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ABSTRACT

Slow and costly communication is often the main bottleneck in distributed opti-
mization, especially in federated learning where it occurs over wireless networks.
We introduce BiColLoR, a communication-efficient optimization algorithm that
combines two widely used and effective strategies: local training, which increases
computation between communication rounds, and compression, which encodes
high-dimensional vectors into short bitstreams. While these mechanisms have
been combined before, compression has typically been applied only to uplink
(client-to-server) communication, leaving the downlink (server-to-client) side un-
addressed. In practice, however, both directions are costly. We propose BiColLoR,
the first algorithm to combine local training with bidirectional compression using
arbitrary unbiased compressors. this joint design achieves accelerated complexity
guarantees in both convex and strongly convex heterogeneous settings. Empiri-
cally, BiCoLoR outperforms existing algorithms and establishes a new standard in
communication efficiency.

1 INTRODUCTION

Distributed computing has become pervasive across scientific disciplines. A prominent example
is Federated Learning (FL), which enables collaborative training of machine learning models in a
distributed manner (Konecny et al., 2016aib; [McMahan et al., 2017; Bonawitz et al., | 2017). This
rapidly growing field leverages data residing on remote devices, such as smartphones or hospital
workstations. While FL must address challenges such as preserving privacy and resisting adversar-
ial threats, communication efficiency is arguably the most critical issue (Kairouz et al. [2021} |Li
et al., 2020a; [Wang et al., 2021)). Unlike centralized data-center setups, FL relies on parallel com-
putation across client devices that must regularly exchange information with a distant central server.
Communications typically occurs over bandwidth-limited and potentially unreliable networks, such
as the internet or mobile networks. Consequently, communication remains the main bottleneck that
hinders the widespread adoption of FL in large-scale consumer applications.

To mitigate communication overhead, two main strategies have gained prominence: (1) Local
Training (LT), which reduces communication frequency by allowing multiple (stochastic) gradient
steps to be performed locally before transmitting updates; and (2) Communication Compression
(CC), where updates are transmitted in a compressed form rather than as full-dimensional vectors.
A review of the literature on LT and CC is presented in Section 2]

It is important to distinguish between uplink communication (UpCom) (clients to server) and
downlink communication (DownCom) (server to clients). UpCom tends to be slower, as clients
must upload distinct messages to the server that needs to decompress each of them, whereas in
DownCom, all clients typically receive the same message simultaneously. Several factors can rein-
force this asymmetry, such as limitations in cache size and aggregation capabilities at the server, as
well as differences in network protocols or service provider configurations across internet or cellular
systems. Many methods have been proposed that use compression for UpCom only, considering that
DownCom is cheap and can be neglected. This is of course not realistic, and in practical settings
both ways are costly. That is why we focus in this work on Bidirectional Compression (BiCC),
applied to both downlink and uplink communication.



We measure the total communication (TotalCom) cost, in number of bits, as a weighted sum of
the UpCom and DownCom costs:

TotalCom = UpCom + «.DownCom, (D

for some parameter « > 0, typically in (0, 1]. The case aw = 1 corresponds to the symmetric regime
in which UpCom and DownCom are equally costly, while o = 0 corresponds to ignoring DownCom
completely, which is not realistic. We focus in this work in settings where « is not negligible, so that
downlink compression is required. The model (T)) has been proposed in[Condat et al| (20224} [2023),
but counting the number of reals, not bits. Since real numbers are represented with finite precision
(typically 32-bit floats), and quantization cannot reduce this size beyond a constant factor, see below,
both measures are proportional. Nevertheless, counting bits provides a more accurate measure.

1.1 UNBIASED COMPRESSION

A common approach to reducing communication complexity in distributed learning is the use of
lossy compression. This involves applying a (potentially randomized) compression operator C :
R? — R to a d-dimensional vector x, such that transmitting C(x), encoded as a short bit stream,
is significantly more efficient than sending the full vector x (note that C(x) itself is the vector after
decoding back to R?). Some compressors are unbiased; that is, E[C(z)] = z, where E[-] denotes
expectation. Others are biased (Beznosikov et al., [2020). A widely used sparsifying compressor
is rand-k, where k € [d] := {1,...,d}. It randomly selects k coordinates of x, scales them
by d/k, and sets the remaining elements to zero. When the receiver knows which indices were
selected—e.g., via a shared pseudo-random generator or by encoding them using a small overhead
of at most k log, d bits—only those k values need to be communicated, achieving a compression
ratio of d/k. Aside sparsification, that reduces the number of reals, quantization is another widely-
used technique that reduces the number of bits needed to represent these reals. For instance, Natural
compression rounds a real number to a power of 2 probabilistically and represents it using 9 bits,
instead of 32 bits for a full-precision float (Horvath et al.| 2022).

To use compressors in iterative algorithms, we need to characterize them. For this, we define, for
every w > 0, the set U(w) of unbiased compressors C : R? — R? with bounded relative variance

w; that is, such that E[HC(m) — :L\ﬂ < w||z||?, for every 2 € R?. Many practical compressors

belong to this class (Beznosikov et al.l [2020; |/Albasyoni et al., | 2020; Horvath et al., |2022; |Condat;
et al.,[2022b). Notably, rand-k € U(£ — 1), and Natural compression belongs to U(%), so that its
compression factor 32/9 is almost free. Composing two compressors in U(w; ) and U(ws) yields a
compressor in U(w) with 1+w = (14w )(1+ws2) (Condat & Richtarik} 2022). For instance rand-
1 + Natural compression compresses a vector into 9(+ log, d) bits, with w = %d — 1. Importantly,

there are lower bounds on the achievable compression level, and to compress vectors of R into b
bits, we have w™! < 4%4 — 1, so that b(1 + w) = Q(d) (Safaryan et al., 2022; |Albasyoni et al.,
2020) (He et al., |2023b, Proposition 1).

Moreover, given a collection (C;)?_; of compression operators in U(w) for w > 0, to characterize
the relative variance after averaging their outputs, we introduce the constant w,, > 0 such that

n 2

E

Way o
<N, )
=1

n

for every (z;)%; € (R?)". This is not an additional assumption, because () is satisfied with

Wav = w. But w,, can be much smaller than w. In particular, if the C; are mutually independent,

is satisfied with w,, = =.

We introduce BiColLoR, a novel randomized algorithm designed for communication-efficient dis-
tributed optimization. It integrates LT and BiCC with arbitrary compressors in U(w) for UpCom
and U(wy) for DownCom, for any w,ws > 0. Variance reduction with dual variables (Hanzely
& Richtarik} [2019; |Gorbunov et al., 2020; (Gower et al., 2020) ensures convergence to the exact
solution.



1.2  PROBLEM FORMULATION

We consider the server-client model in which n > 1 clients do computations in parallel and com-
municate in both directions with a server. We study distributed optimization problems of the form

min — Zﬁ +2f5(x) + g(x), 3)

z€RI N

where d > 1 is the model dimension, f; : R? — R is the private function of client i € [n] :=
{1,...,n}, fs is the private function of the server, g is a public function that is known by the server
and all clients. We suppose that a solution x* of (3)) exists and we make the following assumptions.

 All functions f;, fs, g are convex and L-smooth, for some L > 0 (¢ is L-smooth if V¢ is
L-Lipschitz continuous: for every z,y, ||[Vo(z) — Vé(y)|| < L|lz — y||. The norm is the
Euclidean norm throughout the paper).
* fi, fs, g are u-strongly convex, for some p > 0 (¢ is p-strongly convex if gi) |- |2 is
convex). j can be zero is the general convex case. If y > 0, the solution x* of ex1sts
and is unique, and we define the condition number x = % > 1.

The problem (3) captures a lot of important problems in machine learning, including empirical risk
minimization (Sra et al.,|2011; Shalev-Shwartz & Ben-David, 2014), and in many other fields. We
aim at solving (3) efficiently in terms of communication, in the general heterogeneous setting; that
is, the functions f;, fs, g can be arbitrarily different, without any similarity assumption. We prove
accelerated communication complexity of BiCoLoR in both strongly convex and general convex
cases.

Thus, in the formulation (E]), the server is an additional (n 4+ 1)-th machine with its own loss function
fs, connected to the n clients in a star-network. The idea of using an auxiliary dataset at the server
representative of the global data distribution has been considered in several works, especially to
correct for discrepancies induced by partial participation (Zhao et al.,[2018;|Yang et al.,|2021;2024).
This is different from our setting, where f, can be very different from the f;. The function g is shared
by all machines, so that Client : makes calls to V f; and Vg, and the server makes calls to V f, and
Vg. g can also be the loss with respect to a small auxiliary dataset shared by all machines, but this
is not necessarily the case. We stress that in the general convex case, fs and g can be zero. In the
strongly convex case, one can choose f; = g = § [||[>. So, the template problem (@) is versatile
and includes the minimization of Z?:l fi as a particular case. The reason why g is introduced in
(@) is that an estimate y of a solution z* is computed by all machines, and every client compresses
the difference between its local model estimate and y. These differences tend to zero, which is key
to obtaining a variance-reduced algorithm converging to a solution x* exactly.

1.3 CHALLENGE AND CONTRIBUTION

This work addresses the following question: Can we combine LT and BiCC into a method that
allows arbitrary unbiased compressors in UpCom and DownCom, provably benefits from the two
techniques by exhibiting a state-of-the-art (SOTA) accelerated TotalCom complexity with nontrivial
compression factors, and outperforms existing methods in practice?

Our new algorithm BiColLoR is the first to answer this complex question in the affirmative. This
achievement overcomes significant challenges. For instance, with a standard application of ran-
dom compression, the downlink and uplink compression errors multiply each other, as discussed in
Section[2.2] In BiCoLoR, they are decoupled and only add up.

2 RELATED WORK

We review existing methods in the strongly convex case (¢ > 0), as the study of the linear conver-
gence rates provides important insights. We use the notation O(-) = O(-loge™ 1), where ¢ > 0 is
the desired accuracy. We refer to Tyurin & Richtarik| (2023) for a discussion of the general convex
case.



2.1 LOCAL TRAINING

Local Training (LT) is a straightforward yet highly effective strategy. Instead of performing just
a single (stochastic) Gradient Descent (GD) step between communication rounds, clients execute
multiple steps locally. The core intuition is that these additional steps allow clients to transmit
more informative updates, thereby reducing the total number of communication rounds required to
achieve a target accuracy. LT is a core component of the popular FedAvg algorithm (McMahan et al.}
2017), which is at the root of the immense success of FL. The idea of reducing the communication
frequency was initially just heuristic, but a great deal of empirical evidence has demonstrated its
practical effectiveness. LT was analyzed first in the homogeneous data regime, or under restrictive
assumptions such as bounded gradient diversity (Haddadpour & Mahdavi, [2019)), then in the more
realistic regime of heterogeneous data (Khaled et al.,|2019; Stich,2019; |Khaled et al., 2020;|Li et al.,
2020b; (Woodworth et al., 2020; |Gorbunov et al., 2021} |Glasgow et al. [2022). The more GD steps
are made locally, the closer the local models get to the minimizers of the local functions f;, which
is not the desired behavior. This effect, called client drift, has been quantified (Malinovsky et al.,
2020). The next class of methods, which includes Scaffold (Karimireddy et al.,|2020), S-Local-GD
(Gorbunov et al.}2021) and FedLin (Mitra et al.,|2021)), implemented variance reduction techniques
to correct for client drift, so that a consensus is reached and every local model converges to the exact
global solution. These methods are not accelerated, however.

More recently, a significant advancement was introduced by Mishchenko et al.|(2022) with Scaffnew,
the first LT algorithm that converges linearly with accelerated TotalCom complexity O(d+/k). In
Scaffnew, communication occurs randomly after each GD step with only a small probability p,
resulting in an average of 1/p local steps between communication rounds. The optimal dependency
V/k (Scaman et al., 2019) is achieved when p = 1//k. Scaffnew has then been extended in several
ways (Malinovsky et al., [2022; [Maranjyan et al., 2022} Condat & Richtarik} 2023 Y1 et al., [ 2025).

2.2 COMPRESSION

A landmark development in the area of distributed algorithms using CC is the variance-reduced al-
gorithm DIANA proposed in 2019 (Mishchenko et al) [2024). It achieves linear convergence with
uplink compressors in U(w) for any w > 0. Its iteration complexity, with communication at every
iteration, is O ((1 4+ £) x + w). So, with independent rand-1 compressors, its UpCom complexity

is O ((1 =+ %) K+ d), which significantly improves over @(dm) of standard GD when the num-
ber of clients n is large. This has highlighted CC as an acceleration mechanism. DIANA has been
extended in various directions, including support for stochastic gradients and partial participation
(Horvath et al., 2022; |Gorbunov et al., 2020;|Condat & Richtarik}[2022). The algorithm ADIANA (L1
et al., [2020c), based on Nesterov’s accelerated GD, has iteration complexity O ((1+ ﬁ) VE+w)
(He et al., 2023b). For methods using independent uplink compressors in U(w), the lower bound
Q((l + ﬁ) \/E + w) on the number of communication rounds has been established, so ADIANA is

optimal in this sense. This translates into the UpCom complexity o ( (1 + %) VE+ d) . Recently, lin-
early convergent algorithms using biased compressors have been proposed, such as EF21 (Richtarik:
et al.| 2021} [Fatkhullin et al.| 2021} |Condat et al.l 2022b)), but the theoretical understanding of these
methods remains less mature and their acceleration potential is not clear.

Bidirectional Compression (BiCC) is more complicated. A standard way to implement it is as fol-
lows: after UpCom, the server forms an updated model by aggregation of the received compressed
vectors from the clients. Then it compresses this model before DownCom to all clients for the next
round. However, by doing so, the degradations due to uplink and then downlink compression pile
up. A bidirectional extension of DIANA has been proposed, as part of the MURANA framework
(Condat & Richtarikl2022), with downlink compressors in U(w) for any ws > 0. Its iteration com-
plexity is O((1+ %) (1 + ws)k + w), as reported in Table|l| We see that the uplink and downlink
variances get multiplied with the (1 + %) (1 + ws) dependence. Other algorithms, such as Artemis
(Philippenko & Dieuleveut, 2020) and DORE (Liu et al.,[2020) have been proposed, with the same
complexity. MCM Philippenko & Dieuleveut| (2021) has the slightly better complexity shown in
Table |1} Recently, EF21-P+DIANA was proposed (Gruntkowska et al., 2023), extending DIANA to
BiCC using error feedback at the server. Its complexity is O ((1 4+ £ + w,) & 4+ w), with better
decoupled complexity depending on the sum 1 + * + wy of the variances instead of their product.



Table 1: Methods using arbitrary compressors C; in U(w) for uplink and compressors C, in U(wy)
for downlink communication, for arbitrary w > 0 and ws > 0. All compressors are independent.
The O notation hides the log factors, in particular log(e '), in O(-).

(a) 2Direction requires communication of full non-compressed vectors with a small probability.

() The reported complexity holds if K satisfies the following conditions. For MURANA: K =

Q (%) For MCM: K = ©(d) (no compression). For BiCoLoR: K = (i)

NG
method number of communication rounds TotalCom with rand-K (%)
MURANA @((1+%)(1+ws)m+w) O (dr)
5 w 3/2 W, A
MCM (?((1+;+w8/ +%) n) O (dr)
EF21-P+DIANA | O ((1+ ¥ + w,)k +w) O (dk)
2Direction () O(VO+W) I+ 2 +w)r+w+ws) | O(dVE)
BiCoLoR OHVI+w+w)I+2+ws)k O (dv/k)
14+ w+ws)(1+ 2 +w,))

Lastly, 2Direction was introduced (Tyurin & Richtarik}2023)), combining acceleration from momen-
tum and decoupled BiCC, achieving the SOTA complexity in number of rounds shown in Table [T}
With appropriate compressors, this gives a TotalCom complexity of O(d+/k), which is the same, so
neither worse nor better, than using no compression. Also, we note that 2Direction communicates
full non-compressed vectors with a small probability. Ideally, a method would only communicate
compressed vectors. BiCoLoR has this property and achieves the SOTA complexity O(d+\/k) as
well. When o = 0 and no downlink compression is applied, neither 2Direction nor BiCoLoR reverts
to a known algorithm with unidirectional CC, and their complexity is worse than ADIANA, see the
discussion in Section[Al

In a different area, BiCC has been considered in the nonconvex Bayesian setting where compression
consists of sampling from distributions (Egger et al., [2025).

2.3 COMBINING LT AND CC

It has proved difficult to combine LT and CC while keeping their benefits, namely acceleration
from x to y/k and an UpCom complexity with a better dependence on d when n is large. Early
combinations, such as Qsparse-local-SGD (Basu et al., [2020) and FedPAQ (Reisizadeh et al., [2020))
fail to converge linearly. FedCOMGATE (Haddadpour et al., 2021} converges linearly but in @(d/{).
Random reshuffling, a technique that can be viewed as a kind of LT, has been paired with CC
(Sadiev et al., 2022; Malinovsky & Richtarik, [2022)). The effective LT mechanism of Scaffnew has

been combined with CC in CompressedScaffnew, achieving the UpCom complexity (5(\/ dk +

d—\/\/; + d) (Condat et al., 2022a)). It exhibits double acceleration with the \/g\/E dependence when

n is large. However, CompressedScaffnew uses a specific linear compression technique based on
random permutations of the coordinates. Recently, LoCoDL was introduced (Condat et al., 2025),
successfully combining LT in the spirit of Scaffnew with CC using arbitrary uplink compressors in
U(w). Its UpCom complexity matches that of CompressedScaffnew. ADIANA has an even better
complexity, that goes down to O(y/k + d) when n is very large. Nevertheless, LoCoDL consistently
outperforms ADIANA in practice and can therefore be regarded as the SOTA in terms of UpCom
efficiency.

To the best of our knowledge, BiColLoR is the first algorithm to combine the LT mechanism of
Scaffnew, which yields y/k acceleration, with BiCC using arbitrary unbiased compressors. Similar
to LoCoDL, BiColLoR uses an additional function g in the problem and a variable y shared by all
clients, with compression of the differences between the local variables x; and y. But it has notable
differences: the server is an additional machine with its own function f, and during each commu-
nication round, the variables z; and y are updated using information on z 4 received from the server,
while x, itself is updated using information on the x; received from the clients. Crucially, these



Algorithm 1 BiColLoR

1: input: stepsizes 7, 7,7y, p, py > 0; sequence of probabilities (p;):>1 sparsification level k € [d]; lo-

cal initial estimates z¥, ..., 2%, 22, y° € R? initial control variates u?, ..., u%, u?, ug € R? such that

Ly 1ul+2us+uy—0

2: fort =0,1,...do
3 fori=1,...,n,s, atclients and server in parallel, do
4: &y = wp —yVfixi) + yug
5: 9" = y" —yVg(y") + ~yul, // the clients and server maintain identical copies of y*, ul,
6:  end for
7: flipacoin 8 € {0, 1}, with Prob(6" = 1) = ps11
8: if6' =1 then
9: pick a subset Q' C [d] of size k uniformly at random
10: for i = 1,...,n, atclients in parallel do
11: Cg = Cfvﬂt (@ﬁ,ﬂt — ?Tgszt)
12: send ¢! to the server
13: receive ¢!, from the server
14: a:HQ, = (1 — P&} qr + pct + Gge)
. t+1 —
15: Tt = T japar
16: y = pes
17: wit =l — LE: (ct—ct)
18: A 71)”;7 My ot
19: end for
20: at server, in parallel to steps 11-18:
21: ¢l = Cﬁ,m (iim - @éz')
22: send ¢!, to all clients
23: receive (cf)j; from the clients and aggregate ¢ := + 3" | ¢}
24 2t = (1 _ P+Py) B + TG, + 22
25: mtj[d]\ﬂ, = ;[d]\m
26: y'th=9" + pych
27 U2+1 — Ui + m;:il’ykn &t — pt+112€(32y+n) C.ts
28: ubtt =l + 7pt+dlfny ct
29:  else
30: ot = 21 Vi € [n), 2T = 2L, T = ¢
31: uf“ = ul Vi € [n], wltt =t uffl = ug
32:  endif
33: end for

two updates are decorrelated, which is the key to obtain a decoupled TotalCom complexity, akin to
EF21-P+DIANA and 2Direction.

3 PROPOSED ALGORITHM BiColLoR

The proposed stochastic primal-dual method BiColLoR is shown as Algorithm At iteration t,
Client i computes ! by a GD step on its individual function f;, corrected by a dual variable u} that
learns V f;(z*). It also computes 7 by a GD step on g. The server, as a (n + 1)-th client, does
the same using f; and g. Communication is triggered randomly with a small probability p. When
it occurs, Client ¢ compresses ﬁ — ¢' and sends this compressed difference to the server, which
aggregates their average &. Unlike in many algorithms, ¢ is not sent back to the clients to update
their local variables. Instead, it is only used by the server to update its local variables z‘ and u’.
This is the compressed difference ¢!, = C%(Z% — ¢'), sent by the server to all clients, which they use
to update their variables and y. So, UpCom and DownCom are independent and can be performed
in parallel. We make the following assumption.

Assumption 3.1 (compressors in BiCoLoR). There exist w,ws > 0 such that C! € U(w) and
C! € U(wy), for every t > 0,4 € [n]. The compressors (Ci,...CL, C!) are independent from

the (C!',...Ct,Ct")if t # ¢'. Also, C! is independent from the (Ci)iy for every t > 0. The
(chn_, need not be mutually 1ndependent this is characterized by w,, in .



More technically, BiCoLoR works as follows. We rewrite the problem (3) as

win 3" file) + 26ife) +gly) st Dx=0, @)
=1

X=(T1,00 T, Ts,Y

where D is a linear operator such that Dx = O ifandonly if xy = --- =z, = z, = y. We
refer to the Appendix for the vector notations and definitions. The key property of our design
is that D is chosen in such a way that applying D and its adjoint D* can be approximated us-
ing unbiased stochastic estimates, given that the clients receive the compressed vector ¢ from the
server, and nothing else, and the server receives the compressed vectors ¢; from the clients. Also,
(uf,...ul,,ul,ul) has to remain in the range of D*, which means that = > | u! 4 2u +uf, = 0,
for every ¢ > 0. This is why the idea that the server compresses the average of the ¢! and sends it
back to the clients, instead of ¢, does not work, for instance. The operator norm of D is 2, implying
that enabling BiCC incurs a twofold slowdown of BiCoLoR without compression, relative to vanilla
GD. The iteration of BiCoLoR takes the form

&t = x! — yVE(x!) + yD*u’
flip a coin ' € {0, 1}, with Prob(#* = 1) = p;11
ifr =1: xtth =%t — pD*D%, utt! ;= uf — %Df{ ’

else : x!T1 =%t utt! :=u

)

where :~ means that an unbiased stochastic estimate of the right-hand side, built from the com-
pressed vectors, is used for the update; see the Appendix for precise definitions. The two stochastic
estimates used for x and u are different. This is because an estimate of D*DxX is needed to update
x, whereas an estimate of DX is needed to update u, with D* applied exactly to it. So, the estimate
used for x is less noisy, with a variance that depends on w,, + w; instead of w + ws.

In BiColLoR, when communication happens, we allow the selection of a subset Q! of size k € [d]
of coordinates to be processed. The other coordinates are updated as if §° = 0. For a vector
z € R4, its restriction zq, € R? denotes = with the coordinates not in § set to zero. Accordingly,
Ca(xzq) applies compression only to the subset of coordinates in €2 and returns a k-sparse vector
with coordinates not in 2 set to zero. This approach allows to sparsify communication, but the same
k random coordinates are used for all vectors, in UpCom and DownCom. By contrast, we assume
in Assumption that if rand-k compressors are used instead, achieving the same sparsification
factor, the uplink and downlink compressors are independent. The interest of sparsifying via & and
not the compressors is that variance reduction of the compression error can be bypassed, leading to
larger stepsizes 1 and p.

4 CONVERGENCE ANALYSIS AND COMPLEXITY OF BiColLoR

4.1 ACCELERATED LINEAR CONVERGENCE IN THE STRONGLY CONVEX CASE

Theorem 4.1 (linear convergence of BiCoLoR). Suppose that 1 > 0 and let x* be the unique
solution to (B). In BiColLoR, suppose that Assumptionuholds, 0 <y < % pr =p € (0,1] is
constant, and

1 1

= n=n = . 5
2t + 205 T T T 2w 1 20,) (2 + wae + 205) ®)

P = Py

For every t > 0, define the Lyapunov function

1 _ * * * d2 ~ * *
. (Z et + 2m [l = 4 =z n?) + <Z ||u:—uz~u2+n||u;—uyu2),
i=1

T\ = p*k*n

where uy = Vg(z*) and uf =V f;(x*). Then BiCoLoR converges linearly: for every t > 0,

21.2

k
]E[\I/f] <00 where ¢:=max ((1 - ’W)Q, (1- ’yL)27 1-— p 7 77) < 1. (6)

In addition, for every i € [n], (z!)ien, (@%)ten and (y")ien converge to x*, (ul)ien converges to
uj, and (ul))ien converges to uy, almost surely.



Thus, BiColLoR has the same rate max(1 — yu,yL — 1)? as vanilla GD, as long as p~! and the
compression variances are below some threshold. The iteration complexity of BiCoLoR to reach
e-accuracy, i.e. E[U!] < ¢, withy = ©(1), is

d?(1 s)(1 av s wo
Ol |k+ (L+w+w)(L+ way +ws) log— | . @)
p2k2 €
With £ = d and w;, = 0, this is the same complexity as LoCoDL. The complexity in number
of communication rounds is p times the iteration complexity, so the best value of p balances the
dy/(1+w+w,) (1 +way +ws)
kv

two terms in ; that is, p o min ( , 1). With this choice, the number of

communication rounds is

9 0
o ((d\/(l—i—w—l—ws)(l—&—wa\,—i—ws)ﬁ_’_ d (1+w+ws)(1+wav+ws)> 1og\i> )

k k?

Assuming that the vectors compressed by C; and C; are encoded into b and b, bits, respectively, the
TotalCom complexity, as defined in (T)), is (b + abs) times the complexity in (8). As mentioned in
Section[L.1} b(1 + w) = Q(d), and the rand-K compressor achieves this bound with b = ©(K)
(ignoring potential additional K log, d bits) and 1 + w = %. So, let us look at the TotalCom
complexity with respect to K € [d] and K € [d], assuming that the compressors C; and C; are
independent rand-K and rand-Kj, respectively, and k£ = d. In addition, we assume that o < 1
and K, > K. Then TotalCom is

@(mm WK <73(+;s)m;(;;{+;s))).

If in addition nK > K, this simplifies to O ((K +aK,) ( e %)) In the unlikely case

a< é, with Ky = d (no downlink compression since DownCom is very cheap) and K = 1 (which

implies n > d), the complexity becomes o (\/E\/E + d) , which shows double acceleration with

respect to d and «. In particular, when o = 0, this is the same complexity as CompressedScaffnew
and LoCoDL (Condat et al.,[2025). In the general case we are interested in, where « € (0, 1] is not
tiny, notably the important case &« = 1, we cannot expect acceleration with respect to d, see the
discussion in Section[A] So, we suggest the following values.

Corollary 4.2. In the conditions of Theorem suppose that o« € (0,1], k =d, v = %, the C! and
Ct are independent rand-K and rand-K, compressors, respectively, with

K { d " K max (a,%)d 4 . ( 1 1)
s=|—7=|> =|—————|, and p=min | —,1).
NG VE N
Then the analysis above applies, withn K > K; > K and K > oK, and the TotalCom complexity

of BiCoLoR is

9

dvVK d’ 0 0
O(( \/\/%E—i—Ks)logT):O(d\/ElogT). (10)

An alternative is to make use of sparsification with the parameter % in BiColLoR:
Corollary 4.3. In the conditions of Theorem suppose that o € (0,1], v = % the compressors

satisfy w = O(1), ws = O(1) (e.g. quantization), k = {%—‘ p = min (#\;ﬂ?,l). Then the

TotalCom complexity of BiCoLoR is O (d\/ﬁlog %0)

We discuss the @(d\/ﬁ) TotalCom complexity and explain why it is unlikely to be improved in
Section Al

4.2 ACCELERATED SUBLINEAR CONVERGENCE IN THE GENERAL CONVEX CASE

For every x € R4, 2/ € R?, we define the Bregman distance of a convex differentiable function
¢ as Dy(z,2') = ¢(z) — ¢p(z') — (Vo(a'),z — 2’) > 0. If ¢ is L-smooth, we have (Vo (z) —
Vo(r'),z — ') > Dy(x,2') + 57 | Vé(x) — Vo).
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Figure 1: Logistic regression on the real-sim dataset. The compression scheme combines
sparsification with K = 1000 and Natural Compression.

Theorem 4.4 (accelerated sublinear convergence of BiCoLoR). In BiCoLoR, suppose that Assump-
tionholds, 0<y< % k=d,

1 C
St t 20, T T U 20+ 20,) (2t W + 203)

p=py = (1)

Sor some constant C' € (0, 1), and that for every t > 1,

b
=4/——¢€ (0,1
Y43 a+t (7]7

Sor some b > % and a > b — 1. Let x* be a solution of @), and u} = Vg(z*), uf = V f;(z*)

for every i € [n]. Then BiCoLoR converges sublinearly: for every e > 0, by choosing t uniformly at
random in {0, ..., T — 1}, where

nya
7 { (ZH° (22 o =P 2 - 2 5 o - 0 uuyuyuﬂ

we have

Zsz —|— 2nDy, (x ( *) +nDy (yg, x*)} <e. (12)
and

t
T —x

z! nyz] =0 (Vo) (13)

iﬂ—om% E|”

Moreover, the expectation of the number of communication rounds over the first T' > 1 iterations is

Zle pr = O(VT), so that (12) is achieved with ©(VT) = © (ﬁ) communication rounds (we

refer to the proof in the Appendix for the constants in O). Moreover, if v = @(%), 0= =... =

20 =20 =yl andul = V1 (2°),...,ul = V[, (2°), ud = Vg(2°), VT = © <\/§||x0 — J;*H)
This is the same accelerated complexity as 2Direction (Tyurin & Richtdrik, |2023).

Due to space constraints, experiments are presented in the Appendix. Some results are shown in
Figure[T} see the Appendix for details and other results.
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A DISCUSSION OF THE O(d+/k) TOTALCOM COMPLEXITY

Let us comment on existing lower and upper bounds for the TotalCom complexity in the strongly
convex setting.

As discussed in Section For methods using uplink compression only with independent com-
pressors Cf in U(w), the lower bound, achieved by ADIANA, for the number of communication

rounds is Q((l + %) VE + w). This translates into an UpCom (or equivalently TotalCom with
o = 0) complexity of (5((1 + %)\/E + d). BiCoLoR, like 2Direction, achieves the same com-

plexity O(Vd\/k + d) as LoCoDL if n > d and o = 0. This is worse than ADIANA, but LoCoDL
outperforms ADIANA in practice (Condat et al., [2025). In any case, there remains a theoretical gap
between unidirectional and bidirectional CC.

Without downlink compression, or little compression with ws = (1) such as quantization solely,
by choosing the C! as independent rand-K compressors for K = max(2,1 dar) (which means no

n’

uplink compression if o = 1), BiCoLoR achieves the same TotalCom complexity (5( % + Vdk +
d+ \/&d\/ﬁ) as CompressedScaffnew (Condat et al., [2022al). For not-so-small values of «, this

reverts to @(d\/ﬁ) Moreover, this is obtained by essentially disabling compression and using LT
only. This is not in the spirit of what we want to achieve, which is the best TotalCom complexity with
nontrivial levels of compression in both ways. In Corollaries and BiCoLoR has complexity
O(d+/k) with large levels of compression, even when o = 1. Still, there is a gap here too, between
the regime o« = 0 where acceleration with respect to d is possible thanks to compression, and
a = 1, where the TotalCom complexity is O(d+/x) and compression is at best harmless. Nesterov’s
accelerated GD and Scaffnew (Mishchenko et al., 2022) have this complexity, and they don’t use
compression.

It has been shown that without assuming independence of the C}, a lower bound for the number of
communication rounds is ((1 +w)+/k), which gives an UpCom complexity of 2(d+/x) (He et al.,
2023a)). This complexity is achieved by Nesterov’s accelerated GD and Scaffnew (Mishchenko et al.}
2022), which do not use compression. This may indicate that many independent compressors run in
parallel are required to hope for a decrease of the dependence with respect to d. We may consider
the idea that the server sends different messages compressed with independent compressors, instead
of using a single compressor Ct. However, a negative result has been established, in the different
nonconvex setting though: any method in which the server sends a compressed vector to each client,
possibly obtained using different compressors in U(wy), requires at least 2((1 + w,) L/€) rounds to
find a stationary point (Gruntkowska et al., 2024}, Theorem 3.1); see also Huang et al.| (2022). This
suggests that there is little hope of improving the downlink dependence on wy as n increases.

B EXPERIMENTS

B.1 STRONGLY CONVEX CASE

We evaluate our proposed method, BiColLoR, against 2Direction and EF21-P+DIANA on a regularized
logistic regression problem of the form (3). The loss function of Client i is

1 & n
fi(z) = — glog(l—i—exp (—bi,jazjx))+ §Hx||2, (14)

and we take f; = g = 4||z||%. For the other algorithms, which do not use f, and g, we replace
1 by 4 in the functions f;, so that the problem solved by the different algorithms is exactly the
same. In (T4), n is the number of clients, m is the number of data points per client, a; ; € R? and
b;j € {—1,+1} are data samples, and g is set so that the condition number is £ = 4.10°.

Our experiments use datasets from the LibSVM library (Chang & Lin|, 2011)) (3-clause BSD license).
Each dataset is first shuffled, then divided into n pieces of same size m assigned to the n clients,
discarding any leftover data points to ensure m is an integer.

For BiColLoR, we consider two compression strategies. We focus on the case @ = 1, so that the
compression level is the same downlink and uplink.
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Figure 2: Logistic regression on the w8a dataset. The compression scheme combines sparsification
with K = 100 and Natural Compression.

1. Sparsification is performed using a low value of the parameter , like in Corollary [4.3] The
compressors are independent Natural compressors, performing quantization of reals on 9
bits, as explained in Section[L.1]

2. k = d and the compressors are the composition of independent rand-K compression with
same K, like in Corollary[4.2] and Natural compression. See in Section[I.T|for the variance
of a composition.

For a given K € [d] and k¥ = K in the first strategy, the compression level is the same, but the
difference is that every machine selects K random coordinates independently in the second strategy,
whereas the K randomly selected coordinates are the same for all machines in the first one. Inde-
pendence is beneficial but requires lower stepsizes 7 and p, so we don’t know a priori which of the
two strategies is best.

For the other methods 2Direction and EF21-P+DIANA, we also use a combination of rand-K and
Natural compression, both downlink and uplink (with appropriate scaling to make the downlink
compressor contractive).

We tuned the stepsizes (y for BiCoLoR) for all algorithms. All other parameters are set to their best
theoretical value. The algorithms are initialized with zero vectors.

Figures and|Z| show the results on the real-sim dataset (72,309 samples and d = 20,958 fea-
tures) and w8a dataset (49,749 samples and d = 300 features), respectively.

BiColLoR with the first strategy (using the parameter k for sparsification instead of the compressors,
red curves in the plots) outperforms the other algorithms. So, our theoretical findings are confirmed
in practice, and BiCoLoR establishes a new state of the art for optimization with bidirectional com-
pression.

B.2 GENERAL CONVEX CASE

In this section, we aim to demonstrate the acceleration benefit of using a decreasing sequence p;, as
defined in Theorem[4.4] in the general convex setting. To this end, we conduct experiments using a
convex loss function by removing the regularization term from the logistic regression objective (14),
i.e., setting u = 0. The experiments are performed on the w8a dataset with n = 10.

We compare BiCoLoR with decreasing p; (as in Theorem4.4) against BiCoLoR with constant p; = p,
where p is chosen so that both variants perform the same total number of local steps. For compres-
sion, like in Section we consider sparsification with the parameter k£ and Natural compression
in BiCoLoR, and the other algorithms use compositions of rand-K and Natural compression. We
tuned the stepsizes (v for BiCoLoR) for all methods, and all other parameters are set to their best
theoretical values.
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Figure 3: Logistic regression without regularization on the w8a dataset. The compression scheme
combines sparsification with K = 100 and Natural Compression. BiCoLoR with decreasing p; (as
defined in Theorem [4.4)) outperforms the constant-p variant in the long run.

The results are shown in Figure [3] We observe that BiCoLoR with decreasing p; outperforms the
constant-p version, as well as the other algorithms. Here too, our theoretical findings demonstrating
acceleration are confirmed in practice, and BiCoLoR sets a new standard.

C PROOF OF THEOREM [.1]

We define the Euclidean space X = (Rd)n+2 endowed with the weighted inner product

n

(x,x")x = Z(x“x;) + 2n(zs, zh) + nly,y'),

i=1
for every x = (z1,...,%n, Ts,y), X' = (2],...,2,,2%,y"). We also define the Euclidean spaces
U = (R?)" endowed with the standard inner product (u,u’)y, = .1 (u;,ul), for every
u = (ug,...,up), 0 = (uh,...,u,), and U, = R? endowed with the weighted inner product

(u, )y, = n(u,u’), for every u,u’ € R%.
We reformulate the problem (3)) as

Héi/g f(x) st. Dx=0 and Dyx =0, (15)

where
fix=(21,...,20,25,y) € X — Zfi(:z:i)+2nfs(xs)+ng(y),
i=1
D:X—-U:(x1,...,Tn,Z5,Y) — (X1 — Ts,..., Ty — Ts),
DyX%uy : (‘rlv"‘vxnvxsay) = (y_xs)a

and 0 denotes the zero element of the Euclidean space.

We note that the function f in X is L-smooth and p-strongly convex, and Vf(x) =
(Vfi(21),...Vn(@n), Vfs(zs), Vg(y)). The adjoint operators are

* 1 -
D :U%X:(ul,...,un)»ﬁ<u1,...,un,Qné ui,0>,
i=1
" 1
DUy, - X:uy— (07...,07—§uy,uy).

We also introduce vector notations for the variables in BiCoLoR. We define x* :=
(x*,...,x*, 2%, 2*) € X as the unique solution to (13), w* := x* — yVf(x*) and, for every ¢ > 0,
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xt = (2, ... 2t 2t yt), RE = (2%, .. 2, 2L, 90), ut = (ul, .. ul), ut o= (uy,. ., ul) =

VE(x*), w! := x! —yV£(x?), and the o-algebra F* generated by the collection of random variables
0 340 .0 t

t,t
XU Uy, XU U

We first consider the case k = d, so that 2 = [d] and full vectors are compressed.

Let ¢ > 0. We can write the iteration of BiCoLoR as

%' i=x' —yVI(x') + yD*u’ +yDjul, = w' + yD*u' + yDjul

flip a coin ' € {0, 1}, with Prob(#* =1) = p

ifol =1
rt = (i.?;l —Cg _1:&15,. 7‘%;51 —Ci _gt7%(@t _Et yt)ao)
vl = (0,...,0,5(2f — g"), —c!)
Xt+1 — }A(t — pr — pyTy 16
ut‘H::ut—%cﬁ—ci7 coch —ct) (16)
u;"’l = ul + %cﬁ,

else
i+l — gt
ut+1 _ ut,u;-‘rl _ ut

| end if
We have
E[x"*"| 7,0 =1] =&' — pD*DX" — p,D;D,%". (17)

That is, x' ™! is updated using a stochastic unbiased estimate of the right hand side of (T7) made
from the compressed vectors, because the server does not know the §3f and the clients do not know
%%, the only available information consists of the compressed vectors. Similarly,
E[ut! | 71,0 =1] = u' — Zpx!
Y

t_ Dy
bW

E[ut' | F0=1] =u D,x".
Thus,
B[ x| 1 7] = (0= p) |8 [ + B[ — x| 1760 =1]
=(1-p)]
+pn(o® + pE ek — @t = ")* | 7,0t = 1]

2

%~ x|, 4 p |8 — % - pD" DR — py Dy DR,

2np?
E
4

+p | F10' =1

&= x -

<(1-p)]
+p||pD* DX + p, D DR |5
—2p (%' — %%, pD*DX" + p,D; D,X")
n

+pn(p?* + pi)ws H’i‘z — QtHQ +pnp2% Z
i=1

= |[&" = x| + 2 [loD"DR* + p, DD,

st ot 2

Ty —Y

= 20| DR'[l5, 200 [|Dy%" 1,

n
t At at]|2
i

2
2 | PP Way
+72a;’x Y

+pn(p® + py)ws ||25 — 9

Moreover,
PR [o S Rt

+2y(w' —w*, D*(u' —u*) + DZ(UZ - u;)>x

|

18



On the other hand,

E[[jutt =t | F] = (=) Juf = wtf o pB|u =t | F 6t = 1]
2

=(1-p) | —u*HZ +plut —u* — Pl pgt

u
pn]E[ZHc —cl — (2t —l’)” | 7, Gt—ll

Let ¢ € [n]. Since C; and C are supposed independent, we have

E[[lcf - et — & — &) | 76" = 1] =E[[]ef - (¢ - )" | ',0* =1]

+E[||cf (@ - 1 7,0t =1
<wll# - Jl# =]
Therefore,
B[ —w'lly, [ 7] < (1= p)[ju = w7, +pJu — w7, + %,
2
_ 2p n<ut _ ll*,D)A(t>u
Y
3,,2 n 3,2
I R

i=1

Moreover,
E[lutt — wyll, 1 7] = (1= p) [t —w]lf, +p[[lu+t — w7, | F 0t =1]

2
P p, &t
5

t *
uy u

= (1= p) [l wjly, +p y

u,

3,2
+ p;@"E[Hcg — @t =gl 170 =1
2 P3772 112
< (V=) [luy =y llyy, + 2wy =il + =55 106 [l
2 3,2
_ 2p 77y <UZ _ uZ,Dyf{t>uy + p ny;dsn }"fi Y 2 )
Y Y
Thus, using the fact that Dx* = D,x* = 0, we have
Y Y
et =l W} Bl il 1 7]
y 2 N
< =+ g =g, — 2007 )+ D — ) & )

21 ps

n

N . L e A p(n 4 n,)w .

Il + yHD &l + 5 Z!|x§—yt\!2+77y *|Dy% 5,
=1

2 * * * =\ |12
p n ||u o Hu ey ||u *uyHuy *27||D (ut*u )+Dy(u§/7uy)||x
—2<D*(u —u*) + Dj(ul —uy), w' —W*>X

N pn - pnw p(n + ny)ws 5
HD R+ DRy, + ZII =] +%HD %y,
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Hence,

| —

2 2l *(|2 v * )2
e ) R e P R s et R

! w1 D )+ D3, )

A =

1
v
+2(w' —w*, D*(u’ —u*) + Dj (u;, — u; >x

v %12 *
i L ||u+p27y|\uy—uy}|u = 2| D (u' —w) + Dy, — [

—2(D*(u" —u*) + D*(ut —uy), w' — W*>X

2 2
*HPD D'+ p,D;D, % |3 = =2 ol L pp” 1D4% I,
Im(p + p2)ws i pp Way
Rl TRl zutyn
1=1
Py ot pn . L it p(n+my)ws |
+7HDXfHZ T2 Dy g, + ZH P - %HD %z,
= 2w = 1l
o X pPn U p? n vl
—y||D*(u —u*) + Dl — )5 + o ||pD*D)“<t+pyDZDy5<tHi
R YT 2wav+2p77w X
-%frwwﬂm Zntt
~ u,
Using Young’s inequality, we have
ZH%’ -4’ <Z(2Hx — || +2jat - o)
= 2| DR[|y, + 2 Dy, -
The leading eigenvalue of D* D + Dy D, is 2, with corresponding eigenvector (z, ..., x, —z,z) for

any z € R?, so that

2
U,

o prDyit|

= 2p? HD tHu + 2py HDU t”u

loD* D" + p, Dy D&% < 1D D + DD, | ([loDR'[;,

Il

Therefore,
1 2 v 2 v <112
SB[l e 17 B = | ] B -l 1]

1 2 Y 2 B 2
< It =il ol = ol g e =i,

P’
—||D(u —u) + Dyl — )|
—2pp + pp*(2 + wav) + (1 +20) || 2
; : 0%,
—2ppy + ppo (2 + ws) 4 Pp*(Ws + Way) + P(ws + 2w) + pny (1 + wy) 2
+ : D,
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We need to choose p, py, 1, 1, small enough to remove the last two squared norm terms. We choose

1
P=Pry= 2+ wWay + 2ws
o 1
T T T 20+ 260)(2 + Way + 205)
This way,
—2ppy + PP (2 + ws) + PP’ (ws + way) + pn(ws + 2w) + pny (1 + w,) =0
and

—2pp + pp*(2 + way) + (L + 2w) < —2pp + pp? (2 + way + 2w;) + pi(L + 2w + 2w;) = 0.
Then, according to|Condat & Richtarik (2023, Lemma 1),
2 w12
Hwt — W*HX = H(Id —yVf)x! — (Id — yVF)x HX
Smax(l—’yu,’yL—l)Q||Xt—x*||2x. (18)
Moreover, we define the concatenated operator D, : x € X — (Dx, Dyx) € U x U,,.. D, has full
range, since for every (z1,...,2,,y) € U X Uy, Dc(21,...,2,,0,y) = (21,..., 2, y). Equiva-
lently, D} is injective. For every (u,u,) € U xU,, we have || D*u + Dj;uyHi = | D:(u,uy)|% >

Amin(De D) ( ||u||12/l + ”“y”zQ,t ), where Ain(DcD}) is the smallest eigenvalue of DD}, which

is positive because D} is injective. This eigenvalue is 1, with corresponding eigenvectors of the
form (u1,...,uy, —2 37" | u;), that form a space of dimension n (the (n + 1)-th eigenvalue is 2,

as mentioned above). Therefore,

1D (0" = w*) + Dyl — )|, = [’ = w? [l + [l = 3, -
Hence,
e[l 17 L[ w1 LR gl |
v x 21 u P21, Y yllu,
1 2 Y ]2 y 2
< 5 max(l= ey L= 12 [ = + g ol =y + g o =y,
= [Ju’ = w g = [luf, =,
= l max(1 — yu,yL — 1)2 th — X*H2 + l(l fpzn) ||ut — u*H2
v X pPp u
¥ (2
+ any(l =p*my) [luy = lly, -
so that
E[U' | ] <max ((1—yp)?, (1 —yL)? 1 —p°n) ¥ (19)

Using the tower rule, we can unroll the recursion in (T9) to obtain the unconditional expectation of
Pyt

Using classical results on supermartingale convergence (Bertsekas|, |2015 Proposition A.4.5), it fol-
lows from (T9) that ¥* — 0 almost surely. Almost sure convergence of x¢, u’, ué follows.

Finally, let us consider the general case k € [d]. We observe that the analysis above is separable with
respect to the d coordinates of the vectors. From the perspective of a given coordinate j € [d], either
the vector values at this coordinate are updated using communicated information, which happens if
0t = 1 and j € QF, or they are updated using local information only, which happens if §° = 0 or
j ¢ Q. So, since j € Q! happens with probability k/d, the whole analysis above applies with p

replaced by %.
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D PROOF OF THEOREM (4.4

For every ¢t > 0, we define D% = Dy, (z},2*), for every i € [n], D} = Dy, (ai,2%), Dy =
Dg(yta x*)'

We follow the same derivations as in Appendix @ However, instead of (T8)), we use

vt w1 = [t e[ — 29 (VEGe) — TRG) x5 2 [[VEe) — V)
(20)
Also, we choose
_ B 1
P=Py= 2+ Way + 2wy
1
n=mny <

(14 2w + 2ws) (2 4 way + 2ws)

0.99
(14+2w+2ws ) (2+way +2ws)

(for instance n = 1, = ). This way,

Xy = 2py — pz(Z + ws) = PP (Ws + Way) = N(ws + 2w) — My(1+ws) >0
and

X =2p — p*(2 4 wWay) — (1 +2w) > 2p — p*(2 + wWay + 2w,) — (1 + 2w + 2w,) > 0.

Hence,
1 |2 gl |2 Y
*E[me - x| |f1 + mﬂ‘:{”ut“ - u[l, |ft} + mE[H“ZH = Iy, |Ft}
<l =~ 2(VE) = VEG) ! =) 47 [ VE) = TEG)
Y 2 Y 112
LUl L PR (] e
_ Pi41X ~ DPi+1X ~t|2
S s, - B D
So, assuming for simplicity that vy < %, we have
1 2 0 2 Y
*E[HXM—X*HX | 7] +TE[Hut“—u*Hu | 7]+ [t =il | F]
Py P v
<1 - 2~ 23D}, - anD}, — D! + (”‘D IVEG) — VEGH)|%
i=1
_ Pi41X o DPi+1X o
P | ps | - P o,
¥ 2 ol 2
) o T g s il

2 pt+1Xy HDy)A(t| 2

S%HX X HX_QZDt —4nDt — 'Dt Pi+1X HD
=1

1 ' 2 1 p 2
o (ngrln - 1) Hu - u*Hu o <P?+177 - 1) Huy - U;Huy .
‘We choose
b
Pt att

for some b > % and a > b — 1 (so that p; € (0, 1] for every ¢ > 1). Then we have

1 717a—b77+t+1<a+t: 1

PHan bn - bm pin
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2 y 2 v
;EMXHI—XWX|fﬂ—+ﬁzgﬁﬂw”¢—uwm|fﬂ-+E;gEUmﬁl

2
—uzl\uylft}
1 DPe+1X || e Pir1X .
< Lt - ~ 23, — 4D, — 200 — PN x| - 0 g
=1
y 2
+I%H“t w{l, + -

5l — il -

By unrolling the recursion, we have, for every t > 1

1 : 2 Y 2 v
R R R e P R [

2
g Ll = il Fal

2
u, |’

va 2 7a
S Rl R L e

t—1
_ZE[QZDt +4nDY + 20D +pt+1X HD“
t’=0 =1

e,

n Pr+1Xy
Y

~t/
D,x

This implies that

ZEFZD +4nDY, +2nD! + P | pg
t= =

<L+ 2

- Pt+1X o
e

A 7 o U*Hu + % 7 1) — w3

e,

np12 A
$0 thatIE{Z i1 D, +4nDy + 20Dy + PEX || DR[|, + P2 [ Dy x|, ] —0ast — 400
Moreover, for every t > 0,

E[Hut - u*”it | ft} JrE[Hu’; —u

2
o, 1 7]
i 2 . a 2 a 2
<o (0=l 5 I = w5 o - w51 )
b i 2 a 2 a 2
o (b = 5 s =l + 1 =51, )

Uy

Furthermore, for every T' > 1, let ¢ be chosen uniformly at random in {0 T — 1}. Then

i

l2ZDf +4nDh + 20D} + pf“X HD‘t

i pt+1Xy HD A7

T-1 n
%ZE ZZD +4nDt Lo Dt+pt+1X HD +pt+;Xv HD At”u]
t=0 i=1
1 /1 2 2
< 2 (R + 2w 22 g - )
Thus, given € > 0, by choosing

1

1 *||2 na 2 ya %112
T Z % (A’/ ||XO — X ||X + % Huo _u*||u—|— % ||u2 —UyHuy>7

]SQE.

we have

i pt+1X o
QZDf + 4nD’, 1 20D} HD

i Pt+1Xy HD of
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In particular,

E|> D +2nDf +nD]

Li=1

<e. (21)

Also, since (p;); is decreasing,

2

12 _ . 12 . 2
prX HDit ‘ i PrXy ‘Dy&t < Pip1X HD&t ‘ n Dit1Xy D,&! ’ :
Y u Y u, Y u Y u,
so that
~112 ~112 2 T
e o+ 2 o, < o =25
v u u, epT b

and if T = © (% (% 10 = 5|2 + 2 [[u® — w2, + 28 [l - u;HZy)),

X |2 Xy Li||? _
E|= || Dx + == ||DyX —O(\/E).
gl u v u,
Finally, the expectation of the number of communication rounds over the first 7" > 1 iterations is
T
> e =0WT),
t=1

so that (Z1) is achieved with ©(v/T) = © <i> communication rounds.

€
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