k)λγ2 − 1)

(1 + γ2)(1 + (1 + γ1)k)λγ1 − (1 + γ2) =
(1 + γ1)(1 + (1 + γ2)k)λγ2 − (1 + γ1)

(1 + γ2 + (1 + γ1)(1 + γ2)k)λγ1 − 1 − γ2 =
(1 + γ1 + (1 + γ1)(1 + γ2)k)λγ2 − 1 − γ1

(1 + γ2 + (1+γ1)(1 + γ2)k)λγ1 =
(γ2 − γ1) + (1 + γ1 + (1 + γ1)(1 + γ2)k)λγ2

λγ1 = γ2 − γ1

(1 + γ2 + (1 + γ1)(1 + γ2)k)+

(1 + γ1 + (1 + γ1)(1 + γ2)k)
(1 + γ2 + (1 + γ1)(1 + γ2)k)λγ2

= γ2 − γ1

(1 + γ2 + (1 + γ1)(1 + γ2)k)+

(1 + γ2 + (1 + γ1)(1 + γ2)k) − γ2 + γ1

(1 + γ2 + (1 + γ1)(1 + γ2)k) λγ2

= γ2 − γ1

(1 + γ2 + (1 + γ1)(1 + γ2)k)+

(1 − γ2 − γ1

(1 + γ2 + (1 + γ1)(1 + γ2)k) )λγ2

= γ2 − γ1

(1 + γ2 + (1 + γ1)(1 + γ2)k) (1 − λγ2) + λγ2

According to the condition provided γ2 > γ1 we can say
λγ1 > λγ2

(28)

The eigenvalue of Aγ2
N became lesser than that of Aγ1

N with the addition of parallel edges. The Eq. 28 holds
for |λγ2 | ≤ 1 which is assured from Lemma 4. We know that L̃γ = I−D̃

− 1
2

γ ÃγD̃
− 1

2
γ , indicates if the eigenvalue

of Aγ
N decreases then the corresponding eigenvalue of L̃γ increases. Therefore, it can be concluded that the

eigenvalue of L̃γ increases with the addition of parallel edges for the regular graphs.

Corollary 2. The increase in the eigenvalues of Lγ is independent of the number of self-loop additions in
G. On the contrary, The eigenvalues of L̃γ will increase if at least one self-loop is added per node in G.
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Proof. Let us prove the statement by contradiction. We know L = D −A and after adding α-times self-loops
and γ-times parallel edges, the Lγ = Dγ − Aγ where Ãγ = (1 + γ)A + αI, D̃γ = (γ + 1)D + αI. Then,

Lγ = (D̃γ − Ãγ)
= (((γ + 1)D + αI) − ((γ + 1)A + αI))
= (γ + 1)(D − A)
= (γ + 1)L

(29)

The equation is independent of the number of self-loops we confirm that the effect of adding parallel edges
prevails. Similarly, let us also prove the second part by contradiction. We know that L̃γ = I − D̃

− 1
2

γ ÃγD̃
− 1

2
γ

and consider the expression without self-loops with the addition of γ-times parallel edges as D̃ = (1+γ)D, Ã =
(1 + γ)A.

L̃γ = I − D̃
− 1

2
γ ÃγD̃

− 1
2

γ

= I − 1√
(1 + γ)

D− 1
2 (1 + γ)A 1√

(1 + γ)
D− 1

2

= I − D− 1
2 AD− 1

2

= L̃

(30)

Therefore, adding parallel edges without at least one self-loop per node does not change the normalized
graph Laplacian. Hence, the result is proved.

Theorem 3 Consider a connected graph G with AN = D− 1
2 AD− 1

2 . Assuming the diagonal of A of G is
perturbed by a significantly small α > 0, then the updated normalized adjacency matrix will be Aα

N . The
change in the eigenvalues of Aα

N with respect to eigenvalues of AN will increase when α increases.

Proof. If the diagonal of A is perturbed by α, the symmetrically normalized graph Laplacian of G will be,

L̃α = I − D̃
− 1

2
α ÃαD̃

− 1
2

α , (31)

where Ãα = A + αI and D̃α = D + αI. Let us denote the normalized adjacency matrix without self-loops as
AN = D− 1

2 AD− 1
2 . The element of AN is represented as:

AN [i][j] =
{ Aij√

didj

, i ̸= j

0, i = j
(32)

After perturbed by α, the normalized adjacency will be Aα
N = D̃

− 1
2

α ÃαD̃
− 1

2
α . The elements of Ãα

N can be
represented as:

Aα
N [i][j] =

{ Aij√
α+di

√
α+dj

i ̸= j

α
α+di

i = j
(33)

The entry-wise change in the normalized adjacency matrix is presented as:

δAN [i][j] =
{ Aij√

α+di

√
α+dj

− Aij√
didj

, i ̸= j

α
α+di

, i = j
(34)

Following the notion of the Theorem 4 stated in (Karhadkar et al., 2022) we can assume x is a normalized
eigenvector of AN with corresponding eigenvalue λ. Therefore, the first-order change in the corresponding
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eigenvalue can be represented as:

x⊤(δAN )x =
∑
i̸=j

δAN [i][j]xixj +
∑
i=j

δAN [i][j]x2
i

=

∑
i ̸=j

(
Aij√

α + di

√
α + dj

− Aij√
didj

)
xixj

+
∑
i=j

α

α + di
x2

i

=

∑
i ̸=j

(
1√

α + di

√
α + dj

− 1√
didj

)
Aijxixj

+
∑
i=j

α

α + di
x2

i

(35)

Consider,

F
(1)
ij (α) =

(
1√

α + di

√
α + dj

− 1√
didj

)
F

(2)
i (α) = α

α + di
x2

i

(36)

If di, dj ≫ α, then F
(1)
ij (α) ≈ 0 which lead to

x⊤(δAN )x ≈ F
(2)
i (α) ≈

∑
i=j

α

α + di
x2

i . (37)

If α increases then F
(2)
i (α) also increases. This reflects the change in the eigenvalue of Aα

N decreases indicating
the decreases in the eigenvalues of the L̃α.

Theorem 4 Consider a connected graph G with normalized adjacency matrix AN = D− 1
2 AD− 1

2 . Assuming
each element of A except the diagonal multiplied by 1 + γ where γ > 0 is a significantly small quantity, then
the updated normalized adjacency matrix will be Aγ

N . The change in the eigenvalues of Aγ
N with respect to

eigenvalues of AN will decrease when γ increases.

Proof. If the non-diagonal elements of A are multiplied by 1 + γ, then symmetrically normalized graph
Laplacian will be,

L̃γ = I − D̃
− 1

2
γ ÃγD̃

− 1
2

γ , (38)

where Ãγ = (γ + 1)A + I and D̃γ = (γ + 1)D + I. Let us denote the normalized adjacency matrix without
self-loops as AN = D− 1

2 AD− 1
2 . The element of AN is represented as:

AN [i][j] =
{ Aij√

didj

, i ̸= j

0, i = j
(39)

After multiplying (1 + γ) to the non-diagonal elements of A and adding one self-loops, the normalized
adjacency will be Aγ

N = D̃
− 1

2
γ ÃγD̃

− 1
2

γ . The elements of Ãγ
N can be represented as:

Aγ
N [i][j] =


(γ+1)Aij√

1+(γ+1)di

√
1+(γ+1)dj

i ̸= j

1
1+(1+γ)di

i = j
(40)
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The entry-wise change in the normalized adjacency matrix is presented as:

δAN [i][j] =


(γ+1)Aij√

1+(γ+1)di

√
1+(γ+1)dj

− Aij√
didj

, i ̸= j

1
1+(1+γ)di

, i = j
(41)

Following the notion of the Theorem 4 stated in (Karhadkar et al., 2022) we can assume x is a normalized
eigenvector of AN with corresponding eigenvalue λ. Therefore, the first-order change in the spectral gap can
be represented as:

x⊤(δAN )x =
∑
i ̸=j

δAN [i][j]xixj +
∑
i=j

δAN [i][j]x2
i

=

∑
i ̸=j

(
(γ + 1)Aij√

1 + (γ + 1)di

√
1 + (γ + 1)dj

− Aij√
didj

)
xixj

+
∑
i=j

1
1 + (1 + γ)di

x2
i

=

∑
i ̸=j

(
(γ + 1)√

1 + (γ + 1)di

√
1 + (γ + 1)dj

− 1√
didj

)
Aijxixj

+
∑
i=j

1
1 + (1 + γ)di

x2
i

(42)

Consider the following,

F
(1)
ij (γ) =

(
(γ + 1)√

1 + (γ + 1)di

√
1 + (γ + 1)dj

− 1√
didj

)

F
(2)
i (γ) = 1

1 + (1 + γ)di
x2

i

(43)

Now we can rewrite,

F
(1)
ij (γ) =

(
(γ + 1)√

1 + (γ + 1)di

√
1 + (γ + 1)dj

− 1√
didj

)

=

 1√
1

1+γ + di

√
1

1+γ + dj

− 1√
didj

 (44)

As we mentioned γ is a sufficiently small quantity and with di, dj ≫ 1, then F
(1)
ij (γ) ≈ 0. Now we have,

x⊤(δAN )x ≈ F
(2)
i (γ) ≈ 1

1 + (1 + γ)di
x2

i (45)

If γ increases then F
(2)
i (γ) decreases reflecting the change in the eigenvalues of Ãγ

N decreases. This indicates
the increase in the eigenvalues of L̃γ

N .
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