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ABSTRACT

The advent of language models (LMs) in genomics necessitates benchmarks that
can assess models’ capabilities and limitations. In contrast to protein models, DNA
LM:s can be used to study non-coding regions of the genome and must account for
unique challenges, especially interactions across long sequence lengths. However,
existing benchmarks for DNA LMs are defined over short sequence datasets and
can involve tasks that are not considered to be biologically meaningful. Here, we
present the Human Genomics Long-Range Benchmark (LRB), which focuses on
biologically meaningful tasks and supports long-range contexts. We complement
our benchmark with fine-tuning recipes that meaningfully improve performance.
We evaluate DNA LMs across nine compiled human genome tasks and observe that
they achieve competitive performance relative to supervised baselines on several
tasks (e.g., genome annotation), but there remains a significant gap in domains,
such as variant effect and gene expression prediction. Additionally, we introduce a
visualization tool to examine model performance split by genomic properties.

1 INTRODUCTION

Pre-training models on a large corpus of unlabeled data and subsequently fine-tuning to solve
downstream tasks has demonstrated widespread success across domains, such as natural language
processing (Achiam et al., 2023; Team et al., 2023) and computer vision (Oquab et al., 2023;
Radford et al., 2021). This paradigm has also shown promise in biological applications, enabled by
the wealth of unlabeled data coming from next-generation sequencing technologies. A prominent
example are protein language models (LMs), which have been used to predict the effects of coding
mutations on protein function (Lin et al., 2022), generate viable sequences conditioned on functional
properties (Madani et al., 2023), and accurately predict structure from amino acid sequences (Lin
et al., 2023). The development of these models has been made possible by benchmarks, such as CASP
(Kryshtafovych et al., 2021), TAPE (Rao et al., 2019), PEER (Xu et al., 2022), and ProteinGym
(Notin et al., 2023).

Genomics represents a new frontier for LMs in biology. The common pre-training tasks in language
modeling (i.e., filling in missing tokens based on input context) inherently train LMs to model
evolutionary forces, such as conservation and co-evolution, and the statistical patterns that these
models learn can map to genomic motif identification, which is useful in accurate gene annotation.
Indeed, significant progress has been made, with various LMs tailored to DNA sequences (Benegas
et al., 2023a;b; Dalla-Torre et al., 2023; Ji et al., 2021; Nguyen et al., 2023; 2024; Schiff et al.,
2024; Zhou et al., 2023). However, modeling genomic data presents unique challenges compared
to proteomics. When modeling DNA, we have to account for non-coding regions and contend with
interactions that can be orders of magnitude larger (Furlong and Levine, 2018). To guide the principled
development of new DNA LMs, there is a need for robust benchmarks that accurately reflect these
nuances. While several benchmarks have been proposed, these existing works contain important
limitations. The vast majority of tasks proposed across existing benchmarks only consider short
input contexts (less than 2k base pairs) (Dalla-Torre et al., 2023; GreSova et al., 2023; Marin et al.,
2023; Zhou et al., 2023), disregarding long-range interactions that are highly impactful in genomics.
Additionally, tasks in some benchmarks may be overly simplistic, failing to reflect real-world use
cases, e.g., some benchmarks have used synthetic data to construct negative sets (Dalla-Torre et al.,
2023).
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To bridge these gaps, we propose the Human Genomics Long-Range Benchmark (LRB), a compilation
of biologically meaningful tasks in human genomics. Our benchmark deliberately incorporates tasks
hypothesized to span both short and long genomic contexts. Allowing users to select arbitrary
sequence length inputs for any given dataset enables us for the first time to understand empirically
the importance of long-range inputs for our proposed tasks. We also include available genomic
annotations and provide a visualization tool that allows users to analyze results in more detail.
We demonstrate the benefit of full model fine-tuning compared to previous approaches that keep
backbone DNA LM weights frozen during downstream training. To summarize, we make the
following contributions:

1. Release the Genomics Long-Range Benchmark, composed of biologically meaningful tasks that
cover both short- and long-range genomic scales. Our benchmark is unique in that it allows users
to download arbitrary length sequences for each task. We provide evaluation results for a selection
of prominent DNA LMs in both zero-shot and fine-tuning settings along with comparisons against
reference baselines. We find that on genomic annotation tasks DNA LMs perform competitively with
existing supervised models, but on the long-range prediction tasks of gene expression and zero-shot
mutation effect prediction there persists a large gap, especially when compared to alignment based
LMs.

2. Develop and analyze improved fine-tuning methods that better reflect real-world usage, finding
that full model weight fine-tuning significantly improves performance.

3. Introduce an analysis and visualization tool to examine models’ performance across different
genomic properties. This tool enables deeper analyses that reveal more nuanced evidence that DNA
LMs lag behind a well-regarded and long-range supervised baseline, Enformer (Avsec et al., 2021a),
in modeling long-range interactions.

2 BACKGROUND

2.1 LANGUAGE MODELING FOR DNA

Supervised machine learning Table 1: Comparison to existing benchmarks.
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gained traction in the genomics domain: the abundance of unlabeled sequences supports robust
model pre-training and the widely-used pre-training objectives of next token prediction (NTP) or
masked language modeling (MLM) directly lend themselves to models identifying genomic motifs
and evolutionary patterns, e.g., conservation. Some notable recent works include DNABERT (Ji
etal., 2021; Zhou et al., 2023; 2024), GPN (Benegas et al., 2023a;b), Nucleotide Transformer (NT)
(Dalla-Torre et al., 2023), GENA-LM (Fishman et al., 2023), HyenaDNA (Nguyen et al., 2023), Evo
(Nguyen et al., 2024), Evo2 (Brixi et al., 2025), and Caduceus (Schiff et al., 2024). A more thorough
review of recent DNA LMs is deferred to Section A.2.
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2.2 DNA LM EVALUATION

The goal of DNA LMs is to learn meaningful representations that can be used to improve performance
on downstream tasks. Existing benchmarks, which include the Nucleotide Transformer tasks (NT;
Dalla-Torre et al. (2023)), Genomic Benchmark (GB; Gresova et al. (2023)), Genome Understanding
Evaluation (GUE; Zhou et al. (2023)), and Benchmark for DNA LMs (BEND; Marin et al. (2023)),
have been crucial for establishing baseline model capabilities. However, these benchmarks contain
several important shortcomings: they do not focus on long-range sequences, they can contain synthetic
examples, and their evaluations do not take full advantage of pre-trained models. See Section A.3 for
a more complete description of existing works.
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3 THE GENOMICS LONG-RANGE BENCHMARK

Table 2: Overview of the tasks contained in the Genomics Long-Range Benchmark.

Type # Outputs  # Train/ Test % Pos. Label

Variant Effect Prediction

Causal eQTL SNP Classification 1 89k / 9k 50.0

Pathogenic OMIM SNP Classification 1 -12.3M 0.02

Pathogenic ClinVar SNP Classification 1 39k / 1k 56.1
Gene Expression Prediction

Bulk RNA-seq Seq-wise Regression 218 23k / 1k -

CAGE profile Binned Regression 50/ bin 34k / 2k -
Regulatory Element Detection

Promoter Seq-wise Classification 1 953k / 96k 4.7

Enhancer Seq-wise Classification 1 1.9M / 192k 52.5
Chromatin Feature Identification

Histone Mark Prediction ~ Seq-wise Classification 20 2.2M/ 227k 7.0

Chromatin Accessibility =~ Seq-wise Classification 20 2.2M/ 227k 44

Below we describe the nine tasks that we compiled from various human genome data sources that
comprise our proposed Genomics Long-Range Benchmark (LRB). Our suite consists of tasks that are
hypothesized to require only short-range contexts as well as those thought to need longer sequences
for accurate prediction. By enabling users to download data at arbitrary length scales (the first
benchmark to support this feature), these hypotheses can be rigorously tested. Our tasks span various
applications that are of interest to practitioners, namely variant effect prediction, gene expression
prediction, regulatory element detection, and chromatin factor identification; see Table 2. Below,
for each task, we provide details on the biological relevance that motivated its inclusion, a formal
task definition, and rationale for hypothesized long-range dependencies (where applicable). We
defer additional details, e.g., data source and processing, train / test splits, and metric definition, to
Section B.

3.1 VARIANT EFFECT PREDICTION

3.1.1 CAUSAL EQTL

Biological Relevance Predicting the effects of genetic variants, particularly expression quantitative
trait loci (eQTLs), is essential for understanding the molecular basis of several diseases. eQTLs are
genomic loci that are associated with variations in mRNA expression levels among individuals. By
linking genetic variants to causal changes in mRNA expression, researchers can uncover how certain
variants contribute to disease development (Consortium, 2020).

Task Definition The task is formulated as a binary classification problem to distinguish eQTLs from
GTEx (Consortium, 2020) from a set of matched negatives identified in Avsec et al. (2021a). Inputs
are sequences centered around candidate single nucleotide polymorphisms (SNPs) each assigned a
causal probability by fine-mapping using the “Sum of Single Effects" (SuSiE) model (Wang et al.,
2020). Following Avsec et al. (2021a), variants with causal probability greater than 0.9 are labeled as
positive and variants with causal probability less than 0.01 are labeled as negative.

Long-Range The regulation of gene expression is modulated by distal, cis-regulatory elements,
called enhancers, that can be more than several hundred thousand base pairs (bps) away from a target
gene (Furlong and Levine, 2018). Variants that impact gene expression are often located at such distal
elements, and thus, to predict such variants, models should have long context windows (Avsec et al.,
2021a).

3.1.2 PATHOGENIC OMIM

Biological relevance Predicting the effects of regulatory variants on pathogenicity is crucial for
understanding disease mechanisms (Marwaha et al., 2022). Elements that regulate gene expression
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Table 3: Benchmarking performance of DNA LMs and baselines on variant effect prediction tasks.
Models were evaluated using both fine-tuning and zero-shot. Best sequence-based LM values are
bolded. YEvo2 was only evaluated on 512bp sequences due to computational constraints.

Model Nam. Context Causal eQTL Path. ClinVar Path. OMIM
odel Name (bps) (AUROC) (AUROC) (AUPRC)
DNA LMs Fine-tune Zero-shot Fine-tune Zero-shot Zero-shot
DNABERT-2 10k 0.72+0.008 0.50+0.010 0.74+0.013 0.50%£0.02 0.002 +0.0002
DNABERT-S 10k 0.73 = 0.008 - 0.73 £0.011 - -
NTv2 500M 12k 0.72+0.003 0.51+0.008 0.78+0.009 0.68+0.01 0.003+0.0011
HyenaDNA 160K 160k 0.71 £0.010 0.51x0.013 0.56+0.073 0.49+0.02 0.002 £ 0.0002
Evo2 7B 512F - 0.50 £ 0.008 - 0.89 +0.01 0.054 £ 0.0100
Alignment-based LM
GPN-MSA 128 0.70£0.008 0.55+£0.010 0.97+0.01 0.97 £0.01 0.34 £0.03
Baseli 0.76 £ 0.002 0.56 0.65+£0.031 0.97+0.01 0.208 £ 0.02
asetine (Enformer) (CADD) (Enformer) (CADD) (CADD)

Table 4: Benchmarking performance of DNA LMs and baselines on gene expression, regulatory
element, and chromatin features tasks. Models were evaluated in only a fine-tuned setting for this set
of tasks. Best sequence-based LM values are bolded and in green if LM beats baseline.

Histone DNA

Context Bulk RNA CAGE Promoter Enhancer

Model Name > 2 Marks Accessibility
(bps) (R?) (R?) (AUPRC) (AUROC) (AUPRC) (AUPRC)
DNA LMs Fine-tune Fine-tune Fine-tune Fine-tune Fine-tune Fine-tune
DNABERT-2 10k 0.51 +0.050 - 0.71 £0.112  0.81 £0.022 0.24+0.091  0.15 +0.064
DNABERT-S 10k 0.52 +0.060 - 0.75+0.021 0.83 £0.005 0.33 +0.006 0.16 +0.039
NTv2 500M 12k 0.60 £0.038 0.39+0.011 0.79+£0.006 0.82+0.002 0.38 +0.003 0.3 £0.007

HyenaDNA 160K 160k 0.46 £0.006 0.19+0.032 0.67+0.009 0.74+0.009 0.25+0.004 0.11 +£0.002

Alignment-based LM
GPN-MSA 128 - 0.09 £0.012  0.73 £0.015 0.79 £ 0.005 - -

0.83 £0.005 0.49+0.000 0.86+0.006 0.92 +0.002 0.35 0.44
(Enformer)  (Enformer) (Enformer) (Enformer) (DeepSea) (DeepSea)

Baseline

are often located in non-coding regions, and variants in these areas can disrupt normal cellular
function, leading to disease. Accurate predictions can identify biomarkers and therapeutic targets,
enhancing personalized medicine and genetic risk assessment.

Task Definition The task is formulated as a binary classification problem where inputs are DNA
sequences centered around a SNP and outputs are binary labels. The dataset was constructed following
Benegas et al. (2023a), where the negative class corresponds to a common (mean allele frequency
> 5%) SNP in gnomAD (Chen et al., 2022) and the positive class corresponds to a pathogenic SNP,
defined as a SNP in a regulatory region having an implication in a Mendelian disorder in the Online
Mendelian Inheritance in Man database (Smedley et al., 2016).

Long-Range Regulatory elements like enhancers and silencers can exist far from the genes they
regulate (Furlong and Levine, 2018). Variants in these regulatory elements can lead to aberrant gene
expression patterns and ultimately disease, but identifying such regulatory variants is difficult since
regulatory elements can modulate the expression of proximal or distal genes. Models that can capture
interactions between possibly distal regulatory elements and their target genes while still being able
to capture the proximal interactions are essential to identifying non-coding pathogenic variants.

3.1.3 PATHOGENIC CLINVAR

Biological Relevance A coding variant refers to a genetic alteration that occurs within the protein-
coding regions of the genome, also known as exons. Such alterations can impact protein structure,
function, stability, and interactions with other molecules, ultimately influencing cellular processes and
potentially contributing to the development of genetic diseases (Lek et al., 2016). Predicting variant
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pathogenicity is crucial for guiding research into disease mechanisms and personalized treatment
strategies, enhancing our ability to understand and manage genetic disorders effectively.

Task Definition This task is formulated as a binary classification with inputs centered around SNPs.
The dataset was constructed following Benegas et al. (2023a), where the negative class corresponds
to a common (minor allele frequency > 5%) SNP in gnomAD (Chen et al., 2022) and the positive
class to pathogenic SNPs identified in ClinVar (Landrum et al., 2020).

3.2 GENE EXPRESSION PREDICTION

3.2.1 BULK RNA-SEQ

Biological Relevance Gene expression involves the process by which information encoded in a
gene directs the synthesis of a functional gene product, typically a protein, through transcription and
translation. Transcriptional regulation determines the amount of mRNA produced, which is then
translated into proteins. Models that can predict RNA expression levels solely from sequence data
are can advance our understanding of gene regulation, elucidate disease mechanisms, and identify
functional sequence variants.

Task Definition This task is described as a multi-variable, sequence-wise regression task. Data
was constructed following Zhou et al. (2018a) such that inputs are DNA sequences centered around
the transcription start site (TSS) of each gene where the TSS was identified using a combination
of annotations from GENCODE (Harrow et al., 2012) and CAGE data from FANTOMS (Forrest
et al., 2014). Outputs are RPKM normalized RNA expression counts for each gene obtained from
Consortium (2020) that were log(1 + z) normalized and standardized. For each gene, there are 218
different counts corresponding to the RNA expression level in different tissue types.

Long-Range RNA gene expression is regulated by non-coding elements, such as enhancers and
silencers, which can be located hundreds of kilo-bps away from the gene (Furlong and Levine, 2018),
indicating the possible presence of long-range interactions in transcription regulation.

3.2.2 CAP ANALYSIS GENE EXPRESSION (CAGE) PROFILE

Biological Relevance CAGE provides accurate high-throughput measurements of RNA expression
by mapping TSSs at a nucleotide-level resolution (Takahashi et al., 2012). This is vital for detailed
mapping of TSSs, understanding gene regulation mechanisms, and obtaining quantitative expression
data to study gene activity comprehensively.

Task Definition This task is described as a multi-variable, binned nucleotide-wise regression task.
The data was constructed following the approach outlined in Basenji (Kelley, 2020). Inputs are DNA
sequences and the outputs are log(1 4+ =) normalized CAGE expression counts from FANTOMS5
(Forrest et al., 2014) given for each 128 bp bin of the input sequence. For each bin in a sequence,
there are 50 different values corresponding to expression amounts across 50 human cell / tissue types.

Long-Range The production of RNA via transcription as measured by CAGE is regulated by
non-coding elements that can be located hundreds of kilo-bps away from the gene, indicating the
presence of long-range interactions in transcription regulation (Furlong and Levine, 2018).

3.3 Ci1S-REGULATORY ELEMENT DETECTION

Biological Relevance Cis-regulatory elements, such as promoters and enhancers, control the spatial
and temporal expression of genes (Andersson and Sandelin, 2020). These elements are essential for
understanding gene regulation mechanisms and how genetic variations can lead to differences in gene
expression.

Task Definition This task is described as a binary classification problem. Data from Search
Candidate Regulatory Elements by ENCODE (SCREEN (The ENCODE Project Consortium, 2020))
was processed according to our approach outlined in Section B.3. Inputs are sequences sampled
from across the entire human genome and outputs are binary values, with positive labels assigned to
sequences if their center 200 bps overlap by at least 50% with an annotated enhancer or promoter.
This task is composed of two sub-tasks: (1) predicting the presence of promoters and (2) predicting
the presence of enhancers.
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3.4 CHROMATIN FEATURE IDENTIFICATION

Biological Relevance Chromatin features (histone marks and DNA accessibility) are crucial for
understanding gene regulation, as these features indicate chromatin state and are essential for tran-
scription activation (Zhou et al., 2018b).

Task Definition This task is a multi-label binary classification problem constructed following Zhou
and Troyanskaya (2015), where sequences were sampled from the human genome as inputs and
outputs correspond to binary labels for different chromatin profiles. The task contains two sub-tasks:
one for predicting histone marks and another for predicting chromatin accessibility. For histone
marks, each of the 20 binary values represents a different histone mark in a specific cell type. For
DNA accessibility, each of the 20 binary values corresponds to a different tissue/cell type. A value
is labeled as positive if the center 200 bps of the input sequence overlaps by at least 50% with a
peak region measured by ChIP-seq (histone marks) or DNase-seq (DNA accessibility) obtained from
ENCODE and the Roadmap Epigenomics consortium (Bernstein et al., 2010; The ENCODE Project
Consortium, 2020).

3.5 IMPROVED EVALUATION WITH FULL FINE-TUNING

To evaluate DNA LMs we perform fine-tuning, i.e., we train a model in a supervised manner on a
downstream task. Our fine-tuning strategy involves extracting embeddings from each model which
are then input to a task-specific prediction head (see Section D for details). In previous benchmarks,
authors fine-tuned models by freezing the embeddings (Marin et al., 2023). We perform a systematic
study of fine-tuning strategies and discover that this strategy significantly hurts DNA LM performance.
We therefore provide a recipe for full-parameter fine-tuning and show that it significantly improves
performance across many tasks, enabling us to evaluate models more fairly than in previous works
and setting new best-practices for DNA LMs (independent of our benchmark).

3.6 ADDITIONAL NOVEL FEATURES OF THE LRB

In addition to our careful curation of tasks and improved fine-tuning, we highlight two more novel
aspects.

Visualization Tool We provide benchmark users with a visualization tool in the form of an interactive
jupyter (Kluyver et al., 2016) notebook. To create this tool, we collected genomic annotation
datasets from SCREEN, GENCODE, RepeatMasker (Harrow et al., 2012; Smit et al., 2015; The
ENCODE Project Consortium, 2020) and aligned them to our benchmark task datasets; see Sec-
tion B.5 for details and screenshots. Our tool enables a deeper level of analysis compared to what
other benchmarks afford. For example, users can view models’ performance in aggregate, by specific
annotations, and also by distance to TSSs.

Arbitrary Sequence Length Our benchmark allows users to download arbitrary sequence lengths
for any given tasks. This enables the probing of the effect of sequence length and lets users evaluate
their LMs on the same context size on which they performed pre-training.

3.7 SELECTED BASELINES

To contextualize the performance of DNA LMs, we curate a set of task-specific expert methods that
are comprised of well-regarded supervised models.

Combined annotation dependent depletion (CADD) (Schubach et al., 2024) is a SVM developed
for detecting deleterious DNA variants. We use this method as an expert baseline for our zero-shot
variant effect prediction tasks.

GPN-MSA Benegas et al. (2023a) present an alignment-based DNA LM for variant effect prediction
based on the RoFormer (Su et al., 2021) architecture. In addition to the standard input DNA sequence,
a Multiple Sequence Alignment (MSA), an alignment of similar sequences from multiple species, is
used as an input. This alignment is computed from 89 vertebrates and is always unmasked, giving
the model access to evolutionary information for a given input sequence. The auxiliary alignment
information and strong performance on zero-shot prediction render GPN-MSA a useful comparison
against sequence-based LMs.
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Figure 1: Results split by genomic annotations.

Enformer (Avsec et al., 2021a) is composed of both convolutional and transformer layers and trained
in a supervised manner on various biological tasks using a context length of up to 196k bps. We use
Enformer as the expert method for fine-tuning versions of variant effect prediction, gene expression
prediction, and regulatory element detection tasks.

DeepSEA (Zhou et al., 2018b) is a convolutional network trained to predict chromatin profile data,
such as transcription factor binding, histone marks, and DNA accessibility. As our chromatin feature
tasks are derived from DeepSEA, we use it as the expert method for these tasks.

4 RESULTS

4.1 EXPERIMENTAL SETUP

We evaluate several prominent DNA LMs on our benchmark: the Nucleotide Transformer v2 (NTv2)
series (Dalla-Torre et al., 2023), a context length extended version of NTv2 (NTv2-Ext) (see Section C)
DNABERT-1 (Ji et al., 2021), DNABERT-2 (Zhou et al., 2023), the HyenaDNA series (Nguyen
et al., 2023), Evo2 (Brixi et al., 2025), and Caduceus (Schiff et al., 2024) representing a range of
pre-training datasets and objectives, architectures, and model sizes. For fine-tuning, we use an MLP
as the prediction head and train both the DNA LM and MLP weights (see Section D for full details).

For classification tasks with highly imbalanced labels (see Table 2), we use area un-
der precision-recall curve (AUPRC) as opposed to receiver operator curve (AUROC).

Fine-tuning Models are trained us-
ing either mean-squared error loss
for regression tasks or cross-entropy
loss for classification tasks. For
each task, we perform five-fold cross- Path. Bulk

Table 5: Difference in performance by fine-tuning strategy.
Results correspond to fine-tuning NTv2 50M on a selection
of the benchmark tasks.

validation (CV) using different ran- ClinVar RNA I()X(l’g;’;g
dom seeds, where we create different (AUROC) (R?)

train / validation splits, select the best-  Head Only  0.69 £0.003  0.44 £0.008  0.73 £0.001
performing model using early stop-  Peft 0.70 £0.002  0.47 £0.002  0.74 £0.001

ping on validation loss, and evaluate ~ Full FT 0.75 £0.001  0.54 £0.001  0.76 £0.003
it on the held-out test set. We report
the mean = standard deviation perfor-
mance across folds as final metrics.

Zero-Shot Prediction We also evaluate the zero-shot performance on our three variant effect
prediction tasks to account for the fact that determining the pathogenicity or causality of variants is
difficult, which often results in smaller datasets not suitable for fine-tuning. To establish error bars
for our zero-shot tasks, we bootstrapped the data N = 1000 times and report the mean and standard
deviation of the metrics over all iterations. Given the extreme class imbalance in the Pathogenic
OMIM dataset, we only perform zero-shot evaluation for this task.
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4.2 MAIN DNA LM RESULTS

In Tables 3 and 4, we present the top performing DNA LMs (full results in Section E).

Variant Effect Prediction For zero-shot evaluation, we observe that DNA LMs are outperformed
by the CADD and GPN-MSA baselines on all variant effect prediction tasks. Additionally, for
zero-shot Causal eQTL, we find that all models struggle, with near-random performance. Predicting
pathogenicity, is the clearest example where DNA LMs except for Evo2 fall short of CADD and
GPN-MSA, which have nearly 2x better performance in ClinVar and about 100x in OMIM compared
to non Evo2 models. Even then, Evo2 still lags behind these baselines on the configuration we were
able to evaluate and is generally very computationally expensive to use. When fine-tuning, we find
that DNA LM performance on both variant tasks greatly improves, matching or surpassing the strong
Enformer baseline. Importantly, the alignment-based GPN-MSA model, despite using short context
inputs (128 bps), outperforms CADD and all single-sequence DNA LMs, highlighting the importance
of capturing conservation in predicting pathogenic variant effects. For DNA LMs to be useful for
these tasks, they must also find a way to model and learn evolutionary pressures and conservation.

Gene Expression Prediction While NTv2 is the best performing DNA LM for Bulk RNA and
CAGE tasks, the baseline Enformer outperforms LMs by a wide margin.

Regulatory Element Detection DNA LMs are able to accurately predict the presence of regulatory
elements, especially considering the class-imbalance present in promoter detection, with NTv2
performing best among DNA LMs. However, there remains a gap to the Enformer model.

Chromatin Feature Identification For both histone mark and DNA accessibility, NTv2 is signifi-
cantly better performance than the other DNA LMs, and even exceeds the supervised baseline on the
former task.

4.3 ANALYZING RESULTS BY GENOMIC ANNOTATIONS

We developed an analysis and visualization tool to examine models performance across different
genomic properties and annotations. Using our tool we are able to perform deeper analyses and
extract insights about the performance of each model, which are inaccessible to users of existing
benchmarks. We detail some examples in Figure 1.

Causal eQTL Prediction (Fine-tune) By stratifying SNPs into protein-coding and non-coding
regions in Figure 1a, we find a potential failure mode for both DNA LMs and supervised models.
Non-coding variants presumably entail regulatory and possibly longer-range interactions, and all
models perform worse in these regions.

Bulk RNA Expression Prediction In Figure 1b,
we see that the performance of DNA LMs and 0.80

Enformer drops precipitously when focusing on e
non-5’ regions that likely entail longer-range : - NTv2 500M
interactions. However, we also observe that the 070 7 NTv2 500 - Extended
context-extended NTv2 outperforms Enformer g
on this region, implying that the majority of the =
performance gap between DNA LMs and the 0.60
Enformer baseline lies in modeling variants in

/ i <10k 10-100k >100k
the 5 regions. Distance to TSS

Enhancer Detection In Figure Ic, we observe

that most models, including Enformer, suffer Figure 2: Fine-tuned Causal eQTL variant task; by
a performance hit when identifying enhancers distance to nearest TSS.

within simple repeats, likely due to the difficulty

of detecting enhancers in repetitive regions.

4.4 EFFECT OF FINE-TUNING METHODOLOGY

In Table 5, we demonstrate the importance of our proposed fine-tuning. For NTv2 (see additional
results in Section E.4), we show how full fine-tuning, as opposed to freezing LM weights and only
training a prediction head, a common practice in existing benchmarks such as BEND (Marin et al.,
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2023), drastically improves model performance. Furthermore, we show the difference between
full-finetuning and parameter-efficient finetuning such as (IA)? (Liu et al., 2022). We believe our
methodology is more in line with how practitioners would use DNA LMs in real-world settings, but
we also show that the choice of fine-tuning methodology can in itself result in significant differences
between model performance.

4.5 IMPORTANCE OF CONTEXT LENGTH

To verify our hypothesis that the long-

range tasks in our benchmark bene-
Bulk RNA R by Input Sequence Length fit from larger context sizes we fine-
tune the Enformer baseline (287M)
and other DNA LM models (Hyena
(TM), NTv2 (50M, 500M), and Ca-
0701 Model duceus (8M) for various input se-
E quence lengths. In Figure 3 we find

~ 0657 —& NTv2 (500M) X
« Cad_131k (8M) that on the Bulk RNA task, the in-
0.60 —$~ Hyena-160k (TM) N .
=% eomer2e7) | pUt sequence length is a major compo-
0531 nent driving model performance, with
050 the Enformer baseline having signif-

] B g e e * icantly worse performance at small
e - (1k) input lengths (R? = 0.67) com-

Sequence Length (bps) pared to longer (65k) input lengths
(R? = 0.83). Additionally, while

. . 2 . most DNA LMs saw an increase in
Figure 3: Performance (R“) on the Bulk RNA prediction performance with increasing context

task for varying input sequence lengths. NTv2 models ran length, all of the assayed DNA LMs
out of memory at 16k bps. ;

are considerably worse than the En-
former baseline on all context lengths,
even the larger NTv2 S00M model. Even at small context lengths, there is a considerable performance
gap between DNA LMs and existing methods, and this gap seems to become more apparent as the
context lengths grows, highlighting opportunities for further development of DNA LMs.

In addition, in Figure 2 we conduct some further analysis on the causal eQTL and group the variants
by the distance to their closest annotated TSS. We observe an inverse relationship between this
distance and the performance on those variants, and that the longer context models retain their
performance at the furthest bin. This likely further indicates that this task captures ‘long-range*
interactions.

5 DISCUSSION AND CONCLUSION

In this work, we introduced the Human Genomics LRB. Our benchmark is the first to truly evaluate
long-range capabilities. We provided initial results for several prominent DNA LMs, with more
in-depth analysis than previous benchmarks explored. Our results demonstrate the importance of
fully fine-tuning models. Additionally, we identify several domains where a large performance gap
needs to be bridged before DNA LMs can be reliably used and some failure modes of DNA LMs.
Namely, zero-shot DNA LM variant effect prediction is not yet mature enough to replace widely-used
tools, such as CADD or alignment-based models like GPN-MSA. Similarly, for gene expression
prediction, DNA LMs lag far behind supervised methods. These results demonstrate that future DNA
LM efforts should focus on the more difficult tasks that entail long-range interactions, and we hope
that our benchmark spurs such development.

Future Work One potential limitation of our work is the lack of hyperparameter search for fine-
tuning; a more extensive search would better differentiate models. Additionally, very large models,
such as Evo2, were only evaluated on zero-shot tasks due to high computational cost of running these
models. In future iterations of our benchmark, we also plan to add more tissue-specific analyses,
bp-level annotation tasks, and tasks covering multiple species.
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A EXTENDED BACKGROUND

A.1 TERMINOLOGY

The genome is a sequence of four nucleotides (Adenine, Cytosine, Thymine, and Guanine) organized
into a double-stranded helical structure called deoxyribonucleic acid (DNA). This structure encodes
the information required for the development, maintenance, and function of cells. Genetic information
flows from DNA to messenger ribonucleic acid (mMRNA) by a process called transcription, and mRNA
is used as a blueprint to create proteins via a process called translation. Proteins are responsible for
initiating and sustaining the cellular processes, while DNA encodes the information necessary for
their production.

The genome is organized into functional elements, including coding and non-coding regions. Coding
regions comprise genes responsible for protein synthesis, while non-coding regions can play vital
regulatory roles. Promoters, a type of regulatory region, are situated close to genes and serve as sites
for transcription initiation. Enhancers, another regulatory element located farther from genes, modu-
late gene expression by recruiting transcription factors, a type of protein that regulates transcription.
Notably, a single gene can be regulated by multiple promoters and enhancers simultaneously.

DNA does not exist solely as a linear molecule but is instead tightly packaged around histone proteins,
forming a sphere of wound DNA called nucleosomes. These nucleosomes further assemble into
chromatin, which constitutes the 23 pairs of chromosomes in humans. Chromatin can exist in an open
(euchromatin) or closed (heterochromatin) state, influencing the ability of the underlying DNA to be
transcribed. Chemical modifications to histones play significant roles in chromatin remodeling acting
as signals that recruit proteins to either condense the chromatin structure (making it less accessible)
or relax it (making it more accessible), thereby influencing gene activity.

Mutations in the genome, including single nucleotide polymorphisms (SNPs), insertions, and deletions,
can alter DNA sequences, potentially disrupting functional genomic elements or affecting the structure
and function of proteins. Understanding the impact of these sequence variations on disease remains
a central challenge in biology. Such mutations can lead to genetic disorders or contribute to the
development of complex diseases.

A.2 RECENT DNA LMs

DNABERT Arguably the first DNA LM, DNABERT proposed in Ji et al. (2021) applies the BERT
architecture from Devlin et al. (2018), with a few modifications, to genomic sequences. The authors
train on the human genome and use k-mer tokens generated with sliding windows. Input sequences
were 512 tokens, and the model was trained using the MLLM objective, but with the restriction that
masking was performed for contiguous tokens within a sequence. The downstream tasks focused on
genome annotation, with promoter, transcription factor binding sites, and splice site classification. Of
note, although DNABERT was pre-trained on human genome, it was fine-tuned on mouse downstream
tasks as well, yielding competitive performance relative to supervised learning baselines.

Nucleotide Transformer Following the success of model scaling in other domains, Dalla-Torre
et al. (2023) explore scaling DNA foundation models in introducing the Nucleotide Transformer.
They explore various model sizes — ranging from 500 million parameters to 2.5 billion, in their first
generation release, and 50 million to 500 million parameters in their subsequent version 2 — and
various pre-training data setups, including human reference genome, 3,000 diverse human genomes,
and 850 multi-species reference genomes. They utilize non-overlapping 6-mer tokenization and a
BERT-style architecture trained with an MLM objective. Other notable differences between the first
and second version is that in version 2 input context size was scaled from 1,000 tokens to 2,000 and
positional embeddings used in version 1 were learned whereas version 2 used rotary embeddings (Su
et al., 2021), which have been shown to better extend to longer contexts. This work also introduced
the Nucleotide Transformer suite of tasks, described in more detail below.

DNABERT-2 Building on the initial success of DNABERT, Zhou et al. (2023) present a model
trained on multi-species genomes: 135 species, across 7 categories. They also change tokenization
to byte-pair-encoding (Kudo and Richardson, 2018; Sennrich et al., 2015), with a vocabulary size
of 4,096, arguing that overlapping k-mer tokenization makes the MLLM task ‘too easy’ by leaking
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information across tokens and that non-overlapping k-mer tokenization suffers from the drawback that
minor changes to the input sequence, e.g., removing the first character, lead to drastically different
tokenization outputs. They use input sequence lengths of 128 tokens. Additionally, Zhou et al.
(2023) replace the learned positional embeddings from DNABERT with ALiBi (Press et al., 2022).
DNABERT-2 was evaluated on a suite of downstream tasks introduced in Zhou et al. (2023) known
as the Genome Understanding Evaluation (GUE).

DNABERT-S DNABERT-S then further builds upon DNABERT-2 to generate richer DNA embed-
dings for uses in meta genomics. For DNABERT-S, Zhou et al. (2024) takes a trained DNABERT-2
model and they train it with a contrastive learning objective with a novel strategy with a new training
dataset: 2 million paired DNA sequences from fungi, viruses, and bacteria. Additionally, their
constrative learning approach involves a new strategy: Curriculum Contrastive Learning (C2LR) that
defines a training curriculum for the model and makes use of a new training objective: Manifold
Instance Mixup (MI-Mix). Zhou et al. (2024) use this MI-Mix objective in addition to the the
SimCLR contrastive loss objective for different phases of their training (Chen et al., 2020).

HyenaDNA In contrast to the other language models reviewed above, the HyenaDNA model
from Nguyen et al. (2023) is a next token prediction, uni-directional model. Using character-level
tokenization and the Hyena layers (Poli et al., 2023) as a backbone, Nguyen et al. (2023) also propose
a training recipe for scaling input context sizes up to 1 million bps. To evaluate their model they
use a combination of downstream tasks, including the suite of tasks from Nucleotide Transformer
(Dalla-Torre et al., 2023), a set of mouse and human genome annotation tasks presented in GreSova
et al. (2023), the chromatin profiling tasks from DeepSea (Zhou and Troyanskaya, 2015), and a
species classification task, where the model takes in sequences of various species and needs to output
the correct species label.

Evo2 Evo (Nguyen et al., 2024) and it’s successor Evo2 (Brixi et al., 2025) share a similar architec-
ture to Hyena named StripedHyena, which is a hybrid between grouped attention layers and standard
Hyena layers. These models also use character-level tokenization and are trained using next token
prediction. Similar to Hyena, these models were extended to up to 1 Million base-pair inputs. The
main difference between these two models is the dataset, as Evol was trained mainly on prokaryote
sequences while Evo2 contained sequences from many diverse species, including various plants,
vertebrates, and bacteria. Both models contain configurations of 7 billion parmaters, with Evo2 also
releasing a 40B parameter variant.

In this work we only evaluate Evo2 due to our focus on human benchmarks, and we additionally only
perform zero-shot evaluation due to the relatively high computational cost of running Evo2.

Caduceus In the recent Mamba work (Gu and Dao, 2023), the authors pre-train various sized
models that use the Mamba backbone on the human reference genome. Similar to HyenaDNA , the
pre-training objective is next token prediction, tokenization is by nucleotide base, and input sequences
are scaled up to 1 million bps. Building off this work, Schiff et al. (2024) introduced Caduceus, a
bi-directional Mamba-based model that contains reverse complement equivariance inductive biases,
demonstrating state-of-the art performance on several tasks, including several Nucleotide Transformer
tasks (Dalla-Torre et al., 2023) and the Genomic Benchmark (Gresova et al., 2023).

GPN-MSA GPN-MSA (Benegas et al., 2023a) is an instance of an alignment-based DNA language
model. Instead of having a single sequence as an input, a Multiple Sequence Alignment (MSA) is
used. This alignment contains the same human DNA sequences as other DNA LMs, but it additionally
contains an MSA containing the sequence information corresponding to the human sequences from
multiple (89) other species. This extra information allows the GPN-MSA model to model the human
sequence conditioned on the evolutionary information provided by the species included in the MSA.
GPN-MSA is based on the RoFormer (Su et al., 2021) architecture with the difference that it flattens
and encodes the provided MSA into the hidden dimension of the embedding. GPN-MSA uses a
single-nucleotide tokneizer and is trained with a context size of 128 bps.

GPN-MSA also has many notable differences from the remaining DNA LMs regarding training since
GPN-MSA is trained on a curated subset of the human genome. Briefly, phastCONS (Siepel et al.,
2005) is used to tag each nucleotide with a conservation probability, then the genome is subdivided
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into windows and the 5% windows that are predicted to be the most highly conserved are selected for
training, along with 0.1% of the remaining windows and a reverse complement of all the windows.
GPN-MSA is then trained in a manner similar to the other MLM models, 15% of the human input
sequences are masked and a weighted cross entropy loss is used for the reconstructed tokens. The
weights for the Cross Entropy Loss attempt to downweight repetitive regions and upweight conserved
regions, with the weights for each nucleotide being determined based on calling repeat regions and
the phlyoP and phastCONS score (Siepel et al., 2005; Pollard et al., 2010) for that nucleotide.

Variant effect prediction takes the same form as for the other MLM models, except that GPN-MSA
additionally takes as input the MSA for 89 other species at that location as well. Notably, the input
MSA to GPN-MSA is never masked.

GPN-MSA shows very strong performance on variant effect prediction tasks, where having access
to explicity evolutionary information in the form of an MSA proves a significant advantage. In
theory, any sufficiently large DNA LM trained on the same species that GPN-MSA inclucedes in it’s
MSA should be able to match the performance of GPN-MSA (at least in the VEP tasks), providing a
concrete target that existing DNA LMs should be aiming towards. The addition of an MSA does not
solve all problems though, as GPN-MSAs performance lags behind in the reamining tasks, likely
due to a combination of a relatively short context window and the decreased importance of modeling
conservation of tasks like Bulk RNA that also require learning information apart from the sequence
(such as the relationship between regulatory elements and tissues).

Other DNA LMs While the models above represent those that we initially validate on our bench-
mark, the field of DNA LMs is growing at a rapid pace and consists of several notable works that we
briefly describe below.

While not developed specifically as a DNA LM, the BigBird architecture proposed in Zaheer et al.
(2020) was applied to genomic sequences to demonstrate its usefulness in long context tasks. Using
sparse attention to reduce computational complexity of transformer (Vaswani et al., 2017) blocks from
quadratic to linear, BigBird is able to effectively scale up to longer contexts. In Fishman et al. (2023),
the authors present a family of foundation models, GENA-LM, aimed specifically at modeling longer
DNA sequences. Pre-training with an MLM objective on human and multi-species genomes, they use
BPE with a vocabulary size of 32,000. The backbone architectures are either BERT (Devlin et al.,
2018) or BigBird (Zaheer et al., 2020), allowing them to extend input lengths up to 36k bps.

Focusing on plant genomes, Benegas et al. (2023b) pre-train a MLM model on unaligned reference
genomes of the Arabidopsis thaliana species and seven related species within the Brassicales order.
Using character-level tokenization they use input lengths of 512 bps with dilated convolutions to
create their GPN model. With 25 layers, despite the relatively short training sequences, GPN can
theoretically extend to sequence inputs of millions of bps.

A.3 EXISTING DNA LANGUAGE MODEL BENCHMARKS

Existing benchmarks vary in several aspects, including the species considered, the specific tasks of
interest, the framing of these tasks, and the evaluation methodologies employed. These proposed
benchmarks include the Nucleotide Transformer Benchmark (Dalla-Torre et al., 2023), Genomic
Benchmarks (GreSovi et al., 2023), Genome Understanding Evaluation (GUE, (Zhou et al., 2023)),
and Benchmarking DNA Language Models on Biologically Meaningful Tasks (BEND; Marin et al.
(2023)).

Existing DNA benchmarks are primarily composed of classification tasks for sequence-wise predic-
tions, ranging from cis-regulatory elements and splice sites to chromatin features and variant effects.
These benchmarks not only compile and build datasets but also carry out evaluations of DNA LMs
using both fine-tuning methods, where pre-trained models are trained in a supervised manner on the
downstream tasks, and zero-shot prediction, where models are evaluated in their pre-trained state
without additional fine-tuning.

Nucleotide Transformer Benchmark Dalla-Torre et al. (2023) compile a set of 18 distinct genomic
datasets framed as sequence-wise classification tasks. These tasks included 10 datasets related to
epigenetic mark prediction in yeast genomes, three tasks predicting the presence of promoters in
mouse and human genomes, two tasks predicting enhancer presence and activity levels in the human
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genome, and three tasks predicting splice sites in multiple diverse species. Sequence lengths in this
benchmark ranged from 200 to 600 bps. Additionally, the authors evaluated a set of DNA LMs and
a supervised genomic model, Enformer (Avsec et al., 2021a), by fine-tuning these models on their
benchmark using a robust 10-fold cross-validation protocol. Parameter-efficient fine-tuning methods
with a classification head were used for Enformer, DNABERT, and NT models, while full fine-tuning
with a classification head was applied to the HyenaDNA models. Limitations of this benchmark
include the focus on short-range contexts, the inclusion of synthetic sequences as negative examples,
and limited supervised baselines.

Genomic Benchmarks Genomic Benchmarks (Gresova et al., 2023) is a collection of datasets
for genomic sequence classification, composed of existing datasets and novel ones scraped from
publicly available databases. The benchmark includes nine tasks focusing on regulatory element
prediction, such as promoters, enhancers, and open chromatin regions. These tasks cover human,
mouse, roundworm, and fly genomes, with average sequence lengths ranging from 200 to 2,370 bps.
The authors also provide code to train simple convolutional network that can be used as a baseline.
Similar to the Nucleotide Transformer benchmark, this benchmark focuses on short-range tasks, does
not present a robust set of baselines, and contains potentially less impactful tasks, e.g., distinguishing
between human and worm genomic sequences.

Genomic Understanding Evaluation (GUE) The authors of the DNABERT-2 (Zhou et al., 2023)
introduced the Genomic Understanding Evaluation (GUE) benchmark, which is divided into two
groups by sequence length: GUE and GUE+. This benchmark comprises seven classification
tasks, such as cis-regulatory element prediction and species classification, built from 28 datasets
from multiple species. The inclusion of multiple species allows for the assessment of DNA LMs’
generalizability. The tasks are curated to be appropriately challenging, including measures such as
class balancing, adversarial sample inclusion, and reduction of training sample volume. GUE features
sequence lengths ranging from 70 to 1k bps, while GUE+ includes sequence lengths from 5k to 10k
bps. GUE evaluated DNABERT 1 and 2, NT, and HyenaDNA models on their benchmark. HyenaDNA
models are fully fine-tuned while DNABERT and NT models are fine-tuned using parameter efficient
methods. The GUE benchmark results are limited since they do not cover a robust set of baselines
but rather only present the simple supervised convolutional network from the Genomic Benchamark
(GreSova et al., 2023). Additionally, only binary or multi-class sequence-wise classification tasks are
considered and tasks of biological importance, such as variant effect prediction and gene expression
are not included.

Benchmarking DNA LLMs on Biologically Meaningful Tasks (BEND) BEND (Marin et al.,
2023) is a recently proposed benchmark focused on compiling tasks that capture the complexity
and intricacies of real-world genomic analysis. The authors collected seven different datasets,
all from the human genome, covering gene finding, enhancer annotation, chromatin accessibility,
histone modification, CpG methylation, and two types of variant effect prediction. Unlike previous
benchmarks that focused solely on sequence-wise classification tasks, BEND also includes the task
“Gene finding", which tests nucleotide-resolution modeling. In five out of seven tasks the input length
is 512 bps, as these tasks are considered short-range. “Gene finding" task use sequences up to 14k bps.
Their “Enhancer annotation" task uses 100k bp sequences, but it only contains 285 input sequences.
Notably, for tasks in BEND that overlap with our benchmark (such as variant effect prediction),
BEND uses a fixed context length of 512 bp, thus not evaluating the importance of extended context
and variant-gene distal interactions on this type of task. Therefore, this benchmark is mostly limited
to short-range tasks and does not include gene expression, an important and challenging task in
genomics. This benchmark however makes progress in including a broader set of supervised methods
as baselines. Unlike our work, models are only evaluated using partial fine-tuning, where backbone
DNA LM weights are frozen for downstream task training.

GenBench The GenBench suite (Liu et al., 2024) is composed of 43 different datasets split between
“short” and “long” range tasks, where long-range tasks are defined by having a sequence length
of greater than 1000 base pairs. The tasks in GenBench, spanning multiple species, are primarily
binary, sequence-level classification tasks but also include multi-class classification and regression
tasks. The authors evaluate six different genomic language models covering both attention and
convolution-based architectures. While GenBench provides a comprehensive evaluation, it lacks
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critical tasks like variant effect prediction in non-coding regions and zero-shot evaluations. It also
omits comparisons to long-context models like Enformer and is limited in its evaluation of long-range
tasks, with the longest sequence length capped at 30,000 base pairs.

BEACON The BEACON benchmark (Ren et al., 2024) introduces the first unified evaluation
framework for RNA modeling, encompassing 13 tasks across structural analysis, functional studies,
and engineering applications. It evaluates 29 models, ranging from pre-trained RNA language models
to naive supervised models, and examines the influence of tokenization strategies and positional
embeddings on performance. While BEACON is a valuable resource for assessing RNA-focused
models, its scope is distinct from genomic benchmarks, as it targets RNA-specific tasks rather than
genomic applications like regulatory element prediction, variant effect prediction, or gene expression
prediction.

B ADDITIONAL DETAILS ABOUT GENOMIC LONG RANGE BENCHMARK

We note that our datasets do not contain any personally identifiable information or offensive content.

Table 6 provides details describing the evaluation method used, dataset sizes, metric, and data sources.
Additional details on task specific data curation and processing are described in the following
subsections.

Table 6: Additional information for Genomic LRB tasks, including number of samples in train and
test splits, metric, and data source.

Task Eval Test split Metric Data Source
Variant Effect Prediction
Causal eQTL Fine-tune & Zero-shot ~ Chromosome 9, 10 AUROC GTEX (via Avsec et al. (2021b))
Pathogenic OMIM Zero-shot - AUPRC OMIM, gnomAD (via Benegas et al. (2023a))
Pathogenic ClinVar Fine-tune & Zero-shot Chromosome 8 AUROC ClinVar, gnomAD (via Benegas et al. (2023a))
Gene Expression Prediction
Bulk RNA Expression Fine-tune Chromosome 8 R? GTEx, FANTOMS (via Zhou et al. (2018a))
CAGE Fine-tune Cluster then Random R? FANTOMS (via Kelley (2020))
Regulatory Element Detection
Promoter Fine-tune Chromosome 8, 9 AUPRC SCREEN
Enhancer Fine-tune Chromosome 8,9 AUROC SCREEN
Chromatin Feature Identification
Histone Marks Fine-tune Chromosome 8, 9 AUPRC  ENCODE, Roadmap Epigenomics (via Zhou and Troyanskaya (2015))
DNA Accessibility Fine-tune Chromosome 8, 9 AUPRC ENCODE, Roadmap Epigenomics (via Zhou and Troyanskaya (2015))

B.1 VARIANT EFFECT PREDICTION

B.1.1 CAUSAL EQTL

Data Processing Processed data in the form of vc £ files for positive and negative variants across
49 different tissue types were obtained from Avsec et al. (2021a). Fine-mapped GTEx (Consortium,
2020) eQTLs originate from Wang et al. (2021), while the negative matched set of variants comes
from Avsec et al. (2021a). The statistical fine-mapping tool SuSiE (Wang et al., 2020) was used to
label variants. Variants from the fine-mapped eQTL set were selected and given positive labels if their
posterior inclusion probability was > 0.9, as assigned by SuSiE. Variants from the matched negative
set were given negative labels if their posterior inclusion probability was < 0.01. DNA sequences
were obtained from the human reference genome assembly GRCh38 (Schneider et al., 2017).

B.1.2 PATHOGENIC OMIM

Data Processing Processed data was obtained from Benegas et al. (2023a) in the form of parquet
files with columns for SNP location, reference and alternative alleles, and pathogenicity label. Positive
labeled data originates from a curated set of pathogenic variants located in the Online Mendelian
Inheritance in Man (OMIM) (Smedley et al., 2016) catalog. The negative set is comprised of variants
that are defined as common from gnomAD (Chen et al., 2022). gnomAD version 3.1.2 was
downloaded and filtered to variants with allele number of at least 25,000. Common variants were
defined as those with minor allele frequency (MAF) > 5%. The input sequences were constructed
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by selecting the appropriate genomic region from the human reference genome assembly GRCh38
(Schneider et al., 2017) and applying the changes specified by the given variants.

B.1.3 PATHOGENIC CLINVAR

Data Processing Processed data was obtained from Benegas et al. (2023a) in the form of parquet
files with columns for SNP location, reference and alternative alleles, and pathogenicity label. Positive
labels correspond to pathogenic variants originating from ClinVar (Landrum et al., 2020) whose
review status was described as having at least a single submitted record with a classification but
without assertion criteria. The negative set are variants that are defined as common from gnomAD
(Chen et al., 2022). gnomAD version 3.1 .2 was downloaded and filtered to variants with allele
number of at least 25,000. Common variants were defined as those with MAF > 5%. Sequences
were obtained from the human reference genome assembly GRCh38 (Schneider et al., 2017).

Short-Range The ClinVar dataset is mostly variants in coding regions, and since most human protein
sequences have less than 1,000 amino acids predicting the impact of coding variants should require
orders of magnitude smaller context windows than non-coding variants. Therefore, we consider this
task as potentially short-range.

B.2 GENE EXPRESSION PREDICTION

B.2.1 BULK RNA-SEQ

Data Processing Processed data in the form csv files that contained gene TSS locations, strand,
and RNA expression RPKM counts across 218 tissue types was obtained from ExPecto (Zhou
et al., 2018a). Expression data originates from GTEx (Consortium, 2020), while representative TSS
locations were determined in ExPecto. The authors of ExPecto determined representative TSS for
Pol II transcribed genes based on quantification of CAGE reads from the FANTOMS project (Forrest
et al., 2014). The specific procedure they used is as follows, a CAGE peak was associated to a
GENCODE (Harrow et al., 2012) gene if it was withing 1000 bps from a GENCODE v24 annotated
TSS. The most abundant CAGE peak for each gene was then selected as the representative TSS.
When no CAGE peak could be assigned to a gene, the annotated gene start position was used as the
representative TSS. We log(1 + z) normalized then standardized the RNA-seq counts before training
models. Sequences centered around the TSS were obtained from the human reference genome
assembly GRCh37 (Church et al., 2011).

B.2.2 CAP ANALYSIS GENE EXPRESSION (CAGE) PROFILE

Data Processing Processed data was obtained from Basenji2 (Kelley, 2020), where input sequence
locations were collected as bed files and CAGE counts as TensorFlow (Abadi et al., 2015) records.
Original data comes from the FANTOMS project (Forrest et al., 2014). Data was processed to produce
CAGE labels for non-overlapping 128 bp bins within a sequence of 114,688 bps. For each bin, there
are 638 different predictions corresponding to the CAGE count in various cell, tissue, or treatment
types (e.g., fibroblast, heart, or monocytes treated with Salmonella). This resulted in an output
array of 896 bins x 638 tracks for a single sample. DNA sequences were obtained from the human
reference genome assembly GRCh38 (Schneider et al., 2017).

The compute requirements to store and process this data make it more difficult and less accessible to
users. To achieve a balance of user-friendliness while also maintaining a representative view of the
data, we sub-sampled the number of tracks to 50 by using the following guidelines:

1. Only select one cell line.
2. Only keep mock treated and remove other treatments.
3. Only select one donor.
The 50 specific tracks which were selected can be found in Table 7 below. This maintains the number

of sequences in the entire dataset but reduces the number of labels for each sequence from 638 to 50
thus reducing storage requirements from ~84GB to ~7GB.
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Table 7: The 50 CAGE tracks sub-sampled for the Genomic LRB from the original 638 tracks.

Track Index Description

CAGE:adipose tissue, adult, pooll
CAGE-:bladder, adult, pooll
CAGE:brain, adult, pooll
CAGE:cervix, adult, pooll
CAGE:colon, adult, pooll
CAGE:esophagus, adult, pooll
CAGE:heart, adult, pooll
CAGE:kidney, adult, pooll
CAGE:liver, adult, pooll
CAGE:lung, adult, pooll
CAGE:ovary, adult, pooll
CAGE:placenta, adult, pooll
CAGE:prostate, adult, pooll
CAGE:skeletal muscle, adult, pooll
CAGE:small intestine, adult, pooll
CAGE:spleen, adult, pooll
CAGE:testis, adult, pooll
CAGE:thymus, adult, pooll
CAGE:thyroid, adult, pooll
CAGE:trachea, adult, pooll
CAGE:retina, adult, pooll
CAGE:temporal lobe, adult, pooll
CAGE:postcentral gyrus, adult, pooll
CAGE:pons, adult, pooll
CAGE:parietal lobe, adult, pool1
CAGE:paracentral gyrus, adult, pooll
CAGE:occipital pole, adult, pooll
CAGE:nucleus accumbens, adult, pooll
CAGE:medulla oblongata, adult, pooll
CAGE:insula, adult, pooll
CAGE:frontal lobe, adult, pooll
CAGE:dura mater, adult,
CAGE:corpus callosum, adult, pooll
CAGE:adenocarcinoma cell line:IM95m
CAGE:breast carcinoma cell line:MCF7
CAGE:diffuse large B-cell lymphoma cell line:CTB-1
CAGE:glioma cell line:GI-1
CAGE:liposarcoma cell line:SW 872
CAGE:Sebocyte,
CAGE:CD4+ T Cells,
CAGE:Natural Killer Cells,
CAGE:Neutrophils,
CAGE-:Pericytes,
CAGE:Alveolar Epithelial Cells,
CAGE:Renal Mesangial Cells,
CAGE:Nucleus Pulposus Cell,
CAGE:Keratocytes,
CAGE:Mesenchymal Stem Cells - adipose,
CAGE:Mammary Epithelial Cell,
CAGE:Osteoblast,

BADDEADNDDARADLWLLOLOLOLLLOLLWLLINNNMNENNML = s
CHX VNNV RO, O AT N RO RS ORI N RO~ R AT N RN —,OPRXRIANRLND—O
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B.3 CIS-REGULATORY ELEMENT DETECTION

Data Processing Original data was sourced from Search Candidate cis-Regulatory Elements v3
(SCREEN) registry by ENCODE (Moore et al., 2020). The data is processed as follows, we break
the human reference genome into 200 bp non-overlapping chunks. If the 200 bp chunk overlaps
by at least 50% or more with a contiguous region from the set of annotated cis-regulatory elements
(promoters or enhancers), we label them as positive, else the chunk is labeled as negative. The
resulting dataset was composed of ~15M negative samples and ~50k positive promoter samples and
~1M positive enhancer samples We randomly sub-sampled the negative set to 1M samples, and kept
all positive samples, to make this dataset more manageable in size. DNA sequences were obtained
from the human reference genome assembly GRCh38 (Schneider et al., 2017).

Short-Range Since this task involves predicting the presence of a regulatory element within a specific
sequence, only local context is believed to be important. The activity of promoters and enhancers in
different cell types is dictated by the presence of binding sites for specific proteins (Andersson and
Sandelin, 2020) and thus likely do not require long-distance interactions, as demonstrated by the high
predictive value of models using less than 1k bp input sequences (Avsec et al., 2021b; Kelley et al.,
2016).

B.4 CHROMATIN FEATURE IDENTIFICATION

Data Processing Processed data was obtained from DeepSea (Zhou and Troyanskaya, 2015) in
the form of 1k bp sequences and labels as t xt files. Original chromatin profiling data comes from
ENCODE and Roadmap Epigenomics (Moore et al., 2020; Bernstein et al., 2010). The authors
of DeepSea processed the data by chunking the human genome into 200 bp bins where for each
bin labels were determined for hundreds of different chromatin features. Only bins with at least
one transcription factor binding event were considered for the dataset. If the bin overlapped with
a peak region of the specific chromatin profile by more than half of the sequence, a positive label
was assigned. DNA sequences were obtained from the human reference genome assembly GRCh37
(Church et al., 2011). To make the dataset more accessible, we randomly sub-sampled the chromatin
profiles from 125 to 20 tracks for the histones dataset and from 104 to 20 tracks for the DNase dataset.
The sub-sampled tracks for both datasets can be found in Table 8 and Section B.4.

Short-Range Chromatin features are not expected to be strongly influenced by long-range interac-
tions. Most of the information affecting these chromatin features occurs locally and depends on the
binding of different proteins (Lee and Young, 2013). This is also corroborated by the high predictive
value of models using less than 1k bps input sequences (Kelley et al., 2016; Zhou and Troyanskaya,
2015).
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Table 8: 20 Histone tracks sub sampled for the Genomic LRB from the original 104 tracks with
histone mark and cell type information.

Track Index Histone Mark Cell Type
0 H2BK12ac HI1-hESC
1 H3K4mel NHEK
2 H3K4me2 NH-A
3 H3K9mel K562
4 H4K20mel NHEK
5 H2BK5ac H1-hESC
6 H3K4me3 NH-A
7 H4K8ac H1-hESC
8 H3K4me?2 Monocytes-CD14+R0O01746
9 H3K27me3 Osteoblasts
10 H3K36me3 Monocytes-CD14+R0O01746
11 H3K23me?2 H1-hESC
12 H3K27ac NHLF
13 H3K36me3 NHEK
14 H2BK?20ac H1-hESC
15 H3K9ac NHLF
16 H3K36me3 Osteoblasts
17 H2BK120ac H1-hESC
18 H3K79me?2 K562
19 H3K4mel K562
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Table 9: 20 DNase tracks sub sampled for the Genomic LRB from the original 125 tracks with cell
type and treatment information.

Track Index Treatment Cell Type

0 None SAEC

1 None HRPEpiC

2 None SK-N-MC

3 None RWPE1

4 None Th2

5 None Adult_CD4_ThO
6 None HMEC

7 None NHEK

8 UT189 Urothelia

9 None pHTE

10 None Urothelia

11 None WERI-Rb-1
12 None Huh-7

13 None A549

14 None Thi

15 None HA-h

16 None RPTEC

17 None HMVEC-dBI-Ad
18 None HGF

19 None HMF
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B.5 VISUALIZATION TOOL

The annotations that we join to our task datasets come from the human reference genome assembly
GRCh38 (Schneider et al., 2017). To obtain these annotation we follow the methodology reported
in SegmentNT (de Almeida et al., 2024) for data curation. Annotations include genomic elements,
such as enhancers, exon, intron, 5’ UTR, etc. The location of all gene elements and polyA signals
were obtained from GENCODE (v44) (Harrow et al., 2012) gene annotation. Promoter, enhancer,
and CTCF-bound sites were retrieved from ENCODE’s SCREEN database (The ENCODE Project
Consortium, 2020). Promoters and enhancers were split into tissue-invariant and tissue-specific
annotations, following the tissue-invariant annotations from Meuleman et al. (2020). Briefly, if a
promoter or enhancer overlapped at all with a region annotated as tissue-invariant, that promoter or
enhancer was annotated as tissue-invariant. All other promoters and enhancers were tagged as tissue
specific. Scripts from HISAT?2 (Kim et al., 2019) were used to extract respective intron and splice site
annotations. Annotations of repeat regions were collected from RepeatMasker (Smit et al., 2015).

Annotations were merged into the dataset by aligning chromosome and regions (start / stop position)
of annotations with the genomic locations associated with the compiled tasks in the Genomics LRB.
That is, if the sequence positions in our dataset overlapped with regions in the annotation files, the
sequence was tagged with the corresponding annotation. For example, for variant effect prediction
tasks, the SNP location was used for the merge; for regulatory element detection tasks, the start and
stop positions were used. Specifically, a sample in our dataset was associated with an annotation if
the sample position was both greater than the starting position of the annotation and less than the
ending position of the annotation.

The UCSC liftover browser tool (Hinrichs et al., 2006) was used to convert GRCh38 annotations
to the GRCh37 reference assembly locations to be associated with datasets relying on GRCh37
locations.

With annotations merged into the datasets in our Genomics LRB, we develop a visualization tool that
enables users to ‘slice’ results. Our tool is an interactive jupyter (Kluyver et al., 2016) notebook
that enables toggling different models and has visualizations for aggregate results, results by distance
to nearest TSS / enhancer, and results by annotation. In Figure 4, we provide selected screenshots
from our visualisation tool demonstrating how a user can view results for each task, select different
models, and split by various annotations.

B.6 ARBITRARY SEQUENCE LENGTH

To enable users to download arbitrarily long sequence lengths, samples for each task are stored
either as single positions in the genome (e.g., the SNP location for variant effect prediction or the
TSS for bulk RNA expression) or as start and stop locations for tasks like regulatory element and
chromatin feature prediction. In addition we store the human reference genome assemblies GRCH38
(Schneider et al., 2017) and GRCH37 (Church et al., 2011). The PyFaidx Python package (Shirley
et al., 2015) is used to create an indexed FASTA file object from the reference genomes for fast
random access to any subsequence. With the user’s requested sequence length, we symmetrically
extend sequence locations from our datasets and use these extended indices to extract the underlying
DNA sequence from the indexed reference genomes. If the extended sequence indexes beyond a
chromosome boundary, the sample is not returned.
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Choose task using dropdown and (re-)run cells below

task_dropdown = widgets.Dropdown(
options=TASKS,

BArYEFE

(
ES [task_dropdown.value]), index_col=@, low_memory=False

with pd. Jent_downcasting®, True):
| = results_df_w_annotations|'labels'].replace({'Pathogenic': 0, 'Common': 1}).infer_objects(copy=False)

(a) Screenshot of the visualization tool showing the ability to select different
tasks from the Genomics LRB.
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(b) Screenshot of the visualization tool showing the ability to select different
models for comparison.
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(c) Screenshot of the visualization tool showing the ability to select different
annotations by which to split results.

Figure 4: Sample screenshots from our interactive visualization tool.

C CONTEXT LENGTH EXTENSION

Motivated by the long-range sequences present in the LRB, we explore methods for extending the
context size of existing models. To that end, we focus on the Nucleotide Transformer model (NTv2;
Dalla-Torre et al. (2023)), which originally has a context size of 12k bp and uses rotary positional
embeddings (RoPE; Su et al. (2021)). However, processing longer sequences with LMs like NTv2,
which use the transformer architecture (Vaswani et al., 2017), faces two main challenges. First,
transformers rely on the attention mechanism, which scales quadratically in sequence length. Second,
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LMs struggle with generalizing to sequence lengths beyond those seen during pre-training, known
as length extrapolation (Anil et al., 2022; Dubois et al., 2019; Kazemnejad et al., 2023; Press et al.,
2021).

Methodology To address the compute constraints, we use a memory-efficient attention implementa-
tion, computing attention scores sequentially and in chunks of v/L, reducing memory usage from
O(L?) to O(V/L), where L denotes sequence length (Rabe and Staats, 2021). To solve the length
generalization issue, we apply the ‘NTK-aware’ method presented in Peng et al. (2023). This method
re-scales the frequencies in RoPE embeddings to handle longer sequences by converting length
extrapolation into interpolation.

Rotary Embeddings In attention-based modules, such as those used in transformer models
(Vaswani et al., 2017), for a sequence of length L, the model takes embeddings in {x}f:17 x; € RY,
where d is the dimension of the embeddings, and computes query, key, and value vectors at every
m!™ and n*" position in the sequence:

am = f q (Xma m)

k, = fk (Xnv n)

Vi = fv(xna ’fl)
fq» fi, fv are query, key, and value transformations, respectively. For rotary embeddings (RoPE (Su
et al., 2021)), we can think of R? as equivalent to the complex field C%/? and define fqand fj, as:

fq(Xm, m) = eim@qum
fk (Xvu n) = einewkxna

where W, and W, are linear transformations and © = diag (61, ..., 04/2) is a diagonal matrix, with
0; = b=/ and b = 10000.

RoPE Position Interpolation In the concurrent works of Chen et al. (2023) and kaiokendev (2023),
the method of position interpolation was introduced, whereby longer sequences of length L' > L are
accommodated by simply rescaling the position input to f, and f, e.g., fq(Xm, m%)

NTK-aware RoPE Interpolation An alternative interpolation scheme, attributed to bloc97 (2023),
is motivated by the hypothesis that position interpolation may lead to the loss of high frequency
information. The approach that purportedly resolves this issue is related to the theory of Neural
Tangent Kernels (NTK) by means of an analogy between RoPE and Fourier Features (Tancik et al.,
2020), and is thus named “NTK-aware” interpolation. This scheme is characterized by a rescaling
applied not to the position but rather to the basis of rotation, as follows:

In the experiments on context extension presented in the main text, we adopt this interpolation
scheme.

We note that the authors in Peng et al. (2023) further tweak and build on NTK-aware interpolation to
create their proposed interpolation scheme, which they title YaRN. However, the full YaRN approach,
as presented in Peng et al. (2023) requires several manually tuned hyperparameters, which were
carefully selected for the decoder-only generative Llama-2 7 billion parameter model (Touvron et al.,
2023a;b). We therefore adopted the simpler NTK-aware approach in our experiments.

Efficient Long-Range Context Extension To mitigate the computational and memory costs of
scaling to larger contexts, we follow the algorithm presented in Rabe and Staats (2021). This
algorithm leverages a “lazy softmax” approach where key-value pairs are processed sequentially,
maintaining only two vectors in memory: one for the accumulated weighted values and another for the
cumulative sum of weights. This method significantly reduces memory usage by avoiding the storage
of all pairwise attention scores. To optimize performance on modern hardware accelerators, which
rely on parallelization for efficiency, the implementation processes attention in chunks. Rabe and
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Staats (2021) empirically determined that using a chunk size of v/L strikes a balance between memory
savings and computational overhead. Larger chunks increase memory requirements, while smaller
chunks can lead to excessive re-computation of activations during the backward pass. Additionally,
the implementation is numerically stable and functions as a drop-in replacement for the standard
attention module, making it highly practical for tasks requiring extended context lengths.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 EVALUATED DNA LANGUAGE MODELS

In Table 10, we list the DNA LMs included in the initial evaluation of our benchmark.

Table 10: Overview of Pre-trained DNA LMs evaluated in this study.

Pre-training Data Parameters Architecture Context (bps) Tokenization
NTv2 MLM Multi-Species 50M, 100M, 250M, 500M  Transformer 12k 6-mer
DNABERT-1 MLM Human Reference 88.6M Transformer 512 bps 6-mer
DNABERT-2 MLM Multi-Species 116.6M Transformer 700 (train), up to 10k (eval) ~Byte Pair Encoding
HyenaDNA NTP Human Reference 1.6M, 2.6M, 3.9M,12.9M SSM 1k, 16k, 32k, 160k Single Base Pair
Caduceus MLM Human Reference 7™M SSM 131k Single Base Pair
Evo2 NTP Multi-Species 1B, 7B, 40B Hybrid 8k, IM Single Base Pair
GPN-MSA MLM Human Reference + Multi-Species MSA 86M Transformer 128 Single Base Pair

D.2 ZERO-SHOT EVALUATION

MLM Models For masked DNA LMs, zero-shot scores are computed by masking the variant
position in the sequence, performing inference on the masked sequence, and obtaining the probability
distribution at the variant position. A score is then calculated using the probabilities of the reference
allele token and the alternative allele token. For auto-regressive DNA LMs, no masking is required
due to their unidirectional nature. Instead, a forward pass is done with the reference sequence, and
the probability distribution is extracted from the token immediately preceding the variant position.
For Alignment Models, the human sequence is treated in the same way as the other masked DNA
LMs, but the auxiliary MSA is left entirely unmasked. Scores are computed as the log probability
ratio for the reference (ref) and alternative (alt) allele tokens:

]Dref )

variant effect score = log (
P, alt

Auto-regressive Models For auto-regressive models like Evo2, we follow the same variant scoring
approach as in the original Evo2 work (Brixi et al., 2025). Briefly, instead of obtaining the probability
distribution at the variant position as in MLM models, we compute the "psuedo log likelihood" (pLL)
of the entire sequence centered around the variant of interest. Given an input sequence x of length L
(x e {A,T,C, T}L) with reference nucleotide z¢ or alternate nucleotide x, at position idx, the
variant score is calculated as:

score = PLLy; — PLLet

idz—1 L

PLLer = Y log P(wi|2g:-1) +108 P(@ret|2oida—1) + Y 108 P(2;|0:idr -1, Tret: Tida41:5-1)
i=0 j=idaz+1
idx—1 L

PLLy = Z log P(xi|zo:i—1) + log P(ai|To:ide—1) + Z log P(x|20:idz—1, Talts Tida+1:5—1)
i=0 j=ida+1

Here x;.; denotes the sub sequence of x starting at index ¢ and ending at index j (inclusive). In
practice, the Evo2 code base takes the mean PLL for a sequence instead of the sum, dividing the
final variant effect score by % Additionally, Evo2 defines their score as the reciprocal of the ratio
used in MLM models. We follow both of these conventions when re-implementing their scoring
methodology in this work.

Details about additional processing required for zero-shot prediction are given below.
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D.2.1 CAUSAL EQTL

The original dataset used for this tasks contains tissue information for each sequence. Given that
zero-shot evaluate cannot account for tissue, we process variants appearing across multiple tissue
types as follows: first, we find variants appearing in multiple tissues and determining a consensus
label for a given variant across tissues using a 70% majority class agreement threshold. Variants
appearing across multiple tissues whose majority class agreement was below this threshold were
dropped. When computing metrics we only count variants appearing across tissues once.

D.2.2 PATHOGENIC-OMIM

Due to computational considerations and given that this data set totals ~2.3M examples, we only
considered a subset of the common variants for carrying out zero-shot prediction. Specifically, we
sub-sampled 200k common variants and kept all 406 original pathogenic variants.

D.3 FINE-TUNING EVALUATION

To fine-tune models on our benchmark tasks, we first extracted model embeddings, in the case of
DNA LMs this involves extracting the output of the last layer before the LM head, and in the case
of Enformer, this involves extracting the model embeddings before the final supervised prediction
head. Model embeddings were then processed in a task specific manner and subsequently fed into
a task specific MLP, both of which are outlined below. We note that for Enformer, since it is a
model that was originally trained in a multi-task supervised fashion and not intended to be fine-tuned,
embeddings were frozen and only the prediction head was trained.

D.3.1 CAUSAL EQTL

Embedding Extraction We extract model embeddings for both the reference and alternative se-
quences and average embeddings across a window of size 1536 bps symmetrically around the SNP
position. The mean embeddings for the reference and alternative are concatenated. Tissue information
is converted to one-hot and additionally concatenated to the reference-alternative embedding vector.

MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is
equal to two times the base model’s embedding dimension. The MLP is composed of one linear
layer with size 2 x embedding dimension, a softplus activation, another linear layer with size
2 x embedding dimension, a softplus activation, and a final linear layer for binary prediction.

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,
learning rate = le=5, ADAM (Kingma and Ba, 2014) optimizer with $;= 0.9, 82 = 0.999, and
€ = le™8, trained for 1 epoch on the task’s training dataset. Validation is carried out every 70
parameter update steps.

D.3.2 PATHOGENIC CLINVAR

Embedding Extraction We extract model embeddings for both the reference and alternative se-
quences and take a window mean of size 1536 bps symmetrically around the SNP position. The mean
embeddings for the reference and alternative are concatenated together.

MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is equal
to two times the base model’s embedding dimension. The MLP is composed of one linear layer with
size 2 x embedding dimension, a softplus activation, and a final linear layer for binary prediction.

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,
learning rate = le~>, ADAM optimizer with 8; = 0.9, 83 = 0.999, and € = le~8, trained for 3 epochs
on the task’s training dataset. Validation is carried out every 40 parameter update steps.

D.3.3 BULK RNA EXPRESSION

Embedding Extraction We extract model embeddings for the input sequence and take perform mean
pooling on a window centered on the TSS with 383 bps before the TSS and 256 bp after.
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MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is equal
to two times the base model’s embedding dimension. The MLP is composed of one linear layer
with size 2 x embedding dimension, a softplus activation, and a final linear layer for predicting 218
regression values.

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,
learning rate = 3e~% ADAM optimizer with 1= 0.9, f2 =0.999, and € = 1e~8 trained for 3 epochs
on the task’s training dataset. Validation is carried out every 50 parameter update steps.

D.3.4 CAGE PREDICTION

Embedding Extraction Base model embeddings were extracted and fed into the task MLP predictor.

MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is equal
to two times the base model’s embedding dimension. The MLP is composed of one linear layer
with size 2 X embedding dimension, a softplus activation, and a final linear layer for predicting 50
regression values.

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,
learning rate = 3e~% adam optimizer with 51=0.9, 52 = 0.999, and € = 1e~8 trained for 1 epoch of
the training dataset. Validation is carried out every 50 parameter update steps.

D.3.5 REGULATORY ELEMENTS

Due to computational considerations, we only fine-tuned models on a randomly sampled 100k subset
of the full ~1-2M samples in the training set . Models were evaluated on the full test dataset.

Embedding Extraction Given that the task is defined on predicting the presence of a regulatory
element in the center 200 bp of the sequence, we extract a central window of 200 bps from the
sequence of embeddings and perform mean pooling. This mean embedding is then passed as input to
the MLP predictor head.

MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is equal
to two times the base model’s embedding dimension. The MLP is composed of one linear layer with
size 2 x embedding dimension, a softplus activation, and a final linear layer for predicting binary
values.

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,
learning rate = 3e~% ADAM optimizer with 51=0.9, B3 =0.999, and ¢ = 1e~8 trained for 1 epoch of
the sampled training dataset for each task. Validation is carried out every 30 parameter update steps.

D.3.6 CHROMATIN FEATURES

Due to computational considerations, we only fine-tuned models on a randomly sampled 100k subset
from the full ~2M sample training set. Models were evaluated on the full test dataset.

Embedding Extraction Given that the task is defined on predicting the presence of a chromatin
feature in the center 200 bp of the sequence, we extract a central window of 200 bps from the
sequence of embeddings and perform mean pooling. This mean embedding is then passed as input to
the MLP predictor head.

MLP Head MLP hidden dimensions are sized in an adaptive way such the hidden state size is equal
to two times the base model’s embedding dimension. The MLP is composed of one linear layer with
size 2 x embedding dimension, a softplus activation, and a final linear layer for predicting the 20
binary labels.

Hyperparameters The parameters used to fine-tune models on this task include batch size = 64,
learning rate = 3e~% adam optimizer with 81= 0.9, £ =0.999, and € = 1e8 trained for 1 epoch of
the training dataset. Validation is carried out every 30 parameter update steps.
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D.4 FINE-TUNING ABLATION DETAILS

For the fine-tuning ablation study, we compared training only the task MLP with DNA LM embed-
dings frozen against training all DNA LM weights in conjunction with the task MLP. All training
setup details regarding embedding extraction and hyperparameters were kept constant except for
learning rate which was adjusted to account for training larger networks when full fine-tuning. The
following learning rates for each task were used in the MLP only training:

* Variant effect prediction tasks: le™*
* Bulk RNA: 2.5¢~*

» CAGE: 2¢~*

* Regulatory elements: 2.5¢ %

o Chromatin features: 2.5e 4.

D.5 CONTEXT EXTENSION IMPLEMENTATION DETAILS

To conduct context length extension of NTv2, we first used the 50M model due to computation
considerations. We started with the pre-trained NTv2 50M checkpoint from Dalla-Torre et al. (2023),
pre-trained on 12k bp sequences, and extended the context length by factors of two to 24k, 48k,
and 96k bps using a second stage of masked language modeling on a multi-species dataset from
Dalla-Torre et al. (2023). After proving out this methodology for the 50M model, we conducted
context length extension for the 500M model at 96k bps.

Hyperparameters For the SOM NTv2 model we use the following hyperparameters: batch size =
1M tokens, full precision training, masking ratio = 0.15, masking probability = 0.8, random token
probability = 0.1. The ADAM optimizer with weight decay regularization was used with weight
decay = 0.01, 81 = 0.9, B2 = 0.999, € = 1e~8, a modified square decay learning rate schedule, with
initial learning rate of 6e~° and end learning rate of 8¢~ with 1000 warm up steps. Training was
conducted over ~5 billion tokens totalling ~5k parameter update steps.

All hyperparameters were kept constant for the NTv2 500M model, however due to limited memory
resources, mixed precision training was used.

D.6 SUPERVISED TRAINING BASELINES DETAILS

Convolutional Neural Network The CNN architecture is comprised of eight 1D convolutional
blocks that use a filter size of 5 and padding that keeps input sequence length unchanged and hidden
dimension of 512. Each convolution block is composed of a convolutional layer followed by the
GeLU non-linearity (Hendrycks and Gimpel, 2016) and a layer norm. After each convolutional block
we also apply a fully-connected layer with GeLU non-linearity and another layer norm. Each block
also contains a residual connection. This architecture is derived from the one used in Benegas et al.
(2023b), but without dilation. The model consists of 12M parameters. The baseline model was
trained with base-pair level tokenization and an input context size of 2,048 tokens.

Caduceus We also train an eight layer Caduceus (Schiff et al., 2024) model with hidden dimension
of 256. We use the reverse complement equivariant version of this architecture (Caduceus-PS). The
model consists of 3.3M parameters. The baseline model was trained with base-pair level tokenization
and an input context size of 2,048 tokens.

E ADDITIONAL RESULTS

E.1 FuLL DNA LM SERIES EVALUATIONS

In Tables 11 and 12 we display results for the full set of models evaluated on our benchmark.

DNABERT-2 and DNABERT-S were not fine-tuned on the CAGE task due to the incompatibility
between the byte pair tokenization this model employs and binned labels used in this task. Addi-
tionally, given that DNABERT-S is trained on a contrastive learning objective and not a language
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Table 11: Benchmarking performance of DNA LMs and baselines on variant effect prediction tasks.
Models were evaluated in both fine-tuning and zero-shot settings. *Extended NTv2 500 M was
fine-tuned with 60k bp sequences due to compute constraints. ** Caduceus 131k results omitted from
the main table due to being a work in progress.

Model Name Context Causal eQTL Pathogenic ClinVar Pathogenic OMIM
(bp) (AUROC) (AUROC) (AUPRC)
Fine-tune  Zero-shot Fine-tune  Zero-shot Zero-shot
DNABERT 1 512 0.72 £ 0.003 0.51 0.67 £0.037 0.50 0.002
DNABERT 2 10k 0.72 £ 0.008 0.50 0.74 £0.013 0.50 0.002
DNABERT S 10k 0.73 £0.008 - 0.73 £0.011 - -
NTv2 50M 12k 0.72 £ 0.005 0.51 0.75 £0.008 0.53 0.002
NTv2 100M 12k 0.73 £0.003 0.51 0.76 £ 0.009 0.56 0.002
NTv2 250M 12k 0.72 £ 0.003 0.51 0.78 £0.013 0.58 0.002
NTv2 500M 12k 0.72 £ 0.003 0.51 0.78 +£0.009 0.68 0.003
HyenaDNA 1K 1k 0.71 £ 0.005 0.51 0.63 £0.027 0.49 0.002
HyenaDNA 16K 16k 0.71 £ 0.005 0.51 0.66 £0.016 0.49 0.002
HyenaDNA 32K 32k 0.72 £0.002 0.51 0.66 +0.012 0.50 0.002
HyenaDNA 160K 160k 0.71 £0.010 0.51 0.56 £0.073 0.49 0.002
Caduceus 131K** 131k 0.68 0.49 0.72 0.53 0.001
Extended NTv2 50M 24K 24k 0.72 £ 0.004 0.51 0.75 £0.009 0.53 0.002
Extended NTv2 50M 48K 48k 0.73 £0.008 0.51 0.65 £ 0.059 0.52 0.002
Extended NTv2 50M 96K 96k 0.73 £ 0.006 0.51 0.74 £0.019 0.51 0.002
Extended NTv2 500M 96K* 96k 0.74 £ 0.004 0.51 0.75 £0.018 0.53 0.002
GPN-MSA 128 0.70 £ 0.008 0.55 0.97 £0.01 0.97 0.35
CNN 2k 0.71 £0.003 - 0.58 £0.020 - -
Caduceus (from scratch) 2k 0.71 £0.003 - 0.61 £0.017 - -
Baseline 0.76 £ 0.002 0.56 0.65 £ 0.031 0.97 0.205
(Enformer) (CADD) (Enformer) (CADD) (CADD)

modeling objective, we cannot obtain a probability distriubtion over the tokens that we require to
compute zero-shot performance.

Additionally, GPN-MSA was not evaluated on the Bulk RNA, Histone Marks, and DNA Accessiblity
tasks. These tasks were processed using the hg19 human genome assembly, and GPN-MSA uses
a MSA that aligns to the hg38 human genome assembly. The differences in sequence location
and composition between hg19 and hg38 means that applying GPN-MSA to these hg19 requires
additional considerations and likely training to do properly. We therefore omit evaluation on these
tasks.

E.2 STATISTICAL SIGNIFICANCE TESTING

To more rigorously asses the perceived gains for each task, we conduct hypothesis testing across all
the tasks and models to identify statistically significant differences. For every task, we conduct a
Welch’s t-Test between each model and every other model. We control for the FDR for the multiple
tests by applying Benjamini-Hochberg correction. In Tables 13 - 20 we present the p-values for the
models evaluated in the main text on all tasks, rounded to the nearest 1e 3. For example, this allows
the identification of the Enformer baseline having significantly better performance than any of the
DNA LMs.

E.3 COMPUTATIONAL EFFICIENCY

In Table 21, we show the number of parameters for each model, and the FLOPs on an A100 80GB
device with batch size 1 for each task category.

E.4 ADDITIONAL FINE-TUNING ABLATION

In Table 22, we display results for the the full NTv2 series and additional HyenaDNA models. We
find that the same pattern discussed in Section 4.4 holds for this larger set of models as well. Namely,
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Table 12: Benchmarking performance of DNA LMs and baselines on gene expression prediction,
regulatory element, and chromatin features prediction tasks. Models were evaluated in only a fine-
tuned setting for this set of tasks. DNABERT-2 was not fine-tuned on the CAGE task due to the
incompatibility of the byte pair tokenization with binned labels. GPN-MSA was not fine-tuned on the
Bulk RNA, Histone Marks, or DNA Accessibility tasks due to incompatiblities between the genome
assembly versions used for the MSA. ** Caduceus 131k results are omitted from the main table due
to being limited to an input length of 4k due to computational constraints.

Histone DNA

Context Bulk RNA CAGE Promoter Enhancer Marks Accessibility

(bp) (R?) (R?) (AUPRC)  (AUROC)  \ippe) (AUPRC)

Fine-tune Fine-tune Fine-tune Fine-tune Fine-tune Fine-tune
DNABERT-1 512 0.47 £0.007 0.14+0.025 0.72+0.009 0.80+0.005 0.23+0.003 0.18 +0.006
DNABERT-2 10k 0.51 £0.050 - 0.71£0.112 0.81 £0.022 0.24+0.091  0.15 £ 0.064
DNABERT-S 10k 0.52 £ 0.060 - 0.75£0.021 0.83 £0.005 0.33 +0.006 0.16 £ 0.039
NTv2 50M 12k 0.52+0.074 0.35+0.030 0.75+0.008 0.78 +£0.041 0.34+0.007 0.18 +£0.005
NTv2 100M 12k 0.52 +0.081 0.3+0.030 0.78+0.008 0.82+0.010 0.34+0.007 0.22+0.012
NTv2 250M 12k 0.57 £0.024  0.37 £0.008 0.8 £0.008 0.84 £0.002 0.37+0.013  0.28 £ 0.006

NTv2 500M 12k 0.60 £0.038  0.39+0.011 0.79+0.006 0.82+0.002 0.38 +0.003 0.3 £0.007
HyenaDNA 1K 1k 0.44 £0.014 0.11£0.015 0.7 £0.006 0.80+0.002 0.21£0.001  0.13 £0.003
HyenaDNA 16K 16k 0.46 £0.008 0.17+0.014 0.64+0.004 0.75+0.002 0.22+0.002 0.091 +0.003
HyenaDNA 32K 32k 0.41+0.012 0.22+0.007 0.56+0.008 0.73+0.001 0.22+0.003 0.084 +0.001
HyenaDNA 160K 160k 0.46 £0.006 0.19+0.032 0.67+0.009 0.74+0.009 0.25+0.004 0.11 £0.002
Caduceus 131K** 131k 0.53£0.008 0.163 £0.006 0.76+0.009 0.81+£0.006 0.10+0.009 0.07 +0.006
Extended NTv2 50M 24K 24k 0.53+0.063 0.37+0.010 0.75+0.007 0.83+£0.002 0.35+0.007 0.19 £0.006
ExtendedNTv2 50M 48K 48k 0.54+0.038 0.36+0.012 0.76+0.008 0.82+0.002 0.35+0.007 0.19 +0.006

Extended NTv2 50M 96K 96k 0.54+0.034  0.3+0.019 0.76 £0.015 0.83 £0.001 0.35+0.005 0.19 +0.007
Extended NTv2 500M 96K 96k 0.56+0.037 0.36+£0.011 0.78 £0.003 0.82+0.005 0.38 +0.004 0.3 +0.006

GPN-MSA 128 - 0.09 £0.012 0.73 £0.015 0.79 +0.005 - -
CNN 2k 0.42 £0.013 0.15 £0.008 0.70 £0.002 0.78 £0.004 0.09 £ 0.007 0.07 £0.003
Caduceus (from scratch) 2k 0.48 £0.048 0.10+£0.026 0.71 £0.002 0.82+0.012 0.09+0.012 0.07 £0.003

. 0.83+0.005 0.49+0.000 0.86+0.006 0.92+0.002 0.35 0.44
Baseline

(Enformer) (Enformer) (Enformer)  (Enformer)  (DeepSea) (DeepSea)

Table 13: Welch’s t-test p-values for causual eQTL task with Benjamini-Hochberg FDR correction.

DNABERT-2 DNABERT-S NTv2 NTv2-ext HyenaDNA-160k GPN-MSA

DNABERT-S 0.095 - - - - -
NTv2 1.000 0.043 - - - -
NTv2-ext 0.002 0.048  0.000 - - -
HyenaDNA-160k 0.125 0.012 0.080 0.0 - -
GPN-MSA 0.006 0.000 0.002 0.0 0.125 -
Enformer 0.000 0.000 0.000 0.0 0.000 0.0

full fine-tuning almost uniformly improves model performance relative to partial fine-tuning, by
margins that can range up to > 100%. Tasks on which DNA LMs already perform competitively, e.g.,
regulatory element annotation, seem to benefit less from full-fine tuning, but even here we do see
gains. In Table 23 we perform a sensitivity analysis analyze the robustness of our fine-tuning setup to
multiple hyperparameter settings, namely for learning rate and batch size. Our analysis shows that

Table 14: Welch’s t-test p-values for pathogenic Clinvar task with Benjamini-Hochberg FDR correc-
tion.

DNABERT-2 DNABERT-S NTv2 NTv2-ext HyenaDNA-160k GPN-MSA

DNABERT-S 0.237 - - - - -
NTv2 0.000 0.000 - - - -
NTv2-ext 0.343 0.074  0.012 - - -
HyenaDNA-160k 0.001 0.001  0.000 0.0 - -
GPN-MSA 0.000 0.000  0.002 0.0 0.000 -
Enformer 0.000 0.001  0.000 0.0 0.041 0.0
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Table 15: Welch’s t-test p-values for pathogenic Bulk RNA task with Benjamini-Hochberg FDR

correction.
DNABERT-2 DNABERT-S NTv2 NTv2-ext HyenaDNA-160k
DNABERT-S 0.782 - - - -
NTv2 0.024 0.060 - - -
NTv2-ext 0.138 0.257 0.015 - -
HyenaDNA-160k 0.077 0.077  0.000 0.0 -
Enformer 0.000 0.000 0.000 0.0 0.000

Table 16: Welch’s t-test p-values for the CAGE task with Benjamini-Hochberg FDR correction.

NTv2 NTv2-ext

HyenaDNA-160k GPN-MSA

NTv2 - - - -
NTv2-ext 0.003 - - -
HyenaDNA-160k  0.000 0.000 - -
GPN-MSA 0.000 0.000 0.000 -
Enformer 0.000 0.000 0.000 0.000

Table 17: Welch’s t-test p-values for Promoter task with Benjamini-Hochberg FDR correction.

DNABERT-2 DNABERT-S NTv2 NTv2-ext HyenaDNA-160k GPN-MSA
DNABERT-S 0.479 - - - - -
NTv2 0.184 0.005 - - - -
NTv2-ext 0.233 0.020 0.016 - - -
HyenaDNA-160k 0.479 0.000  0.000 0.000 - -
GPN-MSA 0.703 0.159  0.000 0.000 0.000 -
Enformer 0.024 0.000  0.000 0.000 0.000 0.000

Table 18: Welch'’s t-test p-values for Enhancer task with Benjamini-Hochberg FDR correction.

DNABERT-2 DNABERT-S NTv2 NTv2-ext HyenaDNA-160k GPN-MSA
DNABERT-S 0.968 - - - - -
NTv2 0.969 0.005 - - - -
NTv2-ext 0.968 0.020  1.000 - - -
HyenaDNA-160k 0.652 0.000 0.000 0.000 - -
GPN-MSA 0.968 0.000  0.000 0.000 0.000 -
Enformer 0.414 0.000 0.000 0.000 0.000 0.000

Table 19: Welch’s t-test p-values for the DNA Accessibility task with Benjamini-Hochberg FDR

correction.

DNABERT-2 DNABERT-S NTv2 NTv2-ext

DNABERT-S
NTv2

NTv2-ext
HyenaDNA-160k

0.859 - - -
0.002 0.000 - -
0.002 0.000 1.000 -
0.250 0.030 0.000 0.000

Table 20: Welch'’s t-test p-values for Histone task with Benjamini-Hochberg FDR correction.

DNABERT-2 DNABERT-S NTv2 NTv2-ext

DNABERT-S
NTv2

NTv2-ext
HyenaDNA-160k

0.106 - - -
0.019 0.000 - -
0.019 0.000 1.000 -
1.000 0.000 0.000 0.000

36



Under review as a conference paper at ICLR 2026

Table 21: Model sizes and FLOPs used per task type.

Hyena 1k Hyena 16k Hyena 32k Hyena 160k DNABERT-1 DNABERT-2 NTv250M NTv2 100M NTv2250M NTv2 500M

Tasks

(0.6M) (1.6M) (3.9M) (12.9M) (88.6M) (116.6M) (50M) (100M) (250M) (500M)
Variant Effect 0.45B 4.62B 38.84B 420.12B 2.27B 31.37B 18.89B 34.60B 38.92B 93.12B
Gene Expression 0.27B 2.80B 23.65B 256.84B 1.11B 17.16B 9.44B 17.29B 19.45B 46.81B
Regulatory Element 0.27B 2.80B 23.65B 256.84B 1.10B 17.16B 9.44B 17.29B 19.45B 46.80B
Chromatin Features 0.27B 2.80B 23.65B 256.84B 1.10B 17.16B 9.44B 17.29B 19.45B 46.80B

while most results are quite insensitive to hyperparameter choice (with swings £ 0.02 on the metric
of interest), users should avoid combinations of higher learning rates (3e-5) and smaller batch sizes
(32).

Table 22: Ablation study examining the difference in performance of DNA LM fine-tuning strategies.
Results shown correspond to the percent increase in performance of full fine-tuning with respect to
freezing LM weights and only training the MLP head.

Pathogenic  Bulk Histone DNA
leg?glggg L ClinVar RNA C%(Z}E P;Z‘;%%r l(‘]:ll};gcgr Marks Accessibility
( ) auvroc) (g B ) ) (AUCPRC)  (AUPRC)

NTv2 50M +1.13 +9.30 +30.23  +71.60 +1.93 -2.05 +32.03 +33.43
NTv2 100M +0.98 +6.24 +13.70  +27.72 +2.16 +2.83 +32.70 +40.54
NTv2 250M +0.36 +3.57 +21.70  +40.41 +2.07 +3.71 +31.01 +54.44
NTv2 500M +0.49 +4.27 +24.45  +42.14 -1.45 +0.90 +22.46 +47.96
HyenaDNA 1K +0.95 +15.39 +16.50  +45.22 +7.13 +4.68 +23.61 +22.65
HyenaDNA 16K +0.21 +22.81 +75.53  +133.52 +6.19 -1.10 +42.83 -9.62
HyenaDNA 32K +0.35 +11.58 +82.46 +102.91 -18.21 -6.02 +14.43 -22.67

Table 23: Fine-Tuning sensitivity analysis on LR and Batch size for Causal eQTL and Bulk RNA

tasks.

Model LR  Batch size C(a;;zgRe gg;L BUI(le;)NA

NTv2 500M le™® 32 0.723 £0.006 0.597 +0.050
NTv2 500M le™? 64 0.722 £0.003 0.588 +0.048
NTv2 500M le™® 128 0.718 £ 0.010 0.596 +0.015
NTv2 500M 3e~5 32 0.717 £0.006 0.580 = 0.079
NTv2 500M 3e~ 5 64 0.717 £0.007 0.566 +0.016
NTv2 500M 3e~5 128 0.721 £0.006 0.585 +0.047
DNABERT 2 le® 32 0.726 £ 0.005 0.483 +0.135
DNABERT 2 le=5 64 0.719 £0.008 0.503 = 0.068
DNABERT 2 le® 128 0.725 £0.002 0.484 +0.085
DNABERT 2 3e~° 32 0.687 £0.067 0.480 = 0.063
DNABERT 2 3e~® 64 0.713 £0.016  0.507 +0.050
DNABERT 2 3e~ " 128 0.720 £0.005 0.501 +0.055
Hyena DNA 160K  1e™® 32 0.703 £0.016 0.459 +0.010
Hyena DNA 160K 1e™® 64 0.708 £0.010  0.450 = 0.006
Hyena DNA 160K  1e™® 128 0.708 £0.012 0.439+0.016
Hyena DNA 160K 3e~° 32 0.701 £0.006 0.456 +0.018
Hyena DNA 160K  3e~° 64 0.699 +0.010 0.457 +0.006
Hyena DNA 160K 3e~° 128 0.696 £0.011 0.445 +0.020

E.5 ADDITIONAL RESULTS BY GENOMIC ANNOTATIONS

In Figure 5, we display additional results from splitting the tasks by genomic annotations.

Enhancer Detection We find that DNA LMs have increased performance at identifying enhancers
in some repetitive elements, such as LINE1 transposons, as shown in Figure 5a. LINE1 elements are
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commonly interspersed along the human genome, and individual LINE1 elements may have uncertain
regulatory effects, but DNA LMs appear to be able to call enhancers in LINE1 elements better than
in non-LINE]1 regions. However, their performance still lags that of the Enformer baseline.

Zero-shot Pathogenic-ClinVar In Figure 5b, we observe that most models exhibit increased
performance within splice site acceptor regions, with the exception of Enformer, although Enformer
demonstrates high performance in both splits.

Em In LINE1 In Splice Acceptor
1.0 mmm Notin LINE1 94 o 1.0 mmm Not in Splice Acceptor .94.96
.86
.83
0.8 S 0.8
3 3
z 0.6 z 0.6
=) )
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(a) Enhancer detection; split by enhancers located (b) Zero-shot Pathogenic ClinVar prediction; by splice
within a LINE1 (transposon) annotation. site acceptor annotation.

Figure 5: Additional results split by genomic annotations.

E.6 ADDITIONAL RESULTS FOR EXPERIMENTALLY VERIFIED GENE-PAIRINGS

While the annotations for candidate cis-regulatory elements from SCREEN are reasonable, they
nevertheless may include sequences that do not exhibit regulatory activity or ones that only exhibit
regulatory activity in specific tissues. As a sanity check, we utilize experimentally verified gene-
pairing data for enhancers data from 3D-Chromatin datasets from SCREEN v4. These datasets show
allow us to subset our dataset to only use positive labels where we have some sort of experimental
signal. Results on this subset are available in Table 24. When using only this experimentally verified
subset, the rankings and relative performance of models remain largely unchanged, suggesting that
the current form of this dataset is likely still useful for evaluating the relative performance of models
at calling regulatory elements.

Original Values (Table 4) 3D chromatin Verified Enhancers

DNABERT 2 0.80 £ 0.022 0.83 £ 0.002
NTv2 500M 0.82 £ 0.002 0.86 + 0.002
HyenaDNA 160k 0.74 £ 0.009 0.77 £ 0.002
Enformer 0.92 £ 0.001 0.95 £ 0.001

Table 24: Enhancer task update results.

F ASSETS

In Table 25, we list the open source libraries and repositories used in this work, with their correspond-
ing licenses.
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Table 25: Open source libraries (and corresponding licenses) used in this work.

Library License

Biopython (Cock et al., 2009) Biopython license

Haiku (Hennigan et al., 2020) Apache 2.0

HuggingFace (Wolf et al., 2019) Apache 2.0

Jax (Bradbury et al., 2018) Apache 2.0

Jupyter (Kluyver et al., 2016) BSD 3-Clause

NumPy (Harris et al., 2020) NumPy license

Matplotlib (Hunter, 2007) Matplotlib license

Pandas (The pandas development team, 2020)  BSD 3-Clause “New" or “Revised"
Optax (DeepMind et al., 2020) Apache 2.0

PyFaidx (Shirley et al., 2015) BSD-3-Clause

PyTorch (Paszke et al., 2019) BSD-3 Clause

Scikit-Learn (Pedregosa et al., 2011) BSD 3-Clause

Seaborn (Waskom, 2021) BSD 3-Clause “New" or “Revised"
TensorFlow (Abadi et al., 2015) Apache 2.0

G COMPUTATIONAL RESOURCES

All research in this study was conducted using Cloud TPU’s provided by Google’s TPU Research
Cloud program. Specifically, a TPU-v4-64 slice was used for all context length extension pre-training.
Single TPU-v4 machines were used in parallel to conduct all benchmarking and evaluations including
fine-tuning, zero-shot, and inference experiments.

IMPACT STATEMENT

As our work introduces a benchmark, we do not believe it poses any inherent negative societal
impacts. In fact, our work will hopefully create a positive impact by accelerating the development of
useful DNA LMs that can bring about a deeper understanding of biology.
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